

CFR 47 FCC PART 15 SUBPART C TEST REPORT

For

IP Camera

MODEL NUMBER: IPC6415SR-X5UPW

ADDITIONAL NUMBER: IPC6415SR-X5UPW-NB, IPC-B645, IPC-B645-IR, IPC-B645-WH, IPC-B645-FW, IPC-S645, IPC-S645-IR, IPC-S645-WH, IPC-S645-FW, IPC-E645, IPC-E645-IR, IPC-E645-WH, IPC-E645-FW, AFSXJ-NC-C-IPC-B645, AFSXJ-NC-C-IPC-B645-IR, AFSXJ-NC-C-IPC-B645-WH, AFSXJ-NC-C-IPC-B645-FW, IPC-B645-XYZ-ABC

FCC ID: 2AL8S-0235C3GQ

REPORT NUMBER: 4789049979-1

ISSUE DATE: Jul. 08, 2019

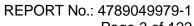
Prepared for

Zhejiang Uniview Technologies Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China


Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 122

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	07/08/2019	Initial Issue	

Page 3 of 122

	Summary of Test Results							
Clause	Test Items	FCC/IC Rules	Test Results					
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass					
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass					
3	Power Spectral Density	FCC Part 15.247 (e)	Pass					
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass					
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass					
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass					
7	Antenna Requirement	FCC Part 15.203	Pass					

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	6
2.	TE	ST METHODOLOGY	8
3.	FA	CILITIES AND ACCREDITATION	8
4.	CA	LIBRATION AND UNCERTAINTY	9
4	4.1.	MEASURING INSTRUMENT CALIBRATION	9
4	4.2.	MEASUREMENT UNCERTAINTY	9
5.	EQ	UIPMENT UNDER TEST	10
	5.1.	DESCRIPTION OF EUT	10
	5.2.	MAXIMUM OUTPUT POWER	11
	5.3.	CHANNEL LIST	11
	5. <i>4</i> .	TEST CHANNEL CONFIGURATION	11
	5.5.	THE WORSE CASE CONFIGURATIONS	11
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	
	5.7.	THE WORSE CASE CONFIGURATIONS	
	5.8.	DESCRIPTION OF TEST SETUP	
6.	ME	EASURING INSTRUMENT AND SOFTWARE USED	14
7.		ASUREMENT METHODS	
8.		TENNA PORT TEST RESULTS	
ć	3.1.	ON TIME AND DUTY CYCLE	
ć	3.2. 8.2	6 dB DTS BANDWIDTH	
	8.2		
	8.2	.3. 802.11n HT20 MODE	24
	8.2		
ð		PEAK CONDUCTED OUTPUT POWER	
	8.3 8.3		
	8.3		
	8.3		
ð	3.4.	POWER SPECTRAL DENSITY	30
	8.4		
	8.4 8.4	3	
	8.4 8.4		
9	_	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	
•		5.1. 802.11b MODE	

		Page 5 of 122
8.5.2.	802.11g MODE	47
8.5.1.	802.11n HT20 MODE	
8.5.1.	802.11n HT40 MODE	59
9. RADIA	TED TEST RESULTS	65
9.1. RE	STRICTED BANDEDGE	
9.1.1.	802.11b MODE	
9.1.2.	802.11g MODE	
9.1.3.	802.11n HT20 MODE	
9.1.1.	802.11n HT40 MODE	84
9.2. SP	URIOUS EMISSIONS (1~18GHz)	88
9.2.1.	802.11b MODE	
9.2.2.	802.11g MODE	
9.2.3.	802.11n HT20 MODE	
9.2.4.	802.11n HT40 MODE	106
9.3. SP	URIOUS EMISSIONS (18~26GHz)	112
9.3.1.	802.11b MODE	112
9.4 SP	PURIOUS EMISSIONS (0.03 ~ 1 GHz)	114
9.4.1.		114
0.5 SD	PURIOUS EMISSIONS BELOW 30M	
9.5. SP 9.5.1		
3.3.1.	002.110 NODE	110
10. AC P	OWER LINE CONDUCTED EMISSIONS	119
10.1. 8	302.11b MODE	120
11. ANTE	ENNA REQUIREMENTS	122

Page 6 of 122

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Zhejiang Uniview Technologies Co., Ltd.

Address: 88 JIANGLING RD, BINJIANG DISTRICT, HANGZHOU,

ZHEJIANG 310051 CHINA

Manufacturer Information

Company Name: Zhejiang Uniview Technologies Co., Ltd.

Address: 88 JIANGLING RD, BINJIANG DISTRICT, HANGZHOU.

ZHEJIANG 310051 CHINA

Factory Information

Factory 1:

Company Name: Zhejiang Uniview Systems Technology Co.,Ltd.

Address: No.1277 South Qingfeng South Road, Tongxiang City, Jiaxing City

Factory 2:

Company Name: TDG Technology Co.,Ltd.

Address: YATAI ROAD NO.1, NANHU DISTRICT, JIAXING,

ZHEJIANG, 314050, CHINA

Factory 3:

Company Name: SUZHOU QIAOXIN ELECTRONIC Technology Co.,Ltd.
Address: NO.77.YITANG ROAD.ECONOMIC DEVELOPMENT

ZONE, WUJIANG DISTRICT, SUZHOU JIANGSU CHINA

EUT Description

EUT Name: IP Camera

Model: IPC6415SR-X5UPW

Additional Number: IPC6415SR-X5UPW-NB, IPC-B645, IPC-B645-IR, IPC-B645-WH,

IPC-B645-FW, IPC-S645, IPC-S645-IR, IPC-S645-WH, IPC-S645-

FW, IPC-E645, IPC-E645-IR, IPC-E645-WH, IPC-E645-FW,

AFSXJ-NC-C-IPC-B645, AFSXJ-NC-C-IPC-B645-IR, AFSXJ-NC-C-

IPC-B645-WH, AFSXJ-NC-C-IPC-B645-FW, IPC-B645-XYZ-ABC

Sample Number: 2349907

Sample Received Date: May 16, 2019

Date of Tested: May 16~ June 20, 2019

All the modules have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with IPC6415SR-X5UPW. The difference lies only for model designation, different sales markets and consumer.

Page 7 of 122

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C	PASS				

Prepared By:

Tom Tang

Checked By: Char's Zhong

Tom Tang

Engineer Project Associate

Scholl Zhang

Chris Zhong

Senior Project Engineer

Approved By:

Scholl Zhang

Laboratory Leader

Page 8 of 122

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 9 of 122

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests

performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.80dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.32dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.27dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.72dB (1GHz-18Gz)
Note: This was estaints assured to a server de des	4.11dB (18GHz-26Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 of 122

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	IP Camera
Model	IPC6415SR-X5UPW
Radio Technology	IEEE802.11b/g/n HT20&HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Power Supply	DC 12V

Remark:

Model No.:

Number	Name	Number	Name	Number:	Name
1	IPC6415SR- X5UPW	2	IPC6415SR- X5UPW-NB	3	IPC-B645
4	IPC-B645-IR	5	IPC-B645-WH	6	IPC-B645-FW
7	IPC-S645	8	IPC-S645-IR	9	IPC-S645-WH
10	IPC-S645-FW	11	IPC-E645	12	IPC-E645-IR
13	IPC-E645-WH	14	IPC-E645-FW	15	AFSXJ-NC-C-IPC- B645
16	AFSXJ-NC-C-IPC- B645-IR	17	AFSXJ-NC-C-IPC- B645-WH	18	AFSXJ-NC-C-IPC- B645-FW
19	IPC-B645-XYZ- ABC				

Only the main model IPC6415SR-X5UPW is tested and only the data of this model is shown in this test report. Since have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with IPC6415SR-X5UPW. The difference lies only for model designation, different sales markets and consumer.

Page 11 of 122

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
1	IEEE 802.11b	2412-2462	1-11[11]	11.12
1	IEEE 802.11g	2412-2462	1-11[11]	18.50
1	IEEE 802.11nHT20	2412-2462	1-11[11]	18.09
1	IEEE 802.11nHT40	2422-2452	3-9[7]	18.07

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	4	2427	7	2442	10	2457	
2	2417	5	2432	8	2447	11	2462	
3	2422	6	2437	9	2452	/	/	

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Software Secur			reCRT					
	Transmit		Test Channel					
Modulation Mode	Antenna		NCB: 20MHz			NCB: 40MHz		
Mode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	N/A	N/A	N/A				
802.11g	1	N/A	N/A	N/A	/			
802.11n HT20	1	N/A	N/A	N/A				
802.11n HT40	1		/		N/A	N/A	N/A	

Page 12 of 122

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	Internal Antenna	2.4

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there is only one transmission antenna, so only the worst data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 13 of 122

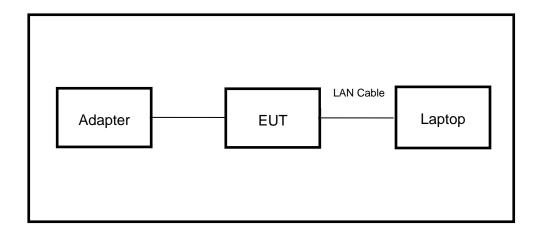
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	E550c	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	LAN	LAN	LAN	1	N/A


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Adapter	GUCF	UWP-24W-1220T	N/A

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Page 14 of 122

6. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions (Instrument)								
Used	Equipment	Manufacturer	Mode	el No.	Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	EMI Test Receiver	R&S	ES	R3	12	6700	2017-12-14	2018-12-13	2019-12-12
V	Two-Line V-Network	R&S	EΝ\	/216	12	6701	2017-12-14	2018-12-13	2019-12-12
V	Artificial Mains Networks	R&S	EN	Y81	12	6711	2017-12-14	2018-12-13	2019-12-12
				Soft	ware				
Used	Des	cription		Ma	anufac	turer	Name	Version	
V	Test Software for 0	Conducted distur	bance		R&S	;	EMC32	Ver. 9.25	
		Ra	diated	Emiss	ions (Instrum	ent)		
Used	Equipment	Manufacturer	Mode	el No.	Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	Spectrum Analyzer	Keysight	N90)10B	MY57	110128	2018-05-30	2019-05-29	2020-05-28
$\overline{\mathbf{A}}$	EMI test receiver	R&S	ESI	R26	126	7603	2017-12-14	2018-12-13	2019-12-22
\square	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZE	3 1513	513	3-265	2018-06-17	2019-06-16	2020-06-15
V	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		12	6704	N/A	2019-01-28	2022-01-27
V	Receiver Antenna (1GHz-18GHz)	R&S	HF	907	12	6705	2018-01-27	2019-01-26	2020-01-26
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA	49170	12	6706	2018-02-07	2019-02-06	2020-02-05
V	Receiver Antenna (26.5GHz-40GHz)	TOYO	HAP 2	26-40W	000	00012	2017-07-26	2018-07-25	2019-07-24
V	Pre-amplification (To 1GHz)	R&S	SCU	I-03D	13	4666	2018-02-07	2019-02-06	2020-02-05
V	Pre-amplification (To 18GHz)	TDK	PA-02	2-0118		S-305- 1066	2017-12-12	2018-12-11	2019-12-10
V	Pre-amplification (To 26.5GHz)	R&S	SCU	l-26D	13	4668	2018-02-07	2019-02-06	2020-02-05
V	Band Reject Filter	Wainwright	2350- 2483.5- 40	CJV8- ·2400- ·2533.5- ·SS		1	2018-05-30	2019-05-29	2020-05-28
V	Highpass Filter	Wainwright	2700-	(X10- -3000-)-40SS		2	2018-05-30	2019-05-29	2020-05-28
				Soft	ware				
Used	Desci	ription	N	/lanufac	cturer		Name	Version	
V	Test Software for R	ftware for Radiated disturbance Tons			end		JS32	V1.0	
			Ot	ther ins	strume	ents			
Used	Equipment	Manufacturer	I			al No.	Upper Last Cal.	Next Cal.	
V	Spectrum Analyzer	Keysight	N90)10B	MY57	110128		2019-05-29	2020-05-28
V	Power Meter	Keysight	U202	21XA	MY57	110002	2018-06-13	2019-06-12	2020-06-11

Page 15 of 122

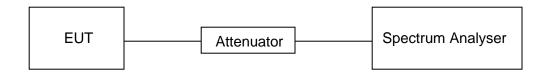
7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 122

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

RESULTS

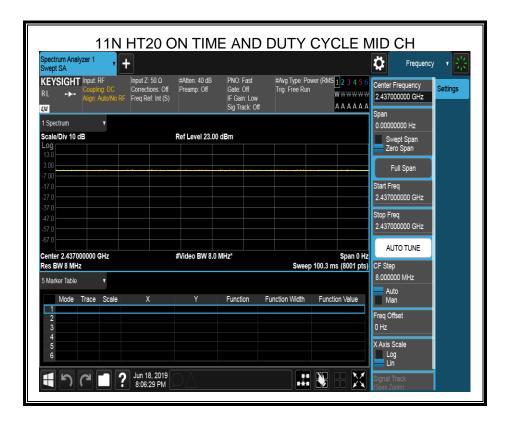
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11B	100.3	100.3	1	100%	0	0.01	0.01
11G	100.3	100.3	1	100%	0	0.01	0.01
11N20	100.3	100.3	1	100%	0	0.01	0.01
11N40	100.3	100.3	1	100%	0.	0.01	0.01

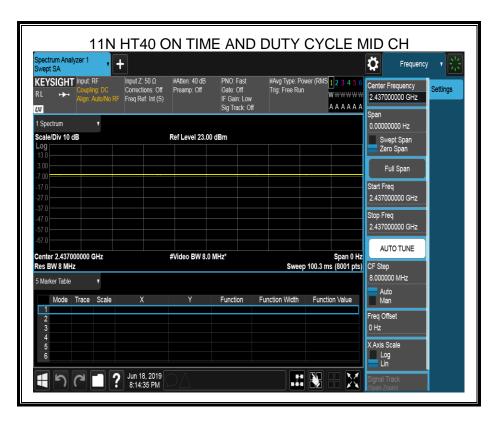
Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time


If that calculated VBW is not available on the analyzer then the next higher value should be used.

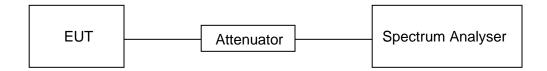


Page 19 of 122

8.2. 6 dB DTS BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500KHz	2400-2483.5			


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	100K	
VBW	≥3 × RBW	
Trace	Max hold	
Sweep	Auto couple	

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

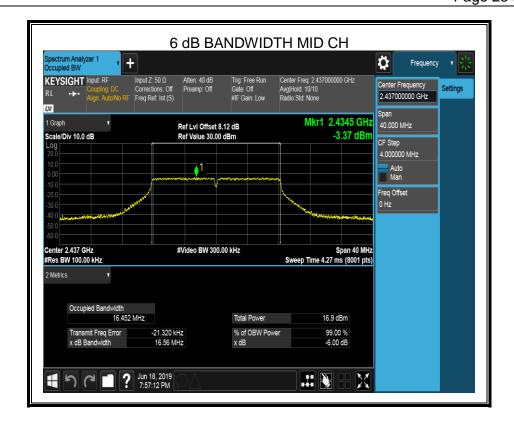
Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

RESULTS

8.2.1. 802.11b MODE

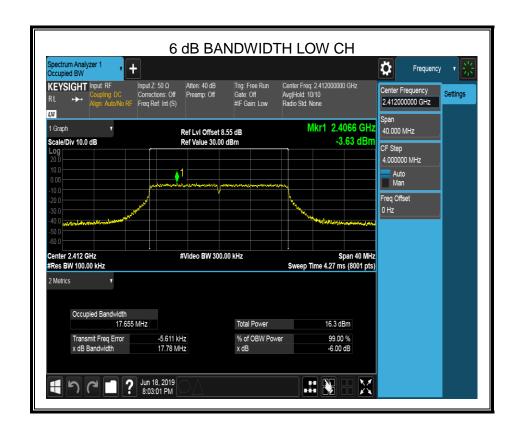
Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	9.075	≥500	Pass
Middle	9.065	≥500	Pass
High	9.073	≥500	Pass





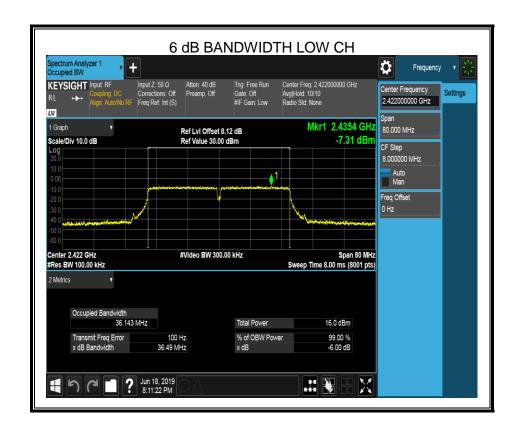
8.2.2. 802.11g MODE

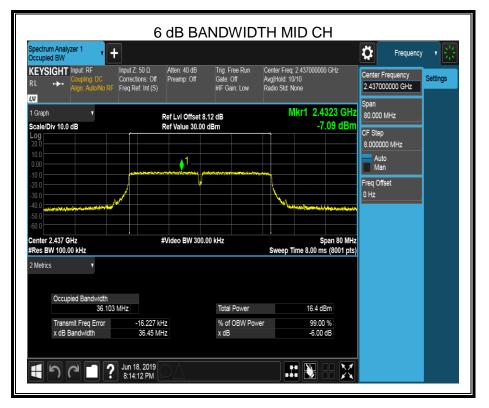
Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	16.57	≥500	Pass
Middle	16.56	≥500	Pass
High	16.57	≥500	Pass

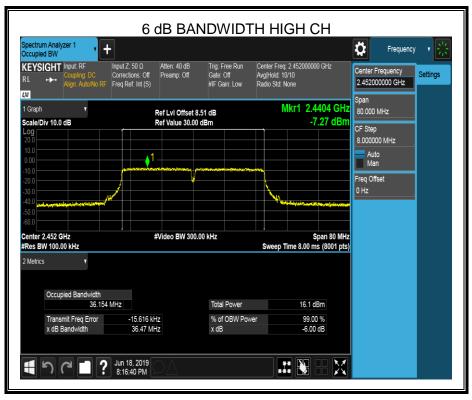


8.2.3. 802.11n HT20 MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	17.78	≥500	Pass
Middle	17.75	≥500	Pass
High	17.76	≥500	Pass






8.2.4. 802.11n HT40 MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	36.49	≥500	Pass
Middle	36.45	≥500	Pass
High	36.47	≥500	Pass

Page 28 of 122

8.3. PEAK CONDUCTED OUTPUT POWER

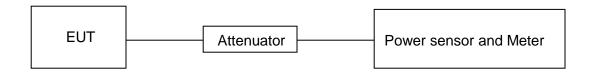
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm (See note1)	2400-2483.5	

Note:

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

RESULTS

8.3.1. 802.11b MODE

T (O)	ANIT	Maximum Conducted	LIMIT
Test Channel	ANT.	Output Power(PK) (dBm)	dBm
Low	1	10.82	30
Middle	1	10.40	30
High	1	11.12	30

8.3.2. 802.11g MODE

T (O)	ANIT	Maximum Conducted	LIMIT
Test Channel	ANT.	Output Power(PK) (dBm)	dBm
Low	1	18.50	30
Middle	1	18.46	30
High	1	17.87	30

8.3.3. 802.11n HT20 MODE

T (O)	ANIT	Maximum Conducted	LIMIT
Test Channel	ANT.	Output Power(PK) (dBm)	dBm
Low	1	18.09	30
Middle	1	18.04	30
High	1	17.45	30

8.3.4. 802.11n HT40 MODE

T . O	A N.I.T.	Maximum Conducted	LIMIT
Test Channel	ANT.	Output Power(PK) (dBm)	dBm
Low	1	17.77	30
Middle	1	18.07	30
High	1	17.80	30

Page 30 of 122

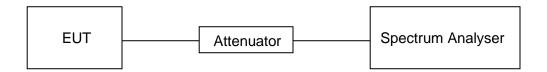
8.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz (See note1)	2400-2483.5

Note:

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

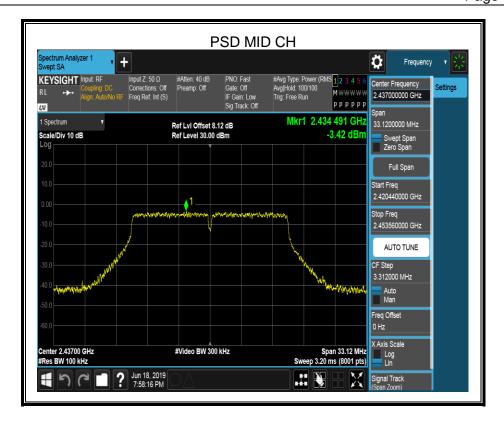
Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

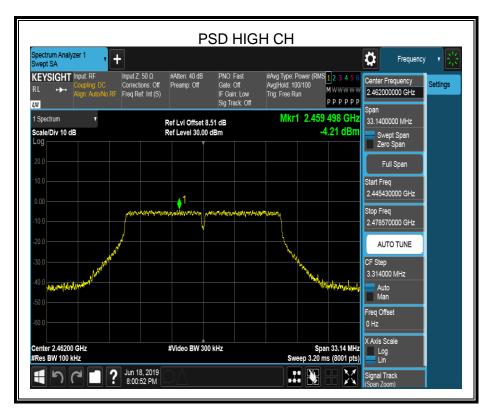
^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

RESULTS

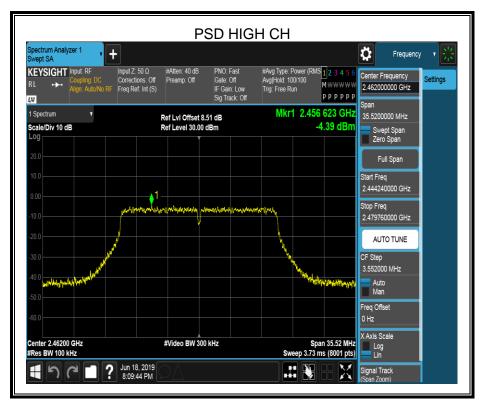
8.4.1. 802.11b MODE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-1.30	8	PASS
Middle	-1.75	8	PASS
High	-1.01	8	PASS

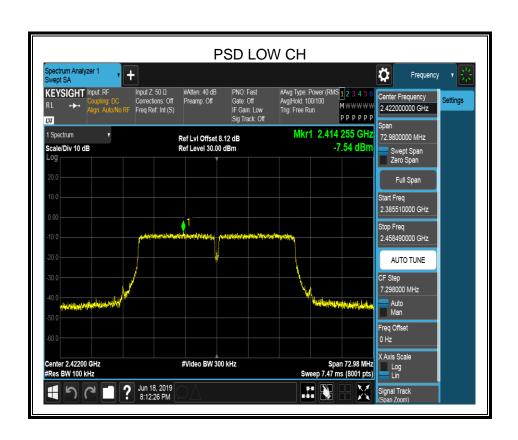



8.4.2. 802.11g MODE

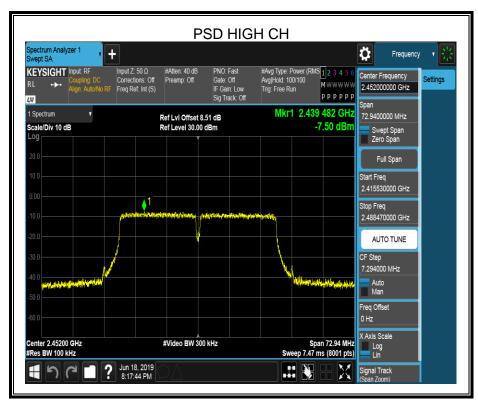
Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-3.45	8	PASS
Middle	-3.42	8	PASS
High	-4.21	8	PASS


8.4.3. 802.11n HT20 MODE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-3.66	8	PASS
Middle	-3.85	8	PASS
High	-4.39	8	PASS






8.4.1. 802.11n HT40 MODE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-7.54	8	PASS
Middle	-7.16	8	PASS
High	-7.50	8	PASS

REPORT No.: 4789049979-1

Page 39 of 122

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

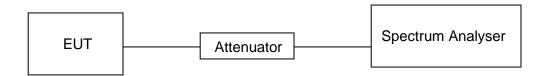
TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum amplitude level.

REPORT No.: 4789049979-1

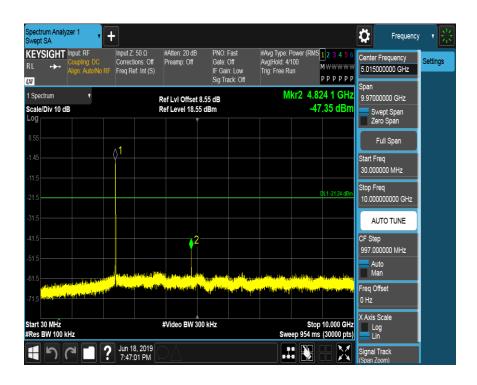
Page 40 of 122

TEST SETUP

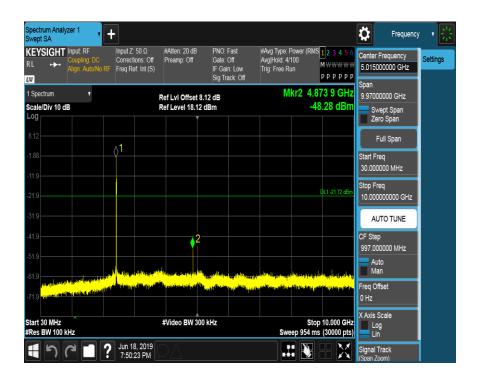

TEST ENVIRONMENT

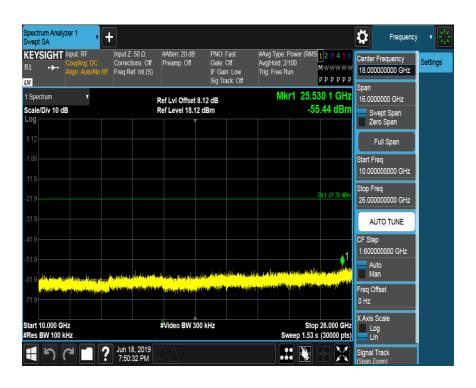
Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

RESULTS

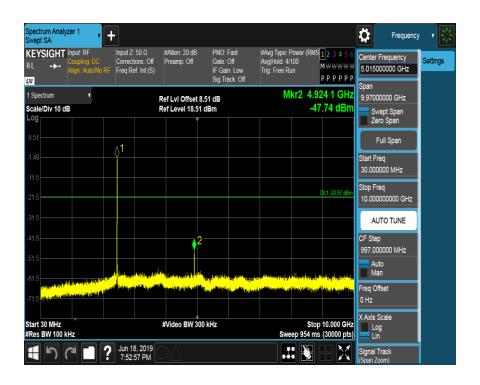

8.5.1. 802.11b MODE

LOW CH SPURIOUS EMISSIONS

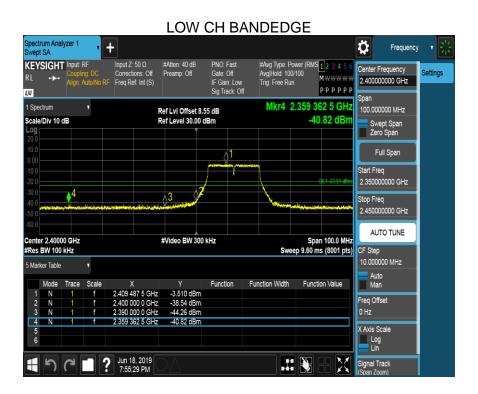


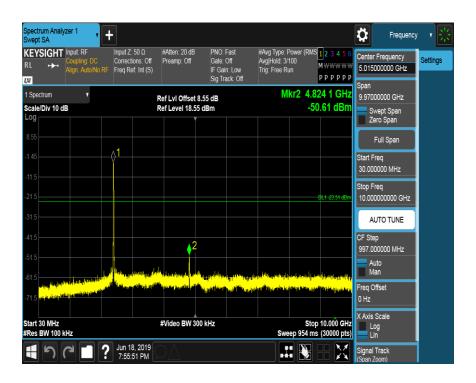


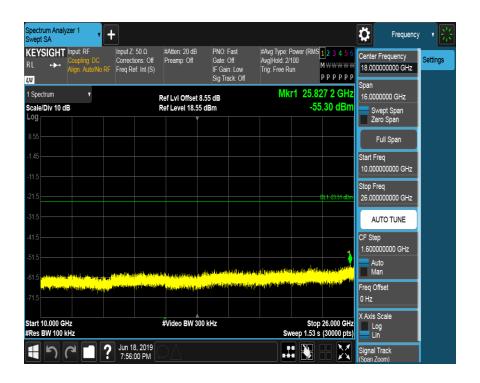
MID CH SPURIOUS EMISSIONS


HIGH CH BANDEDGE

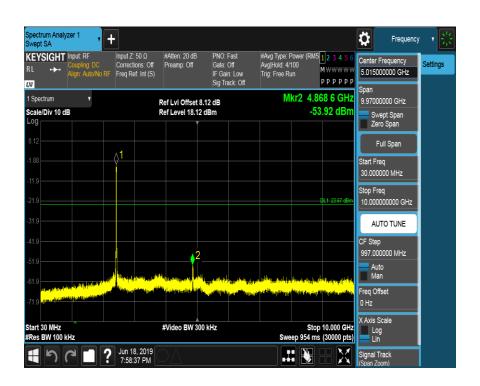
HIGH CH SPURIOUS EMISSIONS



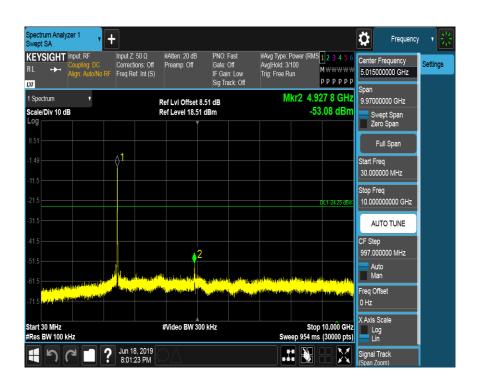

8.5.2. 802.11g MODE



LOW CH SPURIOUS EMISSIONS



MID CH SPURIOUS EMISSIONS


HIGH CH BANDEDGE

HIGH CH SPURIOUS EMISSIONS

