

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature) .: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature) .: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Oct. 12, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address...... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... ShenZhen DZinno Technology Co. ,Ltd.

1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

China

Test specification:

Standard FCC Part 15.247

TRF Originator...... Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Smart Camera

Trade Mark N/A

Manufacturer ShenZhen DZinno Technology Co. ,Ltd.

Model/Type reference CL201

Listed Models CL202

Modulation Type CCK/DSSS/OFDM

Operation Frequency..... From 2412 - 2462MHz

Rating AC 100-240V, 50/60Hz

Result: PASS

Report No.: CTA24101000701 Page 2 of 52

TEST REPORT

Smart Camera Equipment under Test

CL201 Model /Type

Listed Models CL202

Applicant ShenZhen DZinno Technology Co. ,Ltd.

CTATESTING Address 1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

> Gangtou Community, Bantian Street, Longgang District, Shenzhen, CTA TESTING

China

Manufacturer ShenZhen DZinno Technology Co. ,Ltd.

GTA TESTING 1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

Gangtou Community, Bantian Street, Longgang District, Shenzhen,

CTATES	China		
	CTATES		
Test I	Result:	PASS	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 52 Report No.: CTA24101000701

Contents

		TATESTING	ntents	
		TATE	ING	
	1.1	TEST STANDARDS		4
	To your William	TEST STANDARDS		- INC
	•	OUMMARY COM		-ESTIN
	<u>2</u>	SUMMARY		<u>5</u>
	2.1	General Remarks		5
	2.2	Product Description		5 C
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment unde	r Test (EUT)	5
	2.5	EUT operation mode		5
CTA	2.6	Block Diagram of Test Setup		6
, 0 .	2.7	Related Submittal(s) / Grant (s)		6
1	2.8	Modifications		6
	•	TEGET		
	<u>3</u>	TEST ENVIRONMENT		<u></u>
				CTATESTING 7
	3.1	Address of the test laboratory		7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Test Description		8
	3.5	Statement of the measurement uncertain	tv	8
	3.6	Equipments Used during the Test	-9	9
	0.0	Equipments occur during the root		· ·
		TATE		
	<u>4</u>	TEST CONDITIONS AND RESU	LTS	<u> 10</u>
			CTA CTA	
	4.1	AC Power Conducted Emission		CTING 10
	4.2	Radiated Emission		13
	4.3	Maximum Peak Conducted Output Power	AZ	19
	4.4	Power Spectral Density	C.	20
	4. 4 4.5	6dB Bandwidth		23
	4.6	Out-of-band Emissions		26
	4.0			
	4.7	Antenna Requirement		33
CTATE	21			
CTAIL	<u>5</u>	TEST SETUP PHOTOS OF THE	EUT	34
'C.	_	STILL		_
		DUOTOO OF THE FUT		0.5
	<u>6</u>	PHOTOS OF THE EUT		
			CTATESTI	CTA TESTING
			The state of the s	-55711
				CIT

Report No.: CTA24101000701 Page 4 of 52

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS), Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under CTATE §15.247 of The FCC rules.

Report No.: CTA24101000701 Page 5 of 52

SUMMARY

2.1 General Remarks

Date of receipt of test sample	116	Sep. 29, 2024
(-1		
Testing commenced on		Sep. 29, 2024
Testing concluded on	:	Oct. 12, 2024

2.2 Product Description

Product Name:	Smart Camera
Model/Type reference:	CL201
Power supply:	AC 100-240V, 50/60Hz
testing sample ID:	CTA241010007-1# (Engineer sample),
testing sample ib:	CTA241010007-2#(Normal sample)
Hardware version:	D054AP_MB_VB
Software version:	6.0.24.10
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)
Madulation	802.11b: DSSS
Modulation:	802.11g/802.11n(H20): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	PIFA antenna
Antenna gain:	0.98 dBi

2.3 Equipment Under Test

Power supply system utilised

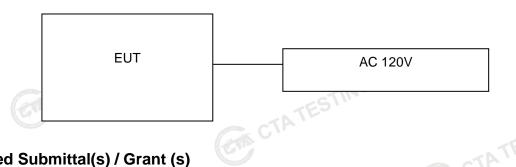
2.3 Equipment Under 1	Test				
Power supply system utilised					
Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in bla	nk below	

2.4 Short description of the Equipment under Test (EUT)

This is a Smart Camera.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Report No.: CTA24101000701 Page 6 of 52

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1 _ING	2412	8	2447
2.5	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		·G
6	2437		TING
7	2442		(E)

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTATES!

Page 7 of 52 Report No.: CTA24101000701

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
	6.0
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

onducted testing:		_
Temperature:	25 ° C	
Humidity:	44 %	
Humaity.	44 70	
Atmospheric pressure:	950-1050mbar	ING
C Power Conducted Emission		TESTIN
Temperature:	24 ° C	//~

AC Power Conducted Emission

AC Power Conducted Emission	l
Temperature:	24 ° C
	CAIN
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATESTING	CTATESTING

Report No.: CTA24101000701 Page 8 of 52

3.4 Test Description

	FCC PART 15.247				
	FCC Part 15.207 AC Power Conducted Emission				
	FCC Part 15.247(a)(2) 6dB Bandwidth		PASS		
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS		
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS		
	FCC Part 15.247(e)	Power Spectral Density	PASS		
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS		
CIL	FCC Part 15.247(d)	Band Edge	PASS		
	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS		

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Te	est Items	Mode	Data Rate	Channel
Maximum Peak Conduct Power Spectral Density		11b/DSSS	1 Mbps	1/6/11
6dB Bandwidth		11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic		11n(20MHz)/OFDM	6.5Mbps	1/6/11
	CHA C	11b/DSSS	1 Mbps	1/11
Band Edge		11g/OFDM	6 Mbps	1/11
		11n(20MHz)/OFDM	6.5Mbps	1/11

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	1	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)

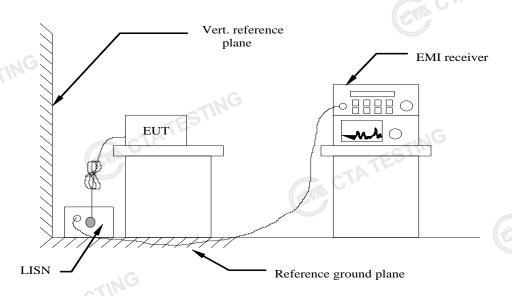
Page 9 of 52 Report No.: CTA24101000701

Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% CTATESTING confidence level using a coverage factor of k=2.

Equipments Used during the Test

				E - W - W - W		
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
CTATE	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
CIL	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
1	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
CTATE	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02


Test Equipment	Manufacturer Model No.		Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

Report No.: CTA24101000701 Page 10 of 52

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

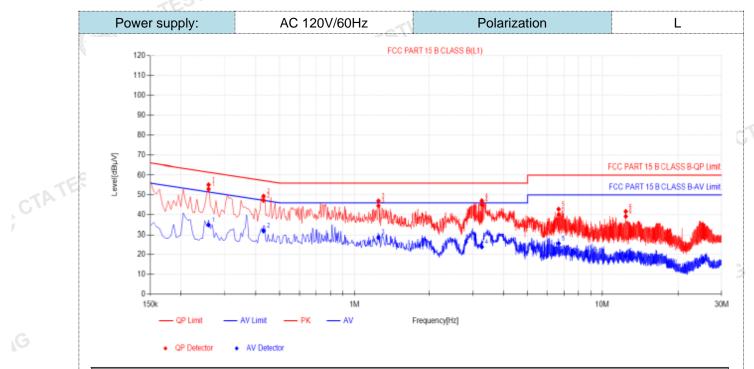
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

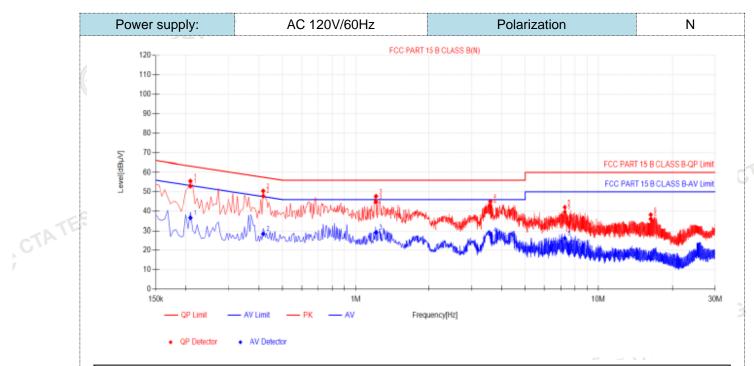

Frequency range (MHz)	Limit (dBuV)				
Frequency range (Wiriz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequ	ency.	ING			

Remark:

1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

Report No.: CTA24101000701 Page 11 of 52

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



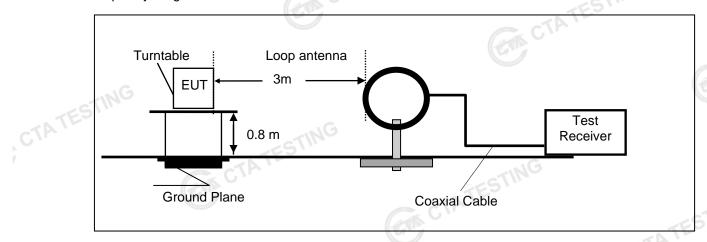
Final	l Data Lis	t									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.258	9.94	43.03	52.97	61.50	8.53	24.83	34.77	51.50	16.73	PASS
2	0.429	9.91	37.29	47.20	57.27	10.07	22.04	31.95	47.27	15.32	PASS
3	1.248	9.90	34.62	44.52	56.00	11.48	18.77	28.67	46.00	17.33	PASS
4	3.2685	9.99	35.00	44.99	56.00	11.01	13.94	23.93	46.00	22.07	PASS
5	6.6615	10.24	29.86	40.10	60.00	19.90	15.45	25.69	50.00	24.31	PASS
6	12.4395	10.28	28.84	39.12	60.00	20.88	9.06	19.34	50.00	30.66	PASS

Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

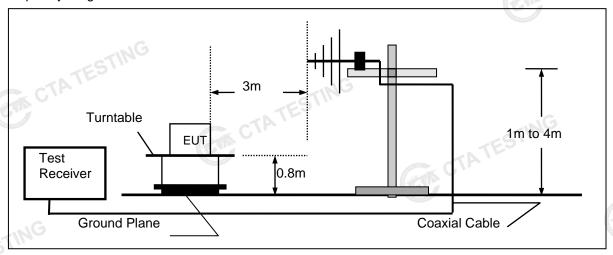
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTA TESTING

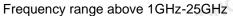
Report No.: CTA24101000701 Page 12 of 52

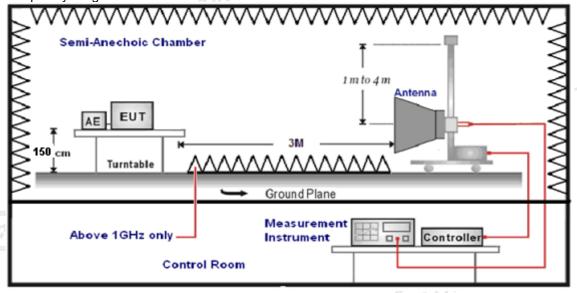
Final Data List													
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
	1	0.2085	9.96	42.96	52.92	63.26	10.34	26.62	36.58	53.26	16.68	PASS	
	2	0.4155	9.95	37.85	47.80	57.54	9.74	18.54	28.49	47.54	19.05	PASS	
	3	1.212	10.18	34.60	44.78	56.00	11.22	19.07	29.25	46.00	16.75	PASS	
	4	3.588	10.17	32.35	42.52	56.00	13.48	17.93	28.10	46.00	17.90	PASS	
	5	7.269	10.42	29.16	39.58	60.00	20.42	15.80	26.22	50.00	23.78	PASS	
	6	16.422	10.46	25.44	35.90	60.00	24.10	5.02	15.48	50.00	34.52	PASS	
2)	. Fact . QPN	.QP Value tor (dB)=in Margin(dB) AVMargin	sertion lo	oss of LIS mit (dBµ	SN (dB) V) - QP '	+ Cable Value (dl	loss (dB) BµV)						g XI


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATESTING

Report No.: CTA24101000701 Page 13 of 52


4.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA24101000701 Page 14 of 52

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	ALC: ALL
9KHz-30MHz	Active Loop Antenna	3	Alleria Color
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	CTATESTINE
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

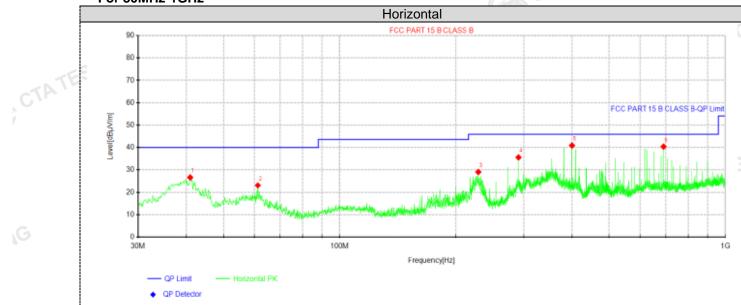
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

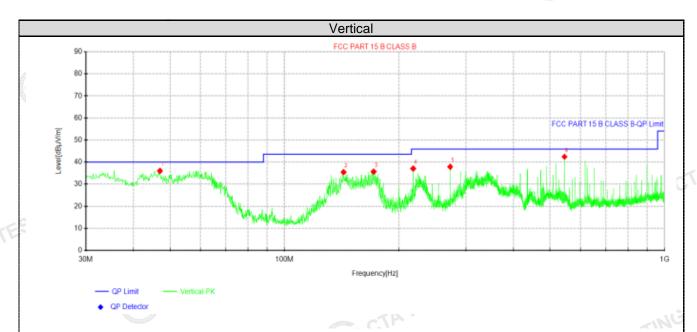

Report No.: CTA24101000701 Page 15 of 52

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	40.9125	38.57	26.70	-11.87	40.00	13.30	100	0	Horizontal
2	61.2825	36.20	23.13	-13.07	40.00	16.87	100	221	Horizontal
3	228.728	41.54	29.09	-12.45	46.00	16.91	100	257	Horizontal
4	290.93	46.91	35.68	-11.23	46.00	10.32	100	245	Horizontal
5	400.055	50.97	40.88	-10.09	46.00	5.12	100	37	Horizontal
6	690.933	45.54	40.38	-5.16	46.00	5.62	100	175	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Report No.: CTA24101000701 Page 16 of 52

Susp	Suspected Data List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolosita		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	46.975	47.46	36.14	-11.32	40.00	3.86	100	289	Vertical		
2	143.126	51.12	35.54	-15.58	43.50	7.96	100	289	Vertical		
3	171.62	50.73	35.78	-14.95	43.50	7.72	100	33	Vertical		
4	218.18	49.67	37.14	-12.53	46.00	8.86	100	161	Vertical		
5	272.742	49.50	37.93	-11.57	46.00	8.07	100	173	Vertical		
6	545.433	51.24	42.38	-8.86	46.00	3.62	100	344	Vertical		

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 17 of 52 Report No.: CTA24101000701

For 1GHz to 25GHz

Note:

1. 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported

(above 1GHz)

Frequency(MHz):		2412		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	61.87	PK	74	12.13	66.23	32.4	5.11	41.87	-4.36
4824.00	45.13	AV	54	8.87	49.49	32.4	5.11	41.87	-4.36
7236.00	54.36	PK	74	19.64	54.99	36.58	6.43	43.64	-0.63
7236.00	43.39	AV	54	10.61	44.02	36.58	6.43	43.64	-0.63

Frequency(MHz):		2412		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	59.71	PK	74	14.29	64.07	32.4	5.11	41.87	-4.36
4824.00	43.29	AV	54	10.71	47.65	32.4	5.11	41.87	-4.36
7236.00	51.99	PK	74	22.01	52.62	36.58	6.43	43.64	-0.63
7236.00	41.82	AV	54	12.18	42.45	36.58	6.43	43.64	-0.63
								1	

Frequency(MHz):			2437		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	61.03	PK	74	12.97	64.98	32.56	5.34	41.85	-3.95
4874.00	44.61	AV	54	9.39	48.56	32.56	5.34	41.85	-3.95
7311.00	53.46	PK	74	20.54	53.82	36.54	6.81	43.71	-0.36
7311.00	42.64	AV	54	11.36	43.00	36.54	6.81	43.71	-0.36

					APP TO A SECTION AND ADDRESS OF THE APP ADDRESS OF THE APP AND ADDRESS OF THE APP AND ADDRESS OF THE APP ADDRESS OF THE APP AND ADDRESS OF THE APP ADDRESS OF THE APP AND ADDRESS OF THE APP ADDRESS OF THE APP ADDRESS OF THE APP AND ADDRESS OF THE APP A				
Frequency(MHz):		2437		Polarity:		VERTICAL			
Frequency	Emission		Limit Margin (dBuV/m) (dB)	Margin	Raw	Antenna	Cable	Pre-	Correction
	Level	Value		Factor	Factor	amplifier	Factor		
(MHz)	(dBuV/m)			(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4874.00	59.19	PK	74	14.81	63.14	32.56	5.34	41.85	-3.95
4874.00	42.75	AV	54	11.25	46.70	32.56	5.34	41.85	-3.95
7311.00	51.59	PK	74	22.41	51.95	36.54	6.81	43.71	-0.36
7311.00	41.39	AV	54	12.61	41.75	36.54	6.81	43.71	-0.36

Frequency(MHz):			2462		Polarity:		HORIZONTAL		
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	60.11	PK	74	13.89	63.57	32.73	5.64	41.83	-3.46
4924.00	43.85	AV	54	10.15	47.31	32.73	5.64	41.83	-3.46
7386.00	52.50	PK	74	21.50	52.56	36.5	7.23	43.79	-0.06
7386.00	42.34	PK	54	11.66	42.40	36.5	7.23	43.79	-0.06
	TES								

Frequency(MHz):			2462		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	58.02	PK	74	15.98	61.48	32.73	5.64	41.83	-3.46
4924.00	42.29	AV	54	11.71	45.75	32.73	5.64	41.83	-3.46
7386.00	50.07	PK	74	23.93	50.13	36.5	7.23	43.79	-0.06
7386.00	40.72	PK	54	13.28	40.78	36.5	7.23	43.79	-0.06

Report No.: CTA24101000701 Page 18 of 52

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note.

1. 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported

Frequency(MHz):		2412		Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.85	PK	74	12.15	72.27	27.42	4.31	42.15	-10.42
2390.00	42.93	AV	54	11.07	53.35	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	12	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.86	PK	74	14.14	70.28	27.42	4.31	42.15	-10.42
2390.00	41.42	AV	54	12.58	51.84	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2462		Polarity:		Н	IORIZONTA	۸L
Frequency (MHz)	Emis Lev (dBu	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.94	PK	74	13.06	71.05	27.7	4.47	42.28	-10.11
2483.50	42.36	ΑV	54	11.64	52.47	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	62	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.07	PK	74	14.93	69.18	27.7	4.47	42.28	-10.11
2483.50	40.71	AV	54	13.29	50.82	27.7	4.47	42.28	-10.11

Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Report No.: CTA24101000701 Page 19 of 52

4.3 Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

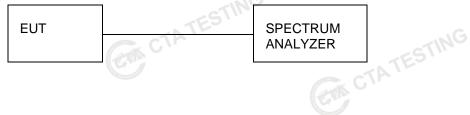
Test Results		CTATES		
Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	14.45	CVA	
802.11b	06	14.23	30.00	Pass
CTING	11	14.27		
TATES	01	13.93		
802.11g	06	13.82	30.00	Pass
	11 C	13.09	GTING	
	01	13.83	CTATES	
802.11n(HT20)	06	13.94	30.00	Pass
	11	13.23		C

Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2) Test results including cable loss.
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Report No.: CTA24101000701 Page 20 of 52

Power Spectral Density

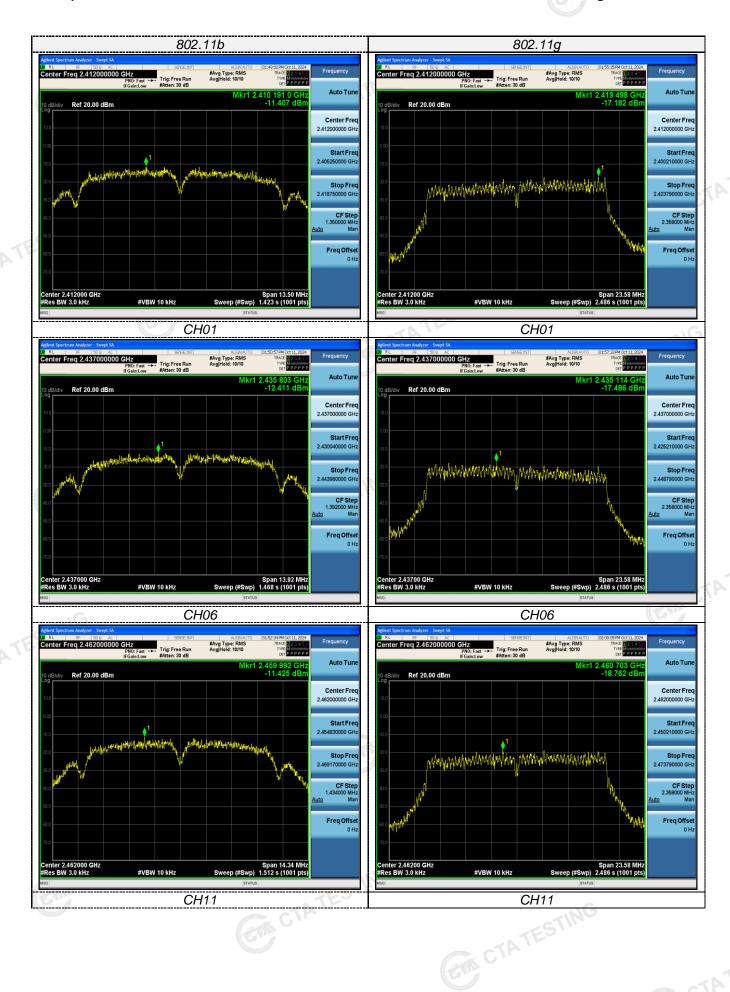

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

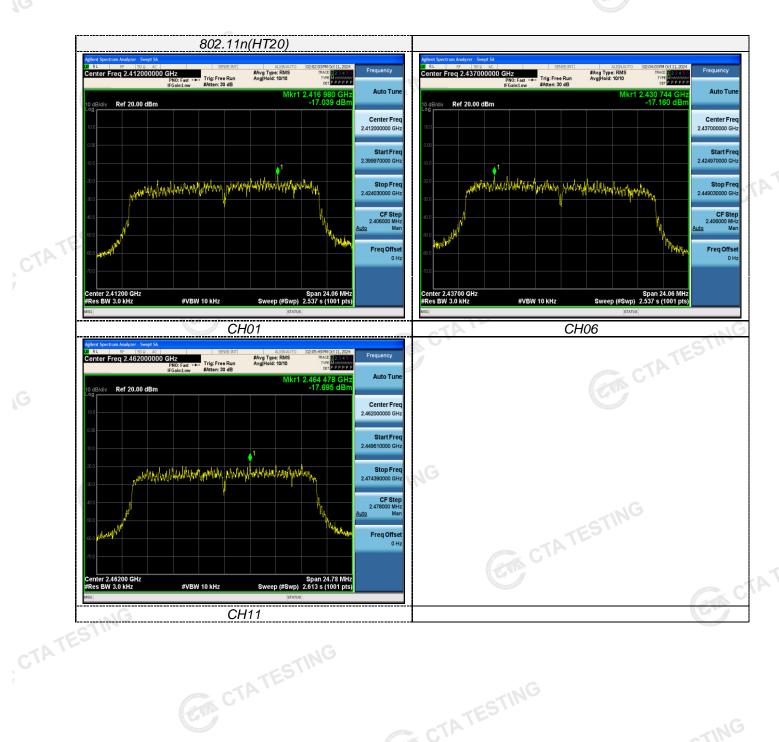
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
5	01	-11.41			
802.11b	06	-12.41	8.00	Pass	
	-11.43				
	01	-17.18	ING		
802.11g	06	-17.49	8.00	Pass	
	11	-18.76		-1G	
	01	-17.04		STIN	
802.11n(HT20)	06	-17.16	8.00	Pass	
	11	-17.70	All to the	C/L	


Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3)

Please refer to following plots;

Report No.: CTA24101000701 Page 22 of 52

Report No.: CTA24101000701 Page 23 of 52

4.5 6dB Bandwidth

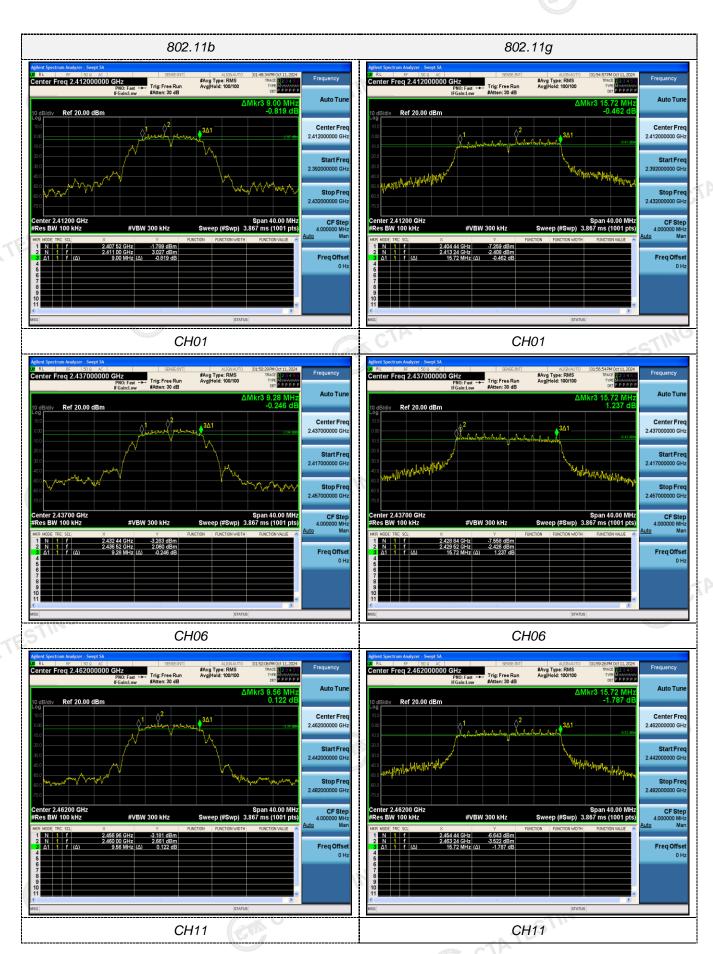
<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration


Test Results

Test Results		CTA TES		TATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	9.000	A S work II The	
802.11b	06	9.280	≥500	Pass
GTIN	11	9.560		
TES	01	15.720		
802.11g	06	15.720	≥500	Pass
GVIII	11	15.720	NG.	
	01	16.040	STINE	
802.11n(HT20)	06	16.040	≥500	Pass
	11	16.520	C.	

Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- 2) Test results including cable loss;
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Please refer to following plots;

Report No.: CTA24101000701 Page 25 of 52

Report No.: CTA24101000701 Page 26 of 52

Out-of-band Emissions

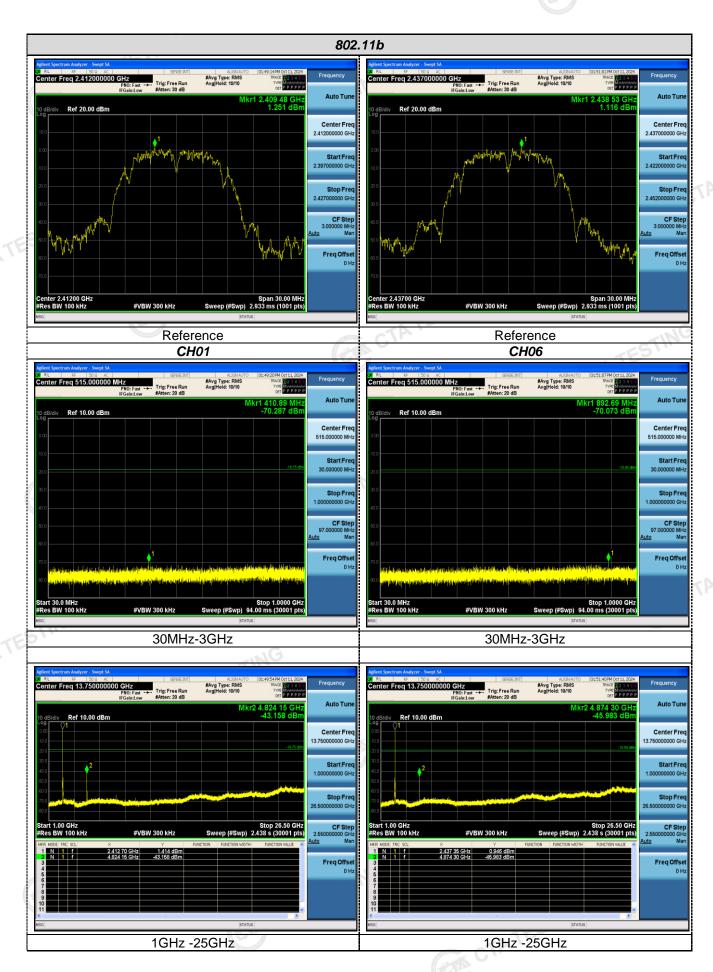
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTATESTING

Report No.: CTA24101000701 Page 27 of 52

