

Report Seal

Report No. : EED32Q80830302 Page 1 of 48

TEST REPORT

Product : Smart LED Table Light

Trade mark : N/A

Model/Type reference : TB1, TB2

Serial Number : N/A

Report Number : EED32Q80830302

FCC ID : 2A3MATB

Date of Issue : Nov. 14, 2024

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

LEPRO INNOVATION INC 3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Zhenxia Wen

Zhenxia Wen

Zhenxia Wen

Date:

Nov. 14, 2024

Check No.: 2108170624

Report No.: EED32Q80830302

Content

1 CONTENT	2
2 VERSION	3
3 TEST SUMMARY	
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
5 EQUIPMENT LIST	10
6 TEST RESULTS AND MEASUREMENT DATA	13
6.1 Antenna Requirement	
7 APPENDIX 2.4G WI-FI	45
8 PHOTOGRAPHS OF TEST SETUP	46
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	48

Report No.: EED32Q80830302

2 Version

Version No.	Date	6	Description	9
00	Nov. 14, 2024		Original	
	*	10		
((2)	(92)	(62)	(677)

Report No.: EED32Q80830302 Page 4 of 48

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band edge measurements	nd edge measurements 47 CFR Part 15 Subpart C Section 15.247(d)		
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: TB1, TB2

Both prototypes have been tested, the following model numbers have same electrical, PCB and layout, only the model name, TB1and TB2 are different for marketing requirements. See below for details.

Model	TB1	TB2			
Electrical	Sa	Same			
PCB Layout	Sa	ame			

General Information

4.1 Client Information

Applicant:	LEPRO INNOVATION INC
Address of Applicant:	3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA
Manufacturer:	LEPRO INNOVATION INC
Address of Manufacturer:	3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA
Factory:	Foshan Yunlu Lighting Factory
Address of Factory:	No.1, Jiebei Road, Nanhai National Eco-industrial Zone, Danzao Town, Nanhai District, Foshan City, Guangdong Province, P.R.China

4.2 General Description of EUT

Product Name:	Smart LED Table Light						
Model No.:	TB1, TB2						
Test Model No.:	TB1						
Trade mark:	N/A			(3)			
Product Type:	☐ Mobile ☐ Portable			(6)			
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2 IEEE 802.11n(HT40): 2422						
Modulation Type:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM,QPSK,BPS						
Number of Channel:	IEEE 802.11b/g, IEEE 802. IEEE 802.11n HT40: 7 Cha						
Channel Separation:	5MHz			529			
Antenna Type:	PCB Antenna						
Antenna Gain:	4.54 dBi	(0,		(0.			
Power Supply:	Model: XY24SR-050300VC INPUT: 100-240V~ 50/60H OUTPUT: 5V/3.0A	• =					
Test Voltage:	DC 5V						
Number of prototypes:	EED32Q80830301 EED32Q80830302	(0)	(6.)				
Sample Received Date:	Jul. 01, 2024						

Page 6 of 48 Report No.: EED32Q80830302

100	_	100	_	/%			1.5	
Operation	Frequency ea	ch of chann	el (802.11b/g/n	HT20))		(6.7))
Channel	Frequency	Channel	Frequency	Channel	Frequ	ency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442	MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447	MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452	MHz		(6)
Operation	Frequency ea	ch of chann	el (802.11n HT	40)				
Channe	l Frequ	ency	Channel	Frequenc	су	Chan	nel f	requency
3 2422MH		MHz	6	2437MHz		9	120	2452MHz
4	2427	MHz	7	2442MH	z			

2447MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)

2432MHz

	Channel			Frequency	
The lo	owest channel			2412MHz	
The n	niddle channel	(3)		2437MHz	<u></u>
The h	ighest channel	(67)		2462MHz	(67)

802.11n (HT40)

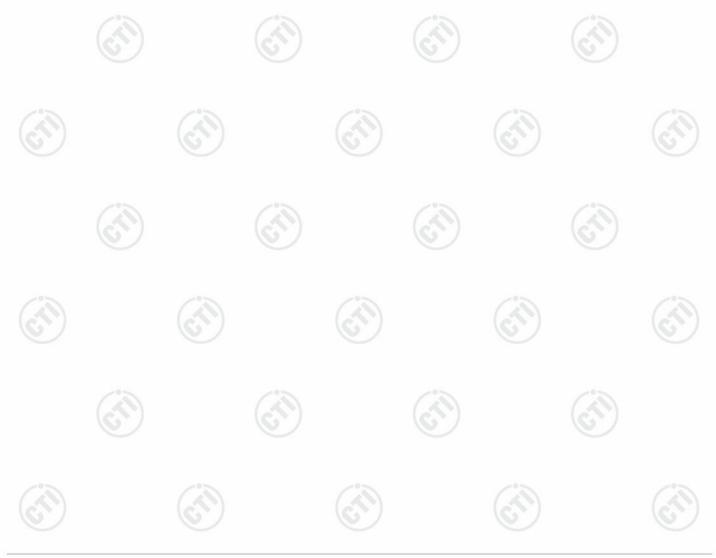
Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The highest channel	2452MHz

Report No. : EED32Q80830302 Page 7 of 48

4.3 Test Configuration

EUT Test Software Setti	ngs:	
Test Software:	EspRFTestTool_v3.6_Manual	
EUT Power Grade:	Default	(24)
Use test software to set the	ne lowest frequency, the middle frequency and the highest fr	requency keep

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.


Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, MCS0 for 802.11n(HT20) and MCS0 for 802.11n(HT40).

Page 8 of 48 Report No.: EED32Q80830302

4.4 Test Environment

	Operating Environment	::							
	Radiated Spurious Emi	Radiated Spurious Emissions:							
10	Temperature:	22~25.0 °C	(4)		(41)		(4)		
	Humidity:	50~55 % RH	0		(0)		(0)		
	Atmospheric Pressure:	1010mbar							
	Conducted Emissions:								
	Temperature:	22~25.0 °C		(20)		(30)			
	Humidity:	50~55 % RH		(0,)		(0,)			
	Atmospheric Pressure:	1010mbar							
	RF Conducted:								
	Temperature:	22~25.0 °C	(°)		(3)				
(i	Humidity:	50~55 % RH	(5,2)		(6,7)		(6.2)		
	Atmospheric Pressure:	1010mbar							

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	14-ce0061TX	FCC&CE	СТІ
Netbook	HP	HP ZHAN 66 Pro 14 G4 Notebook PC	FCC&CE	СТІ

4.6 Test Location

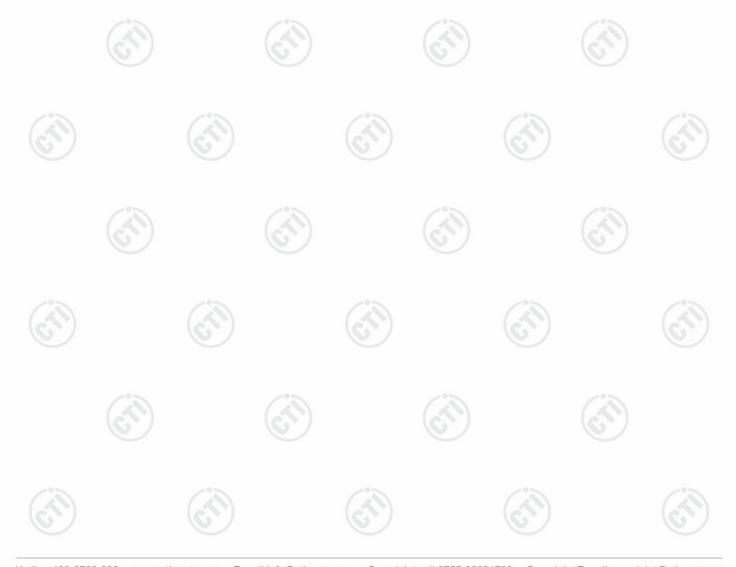
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-40GHz)		
	6	3.3dB (9kHz-30MHz)		
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
(P)		3.4dB (18GHz-40GHz)		
	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

5 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024	
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024	
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024	
Communication test	R&S	CMW500	169004	03-08-2024	03-07-2025	
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	08-04-2023 07-22-2024	08-03-2024 07-21-2025	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023 12-10-202		
Temperature/ Humidity Indicator	biaozhi	HM10	06-01-2023 1804186 05-29-2024		05-31-2024 05-28-2025	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20			
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025				
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025				
LISN	R&S	ENV216	100098	09-22-2023 09-19-2024	09-21-2024 09-18-2025				
Barometer	changchun	DYM3	1188	(67)	(67				
Test software	Fara	EZ-EMC	EMC-CON 3A1.1						

Report No.: EED32Q80830302 Page 11 of 48

Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024

			Serial	Cal. date	Cal. Due date (mm-dd-yyyy)	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)		
BM Chamber & Accessory Equipment	TDK	SAC-3	75	05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938- 003	09/22/2023 09/07/2024	09/21/2024 09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023 07/18/2024	07/24/2024 07/17/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025	
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	(<u> </u>	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A		(c	
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A	/		

Report No. : EED32Q80830302 Page 12 of 48

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	C.	\)
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		-(1)
Cable line	Cable line Times		SN160710	<u> </u>	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(3)
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

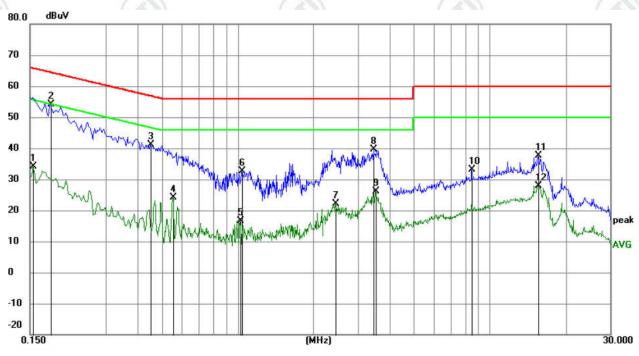
EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 4.54dBi.

Report No. : EED32Q80830302 Page 14 of 48

6.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.3	207						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limit:	Limit (dBuV)							
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm	n of the frequency.						
Test Setup:	Shielding Room EUT LISN1	AE LISN2 → AC Mai	Test Receiver					
Test Procedure:	impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the r. 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal ground the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and bor mounted on top of the ground regreaters.	to AC power source letwork) which provides cables of all other SN 2, which was bonde as the LISN 1 for the was used to connect rating of the LISN was raced upon a non-metand for floor-standing and reference plane. The vertical ground reference plane was bonded N 1 was placed 0.8 m and to a ground refund reference plane. The LISN 1 and the EUT. As was at least 0.8 m from the relative bles must be changed as the survey of the provided of the survey of the provided of the prov	through a LISN 1 (Line is a $50\Omega/50\mu H + 5\Omega$ linear units of the EUT were ind to the ground reference unit being measured. A multiple power cables to a not exceeded. Ilic table 0.8m above the rrangement, the EUT was derence plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between All other units of the EUT in the LISN 2.					
Test Mode:	All modes were tested, only the 802.11b was recorded in the r	ne worse case lowest c	hannel of 1Mbps for					

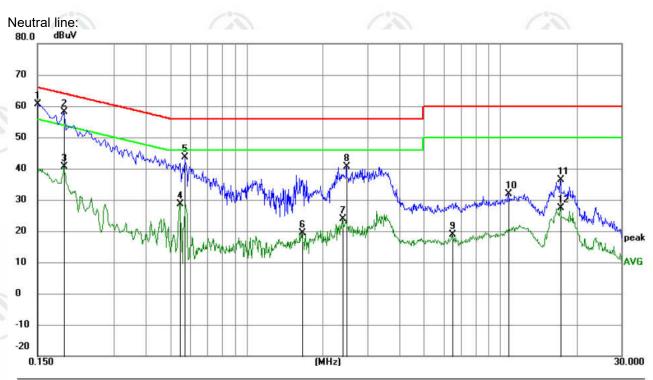


Report No.: EED32Q80830302 Page 15 of 48

Test Results:	Pass		
---------------	------	--	--

Measurement Data

Live line:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	24.22	9.87	34.09	55.75	-21.66	AVG	
2	*	0.1815	44.13	9.90	54.03	64.42	-10.39	QP	
3		0.4515	31.45	9.78	41.23	56.85	-15.62	QP	
4		0.5550	14.55	9.68	24.23	46.00	-21.77	AVG	
5		1.0230	6.95	9.74	16.69	46.00	-29.31	AVG	
6		1.0410	23.01	9.74	32.75	56.00	-23.25	QP	
7		2.4360	12.33	9.76	22.09	46.00	-23.91	AVG	
8		3.4620	29.73	9.79	39.52	56.00	-16.48	QP	
9		3.5205	16.26	9.80	26.06	46.00	-19.94	AVG	
10		8.4660	23.26	9.84	33.10	60.00	-26.90	QP	
11		15.5400	27.75	9.87	37.62	60.00	-22.38	QP	
12		15.5400	18.07	9.87	27.94	50.00	-22.06	AVG	

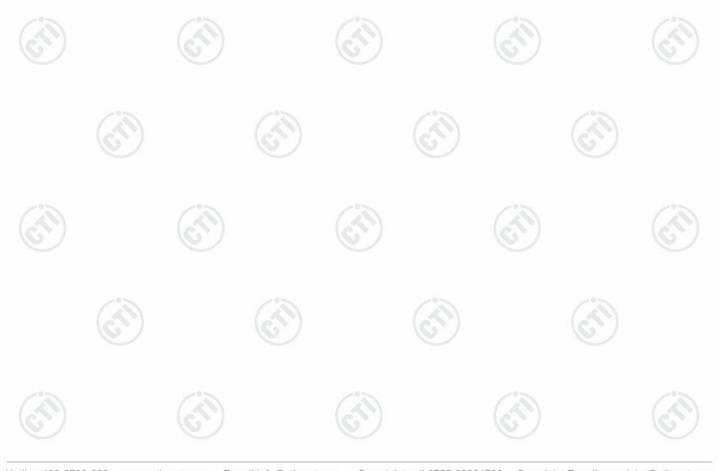
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1500	50.69	9.87	60.56	66.00	-5.44	QP	
2	0.1905	48.26	9.91	58.17	64.01	-5.84	QP	
3	0.1905	30.64	9.91	40.55	54.01	-13.46	AVG	
4	0.5460	18.85	9.69	28.54	46.00	-17.46	AVG	
5	0.5730	33.93	9.64	43.57	56.00	-12.43	QP	
6	1.6575	9.73	9.75	19.48	46.00	-26.52	AVG	
7	2.3909	14.09	9.76	23.85	46.00	-22.15	AVG	
8	2.4765	30.97	9.76	40.73	56.00	-15.27	QP	
9	6.4860	9.02	9.85	18.87	50.00	-31.13	AVG	
10	10.7475	22.11	9.83	31.94	60.00	-28.06	QP	
11	17.2545	26.33	9.94	36.27	60.00	-23.73	QP	
12	17.2545	17.49	9.94	27.43	50.00	-22.57	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Report No.: EED32Q80830302 Page 17 of 48

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power Supply Actenna Poof(s) Power Supply Attenuator Instrument Table RF test System Instrument
Test Procedure:	PKPM1 Peak power meter measurement The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi

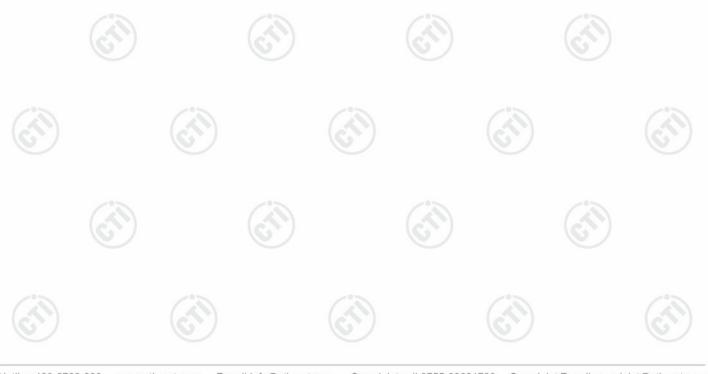
Report No. : EED32Q80830302 Page 18 of 48

6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Control Power Power Power Power Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi

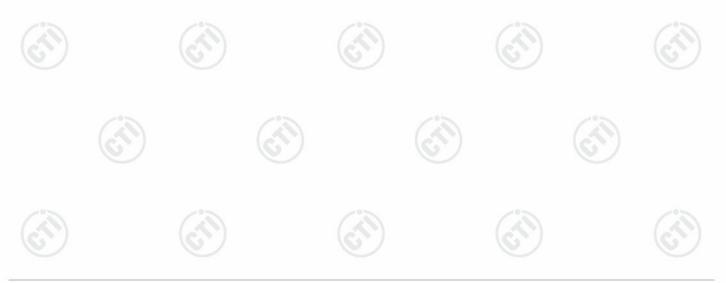
6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Poor Poor Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi



6.6 Band Edge Measurements and Conducted Spurious Emission

10.0	16.0
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power poof Attenuator Instrument Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW = 100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi



6.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Sec	tion 1	5.209 and 1	15.205							
Test Method:	ANSI C63.10 2013										
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	10)	Detector	RB	W	VBW	Remark				
	0.009MHz-0.090M	Hz	Peak	10k	Hz	30kHz	Peak				
	0.009MHz-0.090M	Hz	Average	10k	Hz	30kHz	Average				
	0.090MHz-0.110M	Hz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak				
	0.110MHz-0.490M	Hz	Peak	10k	Hz	30kHz	Peak				
	0.110MHz-0.490M	Hz	Average	10k	Hz	30kHz	Average				
	0.490MHz -30MH	z	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-pea	ak 100	kHz	300kHz	Quasi-peak				
	Al 4011-	Peak		1M	Hz	3MHz	Peak				
	Above 1GHz		Peak	1M	Hz	10kHz	Average				
Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m	R	emark	Measurement distance (m)				
	0.009MHz-0.490MHz	240	00/F(kHz)	-		- /0;	300				
	0.490MHz-1.705MHz	240	00/F(kHz)	-	- (3		30				
	1.705MHz-30MHz		30	-		- 6	30				
	30MHz-88MHz		100	40.0	Quasi-peak		3				
	88MHz-216MHz		150	43.5	Quasi-peak		3				
	216MHz-960MHz	[1]	200	46.0	Qua	asi-peak	3				
	960MHz-1GHz	\mathcal{I}	500	54.0	Qua	asi-peak	3				
	Above 1GHz		500	54.0	A۱	/erage	3				
	Note: 15.35(b), frequency emissions i limit applicable to the peak emission level ra	s 20d equip	dB above the oment under	e maximu test. This	m pe	rmitted av	erage emission				

Report No.: EED32Q80830302 Page 22 of 48

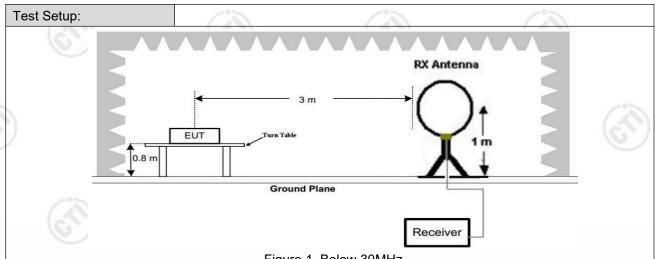
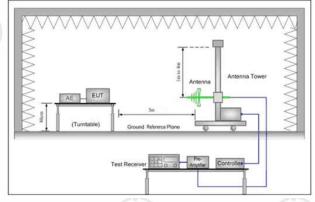



Figure 1. Below 30MHz

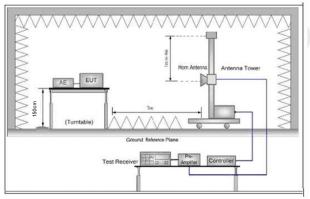


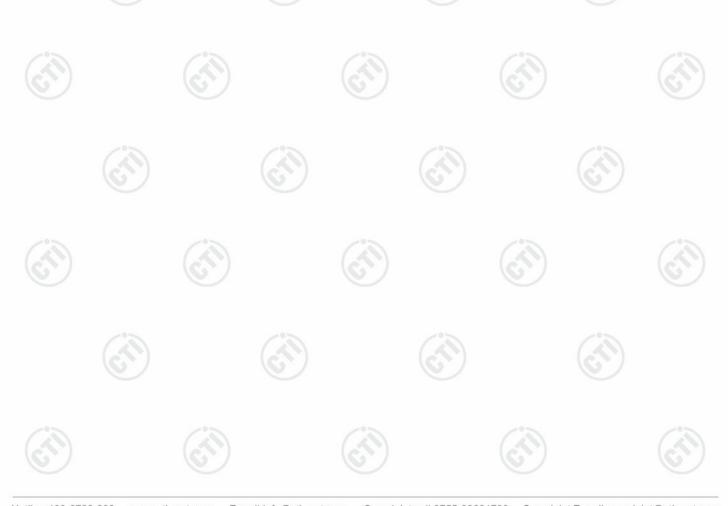
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

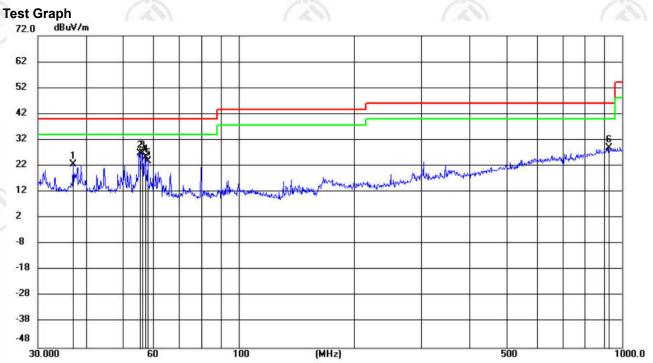
Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32Q80830302 Page 23 of 48

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

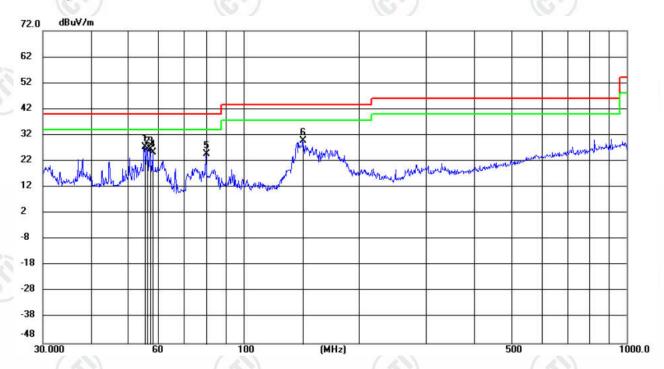


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		37.1549	9.07	13.61	22.68	40.00	-17.32	peak	100	144	
2	*	55.2497	13.16	13.69	26.85	40.00	-13.15	peak	100	38	
3		56.1974	13.12	13.62	26.74	40.00	-13.26	peak	100	197	
4		57.1212	11.80	13.53	25.33	40.00	-14.67	peak	100	321	
5		58.1010	10.56	13.44	24.00	40.00	-16.00	peak	200	196	
6		922.6775	1.39	27.54	28.93	46.00	-17.07	peak	100	331	



Report No. : EED32Q80830302 Page 25 of 48

Vertical:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	55.2304	13.86	13.70	27.56	40.00	-12.44	peak	200	227	
	56.1777	13.03	13.62	26.65	40.00	-13.35	peak	200	25	
	57.1413	12.89	13.53	26.42	40.00	-13.58	peak	100	187	
	58.1112	11.86	13.44	25.30	40.00	-14.70	peak	100	357	
	79.9964	15.01	9.65	24.66	40.00	-15.34	peak	100	60	
	143.0499	20.24	9.62	29.86	43.50	-13.64	peak	100	262	
	*	* 55.2304 56.1777 57.1413 58.1112 79.9964	Mk. Freq. Level MHz dBuV * 55.2304 13.86 56.1777 13.03 57.1413 12.89 58.1112 11.86 79.9964 15.01	Mk. Freq. Level Factor MHz dBuV dB * 55.2304 13.86 13.70 56.1777 13.03 13.62 57.1413 12.89 13.53 58.1112 11.86 13.44 79.9964 15.01 9.65	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 55.2304 13.86 13.70 27.56 56.1777 13.03 13.62 26.65 57.1413 12.89 13.53 26.42 58.1112 11.86 13.44 25.30 79.9964 15.01 9.65 24.66	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 55.2304 13.86 13.70 27.56 40.00 56.1777 13.03 13.62 26.65 40.00 57.1413 12.89 13.53 26.42 40.00 58.1112 11.86 13.44 25.30 40.00 79.9964 15.01 9.65 24.66 40.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB * 55.2304 13.86 13.70 27.56 40.00 -12.44 56.1777 13.03 13.62 26.65 40.00 -13.35 57.1413 12.89 13.53 26.42 40.00 -13.58 58.1112 11.86 13.44 25.30 40.00 -14.70 79.9964 15.01 9.65 24.66 40.00 -15.34	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m<	Mk. Freq. Level Factor ment Limit Margin Height * MHz dBuV dB dBuV/m dB uV/m dB Detector cm * 55.2304 13.86 13.70 27.56 40.00 -12.44 peak 200 56.1777 13.03 13.62 26.65 40.00 -13.35 peak 200 57.1413 12.89 13.53 26.42 40.00 -13.58 peak 100 58.1112 11.86 13.44 25.30 40.00 -14.70 peak 100 79.9964 15.01 9.65 24.66 40.00 -15.34 peak 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 55.2304 13.86 13.70 27.56 40.00 -12.44 peak 200 227 56.1777 13.03 13.62 26.65 40.00 -13.35 peak 200 25 57.1413 12.89 13.53 26.42 40.00 -13.58 peak 100 187 58.1112 11.86 13.44 25.30 40.00 -14.70 peak 100 357 79.9964 15.01 9.65 24.66 40.00 -15.34 peak 100 60

Page 26 of 48 Report No.: EED32Q80830302

Radiated Spurious Emission above 1GHz:

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 b mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

153		105		1 200			\			
Mode	:		802.11 b Tran	smitting		Channe	el:	2412MH	Z	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1128.6129	7.22	39.27	46.49	74.00	27.51	PASS	Н	PK	
2	1454.2454	8.03	37.93	45.96	74.00	28.04	PASS	Н	PK	
3	3186.0124	-18.56	57.34	38.78	74.00	35.22	PASS	Н	PK	
4	4824.1216	-13.45	61.13	47.68	74.00	26.32	PASS	Н	PK	
5	7820.3214	-3.95	47.66	43.71	74.00	30.29	PASS	Н	PK	
6	13690.7127	5.19	42.99	48.18	74.00	25.82	PASS	Н	PK	
7	1156.8157	7.54	38.35	45.89	74.00	28.11	PASS	V	PK	
8	2050.9051	9.27	37.46	46.73	74.00	27.27	PASS	V	PK	
9	3216.0144	-18.43	54.88	36.45	74.00	37.55	PASS	V	PK	
10	4824.1216	-13.45	60.75	47.30	74.00	26.70	PASS	V	PK	
11	7750.3167	-4.43	46.87	42.44	74.00	31.56	PASS	V	PK	
12	14231.7488	6.90	40.43	47.33	74.00	26.67	PASS	V	PK	

Mod	de: 802.11 b Transmitting					Channe	el:	2437MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1155.0155	7.52	38.36	45.88	74.00	28.12	PASS	Н	PK
2	1714.6715	8.51	36.98	45.49	74.00	28.51	PASS	Н	PK
3	3200.0133	-18.50	55.64	37.14	74.00	36.86	PASS	Н	PK
4	4874.1249	-13.46	64.48	51.02	74.00	22.98	PASS	Н	PK
5	7823.3216	-3.96	46.77	42.81	74.00	31.19	PASS	Н	PK
6	13683.7122	5.28	42.29	47.57	74.00	26.43	PASS	Н	PK
7	1470.447	7.96	37.28	45.24	74.00	28.76	PASS	V	PK
8	1866.0866	8.79	36.75	45.54	74.00	28.46	PASS	V	PK
9	3320.0213	-18.09	54.73	36.64	74.00	37.36	PASS	V	PK
10	4874.1249	-13.46	62.50	49.04	74.00	24.96	PASS	V	PK
11	7766.3178	-4.27	47.70	43.43	74.00	30.57	PASS	V	PK
12	13677.7118	5.35	42.50	47.85	74.00	26.15	PASS	V	PK

Report No.: EED32Q80830302

	\sim	_	40
Page	7/	\sim t	$^{\prime}$

	Mode	:		802.11 b Trar	smitting		Channe	el:	2462MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1198.4198	7.98	37.86	45.84	74.00	28.16	PASS	Н	PK
	2	1988.8989	8.99	37.61	46.60	74.00	27.40	PASS	Н	PK
	3	3199.0133	-18.50	55.46	36.96	74.00	37.04	PASS	Н	PK
	4	4924.1283	-13.42	65.36	51.94	74.00	22.06	PASS	Н	PK
	5	7788.3192	-4.06	46.95	42.89	74.00	31.11	PASS	Н	PK
	6	14262.7508	6.66	41.27	47.93	74.00	26.07	PASS	Н	PK
	7	4925.1283	-13.42	61.85	48.43	54.00	5.57	PASS	Н	AV
	8	1432.4432	8.11	38.24	46.35	74.00	27.65	PASS	V	PK
	9	2054.5055	9.29	37.10	46.39	74.00	27.61	PASS	V	PK
	10	3534.0356	-17.90	54.31	36.41	74.00	37.59	PASS	V	PK
9	11	4924.1283	-13.42	61.40	47.98	74.00	26.02	PASS	V	PK
1	12	7802.3202	-3.95	47.03	43.08	74.00	30.92	PASS	V	PK
1	13	13679.712	5.33	42.12	47.45	74.00	26.55	PASS	V	PK

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2422MH:	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1192.6193	7.92	38.56	46.48	74.00	27.52	PASS	Н	PK
2	2058.3058	9.31	37.02	46.33	74.00	27.67	PASS	Н	PK
3	3192.0128	-18.53	56.86	38.33	74.00	35.67	PASS	Н	PK
4	4844.1229	-13.45	55.05	41.60	74.00	32.40	PASS	Н	PK
5	7787.3192	-4.07	46.47	42.40	74.00	31.60	PASS	Н	PK
6	14223.7482	6.96	41.08	48.04	74.00	25.96	PASS	Н	PK
7	1148.6149	7.44	39.23	46.67	74.00	27.33	PASS	V	PK
8	2071.7072	9.38	36.63	46.01	74.00	27.99	PASS	V	PK
9	3229.0153	-18.37	55.54	37.17	74.00	36.83	PASS	V	PK
10	4840.1227	-13.45	54.42	40.97	74.00	33.03	PASS	V	PK
11	7796.3198	-3.98	46.79	42.81	74.00	31.19	PASS	V	PK
12	13681.7121	5.30	43.25	48.55	74.00	25.45	PASS	V	PK

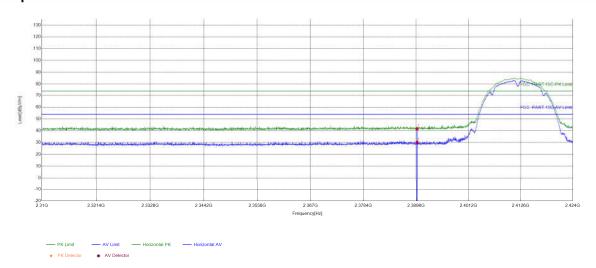
Report No.: EED32Q80830302 Page 28 of 48

	20%			20%			200			
N	Mode	:		802.11 n(HT40) Transmitting			Channe	el:	2437MH:	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1201.6202	8.00	38.14	46.14	74.00	27.86	PASS	Н	PK
3	2	1690.6691	8.48	37.61	46.09	74.00	27.91	PASS	Н	PK
	3	3187.0125	-18.56	56.32	37.76	74.00	36.24	PASS	Н	PK
	4	4871.1247	-13.46	55.53	42.07	74.00	31.93	PASS	Н	PK
	5	7769.318	-4.25	47.00	42.75	74.00	31.25	PASS	Н	PK
	6	14235.749	6.86	41.07	47.93	74.00	26.07	PASS	Н	PK
	7	1118.2118	7.12	38.96	46.08	74.00	27.92	PASS	V	PK
	8	1789.879	8.46	37.64	46.10	74.00	27.90	PASS	V	PK
	9	3249.0166	-18.28	54.14	35.86	74.00	38.14	PASS	V	PK
	10	4871.1247	-13.46	54.12	40.66	74.00	33.34	PASS	V	PK
	11	7798.3199	-3.95	47.24	43.29	74.00	30.71	PASS	V	PK
6	12	13700.7134	5.06	43.09	48.15	74.00	25.85	PASS	V	PK

Mode	:		802.11 n(HT4	0) Transmitti	Channe	el:	2452MH:	Z	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1198.2198	7.98	37.95	45.93	74.00	28.07	PASS	Н	PK
2	1879.0879	8.86	36.79	45.65	74.00	28.35	PASS	Н	PK
3	3198.0132	-18.51	1 55.97	37.46	74.00	36.54	PASS	Н	PK
4	4898.1265	-13.47	7 55.23	41.76	74.00	32.24	PASS	Н	PK
5	7796.3198	-3.98	46.48	42.50	74.00	31.50	PASS	Н	PK
6	13671.7114	5.43	42.24	47.67	74.00	26.33	PASS	Н	PK
7	1119.812	7.13	39.02	46.15	74.00	27.85	PASS	V	PK
8	1889.2889	8.90	37.32	46.22	74.00	27.78	PASS	V	PK
9	3269.0179	-18.19	53.99	35.80	74.00	38.20	PASS	V	PK
10	4905.127	-13.46	54.20	40.74	74.00	33.26	PASS	V	PK
11	7853.3236	-3.98	46.44	42.46	74.00	31.54	PASS	V	PK
12	14252.7502	6.73	40.71	47.44	74.00	26.56	PASS	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

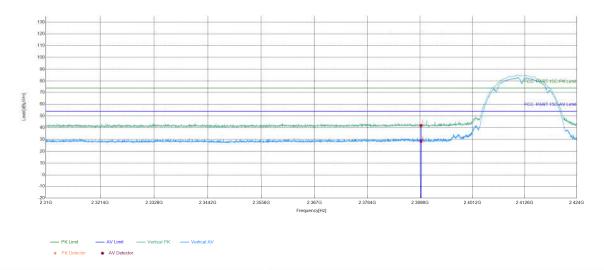


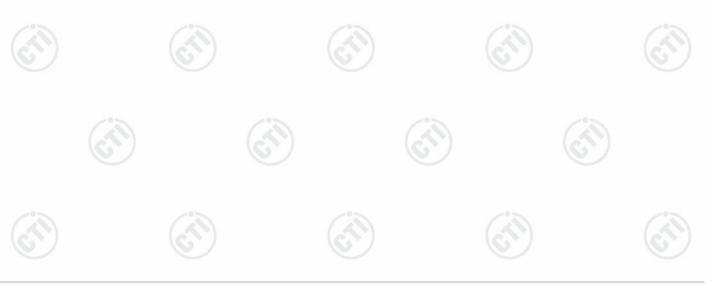
Restricted bands:

Test plot as follows:

Test_Mode	802.11 b Transmitting	Test_Frequency	2412
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	, (C)	(6,2)	

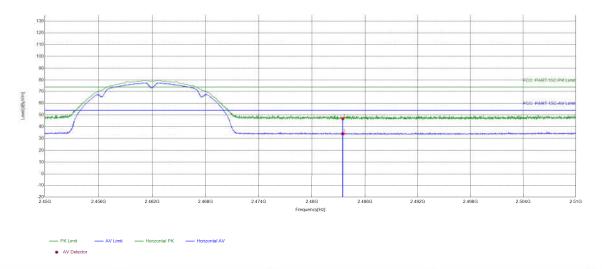
	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
Ī	1	2390	4.79	36.96	41.75	74.00	32.25	PASS	Horizontal	PK	
	2	2390	4.79	25.44	30.23	54.00	23.77	PASS	Horizontal	AV	

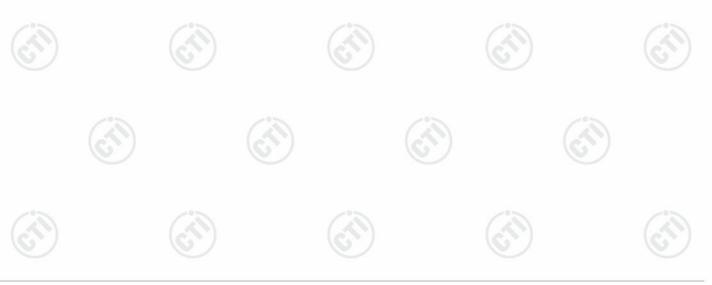




Page 30 of 48 Report No.: EED32Q80830302

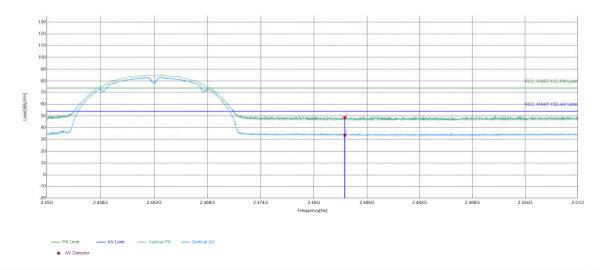
6.01	(6.5)	(C)	(6.5)
Test_Mode	802.11 b Transmitting	Test_Frequency	2412
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1	`	

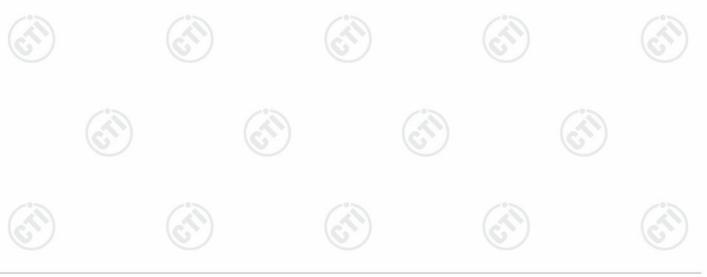

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	4.79	37.19	41.98	74.00	32.02	PASS	Vertical	PK	
2	2390	4.79	23.79	28.58	54.00	25.42	PASS	Vertical	AV	
100	7		10.3		100.7			6.7		



Page 31 of 48 Report No.: EED32Q80830302

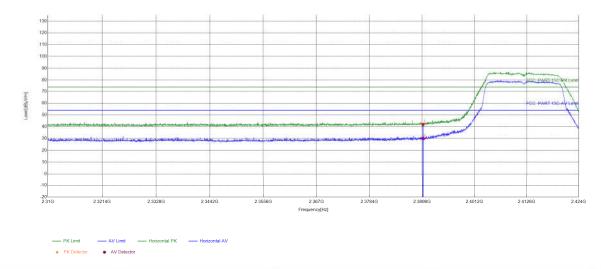
Test_Mode	802.11 b Transmitting	Test_Frequency	2462
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1		


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	36.42	46.80	74.00	27.20	PASS	Horizontal	PK
2	2483.5	10.38	23.70	34.08	54.00	19.92	PASS	Horizontal	AV

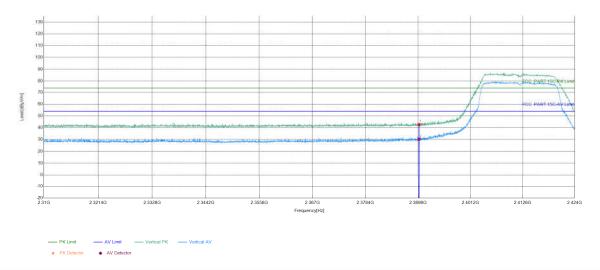


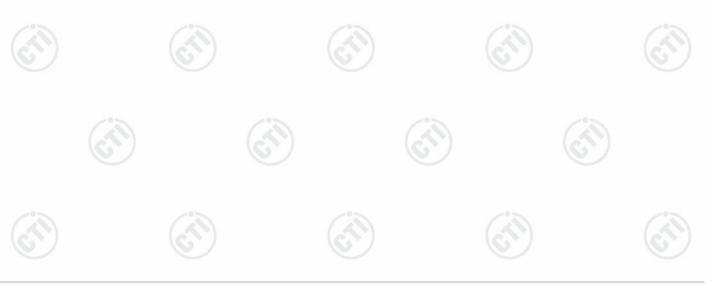
Page 32 of 48 Report No.: EED32Q80830302

6.01	(6.5)	(C)	(6.5)
Test_Mode	802.11 b Transmitting	Test_Frequency	2462
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1	`	


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	38.31	48.69	74.00	25.31	PASS	Vertical	PK
2	2483.5	10.38	23.27	33.65	54.00	20.35	PASS	Vertical	AV

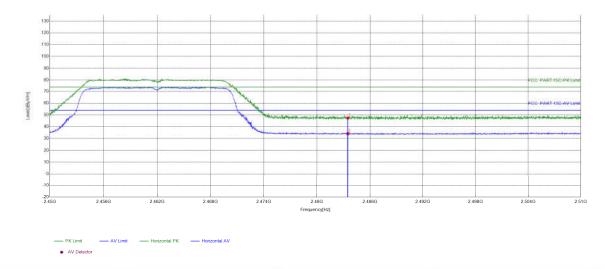
Test_Mode	802.11 g Transmitting	Test_Frequency	2412
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1	`	

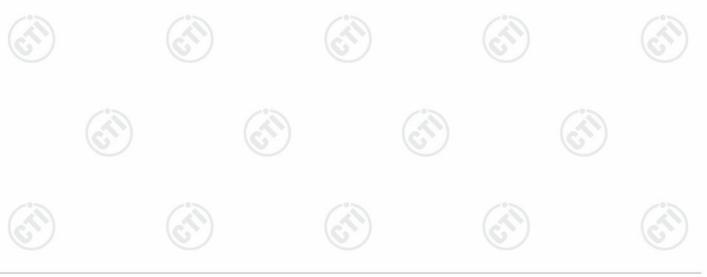

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	4.79	37.22	42.01	74.00	31.99	PASS	Horizontal	PK
2	2390	4.79	25.21	30.00	54.00	24.00	PASS	Horizontal	AV



Page 34 of 48 Report No.: EED32Q80830302

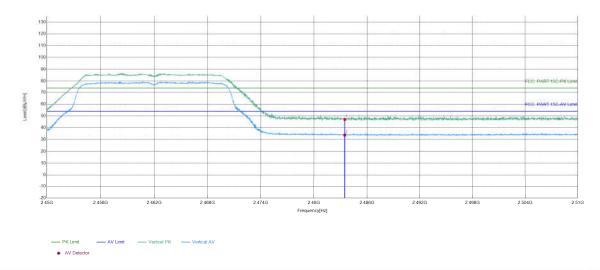
Test_Mode	802.11 g Transmitting	Test_Frequency	2412
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	\		

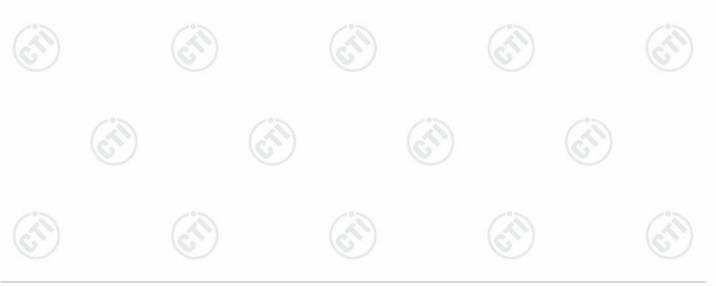

~										
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2390	4.79	37.94	42.73	74.00	31.27	PASS	Vertical	PK
	2	2390	4.79	25.40	30.19	54.00	23.81	PASS	Vertical	AV



Page 35 of 48 Report No.: EED32Q80830302

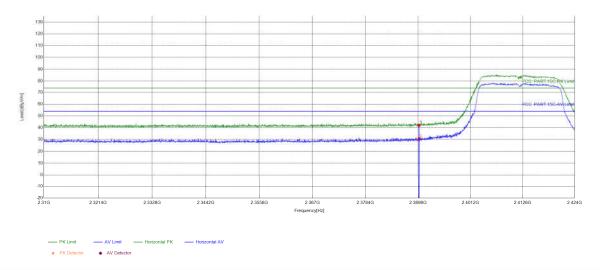
Test_Mode	802.11 g Transmitting	Test_Frequency	2462
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1		

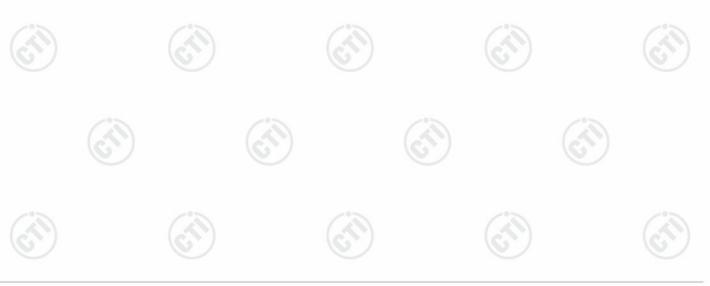

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	37.06	47.44	74.00	26.56	PASS	Horizontal	PK
2	2483.5	10.38	23.75	34.13	54.00	19.87	PASS	Horizontal	AV



Page 36 of 48 Report No.: EED32Q80830302

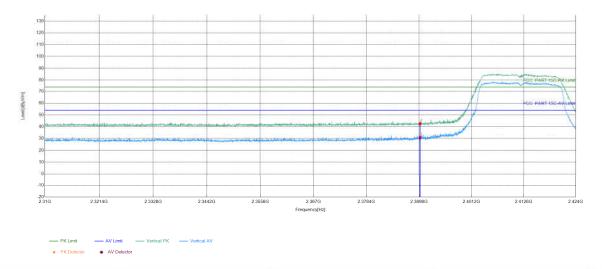
6.51	(0.5)	100	162
Test_Mode	802.11 g Transmitting	Test_Frequency	2462
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1		

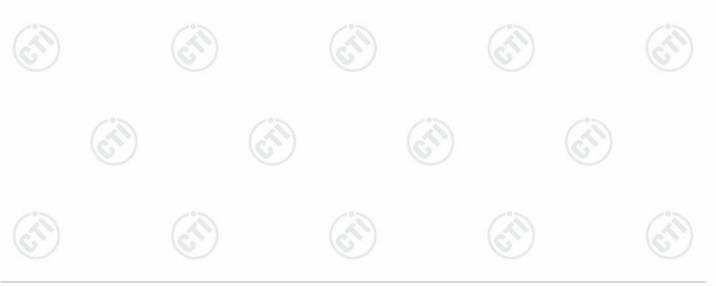

٠.										
Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	36.72	47.10	74.00	26.90	PASS	Vertical	PK
	2	2483.5	10.38	23.41	33.79	54.00	20.21	PASS	Vertical	AV



Page 37 of 48 Report No.: EED32Q80830302

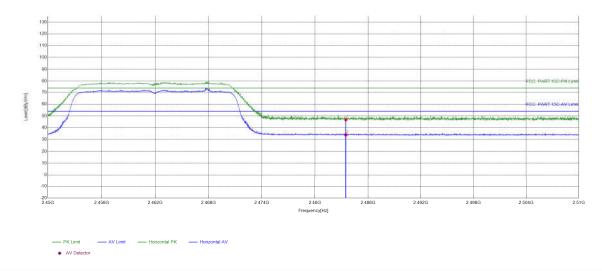
6.70	102	100	1627		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2412		
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09		
Remark	\				


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	4.79	37.35	42.14	74.00	31.86	PASS	Horizontal	PK
2	2390	4.79	25.78	30.57	54.00	23.43	PASS	Horizontal	AV



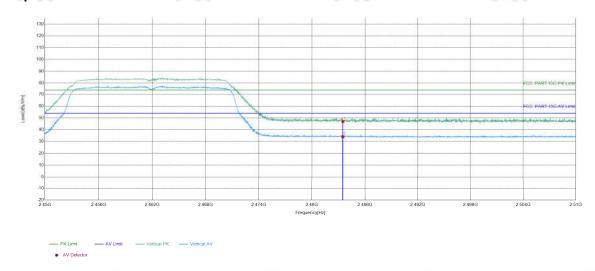
Page 38 of 48 Report No.: EED32Q80830302

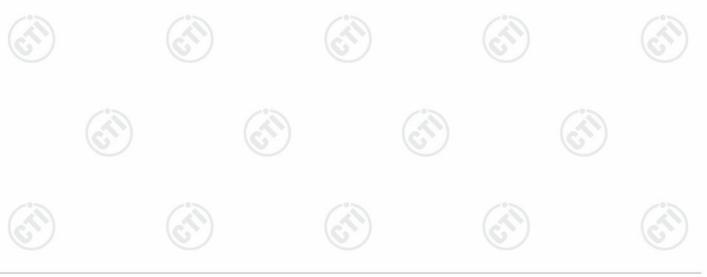
6.70	102	100	1627		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2412		
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09		
Remark	\				


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	4.79	37.86	42.65	74.00	31.35	PASS	Vertical	PK
2	2390	4.79	26.05	30.84	54.00	23.16	PASS	Vertical	AV

Page 39 of 48 Report No.: EED32Q80830302

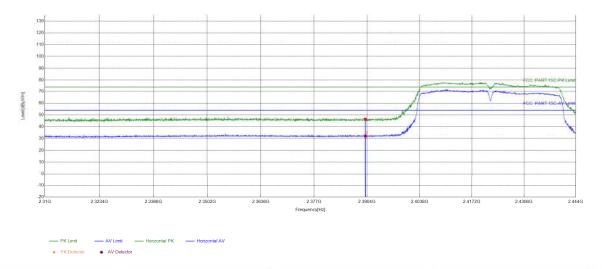
C> 1	1657	(6,5)	(6)		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2462		
Tset_Engineer Aiden.wang		Test_Date	2024/07/09		
Remark	\				

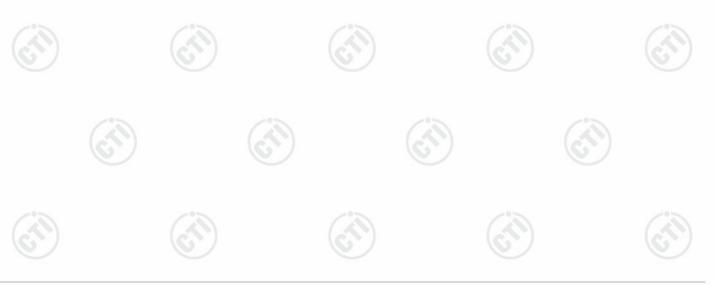

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	36.47	46.85	74.00	27.15	PASS	Horizontal	PK
	2	2483.5	10.38	23.63	34.01	54.00	19.99	PASS	Horizontal	AV



Page 40 of 48 Report No.: EED32Q80830302

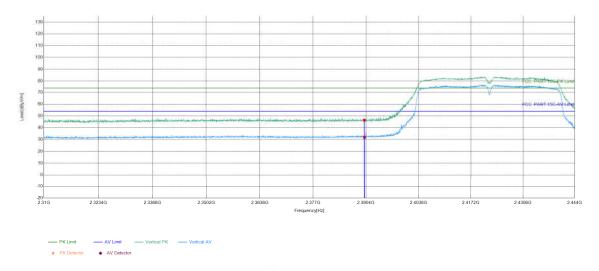
621	1000	LC. L	162	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2462	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09	
Remark	1			

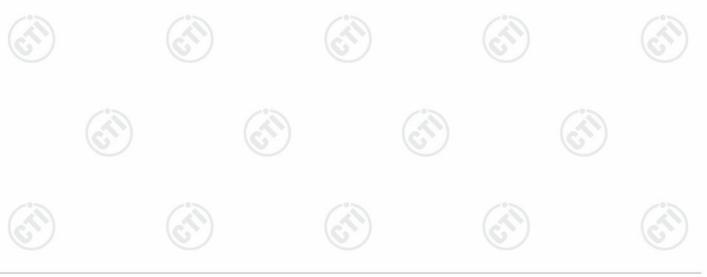

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	36.58	46.96	74.00	27.04	PASS	Vertical	PK
	2	2483.5	10.38	23.64	34.02	54.00	19.98	PASS	Vertical	AV



Page 41 of 48 Report No.: EED32Q80830302

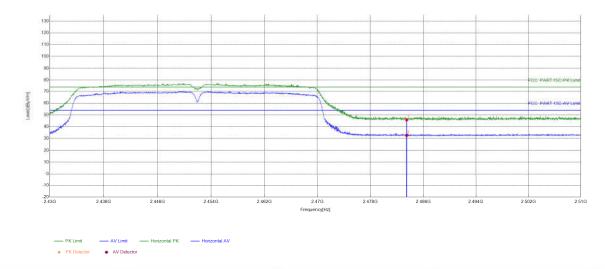
6.3	(0.5)	(6.7	16.7	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2422 2024/07/09	
Tset_Engineer	Aiden.wang	Test_Date		
Remark	1			


	Suspecte	d List											
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	2390	9.96	36.47	46.43	74.00	27.57	PASS	Horizontal	PK			
	2	2390	9.96	22.16	32.12	54.00	21.88	PASS	Horizontal	AV			



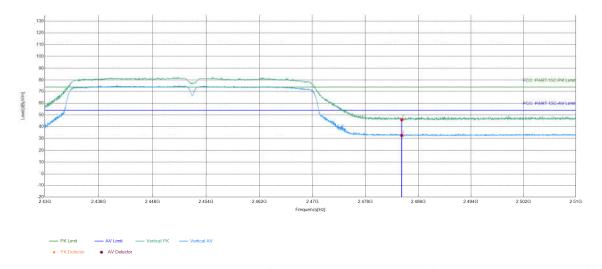
Page 42 of 48 Report No.: EED32Q80830302

C. 7	165	(6,	(C))		
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2422		
Tset_Engineer Aiden.wang		Test_Date	2024/07/09		
Remark	\				


	Suspecte	d List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
Ī	1	2390	9.96	36.51	46.47	74.00	27.53	PASS	Vertical	PK		
	2	2390	9.96	21.98	31.94	54.00	22.06	PASS	Vertical	AV		

C> 1	1657	(C,)	(6,7)		
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2452		
Tset_Engineer Aiden.wang		Test_Date	2024/07/09		
Remark	1				

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.77	35.13	45.90	74.00	28.10	PASS	Horizontal	PK
2	2483.5	10.77	21.98	32.75	54.00	21.25	PASS	Horizontal	AV



	183	16.5	163		
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2452		
Tset_Engineer Aiden.wang		Test_Date	2024/07/09		
Remark	1				

Test Graph

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.77	35.18	45.95	74.00	28.05	PASS	Vertical	PK
	2	2483.5	10.77	21.86	32.63	54.00	21.37	PASS	Vertical	AV

Note:

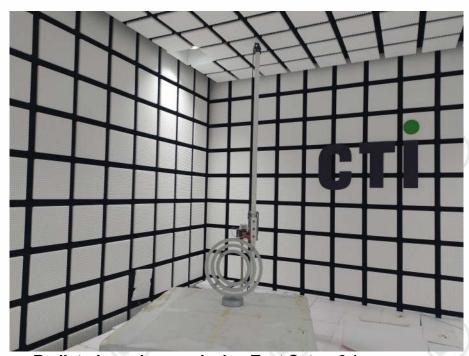
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 45 of 48

7 Appendix 2.4G Wi-Fi

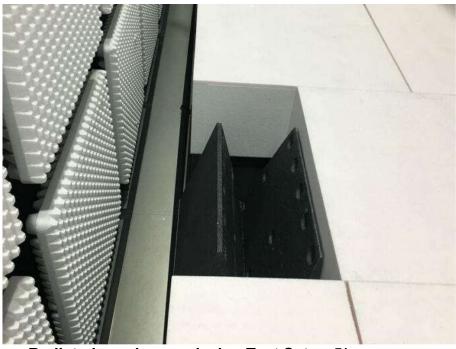


Report No.: EED32Q80830302 Page 46 of 48

8 PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-3 (Above 1GHz)



Report No.: EED32Q80830302 Page 47 of 48

Radiated spurious emission Test Setup-5(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup-1

Report No.: EED32Q80830302 Page 48 of 48

9 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q80830301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

