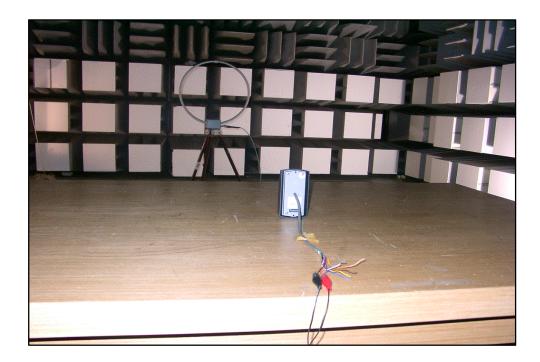
2. Photograph for the test configuration

3. Sample Calculation


The emission level measured in decibels above one microvolt (dB) was converted into microvolt () as shown in following sample calculation.

For example:

	+	Measured Value at Cable Losses *	2.37 MHz	40.4 dB 0.0 dB	@ average mode
-	=	Conducted Emission		40.4 dB	
			(= 104.7)

^{*} In case of RG214/ RF cable 15 Ft, the loss is about 0.17 dB at the frequency of 30 MHz which is negligible.

2. Photograph for the test configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt (dB $\,$) was converted into microvolt per meter ($\,$ /m) as shown in following sample calculation.

For example :

	Measured Value at	0.125 MHz	58.3 dB
+	Antenna Factor		9.9 dB
+	Cable Loss		0.0 dB
	Preamplifier		0.0 dB
	Distance Correction Factor *		80.0 dB
=	Radiated Emission		-11.8 dB /m
			(=-3.9 /m)

 $[\]ast$ Extrapolated from the measured distance(3 m) to the specified distance(300 m) using the square of an inverse linear distance extrapolation.