Modular / Mobile Test Report

For

Intel PRO/wireless LAN 2100 3B Mini PCI Adapter Model Number: PA3272U-1MPC

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING EMISSIONS STANDARD

47 CFR Part 15, Subpart C (Section 15.247)

Test Method:

ANSI C63.4: 1992 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

To view a copy of the Scope of Accreditation visit www.A2LA2.net

PREPARED FOR:

Toshiba Corporation 1-1-1, Shibaura Minato-Ku, Tokyo 105-8001, Japan

Contact(s): Hideo Abe

PREPARED BY:

Aegis Labs, Inc. 22431 Antonio Parkway B160-417 Rancho S. Margarita, CA 92688

Agent(s): Mr. Steve Kuiper

Mr. Rick Candelas

Test Report #: INTEL-021104FTest Date: Oct. 1 – Nov. 7, 2002

	REPORT	APPENDICES		TOTAL
	BODY	I	II	
PAGES	20	59	63	142

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc.

AEGIS LABS, INC 22431 Antonio Parkway B160-417, Rancho Santa Margarita, CA 92688 949-459-7886 TEL 949-459-7869 FAX www.aegislabsinc.com

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	CERTIFICATION OF TEST DATA	03
2.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	04
3.0	DESCRIPTION OF EUT CONFIGURATION	05
3.1	EUT Description.	05
3.1.1	Channel Number and Frequencies.	06
3.2	EUT Configuration.	07
3.3	EUT and Sub-Assemblies List.	08
3.4	Accessory / Host Equipment List	08
3.5	Cabling Diagram and Description	09
4.0	TEST EQUIPMENT SETTINGS AND TEST SETUPS	11
4.1	Conducted Emissions At AC Mains Port	11
4.1.1	Conducted Emissions At AC Mains Port – Test Setup	12
4.2	Radiated Emissions (Spurious and Harmonics)	13
4.2.1	Radiated Emissions (Spurious and Harmonics) – Test Setup	14
4.3	Occupied Bandwidth Measurement	15
4.3.1	Occupied Bandwidth Measurement– Test Setup	15
4.4	Maximum Peak Output Power Measurement	16
4.4.1	Maximum Peak Output Power Measurement– Test Setup	16
4.5	Spectral Power Density Measurement	17
4.5.1	Spectral Power Density Measurement– Test Setup	17
4.6	Spurious Emissions Measurement At The Antenna Terminal	18
4.6.1	Spurious Emissions Measurement At The Antenna Terminal– Test Setup	18
4.7	Band Edge Measurement At The Antenna Terminal	19
4.7.1	Band Edge Measurement At The Antenna Terminal– Test Setup	19
5.0	MODIFICATIONS AND RECOMMENDATIOS	20
APPENDI	CES	
I	Data Sheets (For Modular Approval)	
II	Data Sheets (For Mobile Approval)	<u>-</u>

Page 2 of 20 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

1.0 CERTIFICATION OF TEST DATA

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual.

Testing and engineering functions provided by Aegis Labs are furnished through the use of part-time, full-time or consulting engineers with the appropriate qualifications to carry out The intended purpose of this test report is to describe the measurement procedure and to determine whether the equipment under test "EUT" complies with both the conducted and radiated limits. Limits for emissions testing are described under 47 CFR Part 15, Subpart C (Section 15.247).

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the Equipment Under Test (EUT) under the requirements specified in the emissions standard as described below. The test results contained in this report are only representative of the test sample tested as described in Section 2.0 of this report.

The test results provided within this report, indicate that the information technology equipment has been found to be in **COMPLIANCE** with the test specifications based upon the following RF compliance standards:

Pass/Fail determination is based upon the nominal values of the test data.

EMISSIONS STANDARDS	DESCRIPTION	TEST
		RESULTS
FCC 47 CFR, Part 15.207	Conducted Emissions At AC Mains Port	PASSED
CISPR22 Class B Limits	Radiated Emissions (30-1000 MHz)	PASSED
FCC 47 CFR, Part 15.247(c), 15.209	Radiated Emissions (1-26.5 GHz)	PASSED
FCC 47 CFR, Part 15.247(a)(2)	Occupied Bandwidth Measurement	PASSED
FCC 47 CFR, Part 15.247(b)	Maximum Peak Output Power Measurement	PASSED
FCC 47 CFR, Part 15.247(d)	Spectral Power Density Measurement	PASSED
FCC 47 CFR, Part 15.247(c)	Spurious Emissions Measurement At The Antenna Terminal	PASSED
FCC 47 CFR, Part 15.247(c)	Band Edge Measurement At The Antenna Terminal	PASSED

Prepared By:

12/19/02

12/19/02

Rick Candelas Staff Engineer

Aegis Labs, Inc.

Steve J. Kuiper Date:

President

Aegis Labs, Inc.

Report Approved By:

2.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED: Trade Name: Intel PRO/wireless LAN 2100 3B Mini PCI

Adapter

Model Number: PA3272U-1MPC Serial Number: See Data Sheets FCC ID: CJ6UPA3272WL

TEST DATE(S): Oct. 1 – Nov. 7, 2002 **DATE EUT RECEIVED:** November 1, 2002

ORIGIN OF TEST

SAMPLE(S): Production

RESPONSIBLE PARTY: Toshiba Corporation

1-1-1, Shibaura

Minato-Ku, Tokyo 105-8001, Japan

CLIENT CONTACT: Mr. Hideo Abe

MANUFACTURER: Toshiba Corporation

TEST LOCATION: Aegis Labs, Inc.

32231 Trabuco Creek Road Trabuco Canyon, CA 92678

Conducted Site #2 Radiated Site #2

A2LA CERTIFICATE: 1111.01, Valid until February 28, 2004

PURPOSE OF TEST: To demonstrate compliance with the relevant standards described

in Section 1.0 of this report.

TEST(S) PERFORMED: Refer to Table in Section 1 of this report.

All calibration vendors were responsible for certifying Aegis Labs, Inc. test equipment as per the manufacturer's specifications and that the equipment is calibrated using instruments and standards where the accuracy is traceable to the National Institute of Standards and Technology (NIST). Calibration of all test equipment conforms to ANSI/NCSL Z540-1 and ISO 10012-1 and/or ISO/IEC Guide 17025 compliance (Additionally, other pertinent test equipment will carry MIL-STD-45662A). All calibration documents are on file with Aegis Labs, Inc., with copies provided upon request.

3.0 DESCRIPTION OF EUT

3.1 EUT Description

Equipment Under Test (EUT)			
Trade Name:	Intel PRO/wireless LAN 2100 3B Mini PCI Adapter		
Model Number:	PA3272U-1MPC		
Frequency Range:	2.412 – 2.462 GHz		
Type of Transmission:	Direct Sequence Spread Spectrum		
Transfer Rate:	1/2/5.5/11 Mbps		
Number of Channels:	11		
Modulation Type:	DBPSK, DQPSK, CCK		
Antenna Type:	Hirose U.FL-R-SMT mates with cable connector U.FL-LP-066		
Hitachi Antenna = 1.67dBi (gain) – 1.56dB (cable loss) = 0.11dB Ethertronics Antenna = 1.18dBi with cable loss Toshiba Dual Band Film Antenna = 0.6dBi with cable loss Toshiba Wide Dual Band Film Antenna = 2.0dBi with cable loss			
Transmit Output Power: 16 dBm (Typical) Please see Appendix I & II (Data Sh for actual output power.			
Power Supply:	3.3VDC from computer MPCI slot.		
Number of External Test Ports Exercised:	2 Antenna Ports (1 Main & 1 Auxiliary)		

The Intel PRO/wireless LAN 2100 3B Mini PCI Adapter is an embedded 2.4 GHz Wireless Local Area Network Mini-PCI adapter. The Mini-PCI Type 3B form factor is designed for notebook computer systems where overall thickness must be kept to an absolute minimum. It is capable of a data rate of up to 11 Mbps at 2.4 GHz. Please refer to Section 3.2 of this report for a further description of the configuration tested.

- **NOTE 1:** For a more detailed description, please refer to the manufacture's specifications or User's Manual.
- **NOTE 2:** The EUT was tested separately with four different sets of antennas (Hitachi, Ethertronics, Toshiba Band Film antennas, and Toshiba Wide Dual Band Film Antennas). Refer to each antenna specifications.

3.1.1 Channel Number and Frequencies

Eleven channels are provided for the EUT.

Channel	Frequency (MHz)
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

3.2 EUT Configuration

The EUT was set-up according to the ANSI C63.4: 1992 guidelines for emissions testing. For emissions testing the EUT (Intel PRO/wireless LAN 2100 3B Mini PCI Adapter, Model Number: PA3272U-1MPC) had a loaded antenna connected to both its main and auxiliary ports. All the appropriate test ports were exercised during both the pre-qualification and final evaluation scans.

The EUT was tested as a modular device and a mobile device.

1) For the modular test the EUT was tested installed in the Mini-PCI slot of the IBM host computer using a PCI extender board to extend the EUT outside the computer chassis. The EUT was then connected to a set of antennas via its main and auxiliary Hirose U.FL-R-SMT ports. Data for a set of Hitachi and Ethertronics dual band antennas can be found in Appendix I (Data Sheets for modular approval).

For conducted emissions at the AC mains port and radiated emissions, the IBM host computer was connected to a Hayes modem, Canon printer, NEC monitor, IBM keyboard, and IBM mouse via its serial, parallel, video, keyboard, and mouse ports respectively. For conducted emissions at the antenna port, the IBM host computer was connected as described in the previous configuration with the exception of the modem and printer.

2) For the mobile test the EUT was tested installed inside the Toshiba host computer Mini-PCI slot. The EUT was then connected to a set of antennas via its main and auxiliary Hirose U.FL-R-SMT ports. Data for a set of Toshiba dual band film and wide dual band film antennas can be found in Appendix II (Data Sheets for mobile approval).

The Toshiba host computer was then connected to an NEC monitor and Logitech mouse via its video and USB ports respectively.

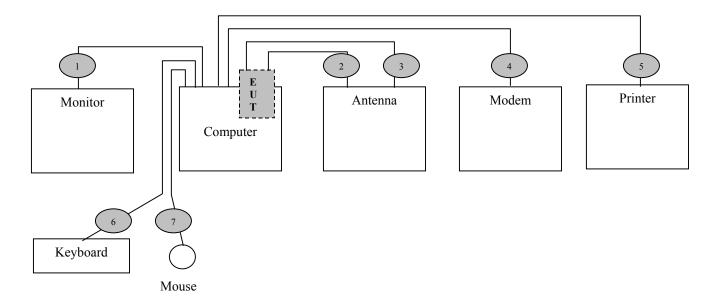
The low (channel 1), middle (channel 6), and high (channel 11) were tested. The EUT was transmitting and receiving on a continuous basis.

The final conducted as well as radiated data was taken in this mode of operation. The external cables were bundled and routed as shown in the photographs in Appendix I and II (Data Sheets).

3.3 EUT and Sub-Assemblies List

EUT and Sub-Assemblies List						
Manufacturer	Equipment Name	Model Number	Serial Number			
Toshiba Corporation	Intel PRO/wireless LAN 2100 3B	PA3272U-1MPC	See Data Sheets			
	Mini PCI Adapter					
Sub-Assemblies						
Hitachi	Dual Band Antenna	None	None			
Ethertronics	Dual Band Antenna	PCI01001	10			
Toshiba	Dual Band Film Antenna	HTL008-P***	None			
Toshiba	Wide Dual Band Film Antenna	HTL012-P***	None			

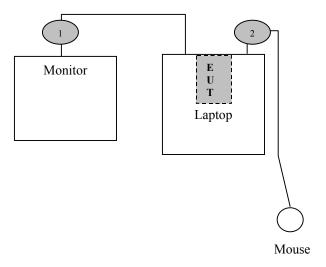
3.4 Accessory / Host Equipment List


Accessory / Host Equipment List For Modular Approval						
Manufacturer	nufacturer Equipment Model Number Se					
	Name					
NetVista Computer	IBM	21U	KAOL42K			
Monitor	NEC	JC-1575VMA	2Y785821			
Keyboard	IBM	SK-8811	1922408			
Mouse	IBM	MU295	23-161493			
Modem	Hayes	5362US	A02153623145			
Printer	Canon	BJC-4200	0048			

Accessory / Host Equipment List For Mobile Approval						
Manufacturer	Equipment	Model Number	Serial Number			
	Name					
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	92033679J			
(With Dual Band Antenna)						
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	92033677J			
(With Wide Dual Band Antenna)						
AC Adapter	Toshiba	ADP-45XH	0233A0215141			
Monitor	NEC	JC-1575VMA	2Y785821			
Mouse	Logitech	M-BJ58	830513-1000			

NOTE: All the power cords of the above support equipment are standard non-shielded, 1.8 meters long.

3.5 Cabling Diagram and Description


For Modular Approval

- Cable 1: This is a 6-foot braid and foil shielded round cable connecting the host IBM computer with the NEC monitor. It has metallic DB-15 type connector at the computer end and is hardwired to the monitor. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cables 2-3: These are rolled copper with Kapton tape on both sides round coax cables connecting the EUT transmit and receive antenna ports to the loaded antennas. They have a metallic Hirose U.FL-LP-006 type of connectors at the EUT end and are hardwired to the loaded antennas.
- Cable 4: This is a 6-foot braid and foil shielded round cable connecting the IBM host computer to the Hayes modem. It has a metallic DB-9 type connector at the computer end and a metallic DB-25 type connector at the modem end. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cable 5: This is a 6-foot braid and foil shielded round cable connecting the IBM host computer to the Canon printer. It has a metallic DB-25 type connector at the computer end and a metallic 36-pin centronics type connector at the printer end. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cable 6: This is a 1-meter foil shielded round cable connecting the IBM host computer to the IBM keyboard. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the keyboard end. The shield of the cable is grounded to the chassis via the connector shell.
- Cable 7: This is a 1-meter foil shielded round cable connecting the IBM host computer to the IBM mouse. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the mouse end. The shield of the cable is grounded to the chassis via the connector shell.

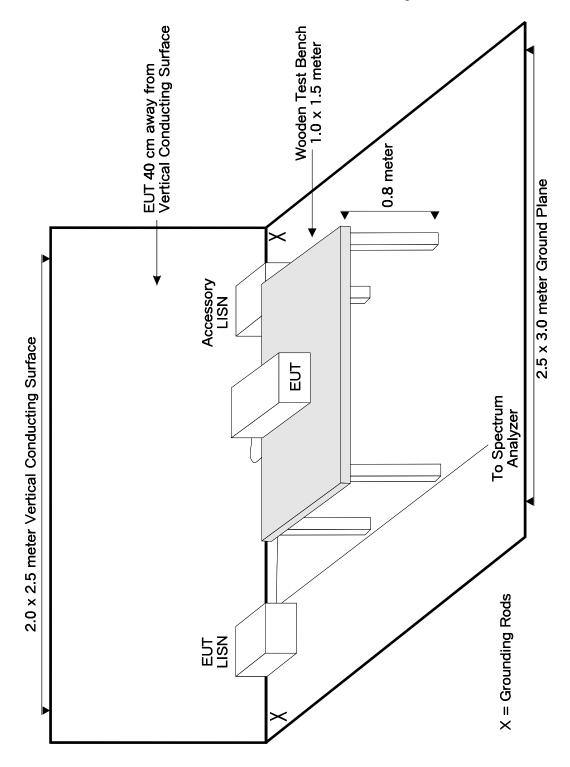
3.5 Cabling Diagram and Description

For Mobile Approval

- Cable 1: This is a 6-foot braid and foil shielded round cable connecting the host Toshiba laptop computer with the NEC monitor. It has metallic DB-15 type connector at the computer end and is hardwired to the monitor. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cable 2: This is a 1-meter foil shielded round cable connecting the Toshiba laptop computer to the IBM mouse. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the mouse end. The shield of the cable is grounded to the chassis via the connector shell.

4.0 TEST EQUIPMENT AND TEST SETUPS

The test equipment settings and functions are selected using the guidance of ANSI C63.4-1992. All test equipment setups and operations during conducted and radiated emissions testing are in accordance with this reference document.


4.1 Conducted Emissions At AC Mains Port

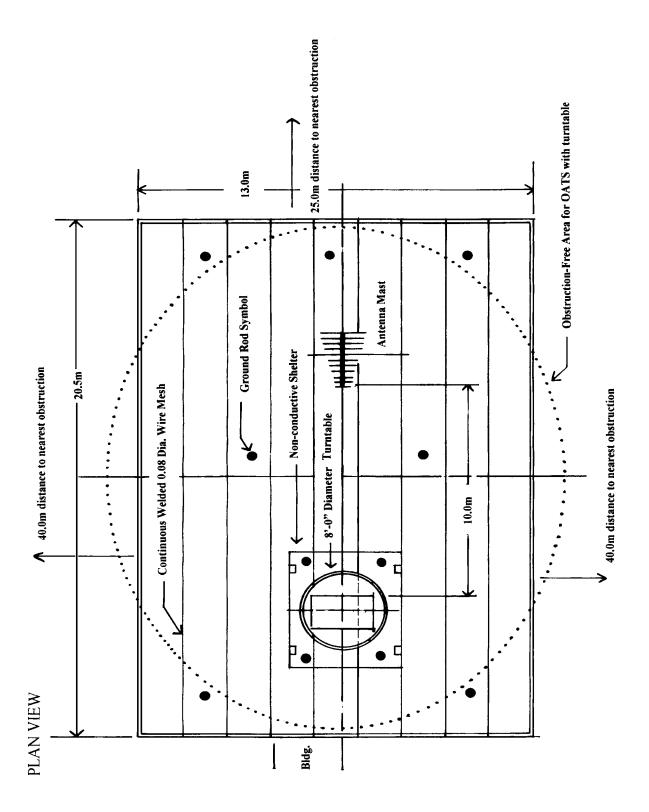
During conducted emissions measurements, a spectrum analyzer was used as the measuring instrument along with a preselector and quasi-peak detector. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage. The conducted emissions from the EUT in the frequency range from 150 kHz to 30 MHz were captured for graphical display through the use of automated LABVIEW EMI measurement software. All graphical readings were measured in the "Peak" mode only to reduce testing time. Upon completion of the graphical scan, the test lab personnel performed the conducted measurement scan manually using the spectrum analyzer front panel keys. All peak measurements coming within 3 dB of the limit line were "Averaged" and/or "Quasi-Peaked" and denoted appropriately in the EXCEL spreadsheet.

The Equipment Under Test (EUT) was configured as a system with peripherals connected, so that at least one interface port of each type is connected to one external peripheral when tested for conducted emissions according to ANSI C63.4: 1992. The EUT was tested in a tabletop configuration.

The six highest emission readings for Line 1 and Line 2 are highlighted on the data sheets in Appendix I. The graphical scans only reflects peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak readings which ever applies.

4.1.1 Conducted Emissions At AC Mains Port – Test Setup

CONDUCTED EMISSIONS TEST SETUP

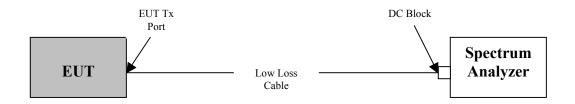

4.2 Radiated Emissions (Spurious and Harmonics)

A spectrum analyzer was used as the measuring instrumentation along with a preselector and quasi-peak-detector. The pre-amplifiers were used to increase the sensitivity of the instrument. The spectrum analyzer was used in the peak detector mode with the "max-hold" feature activated and in Positive Peak mode. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak detector was used only for those readings, which are marked accordingly in the data sheet. The effective measurement bandwidth used for the radiated emissions test was 120 kHz for (30 MHz- 1000 MHz). The spectrum analyzer operated such that the modulation of the signal was filtered out to set the analyzer in linear mode. For testing beyond 1000 MHz a spectrum analyzer capable of taking reading above 1000 MHz was connected to the high frequency amplifier, where these measurement readings were taken with the transducer placed at a 3-meter test distance from the EUT.

The Open Area Test Sites (OATS) was used for radiated emission testing. These test sites are designed according to ANSI C63.4: 1992 and ANSI C63.7: 1992 guidelines. The Measurements were conducted in accordance with ANSI C63.4: 1992 and ANSI C63.7: 1992 requirements.

Broadband biconical, log periodic, and horn antennas were used as transducers during the measurement reading phase. The frequency spans were wide (30 MHz-88 MHz, 88 MHz-216 MHz, 216 MHz-300 MHz, and 300 MHz-1000 MHz). After 1000 MHz the horn antenna was used to measure emissions. The six highest emission readings in both horizontal and vertical polarities are highlighted on the data sheets in Appendix I.

4.2.1 Radiated Emissions (Spurious and Harmonics) – Test Setup



4.3 Occupied Bandwidth Measurement

A spectrum analyzer was used to measure the occupied bandwidth. The bandwidth was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz.

The EUT bandwidth is at least 500 kHz. Please refer to Appendix I for graphical plots.

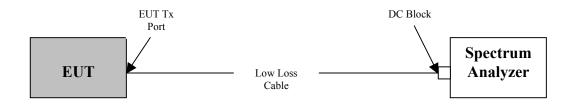
4.3.1 Occupied Bandwidth Measurement – Test Setup

4.4 Maximum Peak Output Power Measurement

A power meter along with a power sensor was used to measure the maximum peak output power. The low (channel 1), middle (channel 6), and high (channel 11) were measured as well as data rates 1, 5.5, and 11 Mbps.

The EUT maximum peak output power is less than 1 Watt. Please refer to Appendix I for the data sheets.

4.4.1 Maximum Peak Output Power Measurement – Test Setup

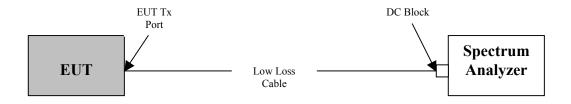


4.5 Spectral Power Density Measurement

A spectrum analyzer was used to measure the spectral power density. It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 3 kHz and the video bandwidth was 10 kHz. The highest 4.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

The EUT spectral power density does not exceed 8 dBm in any 3 kHz band. Please refer to Appendix I for graphical plots.

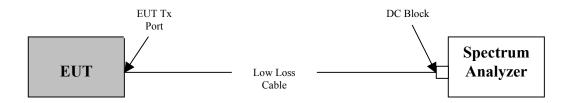
4.5.1 Spectral Power Density Measurement – Test Setup



4.6 Spurious Emissions Measurement At The Antenna Terminal

A spectrum analyzer was used to measure the spurious emissions at the antenna terminal. It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 1 MHz and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

The EUT RF power that is produced in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Please refer to Appendix I for graphical plots.


4.6.1 Spurious Emissions Measurement At The Antenna Terminal – Test Setup

4.7 Band Edge Measurement At The Antenna Terminal

A spectrum analyzer was used to measure the band edge measurements at the antenna terminal with the EUT transmitting at 2412 MHz (channel 1) and 2462 MHz (channel 11). It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 1 MHz and the video bandwidth was 1 MHz. It was verified that the band edge measurements were not above the limit in the restricted bands below 2390 MHz and above 2483.5 MHz. Please refer to Appendix I for graphical plots.

4.7.1 Band Edge Measurement At The Antenna Terminal – Test Setup

5.0 MODIFICATIONS AND RECOMMENDATIONS

There were no modifications done to the EUT.

APPENDIX I

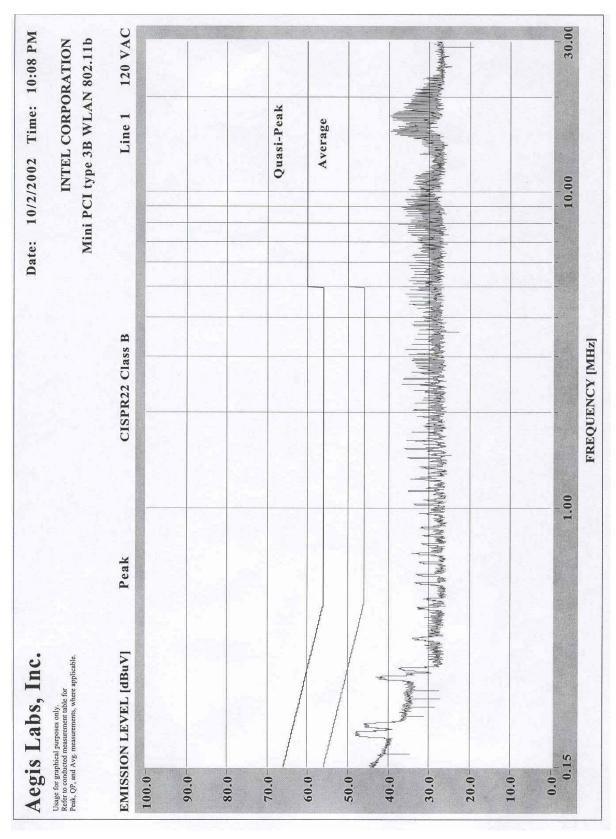
DATA SHEETS (For Modular Approval)

Page 1 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

CONDUCTED EMISSIONS AT AC MAINS PORT

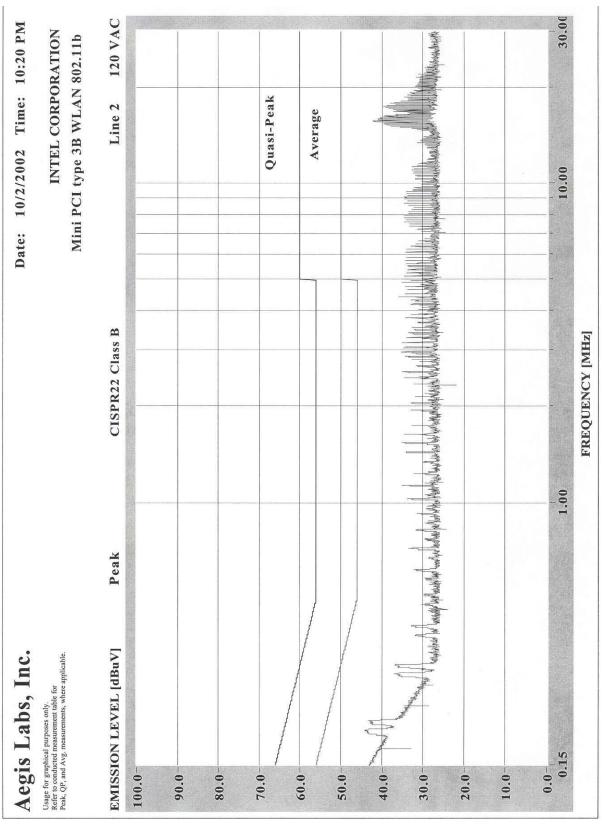
CLIENT:	Toshiba Corporation	DATE:	10/10/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001-18
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	23 C
	Computer, SN: KAOL42K	HUMIDITY:	50% RH
		TIME:	2:00 PM

Standard:	FCC CFR 47, Part 15.207
Description:	AC Power Conducted Emissions
Results:	Passes FCC Limits


NOTE: During preliminary scans, there wasn't any difference which channel, data rate, or which set of antennas were used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps with the Ethertronics antennas were used for final testing.

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

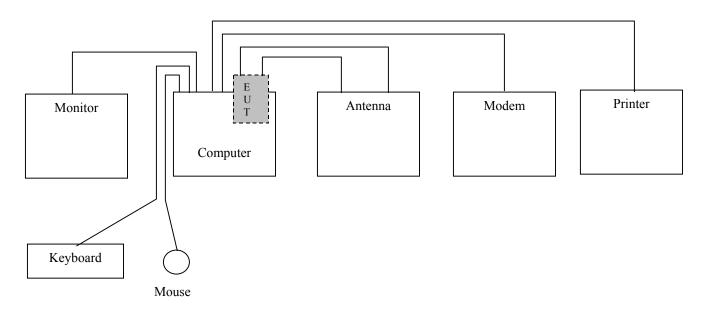
	FCC CLASS B CONDUCTED EMISSIONS – LINE 1							
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak		
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)		
0.2010	48.70	PK	54.54	-5.84	64.54	-15.84		
0.2040	49.30	PK	54.46	-5.16	64.46	-15.16		
0.4070	42.70	PK	48.66	-5.96	58.66	-15.96		
0.4100	42.90	PK	48.57	-5.67	58.57	-15.67		
16.5000	38.70	PK	50.00	-11.30	60.00	-21.30		
17.9000	38.40	PK	50.00	-11.60	60.00	-21.60		


	FCC CLASS B CONDUCTED EMISSIONS – LINE 2							
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak		
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)		
0.2010	49.40	PK	54.54	-5.14	64.54	-15.14		
0.2050	50.00	PK	54.43	-4.43	64.43	-14.43		
0.4070	42.60	PK	48.66	-6.06	58.66	-16.06		
0.4110	43.30	PK	48.54	-5.24	58.54	-15.24		
17.8000	39.40	PK	50.00	-10.60	60.00	-20.60		
17.9300	38.50	PK	50.00	-11.50	60.00	-21.50		

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

Page 4 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

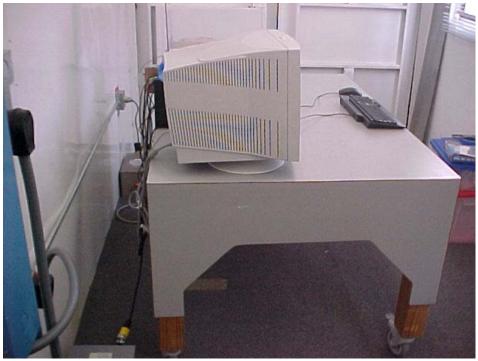
CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)


Page 5 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

	TEST EQUIPMENT USED										
Equipment Name	Manufacturer	Model Number			Calibration Cycle						
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/02	1 Year						
Spectrum Analyzer - Display Section	Hewlett Packard	85662A 1833A00389		11/27/02	1 Year						
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/02	1 Year						
RF Preselector	Hewlett Packard	85685A 2620A00281		05/10/03	1 Year						
Attenuator - 5W-10dB	Pasternack	PE7014-10	N/A	11/03/03	1 Year						
LISN (EUT)	FCC	FCC-LISN- 50-25-2	1 9941		1 Year						
LISN (Access)	Com-Power	LI-200	12019	01/25/03	1 Year						
LISN (Access) Com-Power		LI-200	12018	01/25/03	1 Year						
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year						

EUT ACCESSORIES								
Equipment Name	Manufacturer	Model Number	Serial Number					
NetVista Computer	IBM	21U	KAOL42K					
Monitor	NEC	JC-1575VMA	2Y785821					
Keyboard	IBM	SK-8811	1922408					
Mouse	IBM	MU295	23-161493					
Modem	Hayes	5362US	A02153623145					
Printer	Canon	BJC-4200	001					


BLOCK DIAGRAM

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

PHOTOGRAPHS

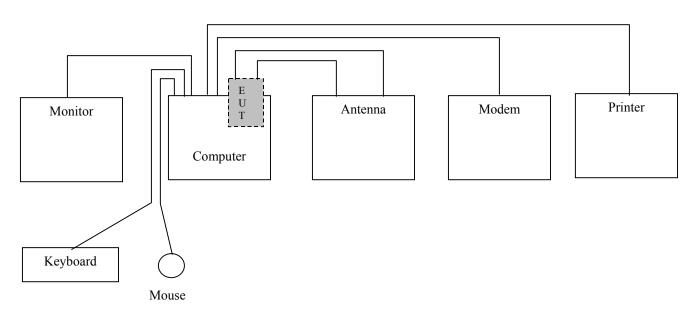
Page 7 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

RADIATED EMISSIONS (SPURIOUS AND HARMONICS)

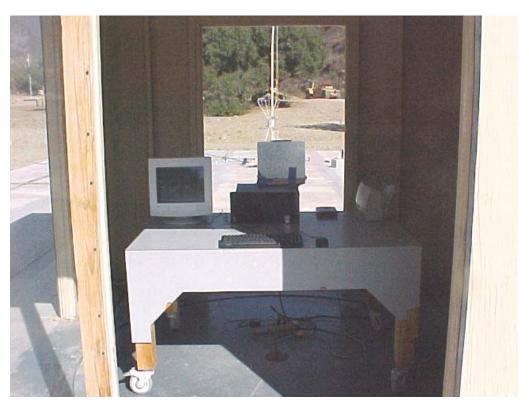
CLIENT:	Toshiba Corporation	DATE:	10/24/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001-25
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	18 C
	Computer, SN: KAOL42K	HUMIDITY:	50% RH
		TIME:	3:30 PM

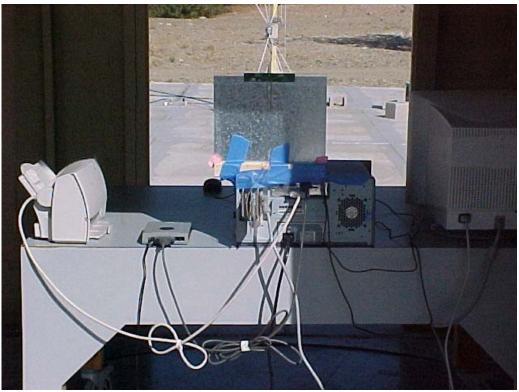
Standard:	CISPR22 Class B Limits
Description:	Spurious Emissions Measurements - Radiated
Results:	-4.30 dB margin @ 99.61 MHz

NOTE: During preliminary scans, there wasn't any difference which channel, data rate, or which set of antennas were used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps with the Ethertronics antennas were used for final testing.


	Horizontal Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)	
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)	7	Reading (dBuV)	(dBuV)	+=FAIL	
	(dBuV)								
33.20	33.20	300	180			17.66	30.00	-12.34	
99.52	42.10	400	90			19.69	30.00	-10.31	
110.03	36.50	400	315			16.05	30.00	-13.95	
132.03	37.80	400	225			19.76	30.00	-10.24	
176.03	37.40	400	225			21.75	30.00	-8.25	
199.77	32.90	400	180			17.89	30.00	-12.11	
233.20	35.60	400	135			21.46	37.00	-15.54	
264.02	39.90	300	180			26.86	37.00	-10.14	
308.04	46.50	250	90			29.70	37.00	-7.30	
320.05	39.60	250	270			23.32	37.00	-13.68	
336.06	41.00	250	225			25.02	37.00	-11.98	
352.05	38.90	200	270			23.05	37.00	-13.95	
366.50	38.40	200	180			22.80	37.00	-14.20	
368.10	36.20	200	180			20.63	37.00	-16.37	
384.09	36.90	150	270			21.75	37.00	-15.25	
396.03	36.00	150	270			21.25	37.00	-15.75	
400.19	36.30	150	225			21.68	37.00	-15.32	
432.07	37.20	150	225			23.28	37.00	-13.72	

Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk	Corrected	Limits	Diff(dB)	
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)	Reading (dBuV)	(dBuV)	+=FAIL	
	(dBuV)							
33.37	31.90	100	0		16.30	30.00	-13.70	
53.90	45.90	100	270		23.17	30.00	-6.83	
99.61	48.10	100	90		25.70	30.00	-4.30	
110.04	43.00	100	90		22.55	30.00	-7.45	
132.03	38.30	100	45		20.26	30.00	-9.74	
199.91	33.90	100	90		18.89	30.00	-11.11	
231.95	38.60	100	45		24.43	37.00	-12.57	
264.04	42.50	100	180		29.47	37.00	-7.53	
308.04	46.60	100	90		29.80	37.00	-7.20	
320.06	40.20	100	0		23.92	37.00	-13.08	
336.09	44.10	100	0		28.12	37.00	-8.88	
352.06	44.70	100	90		28.85	37.00	-8.15	
366.19	41.20	100	315		25.60	37.00	-11.40	
368.09	42.20	100	45		26.63	37.00	-10.37	
384.10	38.40	100	0		23.25	37.00	-13.75	
396.04	43.60	100	315		28.85	37.00	-8.15	
400.16	42.80	100	315		28.18	37.00	-8.82	
432.01	43.00	100	180		29.08	37.00	-7.92	


	TEST EQUIPMENT USED										
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle						
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/02	1 Year						
Spectrum Analyzer - Display Section	Hewlett Packard	85662A	1833A00389	11/27/02	1 Year						
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/02	1 Year						
RF Preselector	Hewlett Packard	85685A	2620A00281	05/10/03	1 Year						
Preamplifier	Com-Power	PA-102	1438	04/29/03	1 Year						
Cable - 10m underground	Andrew	N/A	N/A	11/03/03	1 Year						
Antenna - Biconical	EMCO	3110	9108-1421	10/02/03	1 Year						
Antenna - Log Periodic	EMC Test Systems	3148	4947	10/12/03	1 Year						
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year						


EUT ACCESSORIES								
Equipment Name	Manufacturer	Model Number	Serial Number					
NetVista Computer	IBM	21U	KAOL42K					
Monitor	NEC	JC-1575VMA	2Y785821					
Keyboard	IBM	SK-8811	1922408					
Mouse	IBM	MU295	23-161493					
Modem	Hayes	5362US	A02153623145					
Printer	Canon	BJC-4200	001					

BLOCK DIAGRAM

PHOTOGRAPHS

Page 11 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

CLIENT:	Toshiba Corporation	DATE:	10/23/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGUARTION:	Installed in IBM NetVista Desktop	TEMPERATURE:	20 C
	Computer, SN: KAOL42K	HUMIDITY:	44% RH
		TIME:	10:30 AM

Standard:	FCC CFR 47, Part 15, 15.247(c), 15.209
Description:	Spurious Emissions Measurements - Radiated
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 with Hitachi Dual Band Antennas
INTEL-021001-20

Horizontal Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
2411.03	77.17	100	225			110.80		
2390.00	30.33	100	225			63.89	74.00	-10.11
2390.00				19.29	A	52.85	54.00	-1.15
2436.00	76.67	100	225			110.37		
2461.02	74.83	100	135			108.61		
2483.50	29.67	100	135			63.52	74.00	-10.48
2483.50				18.75	A	52.60	54.00	-1.40

	Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)	
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL	
	(dBuV)								
2411.00	75.00	100	90			108.63			
2390.00	30.33	100	90			63.89	74.00	-10.11	
2390.00				17.88	Α	51.44	54.00	-2.56	
2435.99	76.50	250	90			110.20			
2461.01	75.83	250	90			109.61	•		
2483.50	30.17	250	90	_		64.02	74.00	-9.98	
2483.50				18.44	Α	52.29	54.00	-1.71	

Harmonic Measurements at Channels 1, 6, & 11 with Hitachi Dual Band Antennas INTEL-021001-21

Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	ιV)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
4823.96	46.50	100	135			50.75	74.00	-23.25		
4823.96				38.71	Α	42.96	54.00	-11.04		
7240.01	49.67	100	90			57.89	74.00	-16.11		
7240.01				41.94	Α	50.16	54.00	-3.84		
9648.07	45.50	100	90			54.67	90.80	-36.13		
4873.87	43.50	100	180			47.87	74.00	-26.13		
4873.87				33.23	Α	37.60	54.00	-16.40		
7307.93	46.17	100	135			54.49	74.00	-19.51		
7307.93				35.72	Α	44.04	54.00	-9.96		
9748.12	47.00	200	135			56.29	90.37	-34.08		
4924.00	45.00	225	135			49.48	74.00	-24.52		
4924.00				38.36	A	42.84	54.00	-11.16		
7389.77	45.33	100	45			53.77	74.00	-20.23		
7389.77				33.10	A	41.54	54.00	-12.46		
9848.05	45.50	100	90			54.91	88.61	-33.70		

Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBı	uV)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)	, ,	, , ,	,		,				
4824.08	47.33	100	180			51.58	74.00	-22.42		
4824.08				40.83	Α	45.08	54.00	-8.92		
7239.56	47.00	200	270			55.22	74.00	-18.78		
7239.56				38.48	A	46.70	54.00	-7.30		
9648.16	45.17	100	0			54.34	88.63	-34.29		
4873.97	44.00	100	180			48.37	74.00	-25.63		
4873.97				35.69	Α	40.06	54.00	-13.94		
7314.56	45.50	100	45			53.83	74.00	-20.17		
7314.56				34.95	Α	43.28	54.00	-10.72		
9748.02	45.67	100	45			54.96	90.20	-35.24		
4923.92	44.33	100	135			48.81	74.00	-25.19		
4923.92				34.58	A	39.06	54.00	-14.94		
7382.50	44.50	100	45			52.93	74.00	-21.07		
7382.50				31.96	A	40.39	54.00	-13.61		
9847.44	45.67	100	90			55.08	89.61	-34.53		

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 with Ethertronics Dual Band Antennas
INTEL-021001-22

Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	or AVG (dBuV)		(dBuV)	+=FAIL		
	(dBuV)									
2410.98	76.17	100	135			109.80				
2390.00	30.17	100	135			63.73	74.00	-10.27		
2390.00				18.32	A	51.88	54.00	-2.12		
2436.00	76.67	100	135			110.37				
2461.04	78.83	150	225			112.61				
2483.50	31.33	150	225			65.18	74.00	-8.82		
2483.50				18.08	A	51.93	54.00	-2.07		

Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
2412.89	75.00	250	90			108.63				
2390.00	29.67	250	90			63.23	74.00	-10.77		
2390.00				16.49	A	50.05	54.00	-3.95		
2436.03	75.76	100	270			109.46				
2461.04	73.67	100	270			107.45				
2483.50	29.33	100	270			63.18	74.00	-10.82		
2483.50				15.69	Α	49.54	54.00	-4.46		

Harmonic Measurements at Channels 1, 6, & 11 with Ethertronics Dual Band Antennas INTEL-021001-23

Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	(V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
4823.94	45.83	100	180			50.08	74.00	-23.92		
4823.94				37.63	Α	41.88	54.00	-12.12		
7231.90	43.83	100	135			52.04	74.00	-21.96		
7231.90				31.81	A	40.02	54.00	-13.98		
9648.04	46.17	100	90			55.34	89.80	-34.46		
4873.93	45.50	100	180			49.87	74.00	-24.13		
4873.93				38.89	A	43.26	54.00	-10.74		
7314.73	44.83	100	90			53.16	74.00	-20.84		
7314.73				33.82	A	42.15	54.00	-11.85		
9748.44	46.33	100	45			55.62	90.37	-34.75		
4924.01	48.67	100	135			53.15	74.00	-20.85		
4924.01				44.08	A	48.56	54.00	-5.44		
7389.30	44.33	100	225			52.77	74.00	-21.23		
7389.30				31.73	A	40.17	54.00	-13.83		
9848.06	45.33	100	90			54.74	92.61	-37.87		

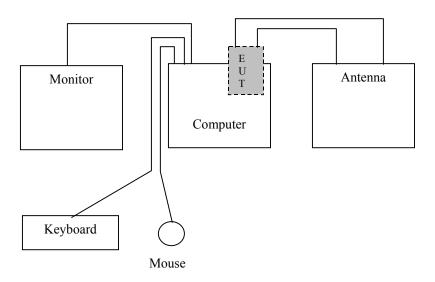
Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	(V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
4823.83	44.33	100	135			48.58	74.00	-25.42		
4823.83				33.94	Α	38.19	54.00	-15.81		
7237.76	45.67	100	45			53.89	74.00	-20.11		
7237.76				35.59	A	43.81	54.00	-10.19		
9647.86	45.17	100	45			54.34	88.63	-34.29		
4874.02	43.33	100	135			47.70	74.00	-26.30		
4874.02				33.69	A	38.06	54.00	-15.94		
7313.80	46.50	100	45			54.83	74.00	-19.17		
7313.80				37.63	A	45.96	54.00	-8.04		
9747.94	46.33	100	45			55.62	89.46	-33.84		
4924.02	44.67	200	90			49.15	74.00	-24.85		
4924.02				35.99	A	40.47	54.00	-13.53		
7390.02	44.83	100	90			53.27	74.00	-20.73		
7390.02				32.34	A	40.78	54.00	-13.22		
9848.00	45.33	100	45			54.74	87.45	-32.71		

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

Spurious Emissions Measurements on Ch. 1 @ 1Mbps Data Rate using Hitachi Dual Band Antennas

INTEL-021001-24

	Horizontal Open Field Maximized Data							
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	Reading (dBuV)	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL
1120.95	57.83	100	45			49.68	74.00	-24.32
1122.66				41.51	Α	33.37	54.00	-20.63
1346.26	51.83	100	0			44.23	74.00	-29.77
1346.26				36.63	Α	29.03	54.00	-24.97
1461.74	52.00	100	270			45.13	74.00	-28.87
1461.74				35.15	Α	28.28	54.00	-25.72
1593.91	55.33	100	180			48.74	74.00	-25.26
1593.91				42.73	A	36.14	54.00	-17.86


	Vertical Open Field Maximized Data							
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	~ 1		Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
1122.66	52.33	100	270			44.19	74.00	-29.81
1122.66				41.91	A	33.77	54.00	-20.23
1458.17	53.33	100	0			46.45	74.00	-27.55
1458.17				34.90	Α	28.02	54.00	-25.98
1591.79	54.67	100	270			48.09	74.00	-25.91
1591.79				49.67	Α	43.09	54.00	-10.91

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

TEST EQUIPMENT USED									
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration				
		Number	Number	Due Date	Cycle				
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years				
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year				
Antenna - Horn	EMCO	3115	2230	09/14/03	1 Year				
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year				

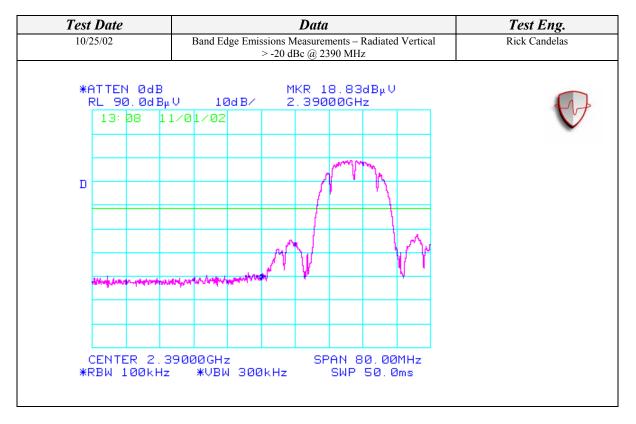
EUT ACCESSORIES							
Equipment Name	Manufacturer	Model Number	Serial Number				
NetVista Computer	IBM	21U	KAOL42K				
Monitor	NEC	JC-1575VMA	2Y785821				
Keyboard	IBM	SK-8811	1922408				
Mouse	IBM	MU295	23-161493				

BLOCK DIAGRAM

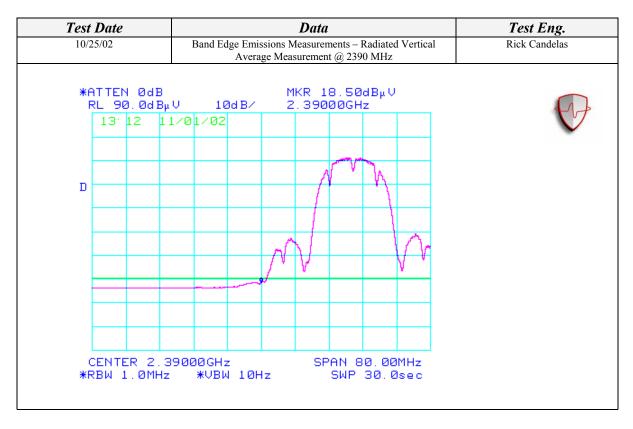
RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

PHOTOGRAPHS

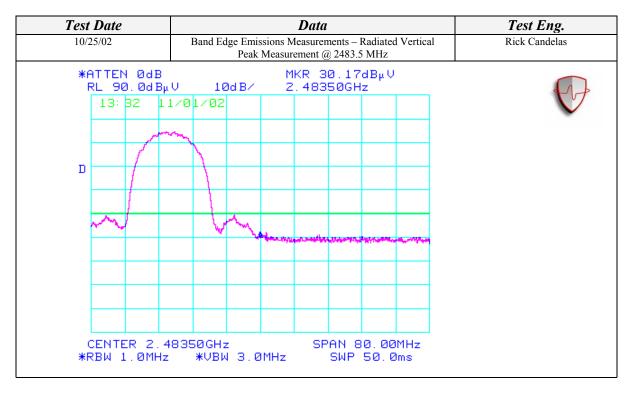
Page 19 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

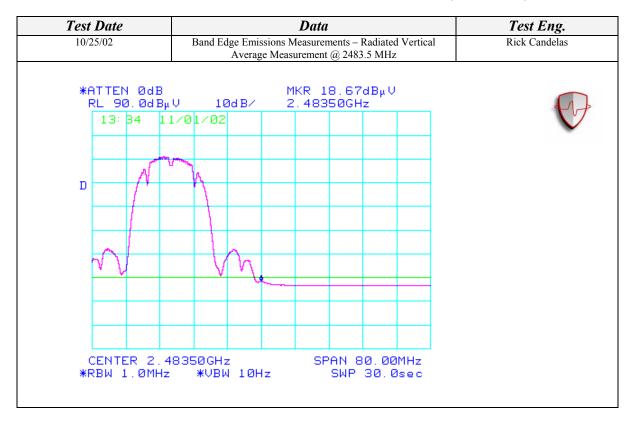

BAND EDGE EMISSIONS MEASUREMENT - RADIATED

CLIENT:	Toshiba Corporation	DATE:	10/25/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	24 C
	Computer, SN: KAOL42K	HUMIDITY:	31% RH
		TIME:	9:00 AM

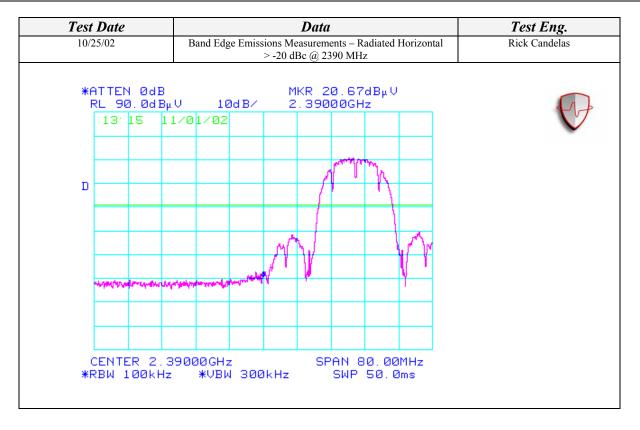

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Band Edge Emissions Measurement - Radiated
Results:	Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also
	comply with the radiated emission limits specified in Sec. 15.209(a) (see Sec. 15.205(c)).

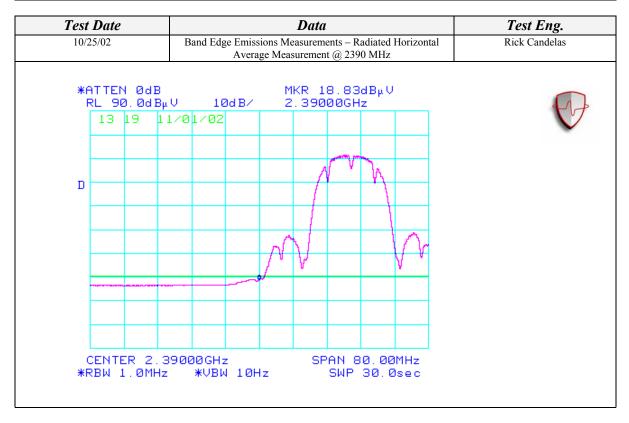
With the Hitachi Dual Band Antennas


	Vertical Open Field Maximized Data							
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)		Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
2390.00	30.50	100	225			64.06	74.00	-9.94
2390.00				18.50	A	52.06	54.00	-1.94
2483.50	30.17	100	225			64.02	74.00	-9.98
2483.50				18.67	A	52.52	54.00	-1.48

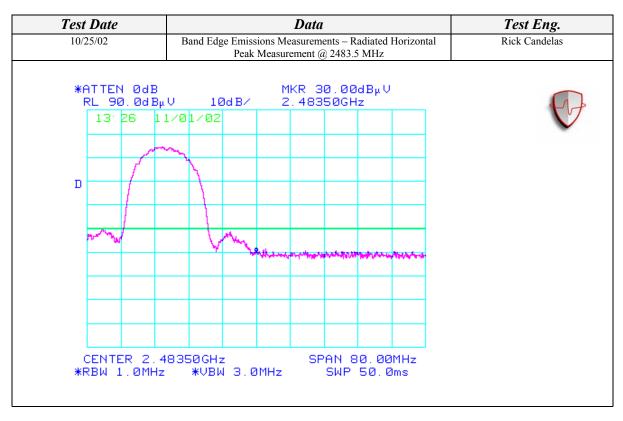


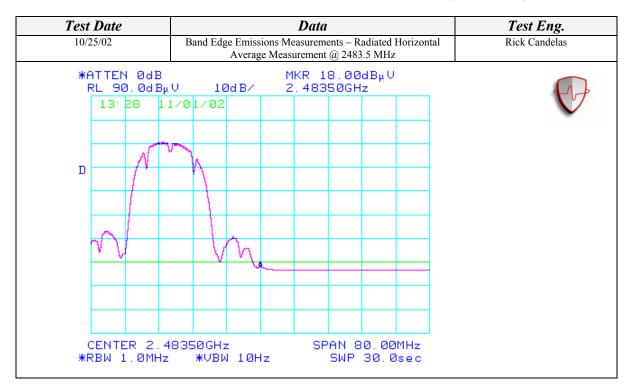
Test Date	Data	Test Eng.	
10/25/02	10/25/02 Band Edge Emissions Measurements – Radiated Vertical Peak Measurement @ 2390 MHz		
*ATTEN ØdB RL 90.0dΒμΙ	MKR 30.50dBμV V 10dB/ 2.39000GHz		
13: 09 11	/01/02	V	
D			
	and the state of t		
CENTER 2.39 *RBW 1.0MHz			


Test Date	Data	Test Eng.
10/25/02	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90.0dBμ 13:30 1:	MKR 19.17dBμV V 10dB/ 2.48350GHz ./01/02	
* *	A A CONTRACTOR AND	
CENTER 2.4 *RBW 100kHz	8350GHz SPAN 80.00MHz *VBW 300kHz SWP 50.0ms	

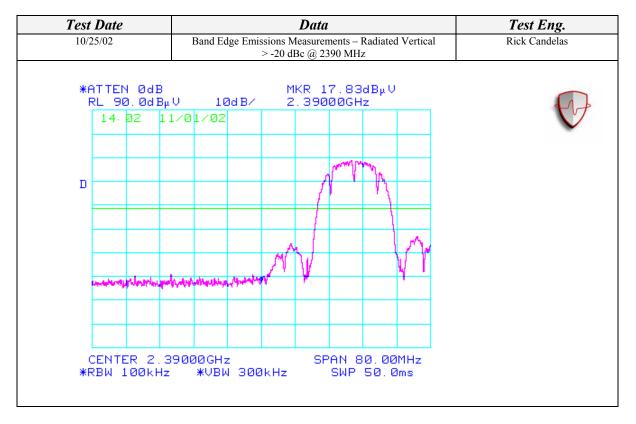


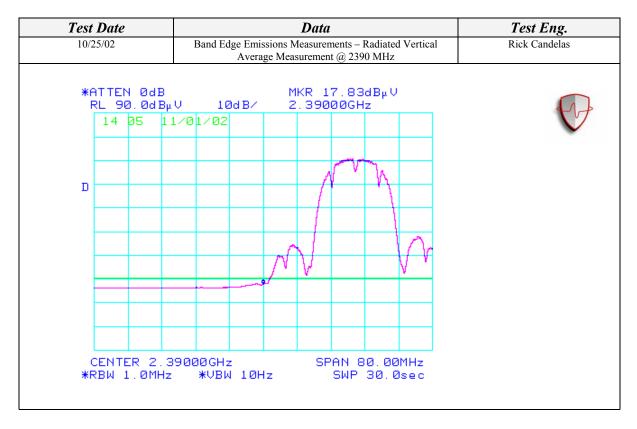
With the Hitachi Dual Band Antennas


	Horizontal Open Field Maximized Data							
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBu	V)	Corrected Reading (dBuV)	Limits (dBuV)	Diff (dB) +=FAIL
2390.00	31.00	100	225			64.56	74.00	-9.44
2390.00				18.83	A	52.39	54.00	-1.61
2483.50	30.00	100	225			63.85	74.00	-10.15
2483.50				18.00	A	51.85	54.00	-2.15

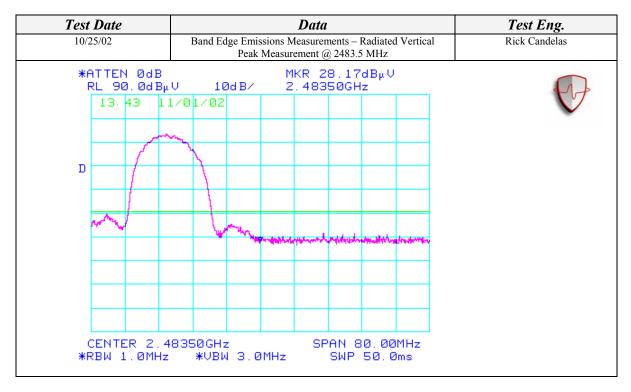


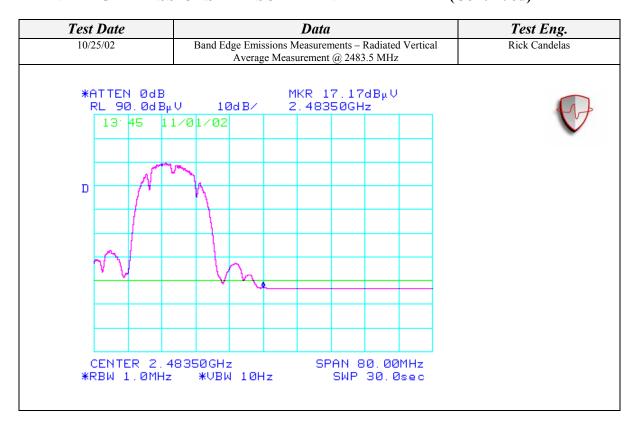
	Test Eng.
Band Edge Emissions Measurements – Radiated Horizontal Peak Measurement @ 2390 MHz	Rick Candelas
MKR 31.00dBμV V 10dB/ 2.39000GHz	
1/01/02	V
	Peak Measurement @ 2390 MHz MKR 31. ØØdBμ V 2.39ØØØGHz 1/Ø1/Ø2 Peak Measurement @ 2390 MHz MKR 31. ØØdBμ V 2.39ØØØGHz Peak Measurement @ 2390 MHz


Test Date	Data	Test Eng.
10/25/02	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 9Ø.ØdΒμ		
13 24 11	/01/02	
- John Marie		
D /Ť		
√~ ₩		
	A Secretary and a secretary of the secre	
CENTER 2.4 *RBW 100kHz		

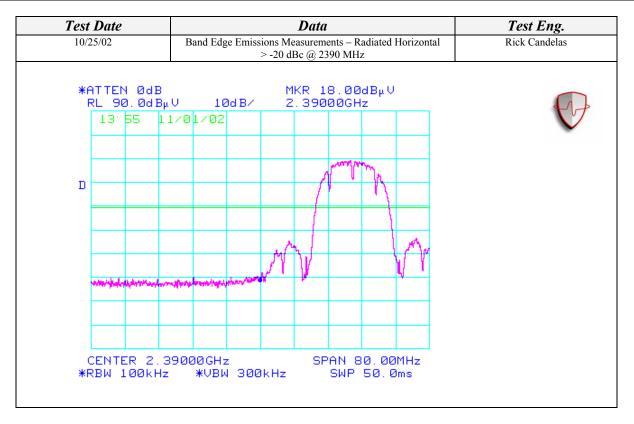


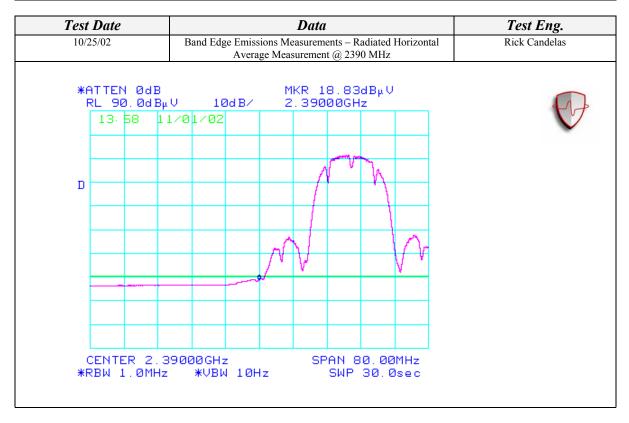
With the Ethertronics Dual Band Antenna


	Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)	
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)		Reading (dBuV)	(dBuV)	+=FAIL	
	(dBuV)								
2390.00	30.33	100	225			63.89	74.00	-10.11	
2390.00				17.83	A	51.39	54.00	-2.61	
2483.50	28.17	100	225			62.02	74.00	-11.98	
2483.50				17.17	Α	51.02	54.00	-2.98	

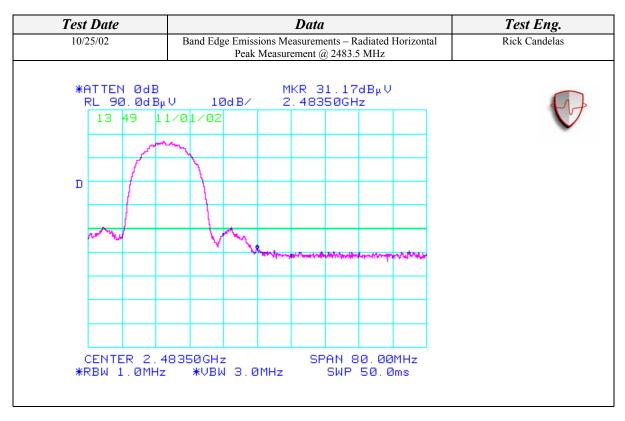

Test Date	Data	Test Eng.
10/25/02	Band Edge Emissions Measurements – Radiated Vertical Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90.0dBµ		(A)
14 Ø3 1:	1/01/02	
D		
	and the same of th	
CENTER 2.3 *RBW 1.0MHz		

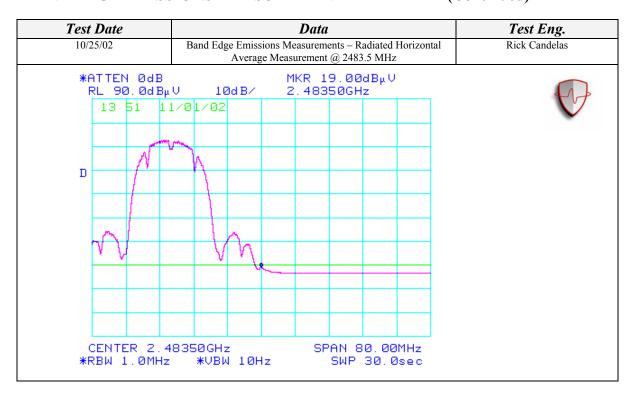
Test Date				•	•	•	Data	ı				Test Eng.
10/25/	10/25/02		E	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz			al	Rick Candelas				
	TEN (V	10	Ød B∕	M 2	IKR 1	7.67 50GH	dBμV Hz	J		
	13: 41				_							E.
			_									
D	1	4	المحمورة إ	Λ								
				+								
	~											
Y	W			\/	M	(Property Andreas	اربوبالدادات	haranet-1	morales	المعار المواقل ال		
		+										
	NTER				z N 300	ak Hz			30.00 50.0			


BAND EDGE EMISSIONS MEASUREMENT - RADIATED (Continued)


FCC ID: CJ6UPA3272WL

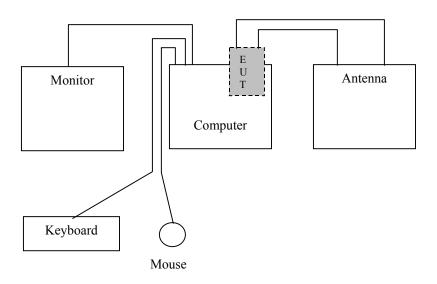
With the Ethertronics Dual Band Antenna


	Horizontal Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)	
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)		Reading (dBuV)	(dBuV)	+=FAIL	
	(dBuV)								
2390.00	28.50	100	225			62.06	74.00	-11.94	
2390.00				18.83	A	52.39	54.00	-1.61	
2483.50	31.17	100	225			65.02	74.00	-8.98	
2483.50				19.00	Α	52.85	54.00	-1.15	


Test Date	Data	Test Eng.
10/25/02	Band Edge Emissions Measurements – Radiated Horizontal Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdΒμ 13: 57 1:		
13: 57 1.	, 101702	V
D		
man appearance for	Manual Astronomy and a second a	
CENTER 2.3 *RBW 1.0MHz		

Test Date	Data	Test Eng.			
10/25/02	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas			
	*ATTEN ØdB MKR 20.33dBμV RL 90.0dBμV 10dB/ 2.48350GHz				
D					
W	V Mandaman samuel market mark				
CENTER 2.4 *RBW 100kHz					

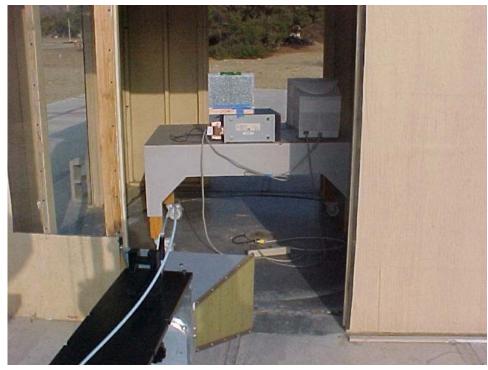
FCC ID: CJ6UPA3272WL



RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

TEST EQUIPMENT USED						
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration	
		Number	Number	Due Date	Cycle	
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years	
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year	
Antenna - Horn	EMCO	3115	2230	09/14/03	1 Year	
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year	

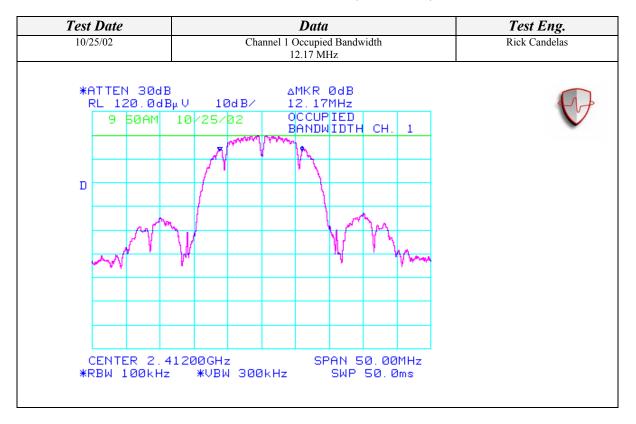
EUT ACCESSORIES						
Equipment Name	Manufacturer	Model Number	Serial Number			
NetVista Computer	IBM	21U	KAOL42K			
Monitor	NEC	JC-1575VMA	2Y785821			
Keyboard	IBM	SK-8811	1922408			
Mouse	IBM	MU295	23-161493			


BLOCK DIAGRAM

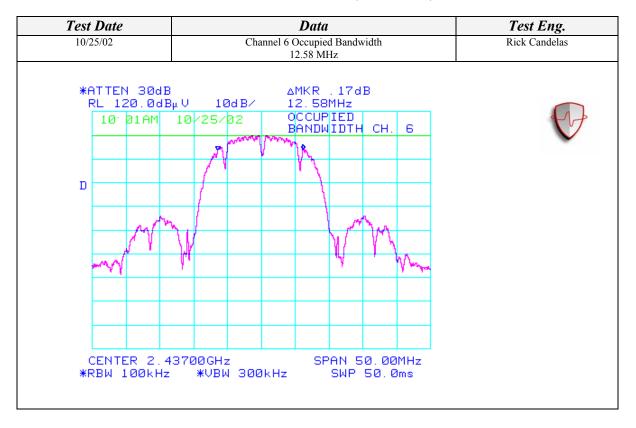
RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

PHOTOGRAPHS

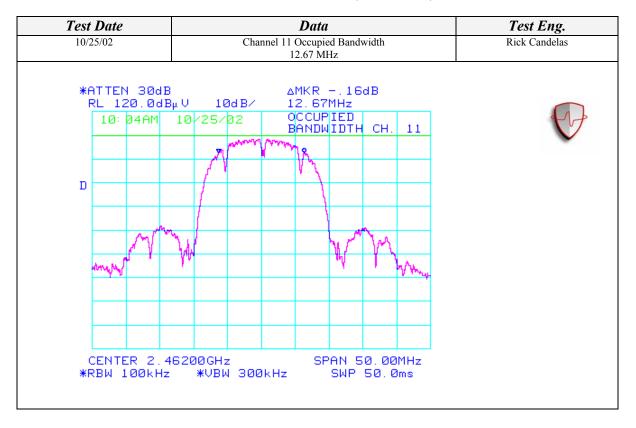
Page 38 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL


OCCUPIED BANDWIDTH MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	10/25/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	23 C
	Computer, SN: KAOL42K	HUMIDITY:	31% RH
		TIME:	8:00 AM


Standard:	FCC CFR 47, Part 15, 15.247(a)(2)
Description:	Occupied Bandwidth Measurement
Results:	6dB bandwidth is at least 500 kHz.

TEST RESULTS SUMMARY				
Data	Result			
Channel 1 Occupied Bandwidth	12.17 MHz 6 dB Bandwidth			
Channel 6 Occupied Bandwidth	12.58 MHz 6 dB Bandwidth			
Channel 11 Occupied Bandwidth	12.67 MHz 6dB Bandwidth			


OCCUPIED BANDWIDTH MEASUREMENT (Continued)

OCCUPIED BANDWIDTH MEASUREMENT (Continued)

OCCUPIED BANDWIDTH MEASUREMENT (Continued)

FCC ID: CJ6UPA3272WL

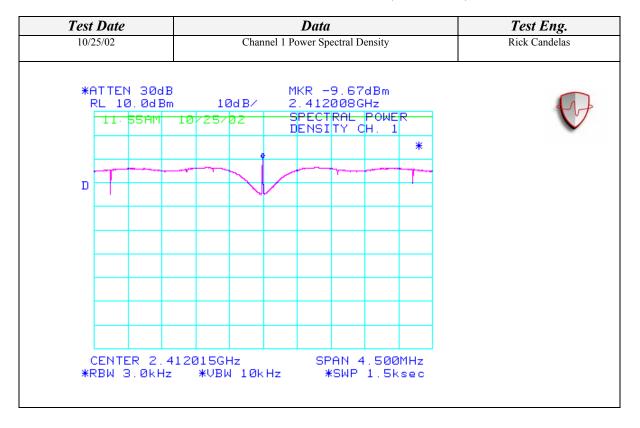
MAXIMUM PEAK OUTPUT POWER MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	10/22/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001-19
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGUARTION:	Installed in IBM NetVista Desktop	TEMPERATURE:	21 C
	Computer, SN: KAOL42K	HUMIDITY:	49% RH
		TIME:	1:00 PM

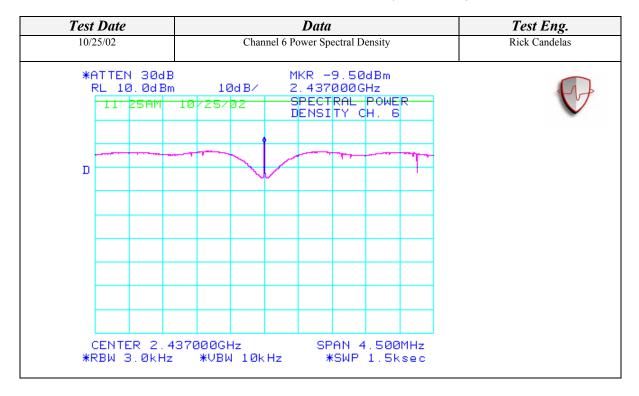
Standard:	FCC CFR 47, Part 15, 15.247(b)
Description:	Peak Output Power – Conducted
Results:	Maximum Peak Output Power is less than 1 W.
	44.87 mW @ Channel 6 at a data rate of 1 Mbps

Frequency (MHz)	Rate (Mbps)	Power (dBm)	Power Corrected (dBm)	Power (mW)
2412.00	1	16.29	16.44	44.06
2412.00	5.5	16.33	16.48	44.46
2412.00	11	16.45	16.60	45.71
2437.00	1	16.37	16.52	44.87
2437.00	5.5	16.42	16.57	45.39
2437.00	11	16.58	16.73	47.10
2462.00	1	16.29	16.44	44.06
2462.00	5.5	16.35	16.50	44.67
2462.00	11	16.40	16.55	45.19

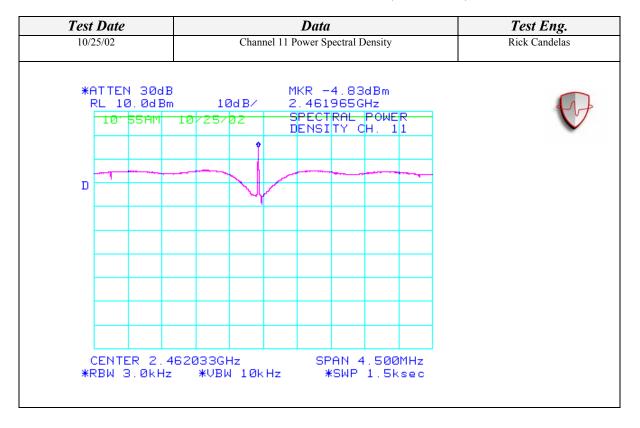
NOTE 1: Using DINO Configuration software provided by Intel to set power limits.


SPECTRAL POWER DENSITY MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	10/25/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	26 C
	Computer, SN: KAOL42K	HUMIDITY:	32% RH
		TIME:	2:00 PM


Standard:	FCC CFR 47, Part 15, 15.247(D)
Description:	Power Spectral Density Measurement
Results:	Transmitted power density averaged over any 1 second interval is not greater than 8 dBm in any 3 kHz bandwidth within these bands

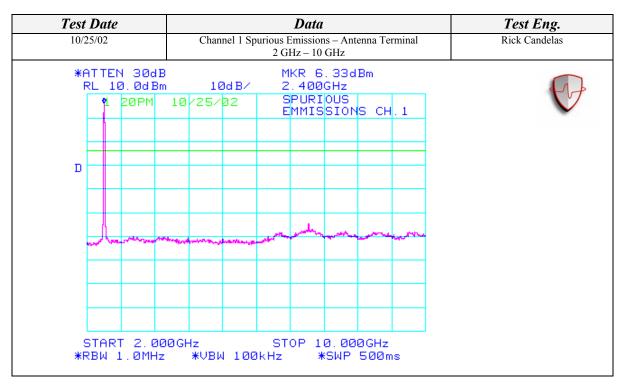
TEST RESULTS SUMMARY						
Data	Result					
Channel 1 Power Spectral Density	-9.67 dBm – Pass					
Channel 6 Power Spectral Density	-9.50 dBm – Pass					
Channel 11 Power Spectral Density	-4.83 dBm - Pass					


SPECTRAL POWER DENSITY MEASUREMENT (Continued)

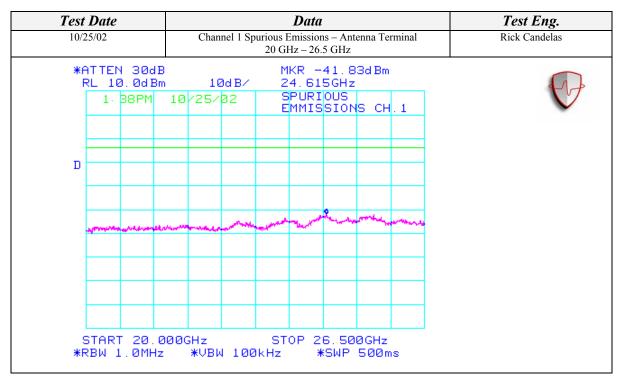
SPECTRAL POWER DENSITY MEASUREMENT (Continued)

SPECTRAL POWER DENSITY MEASUREMENT (Continued)

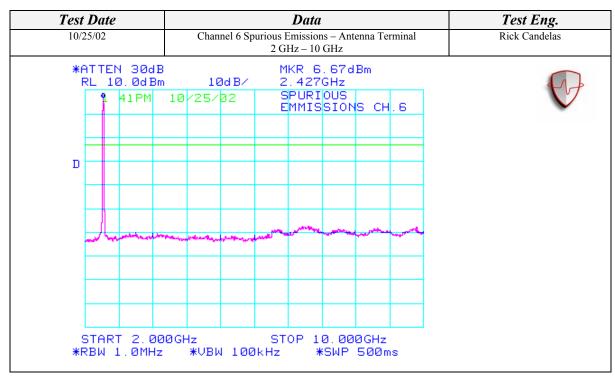
SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

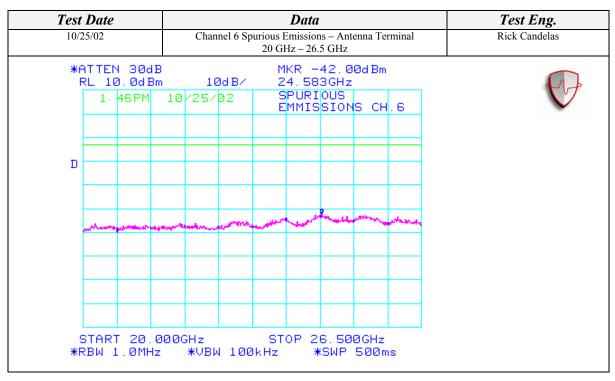

CLIENT:	Toshiba Corporation	DATE:	10/25/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	23 C
	Computer, SN: KAOL42K	HUMIDITY:	31% RH
		TIME:	8:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Conducted Spurious Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

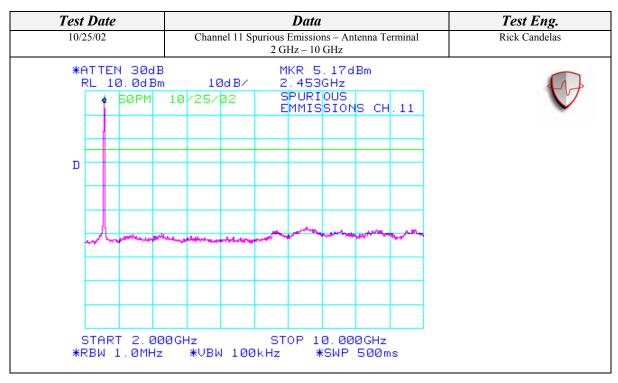

TEST RESULTS SUMMARY						
Data	Result					
Channel 1 Spurious Emissions –	Max Spur Signal @ -52.50 dBm – Pass					
Antenna Terminal - 30MHz – 2GHz						
Channel 1 Spurious Emissions –	Max Spur Signal @ -45.00 dBm – Pass					
Antenna Terminal - 2GHz – 10GHz						
Channel 1 Spurious Emissions –	Max Spur Signal @ -45.50 dBm – Pass					
Antenna Terminal - 10GHz – 20GHz						
Channel 1 Spurious Emissions –	Max Spur Signal @ -41.83 dBm – Pass					
Antenna Terminal - 20GHz – 26.5GHz						
Channel 6 Spurious Emissions –	Max Spur Signal @ -53.67 dBm – Pass					
Antenna Terminal - 30MHz – 2GHz						
Channel 6 Spurious Emissions –	Max Spur Signal @ -42.00 dBm – Pass					
Antenna Terminal - 2GHz – 10GHz						
Channel 6 Spurious Emissions –	Max Spur Signal @ -44.50 dBm – Pass					
Antenna Terminal - 10GHz – 20GHz						
Channel 6 Spurious Emissions –	Max Spur Signal @ -42.00 dBm – Pass					
Antenna Terminal - 20GHz – 26.5GHz						
Channel 11 Spurious Emissions –	Max Spur Signal @ -52.00 dBm – Pass					
Antenna Terminal - 30MHz – 2GHz						
Channel 11 Spurious Emissions –	Max Spur Signal @ -43.00 dBm – Pass					
Antenna Terminal - 2GHz – 10GHz						
Channel 11 Spurious Emissions –	Max Spur Signal @ -45.50 dBm – Pass					
Antenna Terminal - 10GHz – 20GHz						
Channel 11 Spurious Emissions –	Max Spur Signal @ -42.17 dBm – Pass					
Antenna Terminal - 20GHz – 26.5GHz						

FCC ID: CJ6UPA3272WL

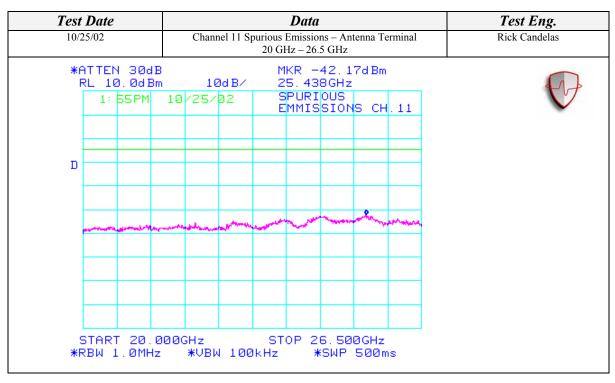

Test Date	Data	Test Eng.
10/25/02	Channel 1 Spurious Emissions – Antenna Terminal 30 MHz – 2 GHz	Rick Candelas
*ATTEN 30 RL 10.0d 1 23PM	Bm 10dB/ 1.077GHz	
D		
and the state of t		
START 30 *RBW 1.0M	1Hz STOP 2.000GHz Hz *VBW 100kHz *SWP 500ms	


Test Date	Data	Test Eng.
10/25/02	Channel 1 Spurious Emissions – Antenna Terminal 10 GHz - 20 GHz	Rick Candelas
	10 GHZ - 20 GHZ	
*ATTEN 30dB RL 10.0dBm	10dB/ 13.43GHz	
1.36PM	10/25/02 SPURIOUS EMMISSIONS CH.1	
Д		
يس يستر يستري	A Commence of the Commence of	
, ,		
START 10.0		
*RBW 1.0MHz	*VBW 100kHz	

Test	Test Date					Data				T	est Eng.
10/2	10/25/02			nel 6 Sp		Emissior MHz – 2	ns – Ante GHz	enna Ter	minal	Ric	k Candelas
	ATTEN 30 RL 10.0d		10		M ′ 1 S	KR - .031 PURI MISS	53.6 GHz OUS IONS		6		
	START 30 RBW 1.0M		*VBW	100			. 000 SWP		s		



Test Date	Data	Test Eng.
10/25/02	Channel 6 Spurious Emissions – Antenna Terminal 10 GHz - 20 GHz	Rick Candelas
*ATTEN 30dB RL 10.0dBm 1:45PM	MKR -44.50dBm 10dB/ 13.33GHz 10/25/02 SPURIOUS EMMISSIONS CH.6	
D		
and the second s	and the same and t	
START 10.0	ØGHz STOP 20.00GHz *VBW 100kHz *SWP 500ms	


SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

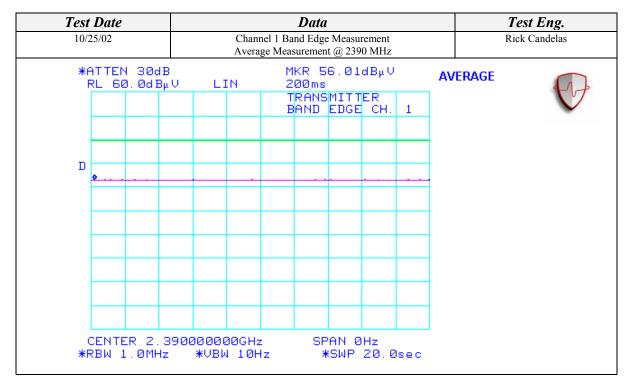
Test L	Test Date		Data			Test Eng.
10/25	/02	Channel	Channel 11 Spurious Emissions – Antenna Terminal 30 MHz – 2 GHz			Rick Candelas
*AT	TTEN 30dl _ 10.0dB 1 51PM	3	30 M Mk B/ 63	Hz-2GHz KR -52.0 31MHz PURIOUS 1MISSION	Ød Bm	Nex candens
	TART 30MI 3W 1.0MH:		STC 100kHz	DP 2.000	GHz 500ms	

SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test Date	Data	Test Eng.
10/25/02	Channel 11 Spurious Emissions – Antenna Terminal 10 GHz - 20 GHz	Rick Candelas
	10 GHZ - 20 GHZ	
*ATTEN 30dB RL 10.0dBm		
1: 53PM	10/25/02 SPURIOUS EMMISSIONS CH.11	
D		
بريس بسر		
Y		
START 10.0		
*RBW 1.0MHz	*VBW 100kHz	

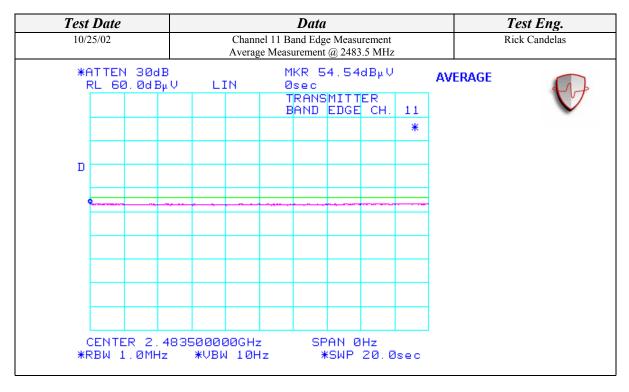
BAND EDGE EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

CLIENT:	Toshiba Corporation	DATE:	10/25/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021001
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	0004230018AE	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	27 C
Computer, SN: KAOL42K		HUMIDITY:	32% RH
		TIME:	11:00 AM


Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Conducted Band Edge Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST RESULTS SUMMARY				
Data	Result			
Channel 1 Band Edge Measurement	>20 dBc – Pass			
Peak Measurement @ 2390 MHz				
Channel 1 Band Edge Measurement	56.01 dBuV - Pass			
Average Measurement @ 2390 MHz				
Channel 11 Band Edge Measurement	>20 dBc – Pass			
Peak Measurement @ 2483.5 MHz				
Channel 11 Band Edge Measurement	54.54 dBuV - Pass			
Average Measurement @ 2483.5 MHz				

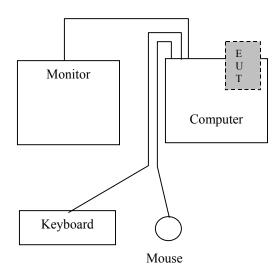
FCC ID: CJ6UPA3272WL


CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)

Test Date	Data	Test Eng.
10/25/02	Channel 1 Band Edge Measurement	Rick Candelas
	Peak Measurement @ 2390 MHz	
D CENTER 2.3	MKR 63.33dBµV PEAK 10 10 dB/ 2.3900GHz 10 25/02 TRANSMIJTER BAND EDGE CH. 1	

CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)

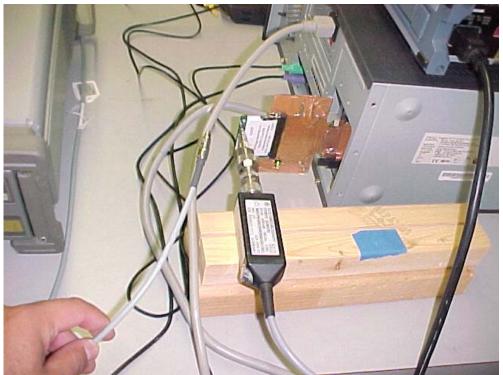
#ATTEN 3ØdB MKR 63.5ØdBμ V 1ØdB/ 2.4835GHz 2. Ø2PM 1Ø/25/Ø2 TRANSMITTER BAND EDGE CH. 11 Peak Measurement @ 2483.5 MHz Rick Candelas Rick Candelas	Test Date	Data	Test Eng.
*ATTEN 30dB MKR 63.50dBµV RL 120.0dBµV 10dB/ 2.4835GHz 2.02PM 10/25/02 TRANSMITTER DEAK	10/25/02	Channel 11 Band Edge Measurement	Rick Candelas
CENTER 2.4835GHz SPAN 100.0MHz *RBW 1.0MHz *VBW 1.0MHz *SWP 50.0ms	*ATTEN 30dB RL 120.0dB 2 02PM D	Peak Measurement @ 2483.5 MHz MKR 63.5 Ød Βμ V 2.4835 GHz TRANSMITTER BAND EDGE CH. 11 PEAK 835 GHz SPAN 100.0 MHz	


FCC ID: CJ6UPA3272WL

ALL CONDUCTED MEASUREMENTS SETUP

TEST EQUIPMENT USED							
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration		
		Number	Number	Due Date	Cycle		
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years		
DC Block	Inmet	8039	N/A	N/A	N/A		
Power Meter	Rohde & Schwarz	NRVS	DE30863	11/24/03	1 Year		
Power Sensor	Leistungsmesskoph	NRV-Z5	844855/012	11/24/03	1 Year		
Temperature /	Dickson	TH550	7255185	01/08/03	1 Year		
Humidity Monitor							

EUT ACCESSORIES						
Equipment Name	Manufacturer	Model Number	Serial Number			
NetVista Computer	IBM	21U	KAOL42K			
Monitor	NEC	JC-1575VMA	2Y785821			
Keyboard	IBM	SK-8811	1922408			
Mouse	IBM	MU295	23-161493			


BLOCK DIAGRAM

ALL CONDUCTED MEASUREMENTS SETUP (Continued)

PHOTOGRAPHS

Page 59 of 59 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

APPENDIX II

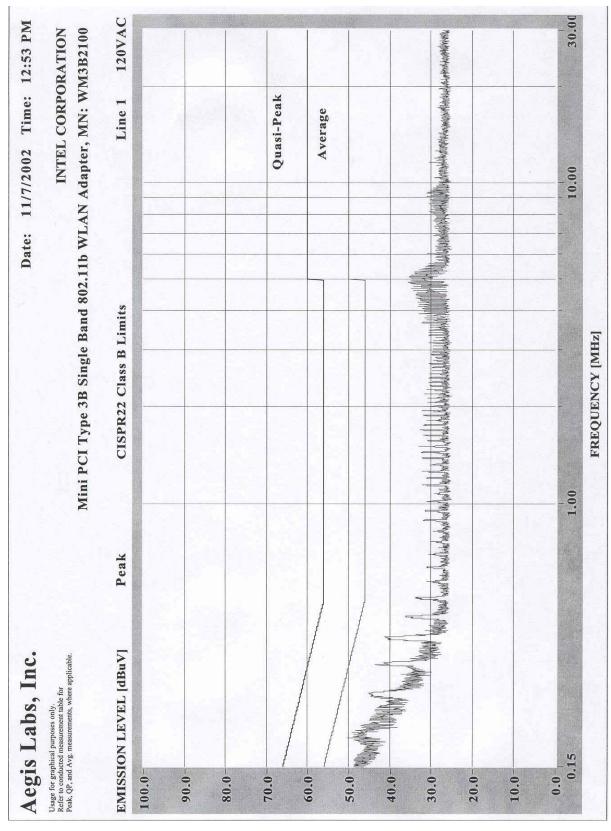
DATA SHEETS (For Mobile Approval)

Page 1 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

CONDUCTED EMISSIONS AT AC MAINS PORT

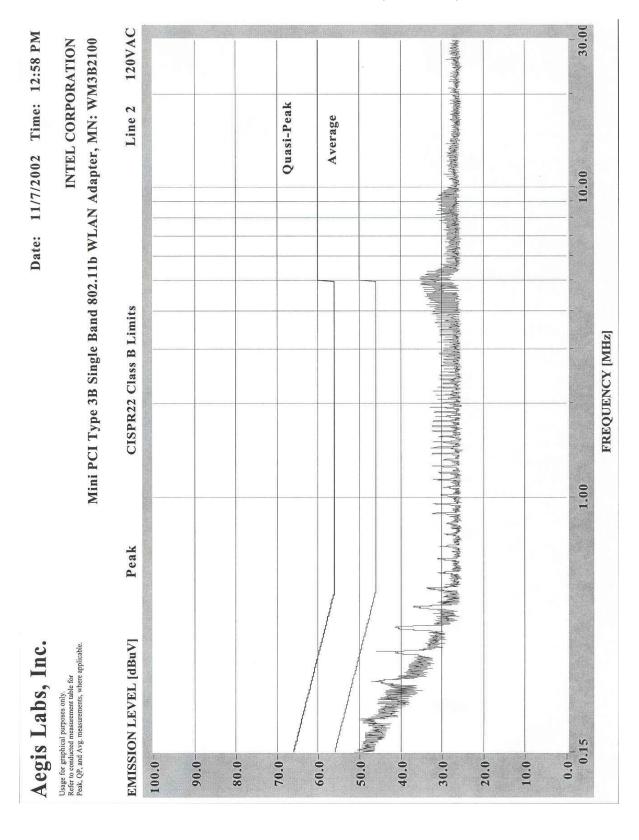
CLIENT:	Toshiba Corporation	DATE:	11/07/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104-19
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
CONFIGURATION:	Installed in Toshiba laptop SN:	TEMPERATURE:	20 C
	92033679J	HUMIDITY:	28% RH
	(With Dual Band Film Antennas)	TIME:	8:00 AM

Standard:	FCC CFR 47, Part 15.207
Description:	AC Power Conducted Emissions
Results:	Passes FCC Limits by –5.24 dB @ 0.1905 MHz, (Peak), Line 1


NOTE: During preliminary scans, there wasn't any difference which channel, data rate, or which set of antennas were used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps with the Dual Band Film antennas were used for final testing.

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

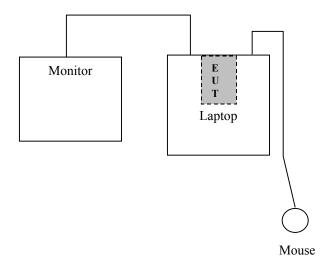
	FCC CLASS B CONDUCTED EMISSIONS – LINE 1							
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak		
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)		
0.1518	49.90	PK	55.95	-6.05	65.95	-16.05		
0.1905	49.60	PK	54.84	-5.24	64.84	-15.24		
0.2556	45.50	PK	52.98	-7.48	62.98	-17.48		
0.3138	41.50	PK	51.32	-9.82	61.32	-19.82		
0.3828	41.30	PK	49.35	-8.05	59.35	-18.05		
4.8350	36.20	PK	46.00	-9.80	56.00	-19.80		


	FCC CLASS B CONDUCTED EMISSIONS – LINE 2									
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak				
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)				
0.1521	50.60	PK	55.94	-5.34	65.94	-15.34				
0.1905	48.60	PK	54.84	-6.24	64.84	-16.24				
0.2559	46.40	PK	52.97	-6.57	62.97	-16.57				
0.3138	41.80	PK	51.32	-9.52	61.32	-19.52				
0.3828	41.70	PK	49.35	-7.65	59.35	-17.65				
4.9950	36.50	PK	46.00	-9.50	56.00	-19.50				

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

Page 4 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

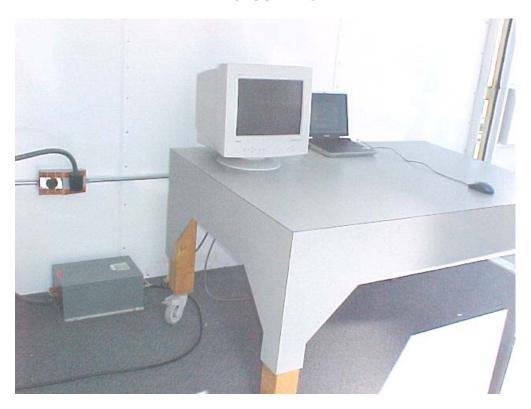
CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)


Page 5 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

	TEST EQUIPMENT USED									
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle					
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/02	1 Year					
Spectrum Analyzer - Display Section			85662A 1833A00389		1 Year					
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/02	1 Year					
RF Preselector	Hewlett Packard	85685A 2620A00281		05/10/03	1 Year					
Attenuator - 5W-10dB	Pasternack	PE7014-10 N/A		11/03/03	1 Year					
LISN (EUT)	FCC	FCC-LISN- 50-25-2	9941		1 Year					
LISN (Access)	LISN (Access) Com-Power		12019	01/25/03	1 Year					
LISN (Access)	Com-Power	LI-200	12018	01/25/03	1 Year					
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year					

EUT ACCESSORIES						
Equipment Name Manufacturer Model Number Serial Number						
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	92033679J			
AC Adapter	Toshiba	ADP-45XH	0233A0215141			
Monitor	NEC	JC-1575VMA	2Y785821			
Mouse	Logitech	M-BJ58	830513-1000			


BLOCK DIAGRAM

Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

PHOTOGRAPHS

Page 7 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

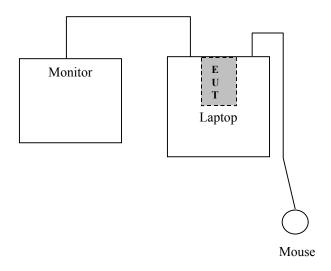
RADIATED EMISSIONS (SPURIOUS AND HARMONICS)

CLIENT:	Toshiba Corporation	DATE:	11/07/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104-20
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
CONFIGURATION:	Installed in Toshiba laptop SN:	TEMPERATURE:	22 C
	92033679J	HUMIDITY:	37% RH
	(With Dual Band Film Antennas)	TIME:	1:00 PM

Standard:	CISPR22 Class B Limits
Description:	Spurious Emissions Measurements - Radiated
Results:	-3.26 dB margin @ 325.18 MHz (Quasi-Peak) Vertical

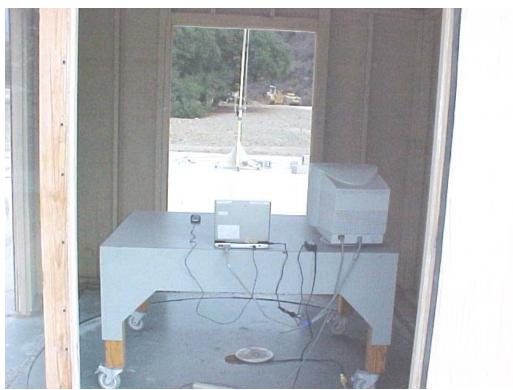
NOTE: During preliminary scans, there wasn't any difference which channel, data rate, or which set of antennas were used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps with the Dual Band Film antennas were used for final testing.

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)


Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	Corrected	Limits	Diff(dB)			
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)	Reading (dBuV)	(dBuV)	+=FAIL			
	(dBuV)									
195.10	34.00	400	90		18.91	30.00	-11.09			
231.68	40.10	400	90		25.92	37.00	-11.08			
260.15	33.00	350	45		19.78	37.00	-17.22			
304.10	36.80	250	45		19.83	37.00	-17.17			
320.06	39.70	200	315		23.42	37.00	-13.58			
325.17	47.70	250	45		31.64	37.00	-5.36			
336.06	38.60	200	45		22.62	37.00	-14.38			
344.11	37.60	150	180		21.67	37.00	-15.33			
356.38	41.50	150	180		25.72	37.00	-11.28			
368.68	41.20	200	180		25.64	37.00	-11.36			
390.18	32.10	250	90		17.15	37.00	-19.85			
400.21	43.10	200	180		28.48	37.00	-8.52			
455.23	42.00	150	270		29.17	37.00	-7.83			
666.04	37.00	100	270		29.36	37.00	-7.64			

	Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)			
(MHz)	Reading (dBuV)	Height (cm)	(degrees)	or AVG (dBu	or AVG (dBuV)		(dBuV)	+=FAIL			
195.10	33.90	100	135			18.81	30.00	-11.19			
231.39	36.90	100	90			22.71	37.00	-14.29			
260.15	32.00	100	180			18.78	37.00	-18.22			
304.09	42.70	100	0			25.73	37.00	-11.27			
320.09	38.60	100	0			22.33	37.00	-14.67			
325.18	50.60	100	180	49.80	Q	33.74	37.00	-3.26			
336.06	43.10	100	0			27.12	37.00	-9.88			
344.06	38.30	100	0			22.37	37.00	-14.63			
352.09	42.30	100	315			26.45	37.00	-10.55			
356.38	38.40	100	315			22.62	37.00	-14.38			
368.08	43.90	100	0			28.33	37.00	-8.67			
390.12	30.20	100	180			15.25	37.00	-21.75			
400.11	42.00	100	0			27.38	37.00	-9.62			
455.23	46.30	100	180			33.47	37.00	-3.53			
666.70	40.00	300	315			32.39	37.00	-4.61			

	TEST EQUIPMENT USED									
Equipment Name	Manufacturer Model Number		Serial Number	Calibration Due Date	Calibration Cycle					
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/02	1 Year					
Spectrum Analyzer - Display Section	Hewlett Packard	85662A	85662A 1833A00389		1 Year					
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/02	1 Year					
RF Preselector	Hewlett Packard	85685A	2620A00281	05/10/03	1 Year					
Preamplifier	Com-Power	PA-102	1438	04/29/03	1 Year					
Cable - 10m underground	Andrew	N/A	N/A	11/03/03	1 Year					
Antenna - Biconical	EMCO	3110	9108-1421	10/02/03	1 Year					
Antenna - Log Periodic	EMC Test Systems	3148	4947	10/12/03	1 Year					
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year					


EUT ACCESSORIES							
Equipment Name Manufacturer Model Number Serial Number							
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	92033679J				
AC Adapter	Toshiba	ADP-45XH	0233A0215141				
Monitor	NEC	JC-1575VMA	2Y785821				
Mouse	Logitech	M-BJ58	830513-1000				

BLOCK DIAGRAM

PHOTOGRAPHS

Page 11 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

CLIENT:	Toshiba Corporation	DATE:	11/04/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
CONFIGUARTION:	Installed in Toshiba laptop SN:	TEMPERATURE:	25 C
	92033679J	HUMIDITY:	33% RH
	(With Dual Band Film Antennas)	TIME:	1:00 PM

Standard:	FCC CFR 47, Part 15, 15.247(c), 15.209
Description:	Spurious Emissions Measurements - Radiated
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 INTEL-021104-03

Horizontal Open Field Maximized Data									
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)	
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV	V)	Reading (dBuV)	(dBuV)	+=FAIL	
	(dBuV)								
2411.04	74.67	100	225			108.30			
2390.00	29.00	100	225			62.56	74.00	-11.44	
2390.00				16.26	A	49.82	54.00	-4.18	
2436.02	76.33	100	135			110.03			
2461.03	73.67	100	225			107.45			
2483.50	30.17	100	225			64.02	74.00	-9.98	
2483.50				17.76	A	51.61	54.00	-2.39	

	Vertical Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
2412.92	74.83	125	90			108.46						
2390.00	31.50	125	90			65.06	74.00	-8.94				
2390.00				15.95	A	49.51	54.00	-4.49				
2436.02	75.83	125	90			109.53						
2461.01	75.33	125	90			109.11						
2483.50	31.00	125	90			64.85	74.00	-9.15				
2483.50	_		•	18.93	A	52.78	54.00	-1.22				

Harmonic Measurements at Channels 1, 6, & 11 INTEL-021104-04

	Horizontal Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBi	uV)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
4823.86	44.67	150	180			48.92	74.00	-25.08				
4823.86				35.26	Α	39.51	54.00	-14.49				
7236.60	44.83	100	135			53.05	74.00	-20.95				
7236.60				33.19	A	41.41	54.00	-12.59				
9647.86	45.00	100	225			54.17	88.30	-34.13				
4874.19	42.17	100	225			46.54	74.00	-27.46				
4874.19				30.19	Α	34.56	54.00	-19.44				
7310.51	43.67	100	225			51.99	74.00	-22.01				
7310.51				30.47	Α	38.79	54.00	-15.21				
9748.12	45.67	100	180			54.96	90.03	-35.07				
4924.21	45.50	100	180			49.98	74.00	-24.02				
4924.21				37.50	A	41.98	54.00	-12.02				
7390.14	45.33	100	135			53.77	74.00	-20.23				
7390.14				32.75	A	41.19	54.00	-12.81				
9847.93	46.33	100	225			55.74	87.45	-31.71				

		Verti	cal Open F	ield Maximi	zec	l Data		
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
4824.08	43.83	100	135			48.08	74.00	-25.92
4824.08				33.37	A	37.62	54.00	-16.38
7240.11	45.00	100	225			53.22	74.00	-20.78
7240.11				32.80	A	41.02	54.00	-12.98
9648.48	45.83	100	225			55.00	88.46	-33.46
4874.03	43.50	100	180			47.87	74.00	-26.13
4874.03				31.99	Α	36.36	54.00	-17.64
7311.05	43.17	100	180			51.49	74.00	-22.51
7311.05				30.80	Α	39.12	54.00	-14.88
9748.09	44.83	100	225			54.12	89.53	-35.41
4924.08	45.50	100	135			49.98	74.00	-24.02
4924.08				36.92	Α	41.40	54.00	-12.60
7390.17	44.83	100	180			53.27	74.00	-20.73
7390.17				33.50	A	41.94	54.00	-12.06
9848.16	45.50	100	180			54.91	89.11	-34.20

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

Spurious Emissions Measurements on Ch. 11 @ 1Mbps Data Rate INTEL-021104-05

	Horizontal Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
1188.93	57.33	175	90			49.38	74.00	-24.62				
1188.93				34.00	A	26.05	54.00	-27.95				
1330.42	55.50	125	135			47.89	74.00	-26.11				
1330.42				35.27	A	27.66	54.00	-26.34				
1456.91	52.17	100	90			45.28	74.00	-28.72				
1456.91				34.15	A	27.26	54.00	-26.74				
1600.04	59.50	100	135			52.91	74.00	-21.09				
1600.04				40.65	A	34.06	54.00	-19.94				
1987.96	50.33	100	135			47.02	87.45	-40.43				
2254.47	50.67	100	225			48.05	74.00	-25.95				
2254.47	-		·	32.66	A	30.04	54.00	-23.96				

	Vertical Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading (dBuV)	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL				
1040.19	56.00	200	180			47.25	74.00	-26.75				
1040.19				43.73	Α	34.98	54.00	-19.02				
1188.97	65.33	100	90			57.38	74.00	-16.62				
1188.97				33.23	Α	25.28	54.00	-28.72				
1334.45	55.83	100	45			48.22	74.00	-25.78				
1334.45				34.77	Α	27.16	54.00	-26.84				
1467.97	58.00	100	135			51.16	74.00	-22.84				
1467.97				33.26	Α	26.42	54.00	-27.58				
1600.15	59.67	100	180			53.08	74.00	-20.92				
1600.15				43.54	Α	36.95	54.00	-17.05				
2002.02	54.67	100	270			51.46	89.11	-37.65				
2247.53	54.50	100	45			51.87	74.00	-22.13				
2247.53				33.01	Α	30.38	54.00	-23.62				
2520.51	54.00	100	270			51.61	89.11	-37.50				
2647.03	53.33	100	270			51.29	89.11	-37.82				

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

CLIENT:	Toshiba Corporation	DATE:	11/04/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423454E61	SITE #:	2
CONFIGUARTION:	Installed in Toshiba laptop SN:	TEMPERATURE:	23 C
	92033677Ј	HUMIDITY:	33% RH
	(With Wide Dual Band Film Antenna)	TIME:	10:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c), 15.209
Description:	Spurious Emissions Measurements - Radiated
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 INTEL-021104-06

	Horizontal Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
2412.91	73.33	100	225			106.96						
2390.00	29.83	100	225			63.39	74.00	-10.61				
2390.00				15.11	A	48.67	54.00	-5.33				
2436.01	72.33	100	225			106.03						
2461.07	73.50	100	225			107.28						
2483.50	31.17	100	225			65.02	74.00	-8.98				
2483.50				18.78	Α	52.63	54.00	-1.37				

	Vertical Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
2412.94	72.33	200	90			105.96						
2390.00	28.67	200	90			62.23	74.00	-11.77				
2390.00				15.06	A	48.62	54.00	-5.38				
2435.98	73.17	125	90			106.87						
2461.01	73.67	125	90			107.45						
2483.50	31.33	125	90			65.18	74.00	-8.82				
2483.50	_		•	17.71	A	51.56	54.00	-2.44				

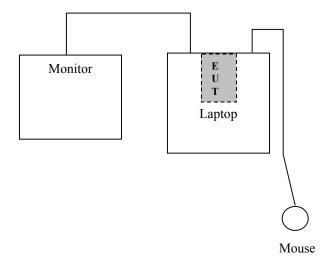
Harmonic Measurements at Channels 1, 6, & 11 INTEL-021104-07

	Horizontal Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBı	uV)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
4823.96	43.00	100	135			47.25	74.00	-26.75				
4823.86				31.35	Α	35.60	54.00	-18.40				
7235.96	46.83	100	225			55.04	74.00	-18.96				
7235.96				35.47	Α	43.68	54.00	-10.32				
9648.18	45.67	100	225			54.84	86.96	-32.12				
4874.25	41.50	100	225			45.87	74.00	-28.13				
4874.25				28.89	Α	33.26	54.00	-20.74				
7308.16	43.83	100	225			52.15	74.00	-21.85				
7308.16				31.99	Α	40.31	54.00	-13.69				
9748.35	45.00	100	180			54.29	86.03	-31.74				
4924.42	42.33	100	225			46.81	74.00	-27.19				
4924.42				29.22	Α	33.70	54.00	-20.30				
7387.99	43.00	100	180			51.44	74.00	-22.56				
7387.99				30.16	A	38.60	54.00	-15.40				
9848.40	45.17	100	225			54.58	87.28	-32.70				

		Verti	cal Open F	ield Maximi	zec	l Data		
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
4824.09	43.67	100	225			47.92	74.00	-26.08
4824.09				34.10	Α	38.35	54.00	-15.65
7240.48	44.83	125	90			53.05	74.00	-20.95
7240.48				34.79	Α	43.01	54.00	-10.99
9648.17	44.67	100	135			53.84	85.96	-32.12
4874.22	41.67	100	180			46.04	74.00	-27.96
4874.22				29.74	Α	34.11	54.00	-19.89
7312.78	42.67	100	180			51.00	74.00	-23.00
7312.78				30.03	Α	38.36	54.00	-15.64
9747.75	45.17	100	180			54.46	86.87	-32.41
4924.37	43.00	100	45			47.48	74.00	-26.52
4924.37				30.86	Α	35.34	54.00	-18.66
7389.15	44.00	100	225			52.44	74.00	-21.56
7389.15				30.95	Α	39.39	54.00	-14.61
9848.05	44.00	100	180			53.41	87.45	-34.04

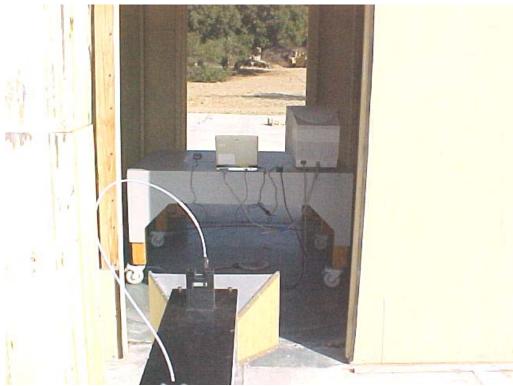
RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

Spurious Emissions Measurements on Ch. 11 @ 1Mbps Data Rate INTEL-021104-08


	Horizontal Open Field Maximized Data											
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)				
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	ıV)	Reading (dBuV)	(dBuV)	+=FAIL				
	(dBuV)											
1040.41	52.17	100	0			43.42	74.00	-30.58				
1040.41				42.66	A	33.91	54.00	-20.09				
1200.88	56.00	100	0			48.05	74.00	-25.95				
1200.88				34.63	A	26.68	54.00	-27.32				
1334.58	56.83	100	225			49.22	74.00	-24.78				
1334.58				34.04	A	26.43	54.00	-27.57				
1468.04	55.17	100	225			48.33	74.00	-25.67				
1468.04				34.08	A	27.24	54.00	-26.76				
1599.94	56.33	100	135			49.74	74.00	-24.26				
1599.94				38.86	A	32.27	54.00	-21.73				
1849.83	52.50	100	225			48.27	87.28	-39.01				
2127.77	54.50	100	225			51.59	74.00	-22.41				
2127.77				35.59	A	32.68	54.00	-21.32				

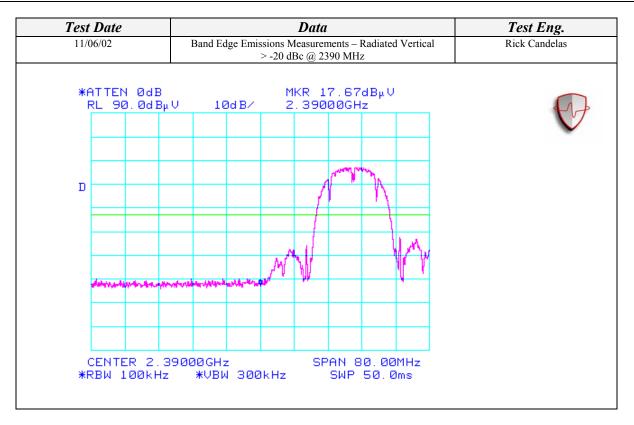
	Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk		Limits	Diff (dB)			
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBı		Reading (dBuV)	(dBuV)	+=FAIL			
	(dBuV)										
1040.43	51.50	100	180			42.75	74.00	-31.25			
1040.43				43.37	Α	34.62	54.00	-19.38			
1067.24	56.67	100	180			48.13	74.00	-25.87			
1067.24				35.10	Α	26.56	54.00	-27.44			
1105.45	56.33	100	180			48.07	74.00	-25.93			
1105.45				45.89	Α	37.63	54.00	-16.37			
1189.43	60.33	100	135			52.38	74.00	-21.62			
1189.43				33.28	A	25.33	54.00	-28.67			
1329.53	59.83	125	180			52.22	74.00	-21.78			
1329.53				38.75	A	31.14	54.00	-22.86			
1454.34	57.67	100	315			50.77	74.00	-23.23			
1454.34				33.76	A	26.86	54.00	-27.14			
1599.87	62.50	100	135			55.91	74.00	-18.09			
1599.87				47.37	A	40.78	54.00	-13.22			
1989.66	56.33	150	135			53.03	87.45	-34.42			
2249.74	52.67	100	90			50.05	74.00	-23.95			
2249.74				32.80	A	30.18	54.00	-23.82			
2521.17	50.83	100	270			48.44	87.45	-39.01			

TEST EQUIPMENT USED									
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle				
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years				
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year				
Antenna - Horn	EMCO	3115	2230	09/14/03	1 Year				
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year				

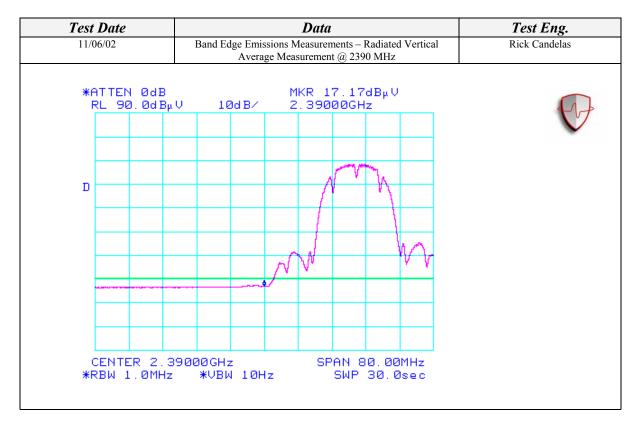

EUT ACCESSORIES									
Equipment Name Manufacturer Model Number Serial Number									
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	See Data Sheet						
AC Adapter	Toshiba	ADP-45XH	0233A0215141						
Monitor	NEC	JC-1575VMA	2Y785821						
Mouse	Logitech	M-BJ58	830513-1000						

BLOCK DIAGRAM

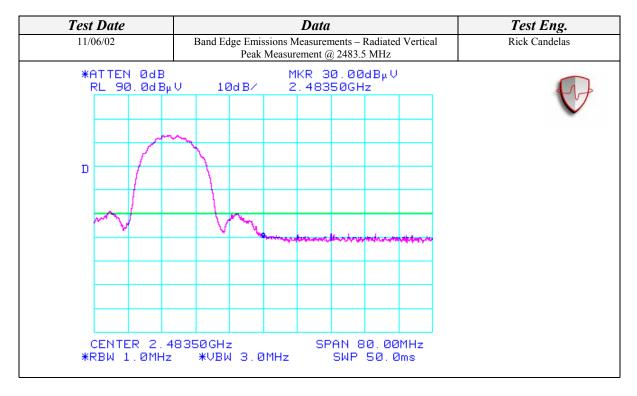
PHOTOGRAPHS

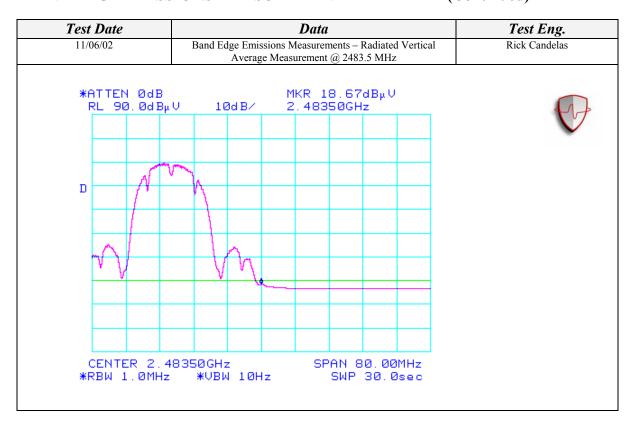

Page 21 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL

BAND EDGE EMISSIONS MEASUREMENT - RADIATED

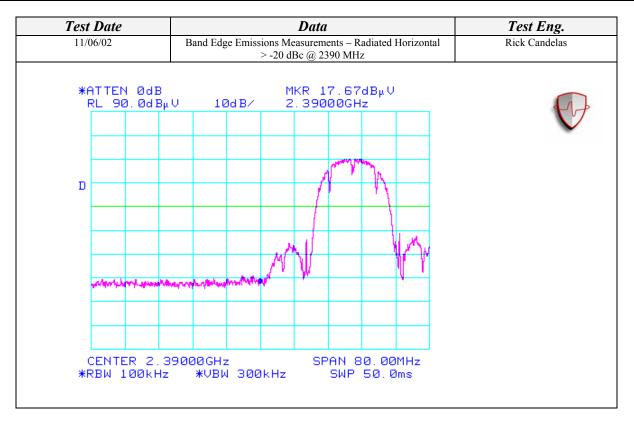

CLIENT:	Toshiba Corporation	DATE:	11/06/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
CONFIGURATION:	Installed in Toshiba laptop SN:	TEMPERATURE:	25 C
	92033679J	HUMIDITY:	30% RH
	(With Dual Band Film Antennas)	TIME:	9:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Band Edge Emissions Measurement - Radiated
Results:	Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also
	comply with the radiated emission limits specified in Sec. 15.209(a) (see Sec. 15.205(c)).

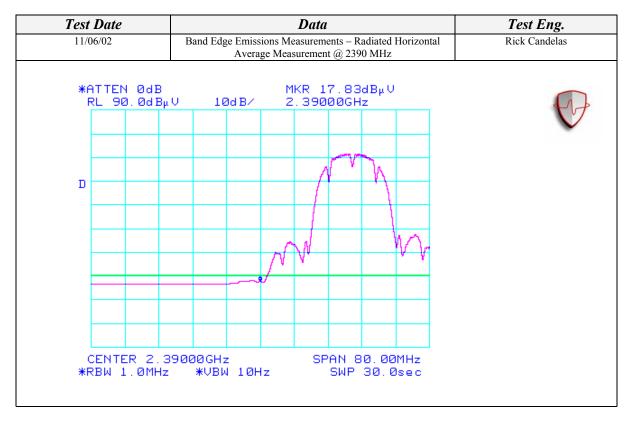

Vertical Open Field Maximized Data									
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		Corrected Reading (dBuV)	Limits (dBuV)	Diff (dB) +=FAIL	
2390.00	31.17	100	225			64.73	74.00	-9.27	
2390.00				17.17	A	50.73	54.00	-3.27	
2483.50	30.00	100	225			63.85	74.00	-10.15	
2483.50				18.67	A	52.52	54.00	-1.48	

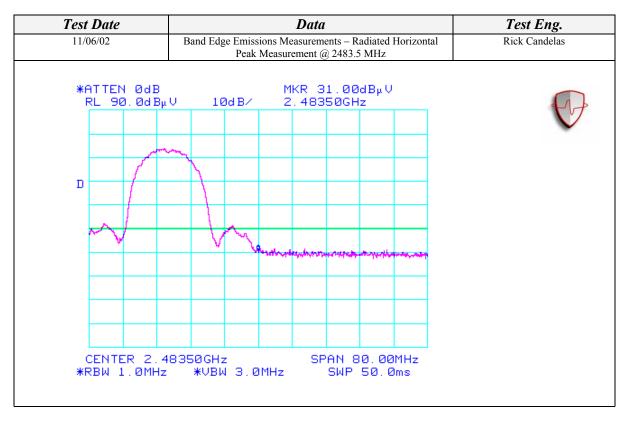


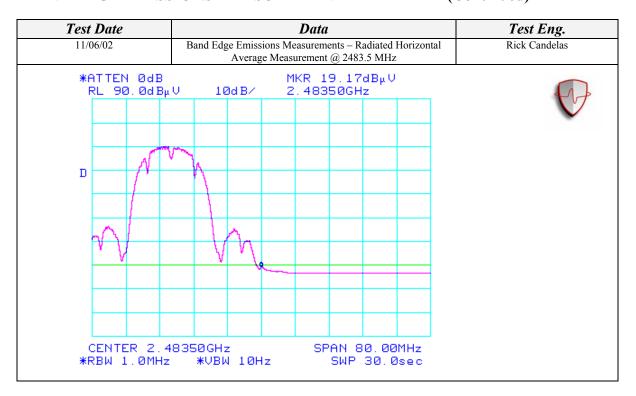
Test Date	Data	Test Eng.
11/06/02	Band Edge Emissions Measurements – Radiated Vertical Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdΒμ	MKR 31.17dBμV V 10dB⁄ 2.39000GHz	
D		
بياليا والمساولة	and the state of t	
CENTER 2.3 *RBW 1.0MHz		



	Test Eng.		Data Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz							Test Date		Test	
	Rick Candelas	d Vertical									06/02	11/0	
7	P		BdBμ∨ Hz	19.3: 350GI	MKR 2.4		∂d B∕	10			ATTEN RL 90		
	,	*											
								Λ	adlow	1		Д	
				10.411.2		8	M	V			7		
		randa (AAP)	and selection of	Or service and seed	an-Inskipule			Ť			·		
									400				
			30.00 50.0			ðkH:					SENTE RBW 1		
		IMHz	30.00	SPAN SWP							CENTERBW 1		

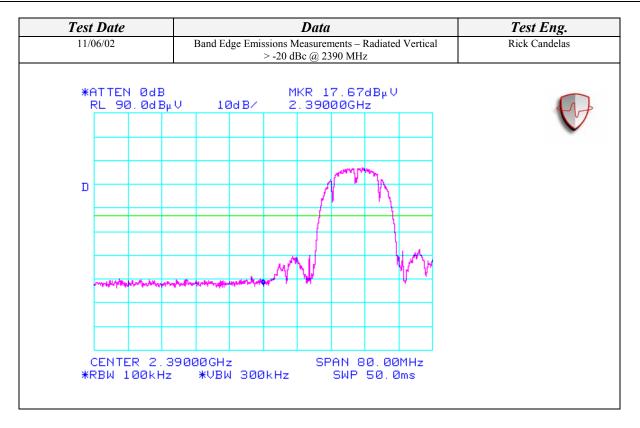


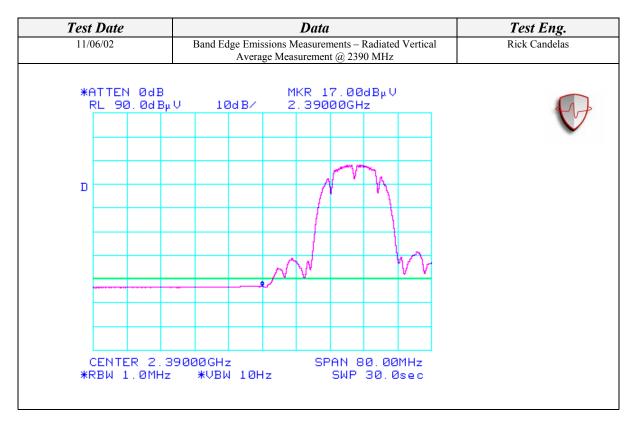

Horizontal Open Field Maximized Data									
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL	
2390.00	30.17	100	225			63.73	74.00	-10.27	
2390.00				17.83	A	51.39	54.00	-2.61	
2483.50	31.00	100	225			64.85	74.00	-9.15	
2483.50				19.17	A	53.02	54.00	-0.98	



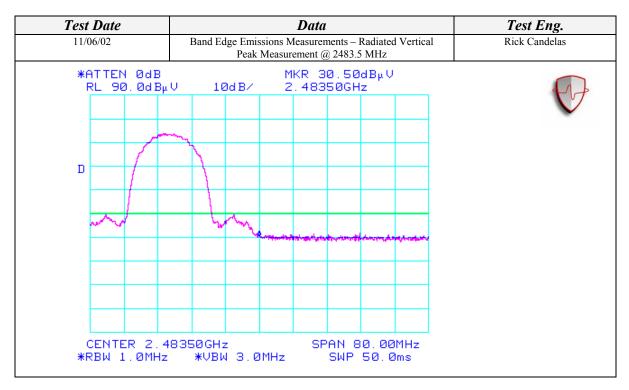
Test Date	Data	Test Eng.
11/06/02	Band Edge Emissions Measurements – Radiated Horizontal Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdΒμ	MKR 30.17dBμV V 10dB⁄ 2.39000GHz	
D		
market bear bear and	W. Harrison and Control of the Contr	
CENTER 2.3 *RBW 1.0MHz		

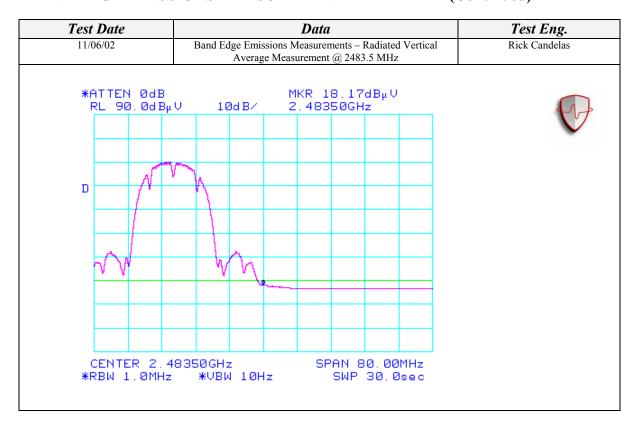
Test Date	Data	Test Eng.				
11/06/02	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz					
*ATTEN ØdB RL 90. ØdВµ	MKR 19.17dBμV V 10dB∕ 2.48350GHz					
D V	Pro-					
m^\						
Y	Whater the second control of the second					
CENTER 2.4	8350GHz SPAN 80.00MHz					
*RBW 100kHz						



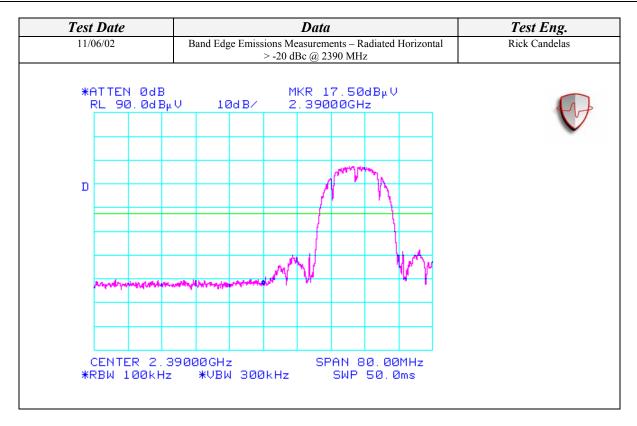

CLIENT:	Toshiba Corporation	DATE:	11/06/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423454E61	SITE #:	2
CONFIGURATION:	Installed in Toshiba laptop SN:	TEMPERATURE:	25 C
	92033677J	HUMIDITY:	30% RH
	(With Wide Dual Band Film Antenna)	TIME:	9:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Band Edge Emissions Measurement - Radiated
Results:	Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also
	comply with the radiated emission limits specified in Sec. 15.209(a) (see Sec. 15.205(c)).

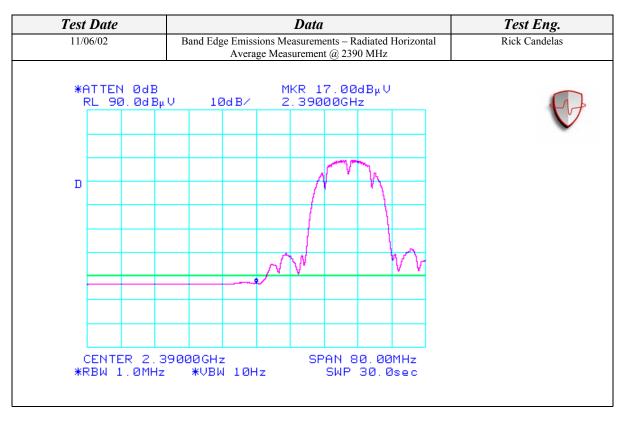

	Vertical Open Field Maximized Data							
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
2390.00	28.67	100	225			62.23	74.00	-11.77
2390.00				17.00	A	50.56	54.00	-3.44
2483.50	30.50	100	225			64.35	74.00	-9.65
2483.50				18.17	A	52.02	54.00	-1.98

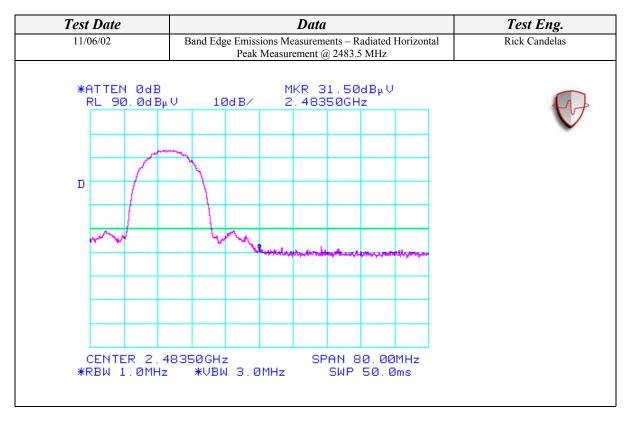


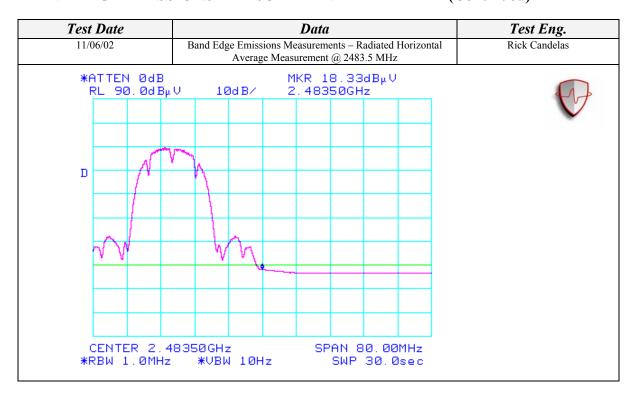
Test Date	Data	Test Eng.
11/06/02	Band Edge Emissions Measurements – Radiated Vertical Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdBμ	MKR 28.67dBμV V 10dB∕ 2.39000GHz	N.
		V
D		
and the contract of the state of the state of	manufacture of the second of t	
CENTER 2.3 *RBW 1.0MHz		



Test Date	Data	Test Eng.
11/06/02	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdBµ	MKR 19.17dΒμV	
	A A A A A A A A A A A A A A A A A A A	
CENTER 2.4 *RBW 100kHz		

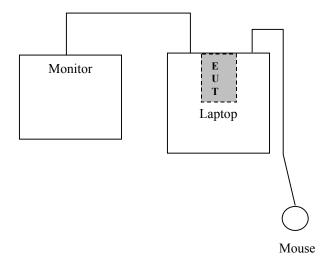



	Horizontal Open Field Maximized Data							
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBu	V)	Corrected Reading (dBuV)	Limits (dBuV)	Diff (dB) +=FAIL
2390.00	29.33	100	225			62.89	74.00	-11.11
2390.00				17.00	A	50.56	54.00	-3.44
2483.50	31.50	100	225	10.22		65.35	74.00	-8.65
2483.50				18.33	Α	52.18	54.00	-1.82



Test Date	Data	Test Eng.
11/06/02	Band Edge Emissions Measurements – Radiated Horizontal Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdΒμ	MKR 29.33dBμV V 10dB∕ 2.39000GHz	
Д		
months and market and a state of the state o		
CENTER 2.3 *RBW 1.0MHz		

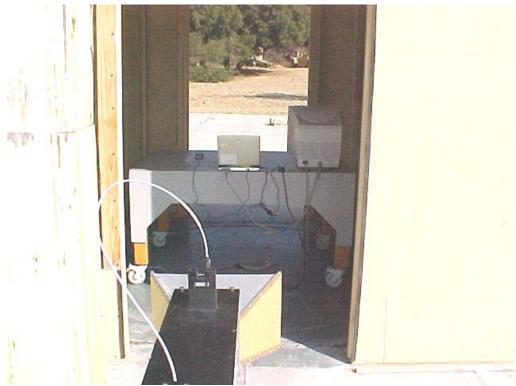
Test Date	Data	Test Eng.
11/06/02	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdΒμ	MKR 19.67dBμV V 10dB⁄ 2.48350GHz	
- Army	Lawar Property Control of the Contro	
D		
~~~	Marin	
	a the second sec	
CENTER 2.4 *RBW 100kHz		







TEST EQUIPMENT USED					
<b>Equipment Name</b>	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year
Antenna - Horn	EMCO	3115	2230	09/14/03	1 Year
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year


EUT ACCESSORIES					
Equipment Name	Manufacturer	Model Number	Serial Number		
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	See Data Sheet		
AC Adapter	Toshiba	ADP-45XH	0233A0215141		
Monitor	NEC	JC-1575VMA	2Y785821		
Mouse	Logitech	M-BJ58	830513-1000		

#### **BLOCK DIAGRAM**

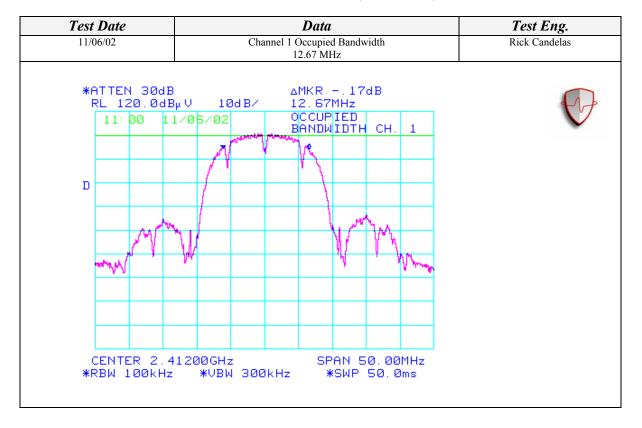


#### **PHOTOGRAPHS**

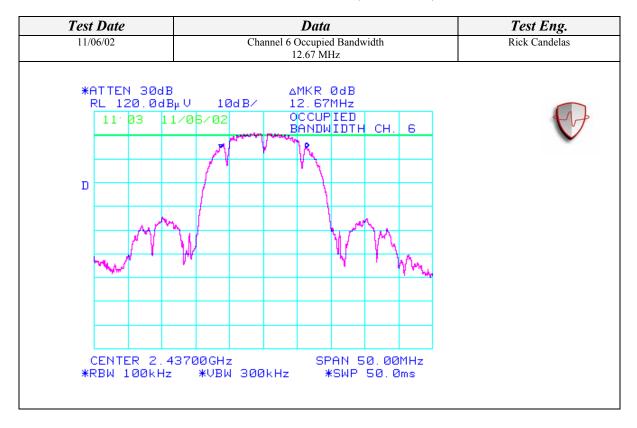




Page 41 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL


## OCCUPIED BANDWIDTH MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	11/06/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
<b>CONFIGURATION:</b>	Installed in Toshiba laptop SN:	TEMPERATURE:	25 C
	92033679J	<b>HUMIDITY:</b>	30% RH
	(With Dual Band Film Antennas)	TIME:	8:00 AM


Standard:	FCC CFR 47, Part 15, 15.247(a)(2)
<b>Description:</b>	Occupied Bandwidth Measurement
Results:	6dB bandwidth is at least 500 kHz.

TEST RESULTS SUMMARY		
Data Result		
Channel 1 Occupied Bandwidth	12.67 MHz 6 dB Bandwidth	
Channel 6 Occupied Bandwidth 12.67 MHz 6 dB Bandwidth		
Channel 11 Occupied Bandwidth	12.67 MHz dB Bandwidth	


## **OCCUPIED BANDWIDTH MEASUREMENT (Continued)**



## **OCCUPIED BANDWIDTH MEASUREMENT (Continued)**



## **OCCUPIED BANDWIDTH MEASUREMENT (Continued)**



#### MAXIMUM PEAK OUTPUT POWER MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	11/04/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104-01
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
<b>CONFIGUARTION:</b>	Installed in Toshiba laptop SN:	TEMPERATURE:	18 C
	92033679J	<b>HUMIDITY:</b>	55% RH
	(With dual Band Film Antennas)	TIME:	8:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(b)
<b>Description:</b>	Peak Output Power – Conducted
Results:	Maximum Peak Output Power is less than 1 W.
	45.81 mW @ Channel 11 at a data rate of 1 Mbps

Frequency (MHz)	Rate (Mbps)	Power (dBm)	Power Corrected (dBm)	Power (mW)
2412.00	1	16.40	16.55	45.19
2412.00	5.5	16.01	16.16	41.30
2412.00	11	16.00	16.15	41.21
2437.00	1	16.41	16.56	45.29
2437.00	5.5	16.16	16.31	42.76
2437.00	11	16.10	16.25	42.17
2462.00	1	16.46	16.61	45.81
2462.00	5.5	16.20	16.35	43.15
2462.00	11	16.16	16.31	42.76

**NOTE 1:** Using DINO Configuration software provided by Intel Corporation to set power limits.

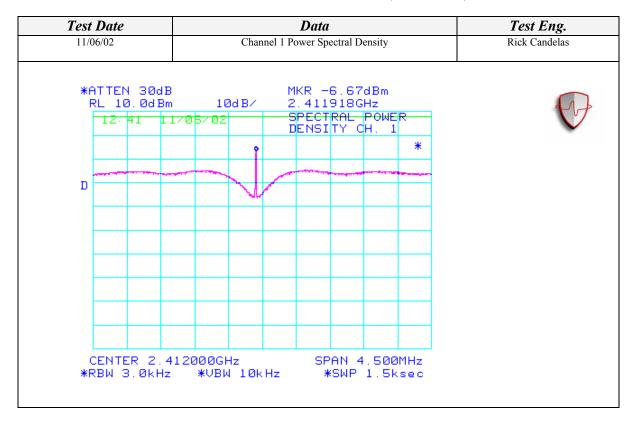
#### MAXIMUM PEAK OUTPUT POWER MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	11/04/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104-02
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423454E61	SITE #:	2
<b>CONFIGUARTION:</b>	Installed in Toshiba laptop SN:	TEMPERATURE:	15 C
	92033677J	<b>HUMIDITY:</b>	50% RH
	(With Wide Dual Band Antennas)	TIME:	10:00 AM

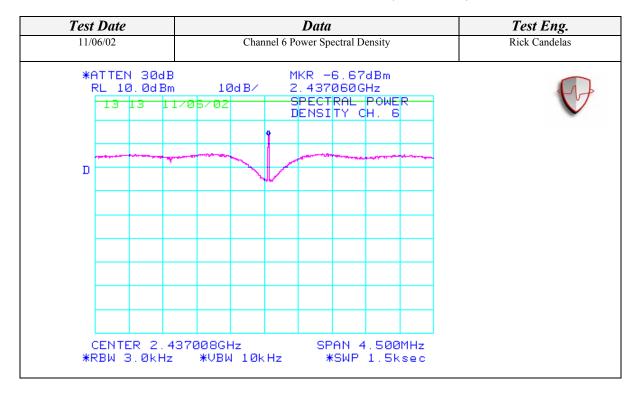
Standard:	FCC CFR 47, Part 15, 15.247(b)
<b>Description:</b>	Peak Output Power – Conducted
Results:	Maximum Peak Output Power is less than 1 W.
	45.71 mW @ Channel 11 at a data rate of 1 Mbps

Frequency	Rate	Power	Power	Power
(MHz)	(Mbps)	(dBm)	Corrected	(mW)
			(dBm)	
2412.00	1	16.42	16.57	45.39
2412.00	5.5	16.25	16.40	43.65
2412.00	11	16.20	16.35	43.15
2437.00	1	16.40	16.55	45.19
2437.00	5.5	16.07	16.22	41.88
2437.00	11	16.01	16.16	41.30
2462.00	1	16.45	16.60	45.71
2462.00	5.5	16.16	16.31	42.76
2462.00	11	16.11	16.26	42.27

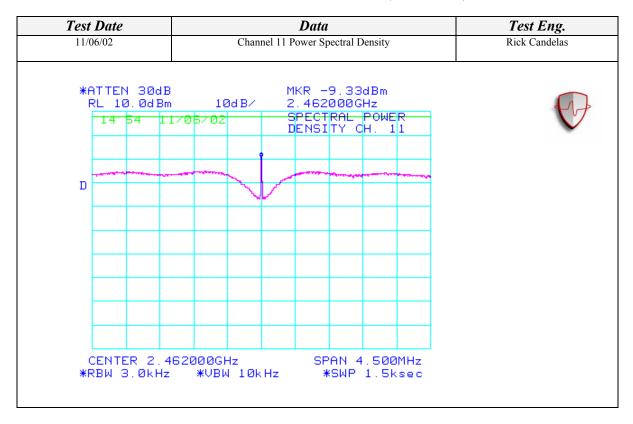
**NOTE 1:** Using DINO Configuration software provided by Intel Corporation to set power limits.


## SPECTRAL POWER DENSITY MEASUREMENT

CLIENT:	Toshiba Corporation	DATE:	11/06/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
<b>CONFIGURATION:</b>	Installed in Toshiba laptop SN:	TEMPERATURE:	26 C
	92033679J	<b>HUMIDITY:</b>	32% RH
	(With Dual Band Film Antennas)	TIME:	2:00 PM


Standard:	FCC CFR 47, Part 15, 15.247(D)
<b>Description:</b>	Power Spectral Density Measurement
Results:	Transmitted power density averaged over any 1 second interval is not greater than 8 dBm in any 3 kHz bandwidth within these bands

TEST RESULTS SUMMARY		
Data Result		
Channel 1 Power Spectral Density	-6.67 dBm – Pass	
Channel 6 Power Spectral Density	-6.67 dBm – Pass	
Channel 11 Power Spectral Density	-9.33 dBm - Pass	


## POWER SPECTRAL DENSITY MEASUREMENT (Continued)

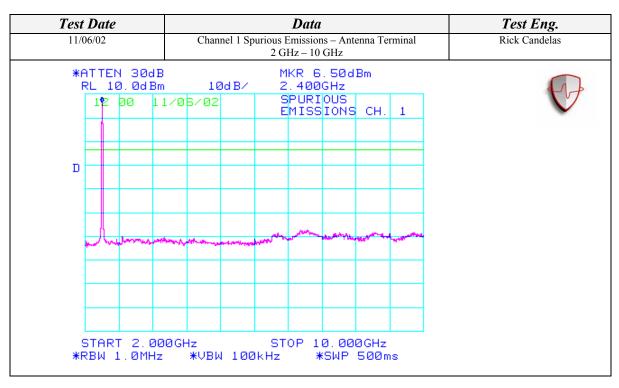


## POWER SPECTRAL DENSITY MEASUREMENT (Continued)

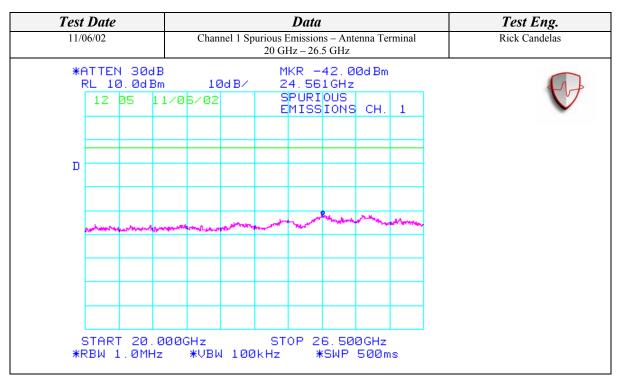


## POWER SPECTRAL DENSITY MEASUREMENT (Continued)

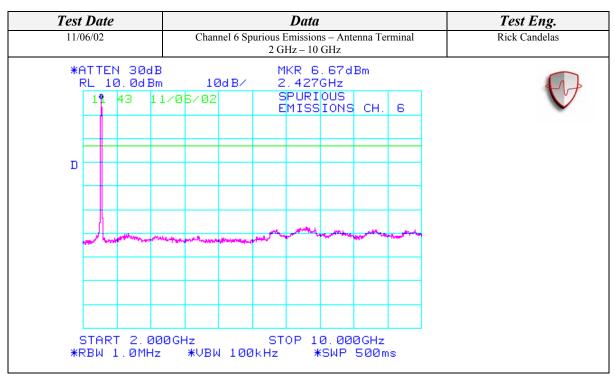



## SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

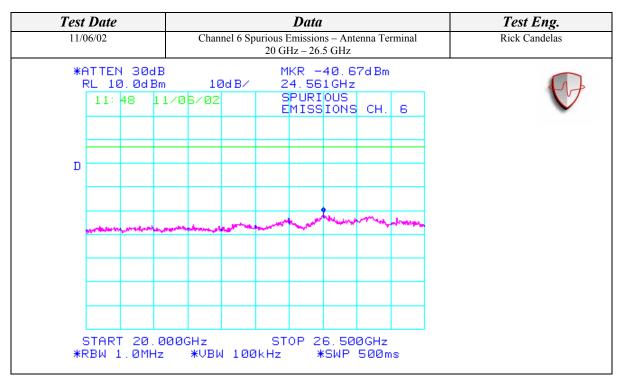
CLIENT:	Toshiba Corporation	DATE:	11/06/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
<b>CONFIGURATION:</b>	Installed in Toshiba laptop SN:	TEMPERATURE:	25 C
	92033679J	HUMIDITY:	30% RH
	(With Dual Band Film Antennas)	TIME:	9:00 AM


Standard:	FCC CFR 47, Part 15, 15.247(c)
<b>Description:</b>	Conducted Spurious Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

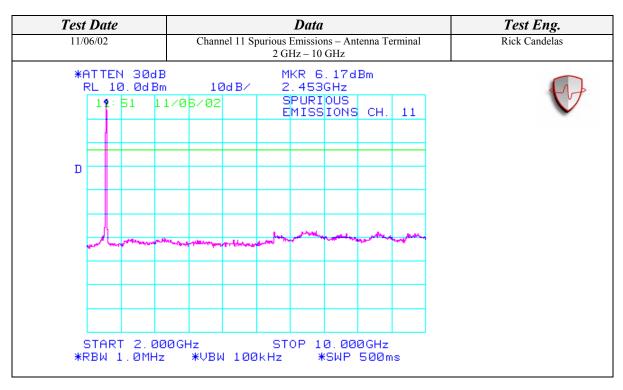
TEST RESULT	S SUMMARY
Data	Result
Channel 1 Spurious Emissions –	Max Spur Signal @ -51.83 dBm – Pass
Antenna Terminal - 30MHz – 2GHz	
Channel 1 Spurious Emissions –	Max Spur Signal @ -48.00 dBm – Pass
Antenna Terminal - 2GHz – 10GHz	
Channel 1 Spurious Emissions –	Max Spur Signal @ -45.67 dBm – Pass
Antenna Terminal - 10GHz – 20GHz	
Channel 1 Spurious Emissions –	Max Spur Signal @ -42.00 dBm – Pass
Antenna Terminal - 20GHz – 26.5GHz	
Channel 6 Spurious Emissions –	Max Spur Signal @ -52.67 dBm – Pass
Antenna Terminal - 30MHz – 2GHz	
Channel 6 Spurious Emissions –	Max Spur Signal @ -48.10 dBm – Pass
Antenna Terminal - 2GHz – 10GHz	
Channel 6 Spurious Emissions –	Max Spur Signal @ -45.50 dBm – Pass
Antenna Terminal - 10GHz – 20GHz	
Channel 6 Spurious Emissions –	Max Spur Signal @ -40.67 dBm – Pass
Antenna Terminal - 20GHz – 26.5GHz	
Channel 11 Spurious Emissions –	Max Spur Signal @ -52.00 dBm – Pass
Antenna Terminal - 30MHz – 2GHz	
Channel 11 Spurious Emissions –	Max Spur Signal @ -47.90 dBm – Pass
Antenna Terminal - 2GHz – 10GHz	
Channel 11 Spurious Emissions –	Max Spur Signal @ -44.50 dBm – Pass
Antenna Terminal - 10GHz – 20GHz	
Channel 11 Spurious Emissions –	Max Spur Signal @ -41.67 dBm – Pass
Antenna Terminal - 20GHz – 26.5GHz	


	Test Date			Data				Test Eng.			
11/0	6/02			Channel 1 Spurious Emissions – Antenna Terminal 30 MHz – 2 GHz					Rick Candelas		
	L 10	N 300 0.0d: 01	Bm	10 6/02		1	.918 PURI				<del>(</del>
										_	
D											
			.4-2	in angina di Pangan		<del></del>	والمسروب أسري	ad Assessment	- party of the contract		
ţ		T 30						. 000			

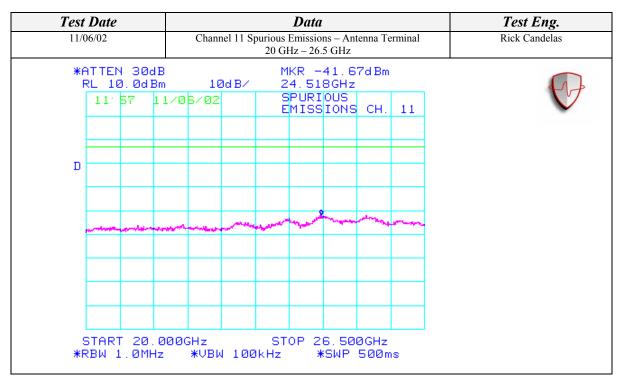



1 est	Date			Data					Test Eng.		
11/0	11/06/02			Channel 1 Spurious Emissions – Antenna Terminal 10 GHz - 20 GHz					Rick Candelas		
*ATTEN 30dE RL 10.0dBm 12:03 1			Bm	n 10dB∕ 13.30GHz							
		-	-			Е	MISS	IONS	CH.	1	•
D											
	Name of the last	ومطاعران	fr Bluest - Pr	Mary Land	بديوب	Muller	- Andrew	a de la companio de		بطياب موالي	
			. 00G Hz		V 100			L 0.00 (SWP	GHz 500m	ı	




Test	Date		Data				Test Eng.		
11/0	06/02	Chan	nel 6 Spurio	ous Emission	Rick Candelas				
*6	ATTEN 30d RL 10.0dE	В	∂d B∕	ous Emission 30 MHz - 2 MKR - 1.012 SPURI EMISS	GHz 52.6 GHz OUS	7d Bm	minal 6	Rick Candelas	
	START 30M			STOP 2					




11/06/02	Channel 6 S	Spurious Emissions – A	ntenna Terminal	Rick Candelas
		Rick Calidelas		
*ATTEN 30d RL 10.0dF 11.46		SPURIOUS		€
		EMISSION	Б СН. Б	•
D				
and the same	want you for the same	Manney and the publishing and sugar	Section of the sectio	
START 10. *RBW 1.0MH		0.00.00.0	0GHz 9 500ms	



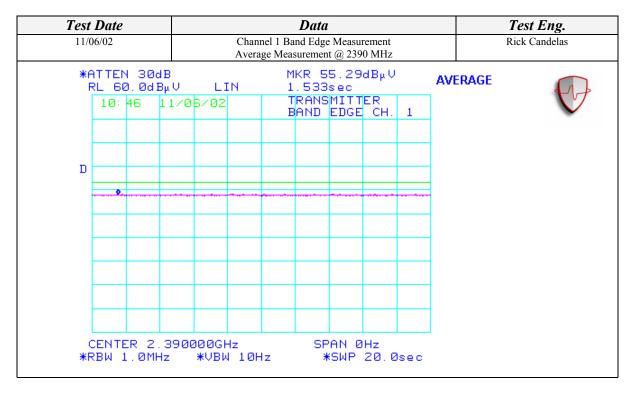
Test D	ate		Data					Test Eng	g.	
11/06/0	)2	Cha	nnel 11 S _l		Emissio ЛНz – 2	Rick Candelas				
RL	TEN 30c 10.0dF .1:53		0dB/	1 9	.209 PURI				4	
	ang distribuyahan nga glasa ng	- Andrews of the Angelon of the Ange	, and despress high	New order		ego al mander	n, přídydlykteny			
	ART 301 W 1.0MH	IHz  z *VB	W 100			. 000 (SWP		ıs		



Test Date			Test Eng.			
11/06/02	C	Channel 11 Spurious Emissions – Antenna Terminal 10 GHz - 20 GHz				Rick Candelas
*ATTEN 3	d Bm	10dB/			Bm	
11 55	11/05/	702	EMISS	IONS C	H. 11	•
D						
And the Assessment of the State	A PARKET PAR	a mark	no many many and a	*****	former payments. A.	
START 1 *RBW 1.0	0.00GHz MHz *	JBW 100k	STOP 2	0.00GH SWP 50		

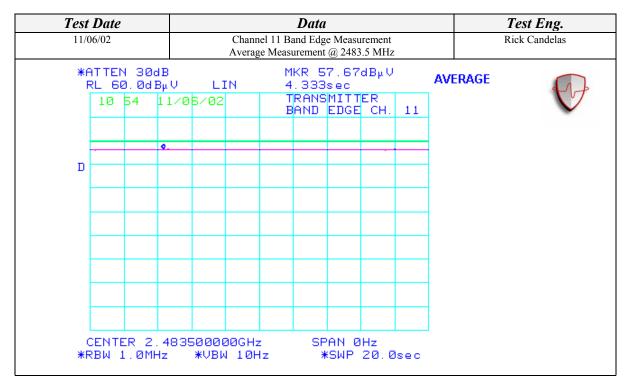


## BAND EDGE EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL


CLIENT:	Toshiba Corporation	DATE:	11/06/02
EUT:	Intel PRO/wireless LAN 2100 3B	PROJECT	INTEL-021104
	Mini PCI Adapter	NUMBER:	
MODEL NUMBER:	PA3272U-1MPC	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423001A77	SITE #:	2
<b>CONFIGURATION:</b>	Installed in Toshiba laptop SN:	TEMPERATURE:	27 C
	92033679J	<b>HUMIDITY:</b>	32% RH
	(With Dual Band Film Antennas)	TIME:	11:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c)
<b>Description:</b>	Conducted Band Edge Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST RESULT	TEST RESULTS SUMMARY								
Data	Result								
Channel 1 Band Edge Measurement	>20 dBc – Pass								
Peak Measurement @ 2390 MHz									
Channel 1 Band Edge Measurement	55.29 dBuV - Pass								
Average Measurement @ 2390 MHz									
Channel 11 Band Edge Measurement	>20 dBc – Pass								
Peak Measurement @ 2483.5 MHz									
Channel 11 Band Edge Measurement	57.67 dBuV - Pass								
Average Measurement @ 2483.5 MHz									

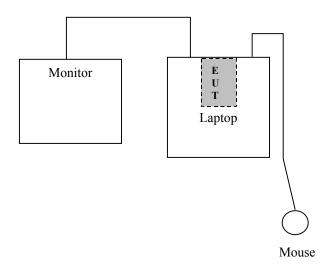

## **CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)**

Test	Date		Data					Test Eng.			
11/0	06/02			Chan	nel 1 Ba	nd Edge		Rick Candelas			
*f	06/02 ATTEN 31 RL 120.1 10.40	∂dBμ	V 10 08/02	Chani Peak	Measur M 2	KR 6	e Measur @ 2390 4 . 17 ØGHz MITT EDGE	MHz dBμ∨ ER		PEAK	
	CENTER :			1.0	IMHz	SF	PAN 1 SWP				



## **CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)**

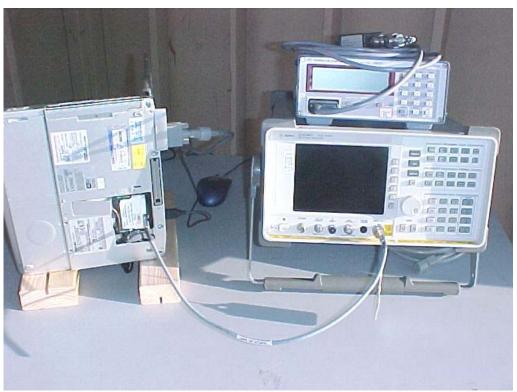
Test Date	Data	Test Eng.
11/06/02	Channel 11 Band Edge Measurement Peak Measurement @ 2483.5 MHz	Rick Candelas
*ATTEN 30dB RL 120.0dB 10 52 11	MKR 64.67dBμV <b>PEA</b> ιV 10 dB/ 2.4835GHz <b>PEA</b>	AK
- V	The state of the s	
	And the same and bright of the same of the	
CENTED 2 4	SPON 199 BMU	
CENTER 2.4 *RBW 1.0MHz	335GHz SPAN 100.0MHz *VBW 1.0MHz *SWP 50.0ms	




## ALL CONDUCTED MEASUREMENTS SETUP

TEST EQUIPMENT USED							
<b>Equipment Name</b>	Manufacturer	Model	Serial	Calibration	Calibration		
		Number	Number	<b>Due Date</b>	Cycle		
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years		
DC Block	Inmet	8039	N/A	N/A	N/A		
Power Meter	Rohde & Schwarz	NRVS	DE30863	11/24/03	1 Year		
Power Sensor	Leistungsmesskoph	NRV-Z5	844855/012	11/24/03	1 Year		
Temperature /	Dickson	TH550	7255185	01/08/03	1 Year		
Humidity Monitor							


EUT ACCESSORIES						
Equipment Name	Manufacturer	Model Number	Serial Number			
Portege 4010 System Unit Laptop	Toshiba	PP401Z-024FM	See Data Sheet			
AC Adapter	Toshiba	ADP-45XH	0233A0215141			
Monitor	NEC	JC-1575VMA	2Y785821			
Mouse	Logitech	M-BJ58	830513-1000			


#### **BLOCK DIAGRAM**



## **ALL CONDUCTED MEASUREMENTS SETUP (Continued)**

#### **PHOTOGRAPHS**





Page 63 of 63 Report Number: INTEL-021104F FCC ID: CJ6UPA3272WL