

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C **INDUSTRY CANADA RSS-247**

Test Standard FCC Part 15.247 and RSS-247 Issue 1

FCC ID A4C-1000BA

ISED No. 10199A-1000BA

Trade name Rand McNally

OverDryve™ 7c Product name

Model No. OD7C **Test Result Pass**

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

The sample selected for test was production product and was provided by manufacturer.

Approved by: Reviewed by: ED. Chiang Som Chaong Sam Chuang Ed Chiang Manager Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	February 7, 2017	Initial Issue	Angel Cheng
01	March 24, 2017	 Remove Remark in page 4. Revise section 3.3 in page 12. Revise section 4.2.2 in page 16. Revise section 4.6.2 Duty Cycle and VBW in page 27. Add Test Setup Photos in page 44, 45. Revise section 1.3 Antenna Category in page 5. 	Doris Chu

Table of contents

1.	GENE	ERAL INFORMATION	4
	1.1	EUT INFORMATION	4
	1.2	EUT CHANNEL INFORMATION	5
	1.3	ANTENNA INFORMATION	5
	1.4	MEASUREMENT UNCERTAINTY	6
	1.5	FACILITIES AND TEST LOCATION	6
	1.6	INSTRUMENT CALIBRATION	7
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	8
2.	TEST	SUMMERY	9
3.	DESC	RIPTION OF TEST MODES	.10
	3.1	THE WORST MODE OF OPERATING CONDITION	.10
	3.2	THE WORST MODE OF MEASUREMENT	.11
	3.3	EUT DUTY CYCLE	.12
4.	TEST	RESULT	.13
	4.1	AC POWER LINE CONDUCTED EMISSION	.13
	4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)	.16
	4.3	OUTPUT POWER MEASUREMENT	.18
	4.4	POWER SPECTRAL DENSITY	.20
	4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	.22
	4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION	.26
ΑI	PPEND	DIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	RM Acquisition, LLC 9855 Woods Drive Skokie, IL 60077 USA.	
Equipment	OverDryve™ 7c	
Model Name	OD7C	
Model Discrepancy	N/A	
EUT Functions	IEEE 802.11b/g/n+BT+GPS+FM	
Received Date	Dec 22, 2016	
Date of Test	Jan 02, 2017 ~ Jan 18, 2017	
Output Power (W)	BLE: 0.0009 (EIRP: 0.0018)	
Power Operation	 AC 120V/60Hz Adapter(Not for sale) PoE(Not for sale) Host system DC Type: Battery Car Charger DC Power Supply External DC adapter 	

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE-1Mbps
Number of channel	40 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

1 to lot do 7 ti to 1 co. 1 c. 2 c 1 c clade c c. c. 1 lable 1 di la 1 to c ce 1 lable 7 ti lot toct challilloie						
Number of frequencies to be tested						
Frequency range in Number of Location in frequency which device operates frequencies range of operation						
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Category	☐ Integral: antenna permanently attached ☐ External dedicated antennas ☐ External Unique antenna connector
Antenna Type	☐ PIFA ☑ PCB ☐ Dipole ☐ Coils
Antenna Gain	2.75 dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

1. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

2. No.163-1, Jhongsheng Rd. Sindian City, Taipei County 23151, Taiwan.

Test site	Test Engineer	Remark
AC Conduction Room	Jim Lian	The AC conduction room test items was tested at Compliance Certification Services Inc. (Sindian Lab.) The test equipments were listed in page 7 and the test data, please refer page 14-15.
Radiation	Ed Chiang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
Power Meter	Anritsu	ML2495A	1012009	07/04/2016	07/03/2017		
Power Sensor	Anritsu	MA2411B	917072	07/04/2016	07/03/2017		
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2016	10/04/2017		
Thermostatic/Hrgrosatic Chamber	GWINSTEK	GTC-288MH-CC	TH160402	05/04/2016	05/03/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54250027	05/12/2016	05/11/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54260016	05/12/2016	05/11/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54260020	05/12/2016	05/11/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54260007	05/12/2016	05/11/2017		

3M 966 Chamber Test Site							
Equipment	Manufacturer	Model	S/N	Cal Due	Cal Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017		
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017		
Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017		
Horn Antenna	ETC	MCTD 1209	DRH13M02003	06/01/2016	05/31/2017		
Pre-Amplifier	EMCI	EMC012635	980151	06/23/2016	06/22/2017		
Antenna Tower	CCS	CC-A-5F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-5F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-5F	N/A	N.C.R	N.C.R		
Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/02/2016	09/01/2017		
Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017		

AC Conducted Emissions Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
BNC Cable	EMCI	CFD300-NL	BNC#B4	05/29/2016	05/28/2017		
EMI Test Receiver	R&S	ESCI	101201	08/20/2016	08/19/2017		
ISN	Teseq	ISN T800	29449	08/19/2016	08/18/2017		
LISN	Schwarzbeck	NSLK 8127	8129-286	08/19/2016	08/18/2017		
LISN(EUT)	Schwarzbeck	NSLK 8127	8127527	08/19/2016	08/18/2017		
Pulse Limiter	R&S	ESH3-Z2	C3010026-2	08/23/2016	08/22/2017		
Thermo-Hygro Meter	Wisewind	201A	No. 02	05/03/2016	05/02/2017		
Current Sensor Probe	Teseq	CSP 9160A	73982	06/02/2016	06/01/2017		
Capacitive Voltage Probe	Teseq	CVP 2200A	37925	10/26/2016	10/25/2017		
Software		EZ-E	EMC				

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No. Equipment Brand Model Series No. FCC ID						
	N/A					

	Support Equipment						
No.	Equipment	Brand	Model	Series No.	FCC ID		
1	NB	DELL	PP19L	R33002	E2KWM3945ABG		
2	Battery	YUASA	CMF 75D23L	N/A	N/A		
3	PS/2 Mouse	hp	M-SBF96	FATSQ0C5BYJQKZ	DOC BSMI:R41126		
4	PS/2 Keyboard	Genius	K639	N/A	DOC BSMI:T3A164		
5	Microphone & Earphone	INTOPIC	LASS-288	N/A	N/A		
6	Monitor	DELL	P2314t	CN-0HMJ1V-74445-46 S-156S	R43004		
7	Host PC	DELL	T5810	8G5NKG2	N/A		
8	Modem	GALILEO	AL-56ERM	0MERM04A0212	DOC		
9	Printer	HP	SNPRB-1202 -01	CN54K182G9	R330D1		

1.8 methodology **Test** and applied standards

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05, RSS-247 Issue 1 and RSS-GEN Issue 4

1.9 **listings**

Table of accreditations and

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(2)	RSS-247(5.2)(1)	4.2	6 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	RSS-247(5.4)(4)	4.3	Output Power Measurement	Pass
15.247(e)	RSS-247(5.2)(2)	4.4	Power Spectral Density	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Emission	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

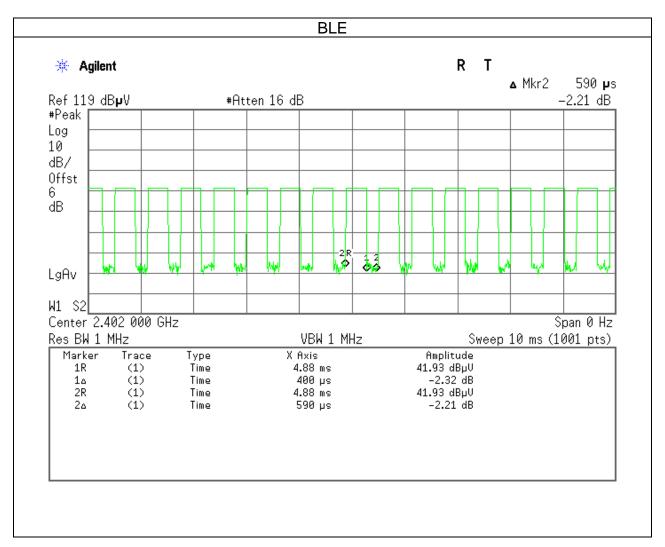
Operation mode	BT4.0 Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2440MHz 3.Highest Channel : 2480MHz

^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission				
Test Condition AC Power line conducted emission for line and neutral				
Voltage/Hz 120V/60Hz				
Test Mode Mode 1:EUT power by AC adapter via power cable.				
Worst Mode				

Radiated Emission Measurement Above 1G			
Test Condition	Band edge, Emission for Unwanted and Fundamental		
Voltage/Hz	5V DC		
Test Mode	Mode 1:EUT power by USB cable.		
Worst Mode	Worst Mode		
Worst Position Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane)			
Worst Polarity	☐ Horizontal ⊠ Vertical		


Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Voltage/Hz	Voltage/Hz 12V DC and 5V DC			
Test Mode Mode 1:EUT power by 12V DC via car charger. Mode 2:EUT power by 5V DC via USB.				
Worst Mode				

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Vertical) were recorded in this report

3.3 EUT DUTY CYCLE

Duty Cycle					
Configuration TX ON (us) TX ALL (us) Duty Cycle (%) Duty Factor(dB)					
BLE	400	590	68.80%	1.69	

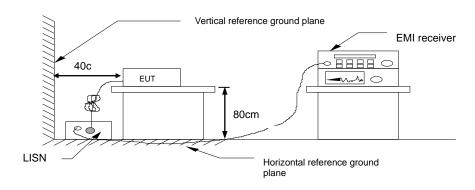
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBμV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

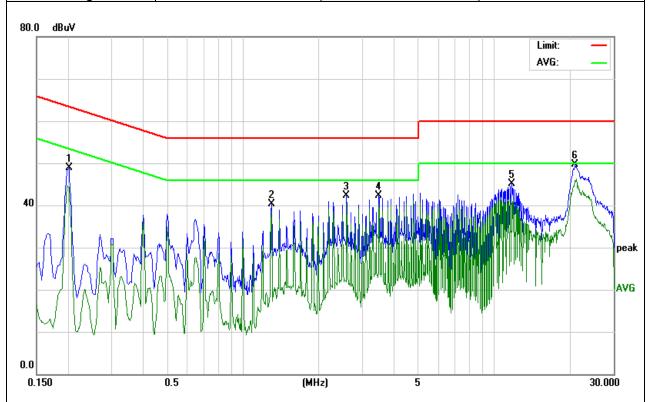

^{*} Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

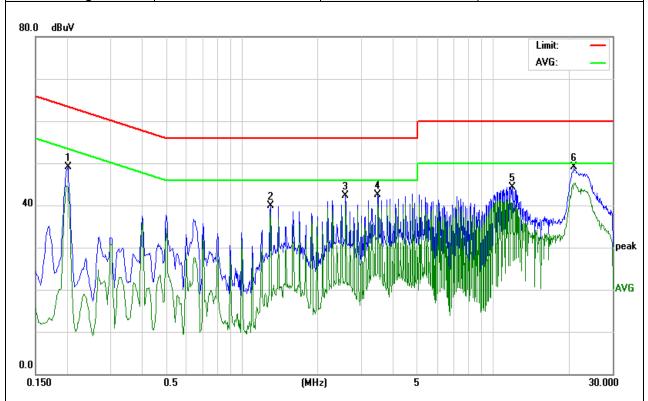
Test method Refer as ANSI 63.10:2013 clause 6.2,

- The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- Recorded Line for Neutral and Line.

4.1.3 Test Setup


4.1.4 Test Result

Pass.


Test Data

Test Mode	Mode 1	Temp/Hum	27(°ℂ)/ 53%RH
Phase	Line	Test Date	Jan 03, 2017
Test Engineer	Jim Lian		

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dB)	Limit (dBuV)	Margin (dBuV)	Detector (dBuV)
0.2020	38.83	10.10	48.93	63.52	-14.59	peak
1.2980	30.21	10.17	40.38	56.00	-15.62	peak
2.5939	32.02	10.32	42.34	56.00	-13.66	peak
3.4900	32.07	10.33	42.40	56.00	-13.60	peak
11.7698	34.36	10.67	45.03	60.00	-14.97	peak
21.0457	38.52	11.22	49.74	60.00	-10.26	peak

Test Mode	Mode 1	Temp/Hum	27(°C)/ 53%RH
Phase	Neutral	Test Date	Jan 03, 2017
Test Engineer	Jim Lian		

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dB)	Limit (dBuV)	Margin (dBuV)	Detector (dBuV)
0.2020	38.97	10.10	49.07	63.52	-14.45	peak
1.2980	29.79	10.17	39.96	56.00	-16.04	peak
2.5939	32.02	10.32	42.34	56.00	-13.66	peak
3.4900	32.20	10.33	42.53	56.00	-13.47	peak
11.9699	33.71	10.68	44.39	60.00	-15.61	peak
21.1460	37.86	11.24	49.10	60.00	-10.90	peak

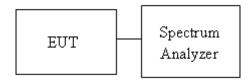
4.26DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(1)

6 dB Bandwidth:

Limit	Shall be at least 500kHz

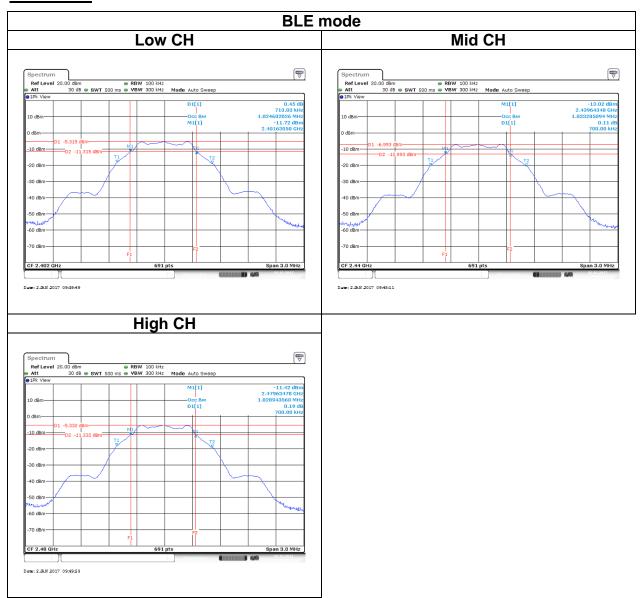

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, section 8.1 and ANSI 63.10:2013 clause 6.9.3,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- Measure and record the result of 6 dB Bandwidth and 99% Bandwidth, in the test report.

4.2.3 Test Setup



4.2.4 Test Result

	Test mode: BLE mode / 2402-2480 MHz								
Channel	hannel Frequency OBW(99%) 6dB BW (MHz) (kHz)								
Low	2402	1.0246	713.03						
Mid	2440	1.0332	700.00	>500					
High	2480	1.0289	700.00						

Test Data

4.3 OUTPUT POWER MEASUREMENT

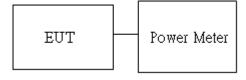
4.3.1 Test Limit

According to §15.247(b) and RSS-247 section 5.4(4)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	 ✓ Antenna not exceed 6 dBi : 30dBm ✓ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] ✓ Point-to-point operation 	
-------	---	--


Average output power: For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power:

	BLE Mode								
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)		
BLE	0	2402	-0.45	2.30	0.0009	0.0017			
Data rate:	19	2440	-1.42	1.33	0.0007	0.0014	30		
1Mbps	39	2480	-0.23	2.52	0.0009	0.0018			

Average output power:

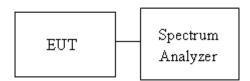
BLE Mode						
Config.	СН	Freq. (MHz)	AV Power (dBm)			
BLE	0	2402	-3.24			
Data rate: 1Mbps	19	2440	-4.84			
	39	2480	-2.45			

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(2)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

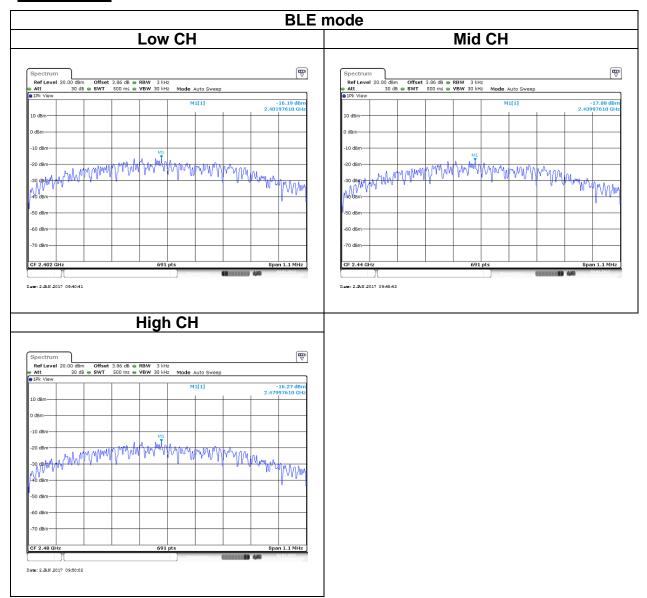

Limit	 ✓ Antenna not exceed 6 dBi: 8dBm ✓ Antenna with DG greater than 6 dBi: 8dBm [Limit = 8 - (DG - 6)] ✓ Point-to-point operation:
-------	---

4.4.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup



4.4.4 Test Result

Test mode: BLE mode / 2402-2480 MHz						
Channel	IC/FCC limit (dBm)					
Low	2402	-16.19				
Mid	2440	-17.88	8			
High	2480	-16.27				

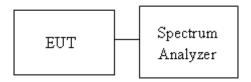
Test Data

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

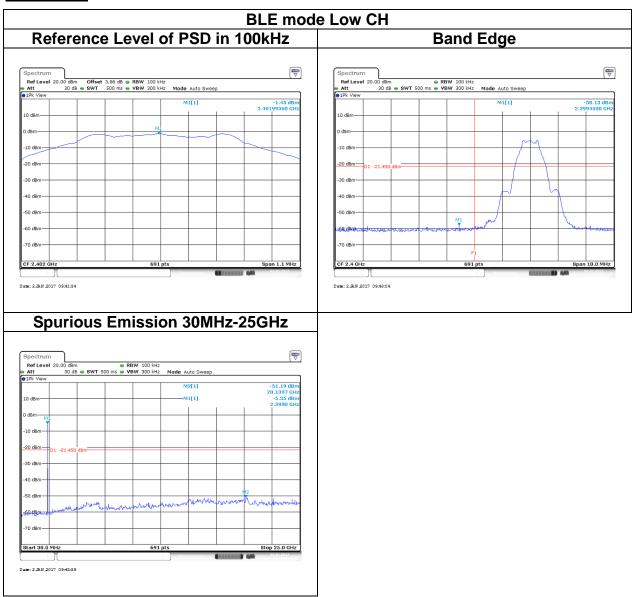
In any 100 kHz bandwidth outside the authorized frequency band,

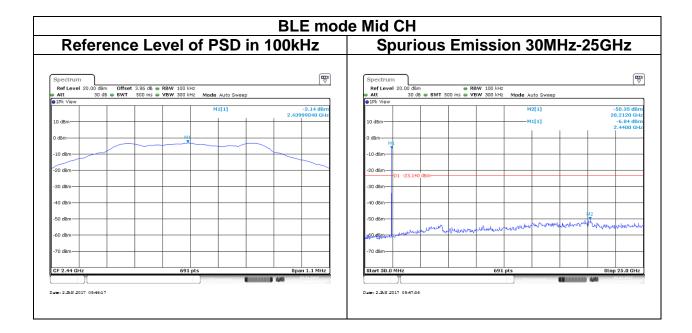

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

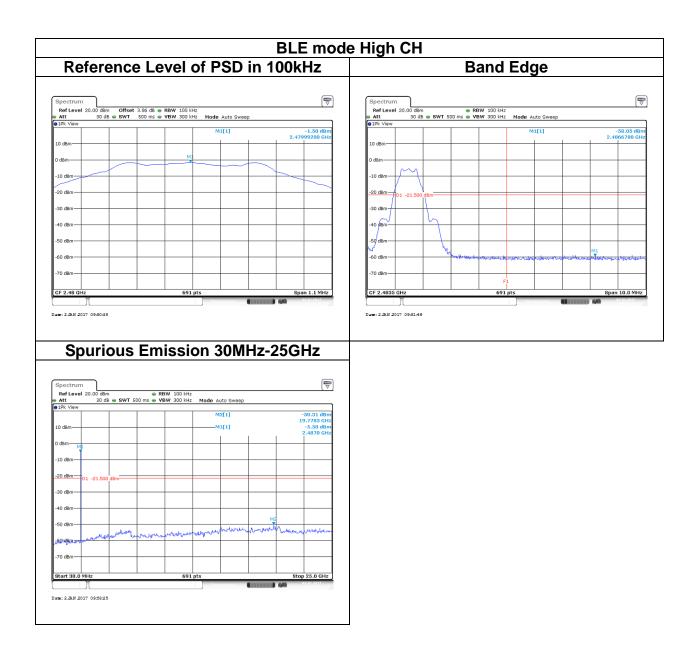
4.5.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


4.5.3 Test Setup





4.5.4 Test Result

Test Data

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

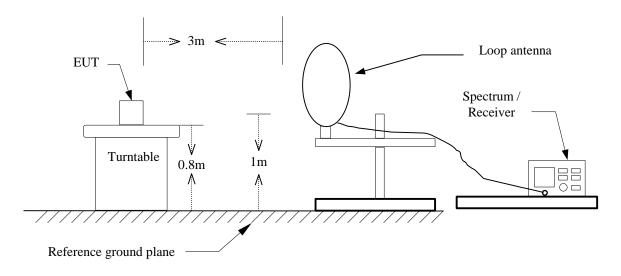
Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)		
(MHz)	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

4.6.2 Test Procedure

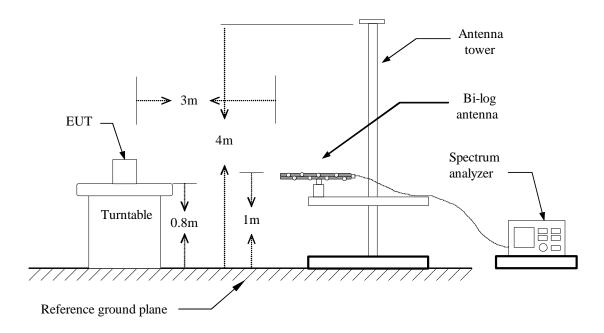
Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.
- 4. The SA setting following:
 - (1) Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle ≥ 98%, VBW=10Hz.

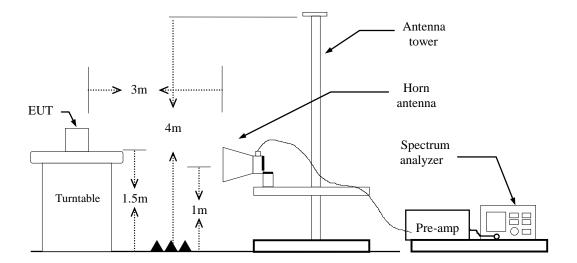

If Duty Cycle < 98%, VBW=1/T.

Configuration	Duty Cycle (%)	VBW
BLE	68.8 %	2.5kHz

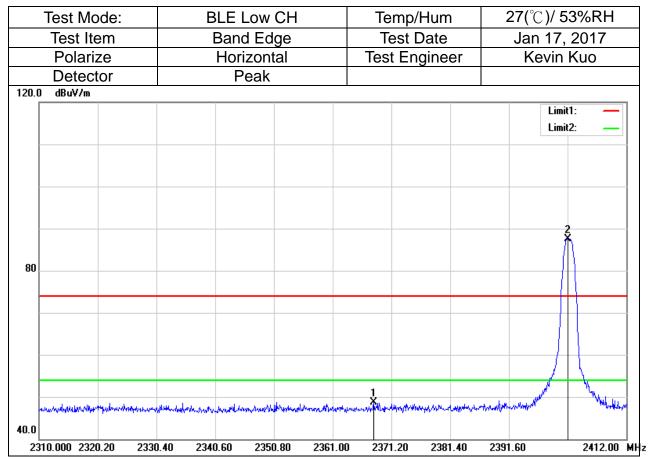


4.6.3 Test Setup

9kHz ~ 30MHz



30MHz ~ 1GHz


Above 1 GHz

4.6.4 Test Result

Band Edge Test Data

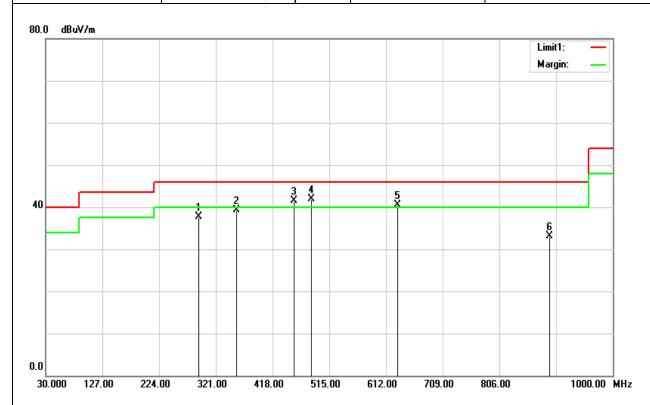
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2368.140	51.46	-2.68	48.78	74.00	-25.22	peak
2	2401.800	89.89	-2.41	87.48	-	-	peak

•		Mode:			Low Ch			p/Hum)/ 53%RH
		Item			nd Edge			t Date		17, 2017
		arize			rizontal		Test E	ngineer	Ke	vin Kuo
		ector		A۱	/erage					
110.0	0.0 dBuV/m									- 1
									Limi Limi	
										2 X
-										
70										
-										
									1	
0.0	~~~~	~~			<u></u>	<u> </u>		tanta anti tanta di t	*	\
231	0.000 2	2320.20	2330.40	2340.60	2350.80	2361.00	2371.20	2381.40	2391.60	2412.00 MHz

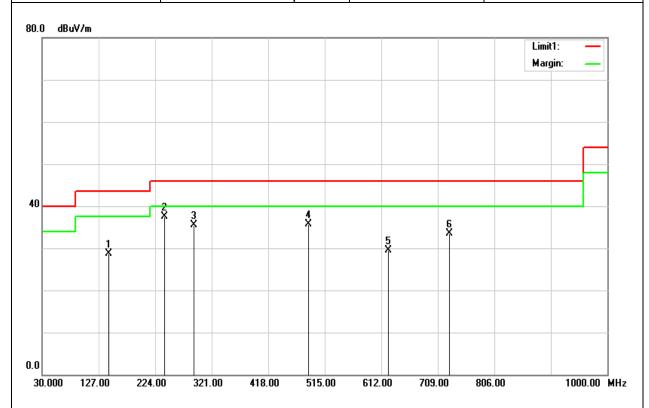
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	38.18	-2.49	35.69	54.00	-18.31	AVG
2	2402.106	89.26	-2.41	86.85	-	-	AVG

-	Test Mo				Е		High		1			emp/						53%RF	1
	Test Ite						nd E	_				Test I				Jan 17, 2017			
	Polariz				Horizontal			Te	st En	gin	eer		K	evin	Kuo				
	Detect	or			Peak														
20.0	dBuV/m									1		1							71
																	Limit1 Limit2		
		1																	
80_		\prod																	$\frac{1}{1}$
		Н																	
	Walley and		w. Amm	Z Rynnahan	phore, make	mount	Angelejen (Lod	dr-durch	and production last	grander de la companya de la company	haran and story	hannage/h	BAJESHAN	والعليدادة بدواد للعامل	مواسليليون ماريونونونونونونونونونونونونونونونونونونون	willyday	ndadwidad	essionelpagealetapeage	**
0.0	0.000 2478		2486	<u></u>	249		250		251		2519		2527		2535			2552.00	

No.	Frequency	Reading	Reading Correct		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.168	89.05	-2.03	87.02	-	-	peak
2	2486.892	51.23	-1.96	49.27	74.00	-24.73	peak


-	Test Mo	de:					ligh				T	emp	/Hu	m		27	(°C),	/ 53%R	Н
	Test Ite	em			Е	Banc	l Ed	ge				Test						7, 201	7
	Polari	ze			Horizontal				Te	st Er	ngin	eer		Kevin Kuo					
	Detect	or			Average														
110.0	.0 dBuV/m																		=
																	Limit Limit		
		1																	-
		Λ																	
70		₩																	-
10		\prod																	
																			1
0.0	•		L	ىمىنى <u>لىم</u> ى.	2					 	M	~~~~		a			~~~~	aran da aran d	-
	0.000 2478	20	2486	40	2494.6	:O	2502.8	RO	2511.	00	2519	20	2527	7.40	2535	60		2552.00	_ _MH:

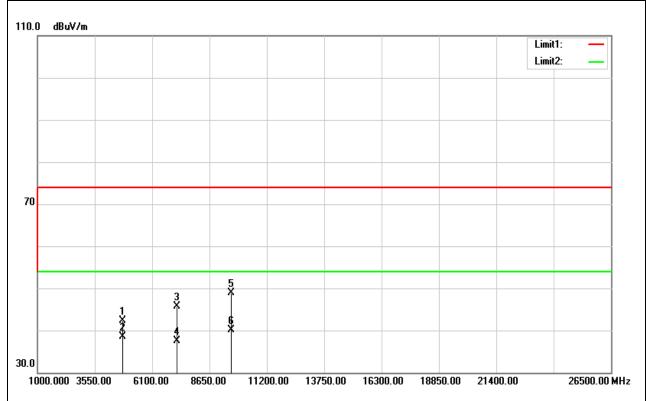
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	88.12	-2.03	86.09	-	-	AVG
2	2495.092	38.25	-1.89	36.36	54.00	-17.64	AVG


Below 1G Test Data

Test Mode:	BT Mode	Temp/Hum	27(°C)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 17, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
291.9000	52.01	-14.39	37.62	46.00	-8.38	peak
356.8900	52.07	-12.73	39.34	46.00	-6.66	peak
454.8600	51.68	-10.10	41.58	46.00	-4.42	QP
484.9300	51.35	-9.53	41.82	46.00	-4.18	QP
632.3700	47.40	-6.99	40.41	46.00	-5.59	QP
892.3300	36.46	-3.28	33.18	46.00	-12.82	peak

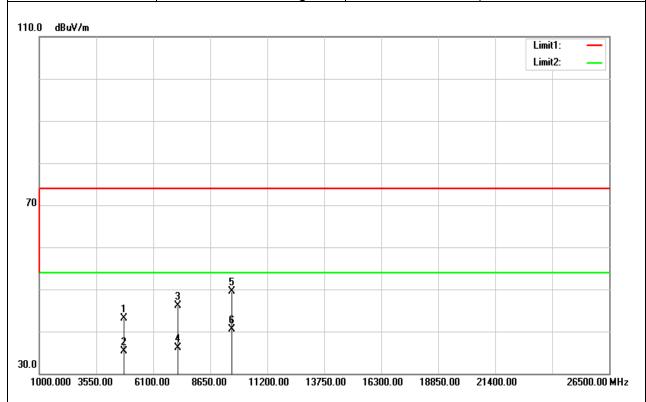
Test Mode:	BT Mode	Temp/Hum	27(°C)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 17, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
144.4600	44.52	-15.91	28.61	43.50	-14.89	peak
240.4900	54.09	-16.50	37.59	46.00	-8.41	peak
290.9300	50.00	-14.41	35.59	46.00	-10.41	peak
486.8700	45.16	-9.49	35.67	46.00	-10.33	peak
623.6400	36.70	-7.20	29.50	46.00	-16.50	peak
729.3700	38.84	-5.39	33.45	46.00	-12.55	peak

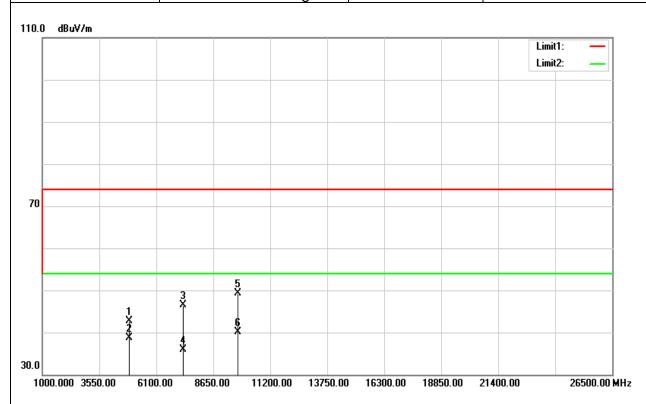
Above 1G Test Data

Test Mode:	BLE Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Average		



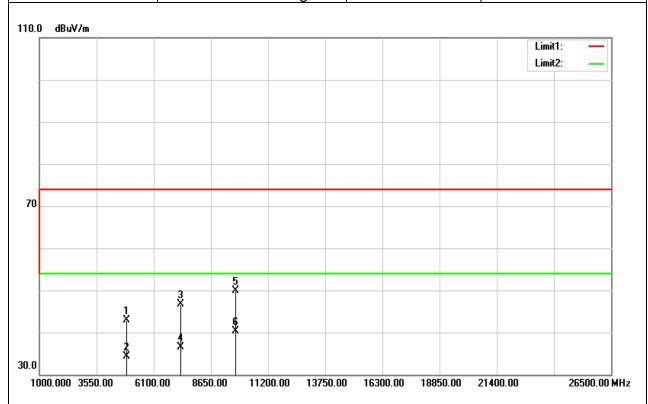
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	37.22	5.04	42.26	74.00	-31.74	peak
4804.000	33.55	5.04	38.59	54.00	-15.41	AVG
7206.000	33.02	12.62	45.64	74.00	-28.36	peak
7206.000	24.90	12.62	37.52	54.00	-16.48	AVG
9608.000	31.38	17.60	48.98	74.00	-25.02	peak
9608.000	22.51	17.60	40.11	54.00	-13.89	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	BLE Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	38.08	5.04	43.12	74.00	-30.88	peak
4804.000	30.34	5.04	35.38	54.00	-18.62	AVG
7206.000	33.39	12.62	46.01	74.00	-27.99	peak
7206.000	23.47	12.62	36.09	54.00	-17.91	AVG
9608.000	31.88	17.60	49.48	74.00	-24.52	peak
9608.000	22.91	17.60	40.51	54.00	-13.49	AVG

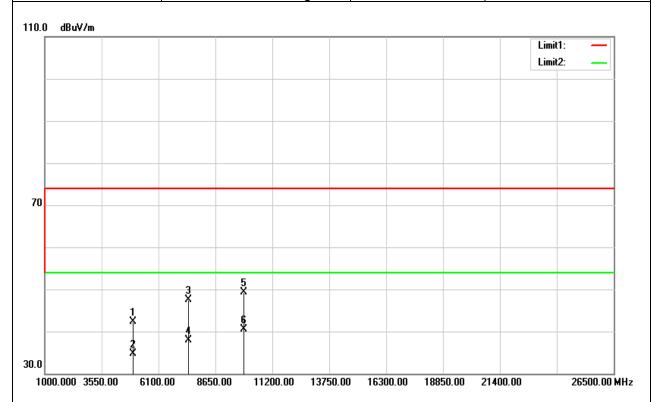
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	BLE Mid CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.000	37.50	5.25	42.75	74.00	-31.25	peak
4880.000	33.42	5.25	38.67	54.00	-15.33	AVG
7320.000	33.48	12.97	46.45	74.00	-27.55	peak
7320.000	22.98	12.97	35.95	54.00	-18.05	AVG
9760.000	31.67	17.60	49.27	74.00	-24.73	peak
9760.000	22.55	17.60	40.15	54.00	-13.85	AVG

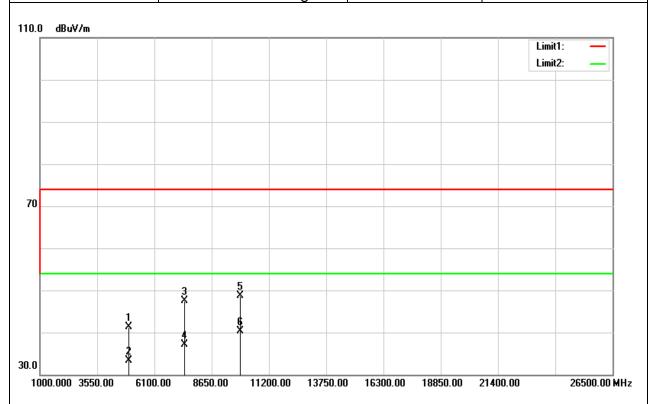
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	BLE Mid CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.000	37.69	5.25	42.94	74.00	-31.06	peak
4880.000	29.01	5.25	34.26	54.00	-19.74	AVG
7320.000	33.66	12.97	46.63	74.00	-27.37	peak
7320.000	23.59	12.97	36.56	54.00	-17.44	AVG
9760.000	32.29	17.60	49.89	74.00	-24.11	peak
9760.000	22.61	17.60	40.21	54.00	-13.79	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	BLE High CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	36.74	5.46	42.20	74.00	-31.80	peak
4960.000	29.23	5.46	34.69	54.00	-19.31	AVG
7440.000	34.13	13.33	47.46	74.00	-26.54	peak
7440.000	24.53	13.33	37.86	54.00	-16.14	AVG
9920.000	31.72	17.60	49.32	74.00	-24.68	peak
9920.000	22.92	17.60	40.52	54.00	-13.48	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	BLE High CH	Temp/Hum	27(°C)/ 53%RH
Test Item Harmonic		Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average		_

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	35.78	5.46	41.24	74.00	-32.76	peak
4960.000	27.92	5.46	33.38	54.00	-20.62	AVG
7440.000	34.12	13.33	47.45	74.00	-26.55	peak
7440.000	23.85	13.33	37.18	54.00	-16.82	AVG
9920.000	31.19	17.60	48.79	74.00	-25.21	peak
9920.000	22.69	17.60	40.29	54.00	-13.71	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit