

FCC/IC - TEST REPORT

Report Number	:	68.760.19.0785.01	Date of Issue	: April 17, 2020
Model	<u>:</u>	Theragun Elite		
Product Type	<u>:</u>	Hand held Massager		
Applicant	<u>:</u>	Theragun, Inc.		
Address	:	2803 Colorado Avenue	e, Santa Monica, C	alifornia, 90404, United States
Manufacturer	:	Theragun, Inc.		
Address	:	2803 Colorado Avenue	e, Santa Monica, C	alifornia, 90404, United States
Test Result	:	■ Positive □	Negative	
Total pages including		20		
Appendices	:	30		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	T	able of Contents	2
2	D	Details about the Test Laboratory	3
3	D	Description of the Equipment under Test	4
4	S	Summary of Test Standards	5
5	S	Summary of Test Results	6
6	G	General Remarks	7
7	Т	est Setups	8
8	S	Systems test configuration	9
9	Т	echnical Requirement	10
Ç	9.1	Conducted Emission	10
Ç	9.2	Conducted Peak output power	13
Ç	9.3	6dB and 99% bandwidth	15
Ç	9.4	Power spectral density	18
Ç	9.5	Spurious RF conducted emissions	
Ç	9.6	Band edge	24
Ç	9.7	Spurious radiated emissions for transmitter	26
10		Test Equipment List	29
11		System Measurement Uncertainty	30

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

514049

Number:

ISED#:

10320A

CAB identifier: CN0077

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment under Test

Product/PMN: Hand held Massager

Model no./HVIN: Theragun Elite

FCC ID: 2AU6TELITE-01

IC: 25672-ELITE01

Rated Input: 100-240VAC, 50-60Hz, 1.5A (for adapter) 20VDC, 2.25A (for Hand held Massager)

Adapter information: Manufacturer: EDAC Power Electronics Co., Ltd. Model: EA1046SAR

Input voltage: 100-240VAC, 50-60Hz, 1.5A

Output voltage: 20VDC, 2.25A

RF Transmission

Frequency:

2402MHz-2480MHz

No. of Operated Channel: 40

Modulation: GFSK

Antenna Type: PCB Antenna

Antenna Gain: -4dBi

Description of the EUT: The Equipment Under Test (EUT) is a Hand held Massager

supports 2.4GHz BLE function.

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2019 Edition	Subpart C - Intentional Radiators
RSS-Gen Issue 5, Amendment 1, March 2019	General Requirements and Information for the Certification of Radio Apparatus
RSS-247	Digital Transmission Systems (DTSS), Frequency Hopping Systems
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices

All the test methods were according to KDB558074 D01 DTS Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C/RSS-247 Issue 2/RSS-Gen Issue 5 Test Test Result						
Test Condition		Pages	Site	Pass	Fail	N/A
§15.207 RSS-GEN 8.8	Conducted emission AC power port	10	Site 2	\boxtimes		
§15.247 (b) (1) RSS-247 5.4(d)	Conducted peak output power	13	Site 2	\boxtimes		
§15.247(a)(1) RSS-247 5.1(b)	20dB bandwidth					\boxtimes
§15.247(a)(1) §RSS-247 5.1(b)	Carrier frequency separation					\boxtimes
§15.247(a)(1)(iii) RSS-247 5.1(d)	Number of hopping frequencies					\boxtimes
§15.247(a)(1)(iii) RSS-247 5.1(d)	Dwell Time					\boxtimes
§15.247(a)(2) RSS-247 5.2(a) & RSS-GEN 6.7	6dB and 99% Occupied Bandwidth	16	Site 2	\boxtimes		
§15.247(e) RSS-247 5.2(b)	Power spectral density	19	Site 2	\boxtimes		
§15.247(d) RSS-247 5.5	Spurious RF conducted emissions	22	Site 2	\boxtimes		
§15.247(d) RSS-247 5.5	Band edge	30	Site 2			
§15.247(d) & §15.209 RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	33	Site 2			
§15.203 RSS-Gen 6.8	Antenna requirement	See n	See note 1			

Remark: N/A=Not Applicable.

Note 1: The EUT uses a PCB antenna, which gain is -4dBi. In accordance to §15.203 and RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section.

General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AU6TELITE-01 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

This submittal(s) (test report) is intended for IC: 25672-ELITE01 complies with RSS-247, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- ☐ Not Performed

The Equipment under Test

- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: April 08, 2020

Testing Start Date: April 23, 2020

Testing End Date: April 23, 2020

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -Tested by: Rrepared by:

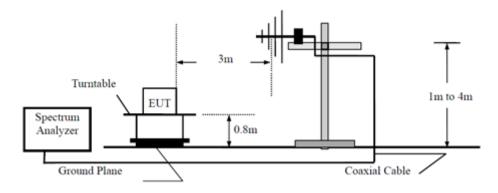
Reviewed by:

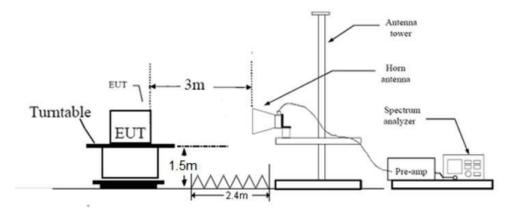
Jessie He

EMC Project Manager

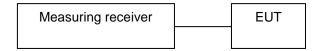
Myron Yu EMC Project Engineer

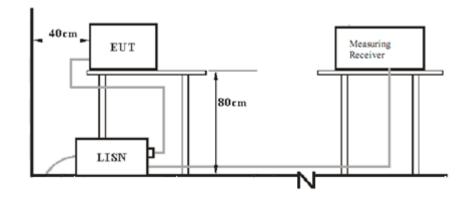
Tree Zhan **EMC Test Engineer**


Tree Them


7 Test Setups

7.1 Radiated test setups


Below 1GHz


Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N

Test software information:

Test Software Version	SmartRF Studio 7 - 1.16.1	
Modulation	Setting TX Power	Packet Type
GFSK	0dBm	/

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

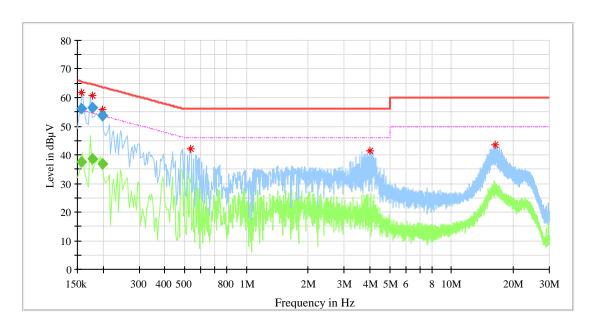
9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50



Conducted Emission

Product Type : Hand held Massager M/N : Theragun Elite

Operating Condition : Charging+ Bluetooth communication

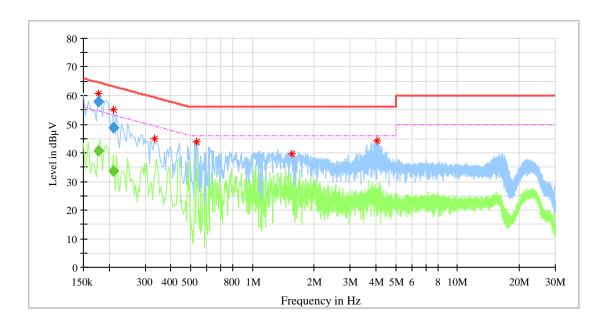
Test Specification : Power Line, Live Comment : AC 120V/60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.157500	61.82		65.57	3.74	L1	10.3
0.177500	60.62	-	64.77	4.14	L1	10.3
0.198500	55.92	-	63.86	7.94	L1	10.3
0.534000	42.14	-	56.00	13.86	L1	10.3
4.014000	41.36		56.00	14.64	L1	10.4
16.282000	43.43		60.00	16.57	L1	10.9

Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.157500		37.64	55.59	17.95	L1	10.3
0.157500	56.00		65.59	9.59	L1	10.3
0.177500	-	38.74	54.60	15.86	L1	10.3
0.177500	56.33		64.60	8.27	L1	10.3
0.198500	-	36.75	53.67	16.92	L1	10.3
0.198500	53.65	I	63.67	10.02	L1	10.3



Conducted Emission

Product Type : Hand held Massager M/N : Theragun Elite

Operating Condition : Charging+ Bluetooth communication

Test Specification : Power Line, Neutral Comment : AC 120V/60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.177500	60.80	-	64.58	3.78	N	10.3
0.209500	55.08	I	63.21	8.13	N	10.3
0.334000	44.86		59.35	14.49	N	10.3
0.534000	43.72		56.00	12.28	N	10.3
1.550000	39.57		56.00	16.43	N	10.3
4.030000	44.36		56.00	11.64	N	10.5

Final_Result

	Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
	0.177500		40.54	54.60	14.06	N	10.3
	0.177500	57.86		64.60	6.74	N	10.3
	0.209500		33.67	53.23	19.56	N	10.3
Γ	0.209500	48.83		63.23	14.40	N	10.3

9.2 Conducted Peak output power

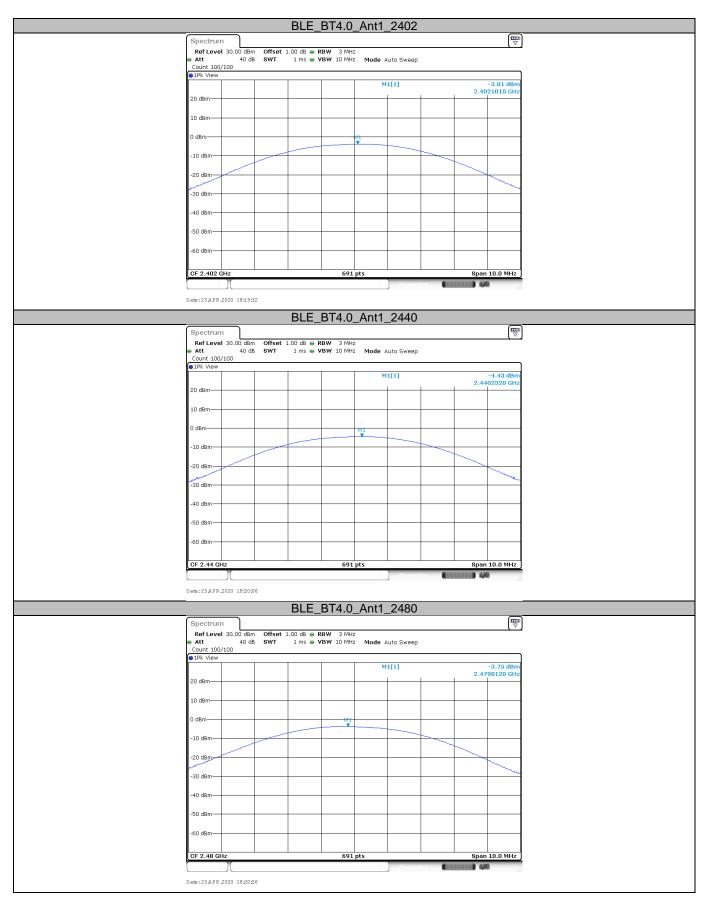
Test Method

- The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Setting the highest output power level of the EUT
- Use the following spectrum analyzer settings:
 RBW ≥ DTS bandwidth, VBW ≥ 3RBW, Sweep = auto, Detector function = peak,
 Trace = max hold, allow trace to fully stabilize.
- 4. Record the peak power value.

Test Setup

Limits

According to §15.247 (b) (3), conducted AV output power limit as below:


Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

	Conducted peak	
Frequency	Output Power	Result
MHz	dBm	
Top channel 2402MHz	-3.81	Pass
Middle channel 2440MHz	-4.43	Pass
Bottom channel 2480MHz	-3.75	Pass

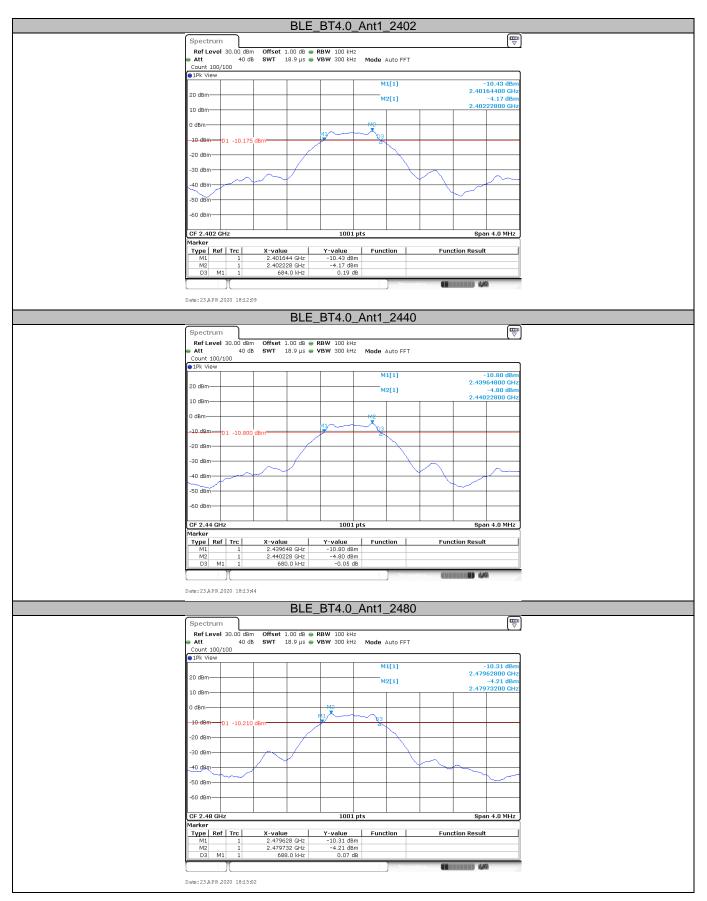
Test Graphs

9.3 6dB and 99% bandwidth

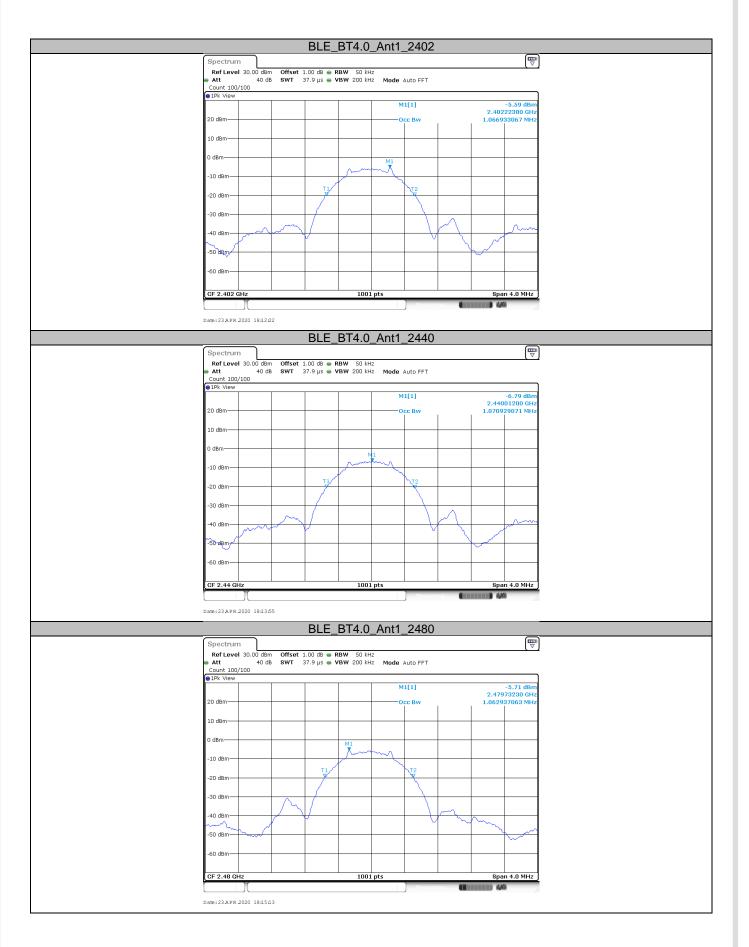
Test Method

- 1. Connect EUT test port to spectrum analyzer.
- Use the following spectrum analyzer settings:
 Set RBW ≥ 1% of the 99% bandwidth, VBW ≥ RBW.
 Sweep = auto, Detector function = peak, Trace = max hold
- 3. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 4. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit


Limit [kHz]	
≥500	

Test result


Test Mode	Channel (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (KHz)	Verdict
BLE	2402	0.684	1.067	≥500	PASS
BLE	BLE 2440		1.071	≥500	PASS
BLE	2480	0.688	1.063	≥500	PASS

Test Graphs

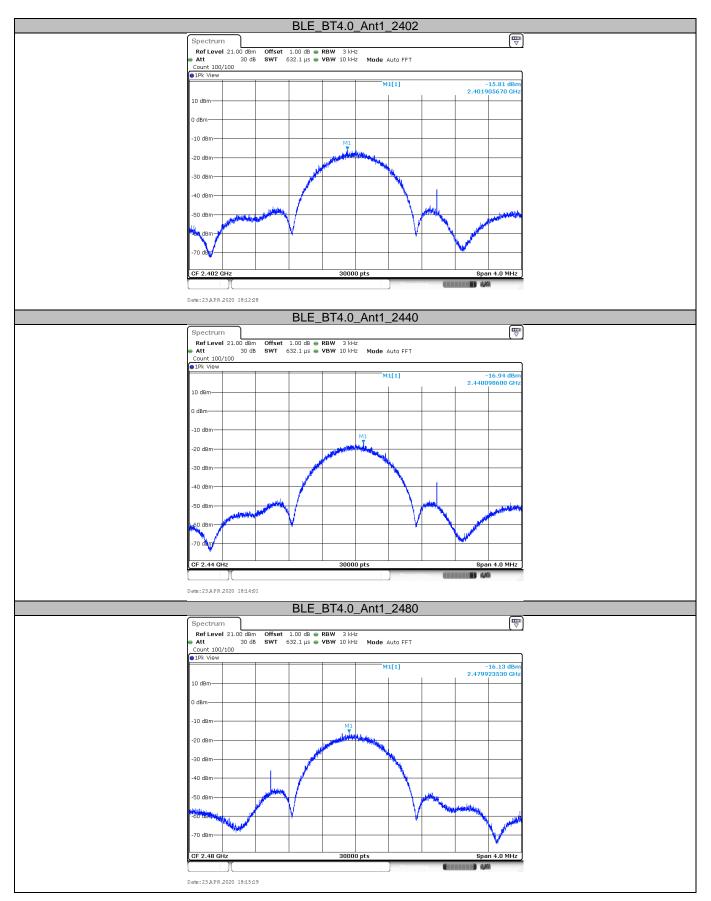
9.4 Power spectral density

Test Method

- 1. Connect EUT test port to spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 3. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 4. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm/3KHz]	
≤8	


Test result

For BLE

Test Mode	Channel (MHz)	Result (dBm/3KHz)	Limit(dBm/3KHz)	Verdict
BLE	2402	-15.81	8	PASS
BLE	2440	-16.94	8	PASS
BLE	2480	-16.13	8	PASS

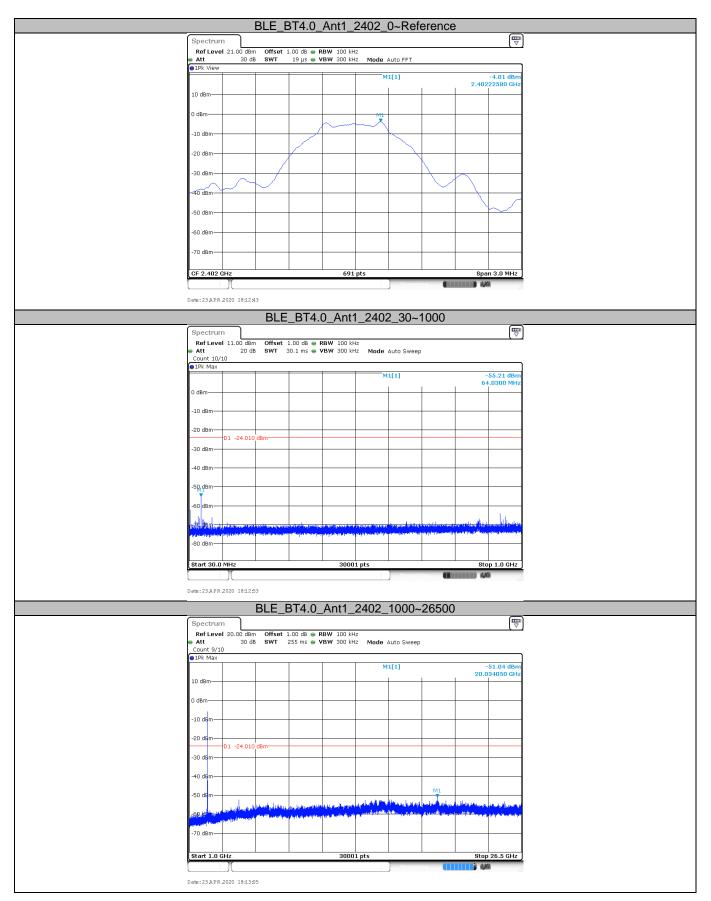
Test Graphs

9.5 Spurious RF conducted emissions

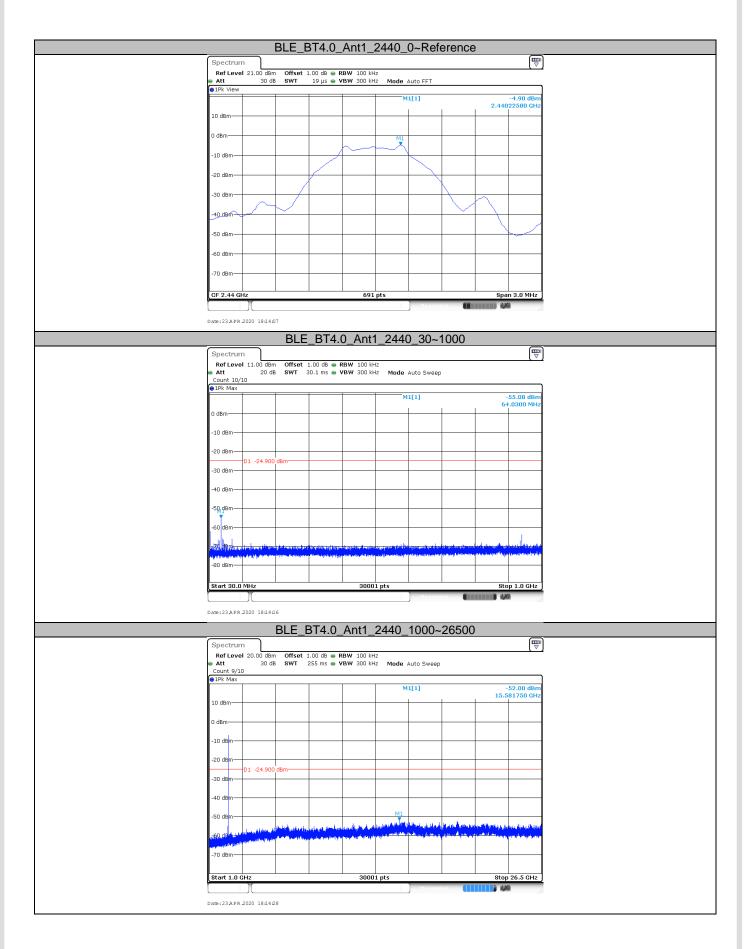
Test Method

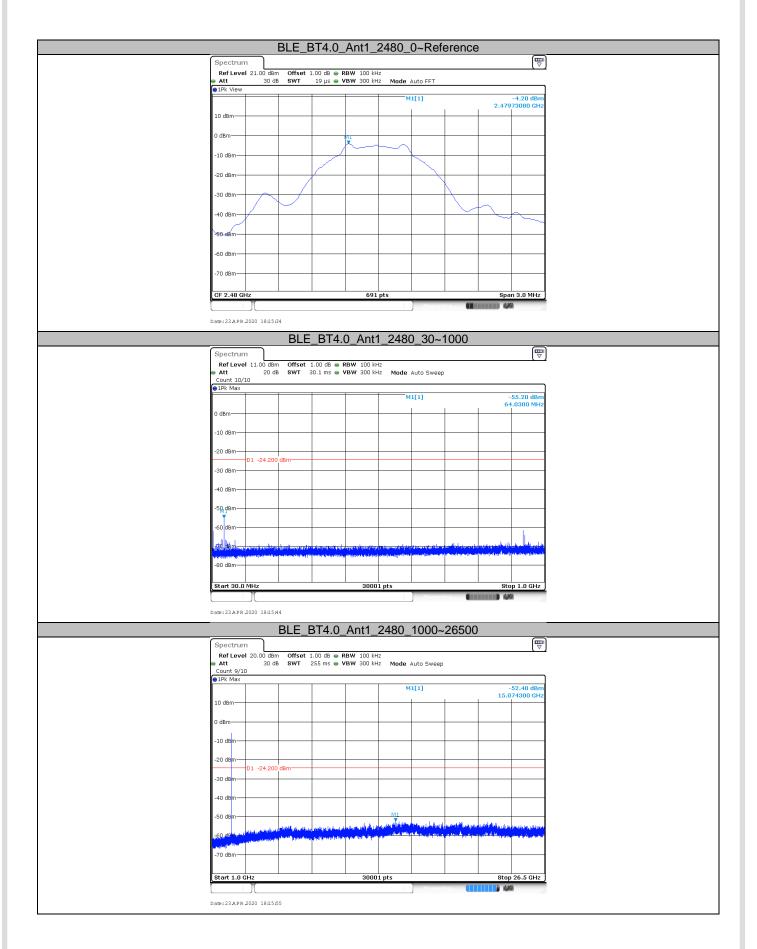
- 1. Connect EUT test port to spectrum analyzer.
- 2. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 3. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 4. Repeat above procedures until other frequencies measured were completed.

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

Test Result


TestMode	Antenna	Channel	FreqRange	RefLevel	Result	Limit	Verdict
		2402	Reference	-4.01	-4.01		PASS
		2402	30~1000	30~1000	-55.52	<=-24.01	PASS
	BLE Ant1	2402	1000~26500	1000~26500	-51.04	<=-24.01	PASS
		2440	Reference	-4.90	-4.90		PASS
BLE		2440	30~1000	30~1000	-55.08	<=-24.9	PASS
		2440	1000~26500	1000~26500	-52	<=-24.9	PASS
		2480	Reference	-4.20	-4.20		PASS
		2480	30~1000	30~1000	-55.2	<=-24.2	PASS
		2480	1000~26500	1000~26500	-52.4	<=-24.2	PASS


Test Graphs

9.6 Band edge

Test Method

- 1. Connect EUT test port to spectrum analyzer.
- 2. Set spectrum analyzer setting as below:

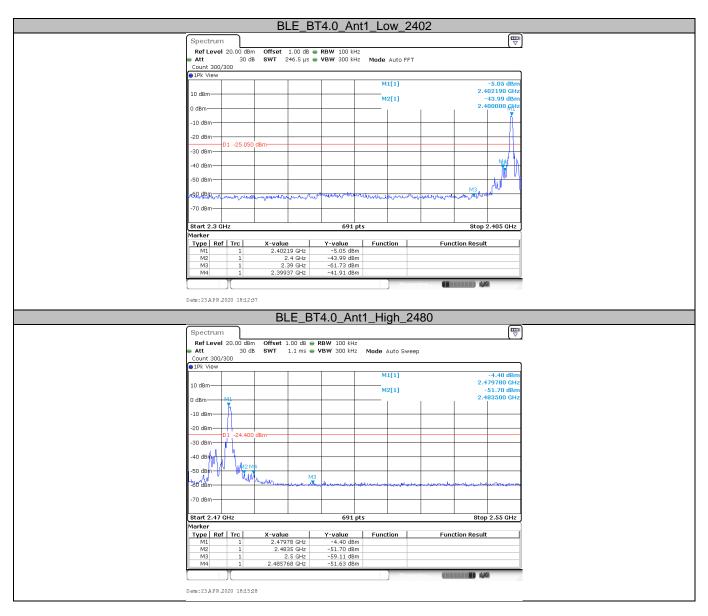
Set RBW \geq 1% of the span, VBW \geq RBW.

Set Sweep = auto. Set Detector function = peak. Allow the trace to stabilize.

Set Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

3. Repeat above procedures until all frequencies measured were complete.

Limit


Frequency Range MHz	Limit (dBc)	
30-25000	-20	

Test result

Test Mode	Ch Name	Channel (MHz)	Max. Level (dBm)	Result (dBm)	Limit (dBm)	Verdict
BLE	Low	2402	-5.05	-43.99	-25.05	PASS
BLE	High	2480	-4.40	-51.70	-24.40	PASS

Test Graphs

9.7 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1 MHz.
- b) VBW \ $[3 \times RBW]$.
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D,where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction

factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:

(30MHz - 1GHz)

Freq.	Ŕead	Antenna	Cable	Result	Limit	Over	Detector	Polarization
	Level	Factor	Loss	Level	Line	Limit		
(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	(dBµV/m)	(dB)		
37.42	5.21	12.87	3.74	21.82	40.00	-18.18	QP	HORIZONTAL
729.36	2.61	20.28	6.46	29.35	46.00	-16.65	QP	HORIZONTAL
37.68	4.56	12.92	3.74	21.22	40.00	-18.78	QP	VERTICAL
37.68	5.22	12.92	3.74	21.88	40.00	-18.12	QP	VERTICAL
645.12	2.68	19.25	6.22	28.15	46.00	-17.85	QP	VERTICAL

2402MHz (Above 1GHz)

Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
	Level	Factor	Factor	Loss	Level	Line	Limit		
(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
17660.00	42.75	43.99	41.48	11.51	56.77	74.00	-17.23	Peak	HORIZONTAL
17660.00	33.68	43.99	41.48	11.51	47.70	54.00	-6.30	Average	HORIZONTAL
17830.00	42.59	44.30	41.55	11.70	57.04	74.00	-16.96	Peak	VERTICAL
17830.00	33.21	44.30	41.55	11.70	47.66	54.00	-6.34	Average	VERTICAL

2440MHz (Above 1GHz)

Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
14640.00	44.23	40.41	41.72	11.18	54.10	74.00	-19.90	Peak	HORIZONTAL
14640.00	37.34	40.41	41.72	11.18	47.21	54.00	-6.79	Average	HORIZONTAL
17966.00	42.77	44.54	41.61	11.85	57.55	74.00	-16.45	Peak	HORIZONTAL
17966.00	33.15	44.54	41.61	11.85	47.93	54.00	-6.07	Average	HORIZONTAL
17541.00	42.68	43.77	41.44	11.38	56.39	74.00	-17.61	Peak	VERTICAL
17541.00	33.93	43.77	41.44	11.38	47.64	54.00	-6.36	Average	VERTICAL

2480MHz (Above 1GHz)

Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
	Level	Factor	Factor	Loss	Level	Line	Limit		
(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
17609.00	42.18	43.90	41.46	11.46	56.08	74.00	-17.92	Peak	HORIZONTAL
17609.00	33.73	43.90	41.46	11.46	47.63	54.00	-6.37	Average	HORIZONTAL
17694.00	42.69	44.05	41.50	11.55	56.79	74.00	-17.21	Peak	VERTICAL
17694.00	33.66	44.05	41.50	11.55	47.76	54.00	-6.24	Average	VERTICAL

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- 2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Level=Reading Level + Correction Factor

Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain

Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

Test Site 2:

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE			
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	2020-6-28			
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	2020-7-19			
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	2020-6-28			
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003- A10	Version9.15.00	N/A			

Radiated Spurious Emission Test

tadiated oparious Emission Test							
DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE		
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-003	101031	2020-6-28		
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	68-4-80-14-003	708	2020-7-5		
Horn Antenna	Rohde & Schwarz	HF907	68-4-80-14-004	102295	2020-7-5		
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	68-4-80-14-008	12827	2020-7-5		
Pre-amplifier	Rohde & Schwarz	SCU 18	68-4-29-14-001	102230	2020-6-28		
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	2020-7-16		
Fully Anechoic Chamber	TDK	8X4X4	68-4-90-14-002		2020-7-7		
Test software	Rohde & Schwarz	EMC32	68-4-90-14-002- A10	Version 9.15.00	N/A		

TS8997 Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	2020-6-28
Test software	Tonscend	System for BT/WIFI	68-4-74-14-006- A13	Version 2.5.77.0418	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Site 1:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Uncertainty for Conducted Emission 150kHz-30MHz	3.21dB				
Uncertainty for Radiated Spurious Emission 30MHz-1000MHz	Horizontal: 5.12dB;				
	Vertical: 5.10dB				
Uncertainty for Radiated Spurious Emission 1000MHz-18000MHz	Horizontal: 5.01dB;				
	Vertical: 5.00dB				
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB				
	Frequency test involved:				
	0.6×10 ⁻⁷ or 1%				