

FCC RADIO TEST REPORT FCC ID: 2AOWK-3290

Product: Mobile Phone

Trade Mark: ulefone

Model No.: GQ3290

Note 19, Note 19 Ultra, Note 19 Pro, Note **Family Model:** 19E, Note 19S, Note 19 Lite, Note 19s, Note 19s Pro **Report No.:** S24082606905003

Issue Date: Oct. 09, 2024

Prepared for

Shenzhen Gotron Electronic CO.,LTD.

7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel. 0755-23200050 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	SU	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6	SE	FUP OF EQUIPMENT UNDER TEST	.10
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	. 10 . 11 . 12
7	TE	ST REQUIREMENTS	.14
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION 6DB BANDWIDTH DUTY CYCLE. MAXIMUM OUTPUT POWER. POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSIONS ANTENNA APPLICATION	.17 .26 .28 .29 .31 .33 .35 .36
8		ST RESULTS	
	8.2 M 8.3 -61 8.4 Oc 8.5 M 8.6 BA	JTY CYCLE	.43 .44 .50 .56 .62

NTEK 北测

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Gotron Electronic CO.,LTD.
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Manufacturer's Name:	Shenzhen Gotron Electronic CO.,LTD.
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Product description	
Product name:	Mobile Phone
Model and/or type reference:	GQ3290
Family Model:	Note 19, Note 19 Ultra, Note 19 Pro, Note 19E, Note 19S, Note 19 Lite, Note 19s, Note 19s Pro
Sample number	S240826069006
Date of Test	Aug. 26, 2024 ~ Oct. 09, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

Complied

TEST RESULT

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Mary Hu Reviewed : ______ Aaron Cheng Approved : ______ By : _____ By : ______ By : ______ By : ______ By : ______ By : _______By : _______By : _______By : _______By : ______By : _____By : _____By : _____By : ______By : ______By : ______By : ______By : _____By : _____By : _____By : ______By : _____By : ____By : _____By : _____By : _____By : _____By : _____By : ____By : _____By : _____By : _____By : ____By : _____By : ____By : _____By : ____By : _____By : ____By : ____By : _____By : _____By : ____By : _____By : _____By : _____By : ____By : _____By : ____By : _____By : _____By : _____By : _____By : ____ Prepared By Alex Li (Supervisor) (Project Engineer) (Manager)

SUMMARY OF TEST RESULTS								
	FCC Part15 (15.247), Subpart C							
Standard Section	Standard Section Test Item Verdict							
15.207	Conducted Emission	PASS						
15.247 (a)(2)	6dB Bandwidth	PASS						
15.247 (b)	PASS							
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS						
15.247 (e)	Power Spectral Density	PASS						
15.247 (d)	Band Edge Emission	PASS						
15.247 (d)	Spurious RF Conducted Emission	PASS						
15.203	Antenna Requirement	PASS						

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

 This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China
	Grienzhen, Guangaong, Grina

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

NTEK 北测[®]

4 GENERAL DESCRIPTION OF EUT

	Product Feature and Specification					
Equipment	Mobile Phone					
Trade Mark	ulefone					
FCC ID	2AOWK-3290					
Model No.	GQ3290					
Family Model	Note 19, Note 19 Ultra, Note 19 Pro, Note 19E, Note 19S, Note 19 Lite, Note 19s, Note 19s Pro					
Model Difference	All models are the same circuit and RF module, except for model names.					
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20)					
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;					
Number of Channels	11 channels for 802.11b/g/11n(HT20);					
Antenna Type	FPC Antenna					
Antenna Gain	1.2 dBi					
Adapter	Model: HJ-0502000-US Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A 10.0W					
Battery	DC 3.85V, 5000mAh, 19.250Wh					
Power supply	DC 3.85V from battery or DC 5V from adapter					
HW Version	L617A_V1					
SW Version	N/A					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History						
Report No.	Version	Description	Issued Date			
S24082606905003	Rev.01	Initial issue of report	Oct. 09, 2024			
	•	·				

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

ACCREDITED

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

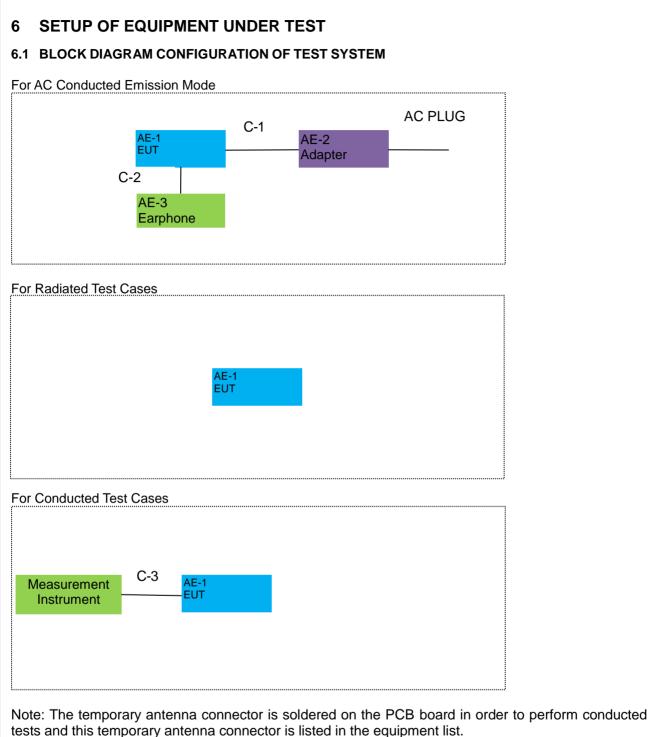
Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20/HT40):

0 \	
Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+(k-1)×5MHz k=1 to 11


EUT built-in battery-powered, the battery is fully-charged.

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output Power	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	1
Fower Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
			[]	
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
Dedicted Emissions Above				
Radiated Emissions Above 1GHz	11b/CCK	1 Mbps	1/6/11	1
10112	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item Equipment		Model/Type No.	Series No.	Note
AE-1	Mobile Phone GQ3290		N/A	EUT
AE-2	Adapter	HJ-0502000-US	N/A	Peripherals
AE-3	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Certificate #4298.01 Report No.: S24082606905003

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

ladiati	ond conducted	oot oquipiniont					
Item	Kind of Equipment			Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
2	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	raditeq	RadiMation	2023.1.3	RadiatedTest
4	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

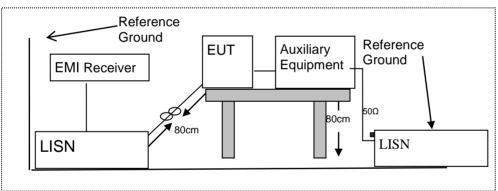
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Fragueney (MHz)	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

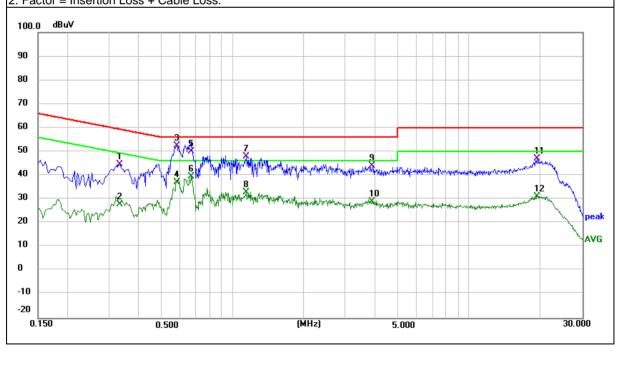
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

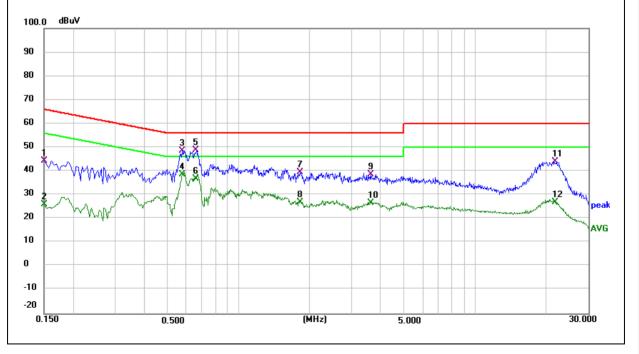

7.1.6 Test Results

EUT:	Mobile Phone	Model Name :	GQ3290
Temperature:	24.3 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3339	34.41	10.35	44.76	59.35	-14.59	QP
0.3339	17.53	10.35	27.88	49.35	-21.47	AVG
0.5820	41.50	10.85	52.35	56.00	-3.65	QP
0.5820	26.21	10.85	37.06	46.00	-8.94	AVG
0.6660	38.96	11.04	50.00	56.00	-6.00	QP
0.6660	28.48	11.04	39.52	46.00	-6.48	AVG
1.1380	35.93	12.02	47.95	56.00	-8.05	QP
1.1380	20.88	12.02	32.90	46.00	-13.10	AVG
3.8820	34.19	9.98	44.17	56.00	-11.83	QP
3.8820	19.04	9.98	29.02	46.00	-16.98	AVG
19.3380	34.29	12.64	46.93	60.00	-13.07	QP
19.3380	18.64	12.64	31.28	50.00	-18.72	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	GQ3290
Temperature:	24.3 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	34.93	9.44	44.37	66.00	-21.63	QP
0.1500	16.72	9.44	26.16	56.00	-29.84	AVG
0.5780	38.49	10.13	48.62	56.00	-7.38	QP
0.5780	28.44	10.13	38.57	46.00	-7.43	AVG
0.6580	38.50	10.30	48.80	56.00	-7.20	QP
0.6580	26.66	10.30	36.96	46.00	-9.04	AVG
1.8220	26.81	12.69	39.50	56.00	-16.50	QP
1.8220	14.18	12.69	26.87	46.00	-19.13	AVG
3.6220	29.49	9.20	38.69	56.00	-17.31	QP
3.6220	17.40	9.20	26.60	46.00	-19.40	AVG
21.8260	31.78	12.18	43.96	60.00	-16.04	QP
21.8260	14.80	12.18	26.98	50.00	-23.02	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FCC Fait 15.205, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency/(MHz)	Class B (dBuV/	′m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

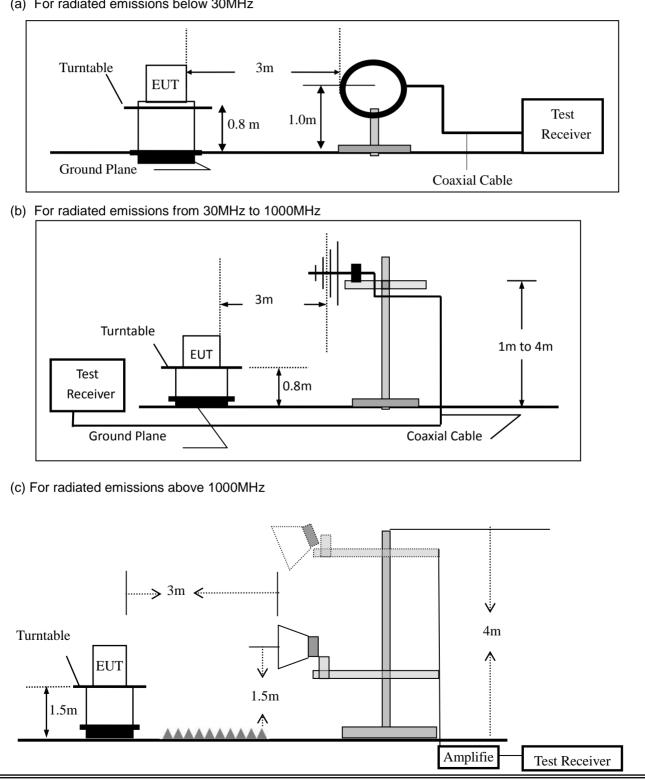
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 **Test Configuration**

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

g For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

ACCREDITED

Certificate #4298.01

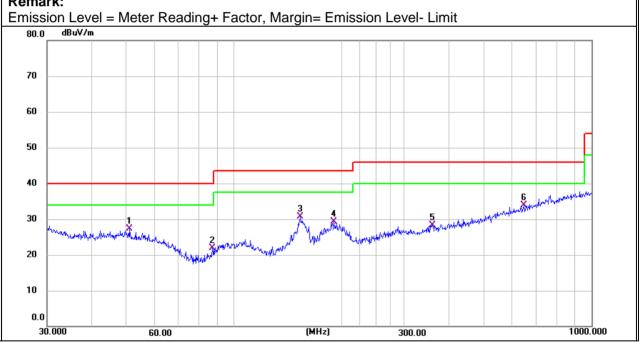
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Mobile Phone	Model No.:	GQ3290
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20)	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile Phone	Model Name :	GQ3290
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	802.11g CH11
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	50.9420	7.63	19.60	27.23	40.00	-12.77	QP
V	87.1117	6.84	15.03	21.87	40.00	-18.13	QP
V	153.2004	15.91	14.71	30.62	43.50	-12.88	QP
V	190.4050	12.00	17.23	29.23	43.50	-14.27	QP
V	359.1860	6.19	22.05	28.24	46.00	-17.76	QP
V	647.3856	6.83	27.17	34.00	46.00	-12.00	QP

Remark:

Polar	Frequen	су		eter ding	Factor	Emissi Leve		Limits	Margin	Remark
(H/V)	(MHz)		(dE	BuV)	(dB)	(dBuV/	m)	(dBuV/m)		
Н	46.1779	9	5.	71	19.66	25.3	7	40.00	-14.63	QP
Н	99.528	1	7.	18	17.89	25.0	7	43.50	-18.43	QP
Н	159.225	51	16	.34	15.04	31.3	3	43.50	-12.12	QP
Н	311.086	i7	10	.13	20.68	30.8	1	46.00	-15.19	QP
Н	404.666	i5	6.	60	23.07	29.6	7	46.00	-16.33	QP
Н	734.491	3	6.	58	28.87	35.4	5	46.00	-10.55	QP
80.0	dBu∀/m									
70										
60										
50										
40									6	W.M. my Mynu
30	n hand hand war and young			2	Å	M.M. Joseph and	have a flight	with the standard	Ny and which all had a second	
20 🗠	nhadelener (*******	r.a.woodwyw	ternet (March and June 1990	holoman all and a second		нт» .			
10										
0.0 30.00		60.0				MHz)		300.00		1000.000

		63	比讽	®	lac	
_	_	 				

UT:		Mo	bile Pho	one		Ν	lodel No.:		GQ3290	
Temp	perature:	20	°C			F	Relative Hum	idity:	48%	
Test	Mode:	80	2.11b/g/	n(HT20)		Т	est By:		Mary Hu	
All the	e modulatio	n modes	have be	een testeo	d, and the	e worst i	result was re	port as	below:	-
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emissio Level	n Limits	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/n	n) (dBµV/m)	(dB)		
				Low Cha	nnel (2412	MHz)(802	.11g)Above 1	G		
	4824.91	66.59	5.21	35.59	44.30	63.09	74.00	-10.91	Pk	Vertical
	4824.91	46.04	5.21	35.59	44.30	42.54	54.00	-11.46	AV	Vertical
	7235.68	64.97	6.48	36.27	44.60	63.12	74.00	-10.88	Pk	Vertical
	7235.68	51.60	6.48	36.27	44.60	49.75	54.00	-4.25	AV	Vertical
	4824.16	69.25	5.21	35.55	44.30	65.71	74.00	-8.29	Pk	Horizontal
	4824.16	50.06	5.21	35.55	44.30	46.52	54.00	-7.48	AV	Horizontal
	7236.77	67.16	6.48	36.27	44.52	65.39	74.00	-8.61	Pk	Horizontal
	7236.77	45.43	6.48	36.27	44.52	43.66	54.00	-10.34	AV	Horizontal
				Mid Char	nnel (2437	MHz)(802	.11g)Above 10	3		
	4874.33	67.09	5.21	35.66	44.20	63.76	74.00	-10.24	Pk	Vertical
	4874.33	45.03	5.21	35.66	44.20	41.70	54.00	-12.30	AV	Vertical
	7311.9	65.19	7.10	36.50	44.43	64.36	74.00	-9.64	Pk	Vertical
	7311.9	44.00	7.10	36.50	44.43	43.17	54.00	-10.83	AV	Vertical
	4874.16	66.57	5.21	35.66	44.20	63.24	74.00	-10.76	Pk	Horizontal
	4874.16	48.00	5.21	35.66	44.20	44.67	54.00	-9.33	AV	Horizontal
	7310.9	64.05	7.10	36.50	44.43	63.22	74.00	-10.78	Pk	Horizontal
	7310.9	44.82	7.10	36.50	44.43	43.99	54.00	-10.01	AV	Horizontal
				High Cha	nnel (2462	MHz)(802	2.11g)Above 1	G		
	4924.64	64.91	5.21	35.52	44.21	61.43	74.00	-12.57	Pk	Vertical
	4924.64	44.93	5.21	35.52	44.21	41.45	54.00	-12.55	AV	Vertical
	7385.78	62.69	7.10	36.53	44.60	61.72	74.00	-12.28	Pk	Vertical
	7385.78	47.10	7.10	36.53	44.60	46.13	54.00	-7.87	AV	Vertical
	4924.36	65.90	5.21	35.52	44.21	62.42	74.00	-11.58	Pk	Horizontal
	4924.36	46.01	5.21	35.52	44.21	42.53	54.00	-11.47	AV	Horizontal
	7386.45	67.06	7.10	36.53	44.60	66.09	74.00	-7.91	Pk	Horizontal
	7386.45	45.59	7.10	36.53	44.60	44.62	54.00	-9.38	AV	Horizontal

ACCREDITED

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2) Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

(3)"802.11g" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Spurious Emission in Restricted Band 2310MHz -18000MHz All the modulation modes have been tested, and the worst result was report as below:

I the modulat	the modulation modes have been tested, and the worst result was report as below:								
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				802	2.11b				
2310.00	66.52	2.97	27.80	43.80	53.49	74	-20.51	Pk	Horizontal
2310.00	46.47	2.97	27.80	43.80	33.44	54	-20.56	AV	Horizontal
2310.00	64.11	2.97	27.80	43.80	51.08	74	-22.92	Pk	Vertical
2310.00	49.50	2.97	27.80	43.80	36.47	54	-17.53	AV	Vertical
2390.00	70.01	3.14	27.21	43.80	56.56	74	-17.44	Pk	Vertical
2390.00	49.47	3.14	27.21	43.80	36.02	54	-17.98	AV	Vertical
2390.00	68.04	3.14	27.21	43.80	54.59	74	-19.41	Pk	Horizontal
2390.00	44.01	3.14	27.21	43.80	30.56	54	-23.44	AV	Horizontal
2483.50	67.01	3.58	27.70	44.00	54.29	74	-19.71	Pk	Vertical
2483.50	45.69	3.58	27.70	44.00	32.97	54	-21.03	AV	Vertical
2483.50	66.26	3.58	27.70	44.00	53.54	74	-20.46	Pk	Horizontal
2483.50	48.69	3.58	27.70	44.00	35.97	54	-18.03	AV	Horizontal
802.11g									
2310.00	66.34	2.97	27.80	43.80	53.31	74	-20.69	Pk	Horizontal
2310.00	44.76	2.97	27.80	43.80	31.73	54	-22.27	AV	Horizontal
2310.00	63.49	2.97	27.80	43.80	50.46	74	-23.54	Pk	Vertical
2310.00	51.08	2.97	27.80	43.80	38.05	54	-15.95	AV	Vertical
2390.00	70.31	3.14	27.21	43.80	56.86	74	-17.14	Pk	Vertical
2390.00	50.23	3.14	27.21	43.80	36.78	54	-17.22	AV	Vertical
2390.00	66.64	3.14	27.21	43.80	53.19	74	-20.81	Pk	Horizontal
2390.00	46.00	3.14	27.21	43.80	32.55	54	-21.45	AV	Horizontal
2483.50	65.37	3.58	27.70	44.00	52.65	74	-21.35	Pk	Vertical
2483.50	45.46	3.58	27.70	44.00	32.74	54	-21.26	AV	Vertical
2483.50	65.11	3.58	27.70	44.00	52.39	74	-21.61	Pk	Horizontal
2483.50	48.55	3.58	27.70	44.00	35.83	54	-18.17	AV	Horizontal
				802.	11n20				
2310.00	68.53	2.97	27.80	43.80	55.50	74	-18.50	Pk	Horizontal
2310.00	46.29	2.97	27.80	43.80	33.26	54	-20.74	AV	Horizontal
2310.00	65.46	2.97	27.80	43.80	52.43	74	-21.57	Pk	Vertical
2310.00	48.38	2.97	27.80	43.80	35.35	54	-18.65	AV	Vertical
2390.00	69.04	3.14	27.21	43.80	55.59	74	-18.41	Pk	Vertical
2390.00	48.77	3.14	27.21	43.80	35.32	54	-18.68	AV	Vertical
2390.00	65.99	3.14	27.21	43.80	52.54	74	-21.46	Pk	Horizontal
2390.00	45.69	3.14	27.21	43.80	32.24	54	-21.76	AV	Horizontal
2483.50	65.24	3.58	27.70	44.00	52.52	74	-21.48	Pk	Vertical
2483.50	45.52	3.58	27.70	44.00	32.80	54	-21.20	AV	Vertical
2483.50	63.46	3.58	27.70	44.00	50.74	74	-23.26	Pk	Horizontal
2483.50	48.75	3.58	27.70	44.00	36.03	54	-17.97	AV	Horizontal

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	70.93	4.04	29.57	44.70	59.84	74	-14.16	Pk	Vertical
3260	46.73	4.04	29.57	44.70	35.64	54	-18.36	AV	Vertical
3260	68.28	4.04	29.57	44.70	57.19	74	-16.81	Pk	Horizontal
3260	46.37	4.04	29.57	44.70	35.28	54	-18.72	AV	Horizontal
3332	68.51	4.26	29.87	44.40	58.24	74	-15.76	Pk	Vertical
3332	49.72	4.26	29.87	44.40	39.45	54	-14.55	AV	Vertical
3332	68.65	4.26	29.87	44.40	58.38	74	-15.62	Pk	Horizontal
3332	49.56	4.26	29.87	44.40	39.29	54	-14.71	AV	Horizontal
17797	51.24	10.99	43.95	43.50	62.68	74	-11.32	Pk	Vertical
17797	32.7	10.99	43.95	43.50	44.14	54	-9.86	AV	Vertical
17788	48.57	11.81	43.69	44.60	59.47	74	-14.53	Pk	Horizontal
17788	31.01	11.81	43.69	44.60	41.91	54	-12.09	AV	Horizontal

"802.11g" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \geq 3*RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3290
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Mary Hu

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

a) A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.

b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 µs.)

Measure T_{total} and T_{on}

Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3290
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Mary Hu

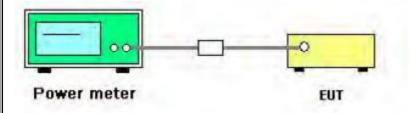
Test data reference attachment.

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	РК

7.5.4 Test Setup

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.9.1.3 of ANSI C63.10

7.5.6 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	Mobile Phone	Model No.:	GQ3290
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Mary Hu

Test data reference attachment.

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 *RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3290
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Mary Hu

Test data reference attachment.

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ3290
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Mary Hu

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

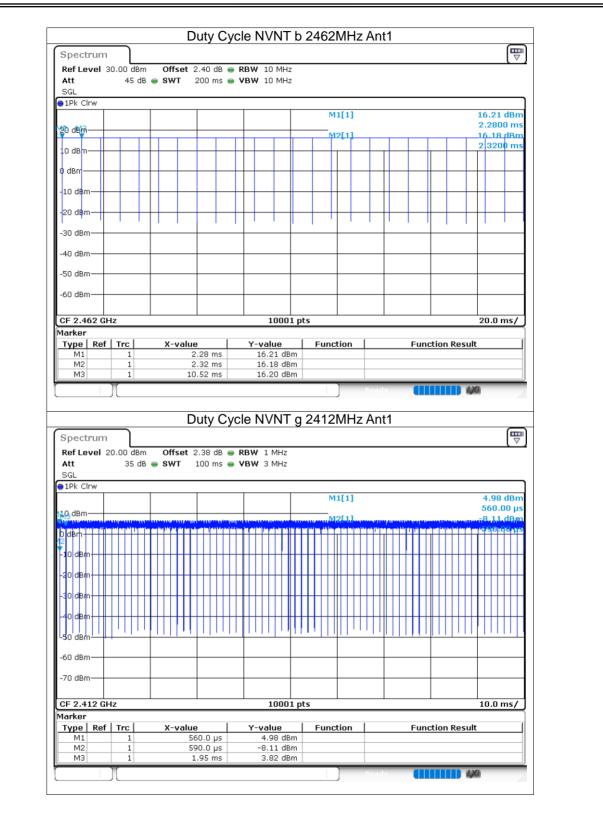
7.9.2 Result

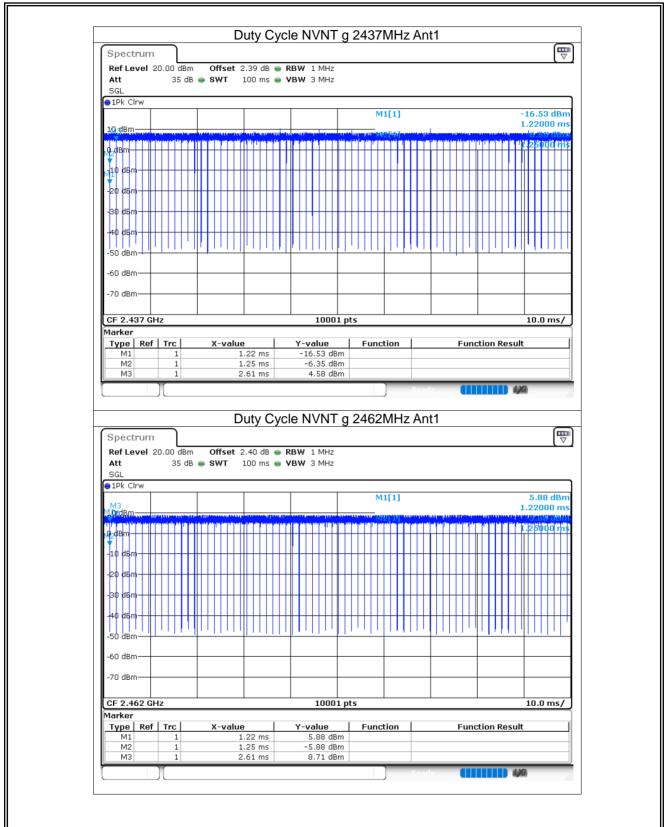
The EUT antenna is permanent attached FPC Antenna (Gain: 1.2dBi). It comply with the standard requirement.

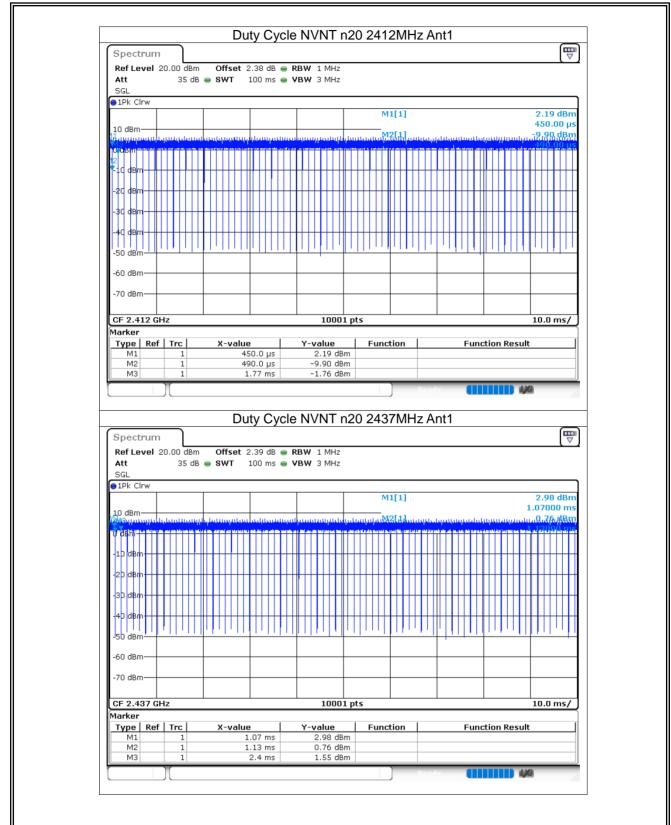

8 TEST RESULTS

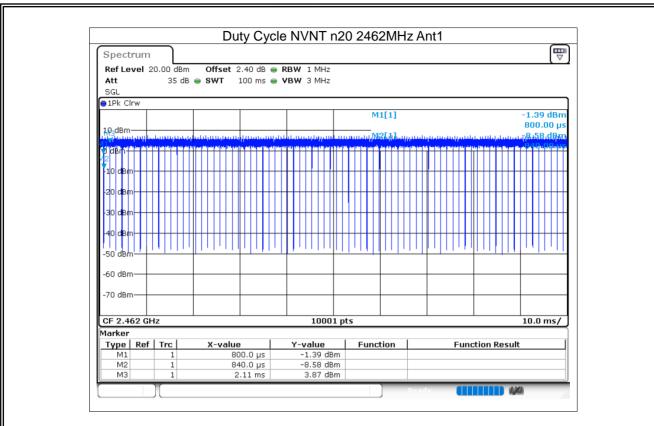
8.1 DUTY CYCLE

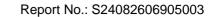
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	Ant1	99.74	0.01	0.12
NVNT	b	2437	Ant1	99.8	0.01	0.06
NVNT	b	2462	Ant1	99.75	0.01	0.12
NVNT	g	2412	Ant1	97.95	0.09	0.74
NVNT	g	2437	Ant1	97.95	0.09	0.74
NVNT	g	2462	Ant1	97.9	0.09	0.74
NVNT	n20	2412	Ant1	97.71	0.1	0.78
NVNT	n20	2437	Ant1	97.78	0.1	0.79
NVNT	n20	2462	Ant1	97.83	0.1	0.79











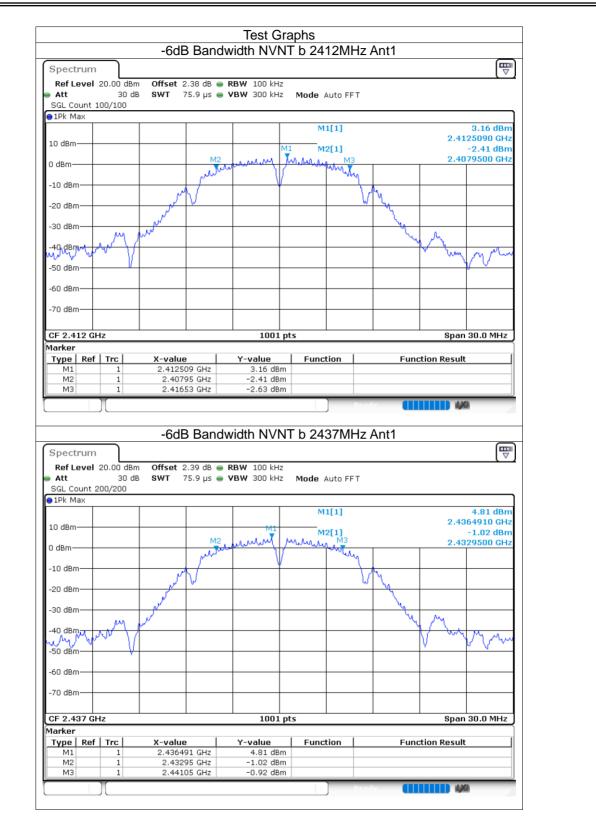
8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	13.25	30	Pass
NVNT	b	2437	Ant1	14.78	30	Pass
NVNT	b	2462	Ant1	14.3	30	Pass
NVNT	g	2412	Ant1	13.84	30	Pass
NVNT	g	2437	Ant1	14.2	30	Pass
NVNT	g	2462	Ant1	14.84	30	Pass
NVNT	n20	2412	Ant1	11.11	30	Pass
NVNT	n20	2437	Ant1	11.74	30	Pass
NVNT	n20	2462	Ant1	12.28	30	Pass

ACCREDITED

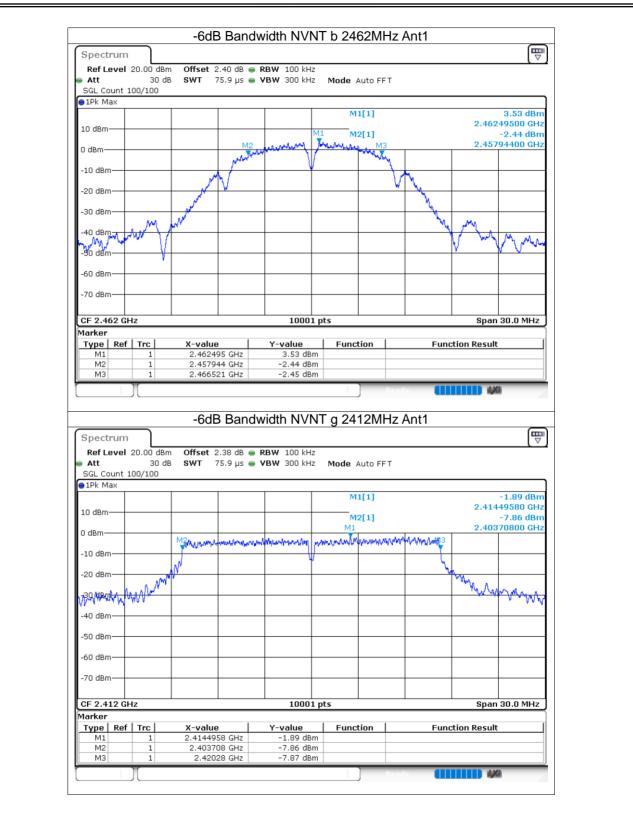
Certificate #4298.01

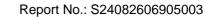
ilac-MRA

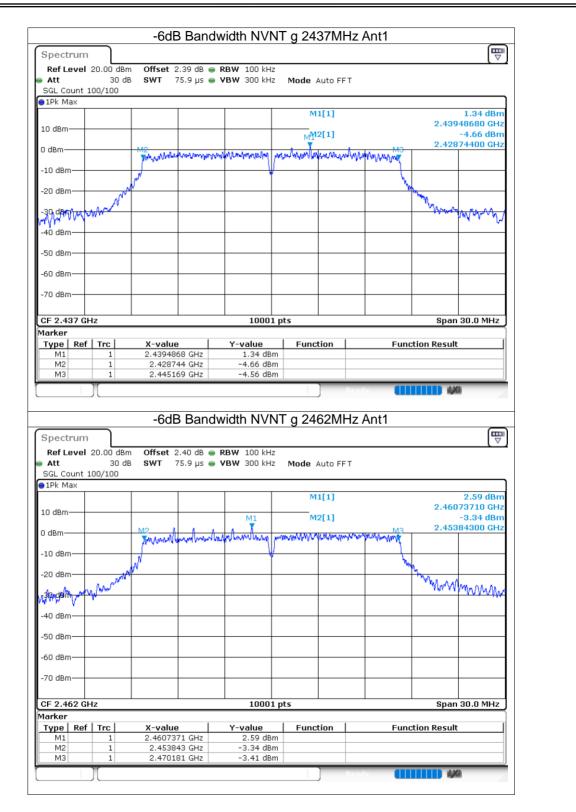


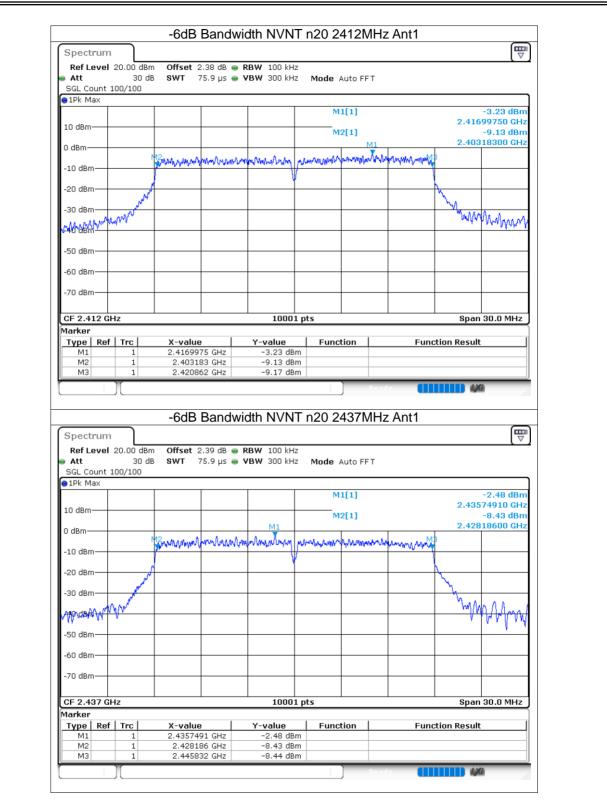
8.3 -6DB BANDWIDTH

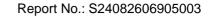
0.0 000 07						
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	8.58	0.5	Pass
NVNT	b	2437	Ant1	8.1	0.5	Pass
NVNT	b	2462	Ant1	8.577	0.5	Pass
NVNT	g	2412	Ant1	16.572	0.5	Pass
NVNT	g	2437	Ant1	16.425	0.5	Pass
NVNT	g	2462	Ant1	16.338	0.5	Pass
NVNT	n20	2412	Ant1	17.679	0.5	Pass
NVNT	n20	2437	Ant1	17.646	0.5	Pass
NVNT	n20	2462	Ant1	17.664	0.5	Pass

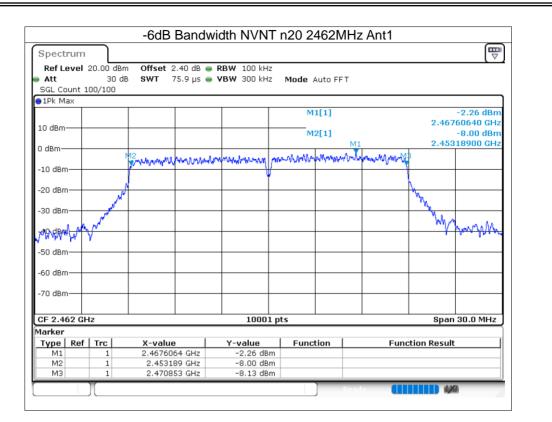


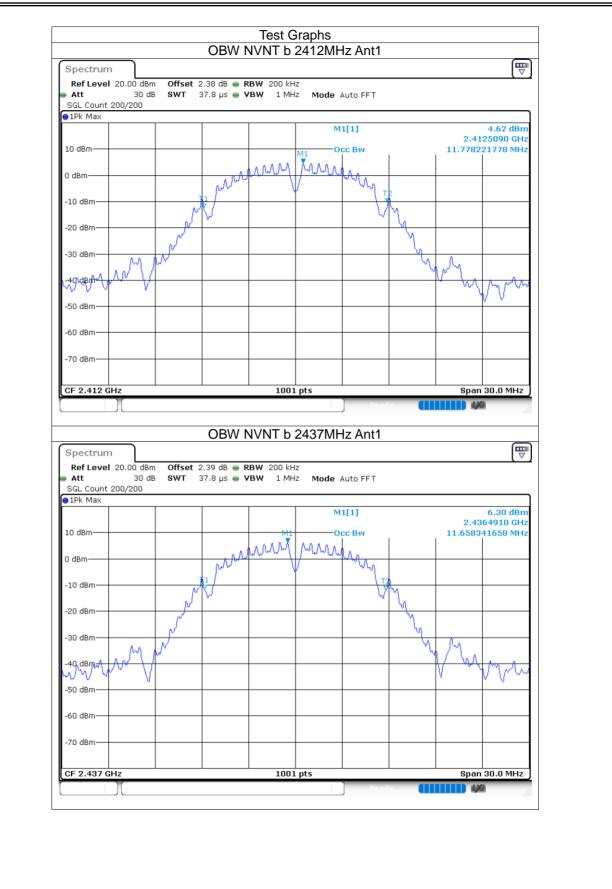






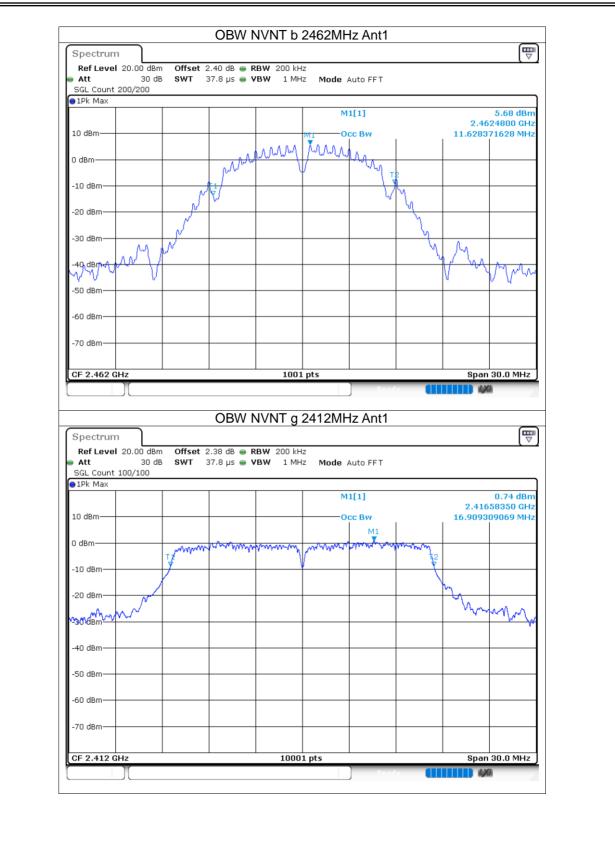


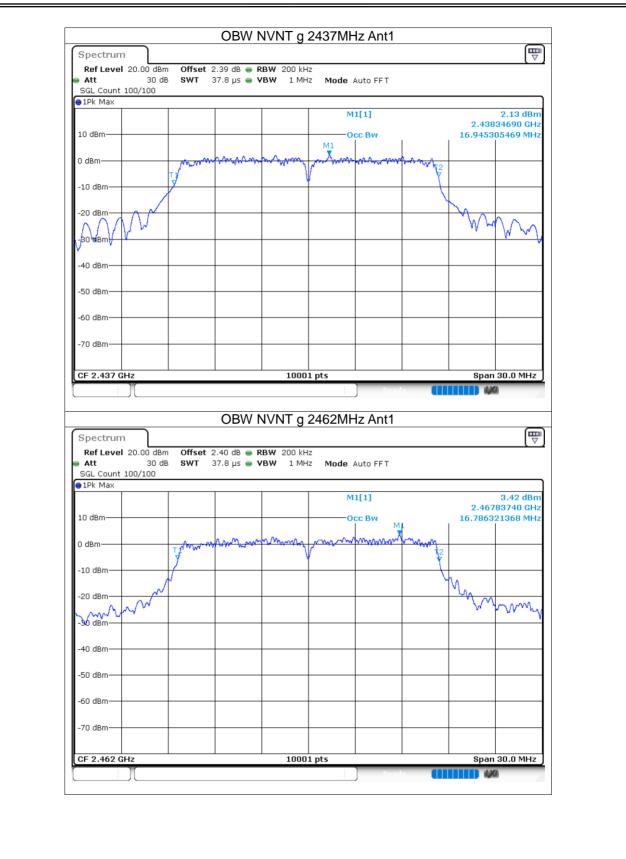




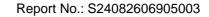
8.4 OCCUPIED CHANNEL BANDWIDTH

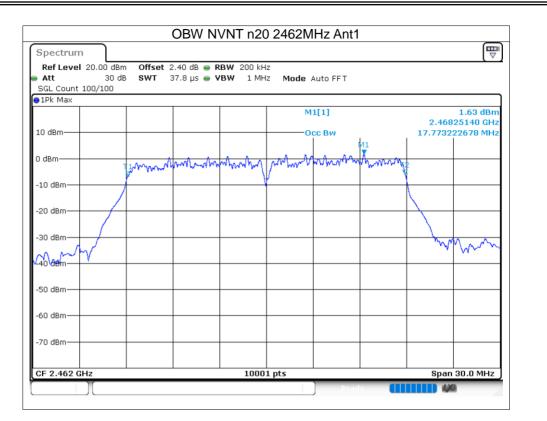
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	b	2412	Ant1	11.778
NVNT	b	2437	Ant1	11.658
NVNT	b	2462	Ant1	11.628
NVNT	g	2412	Ant1	16.909
NVNT	g	2437	Ant1	16.945
NVNT	g	2462	Ant1	16.786
NVNT	n20	2412	Ant1	17.782
NVNT	n20	2437	Ant1	17.704
NVNT	n20	2462	Ant1	17.773

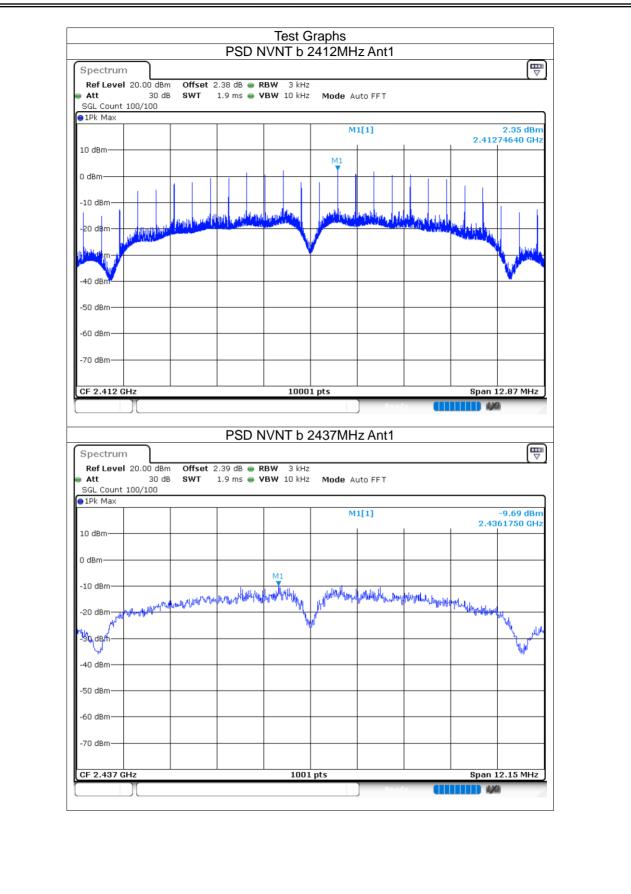






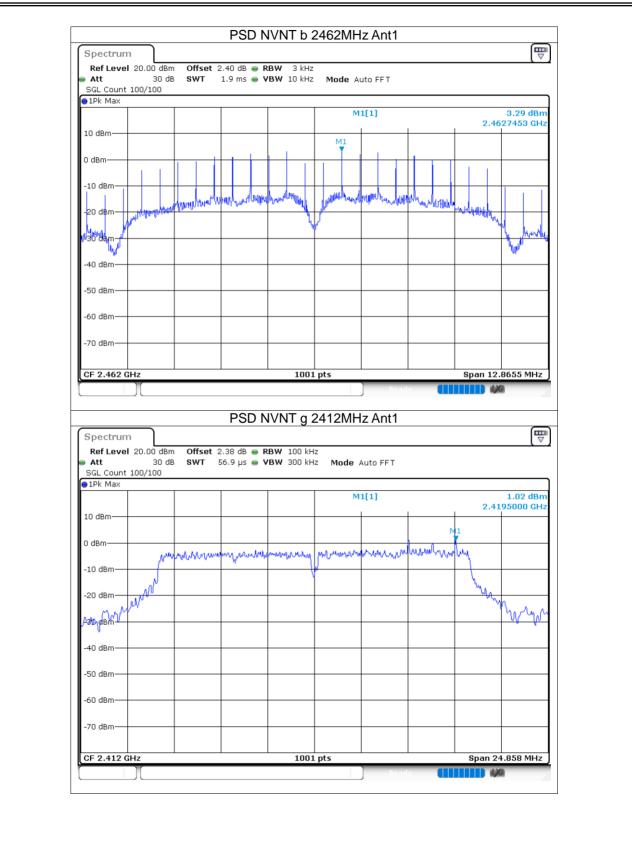


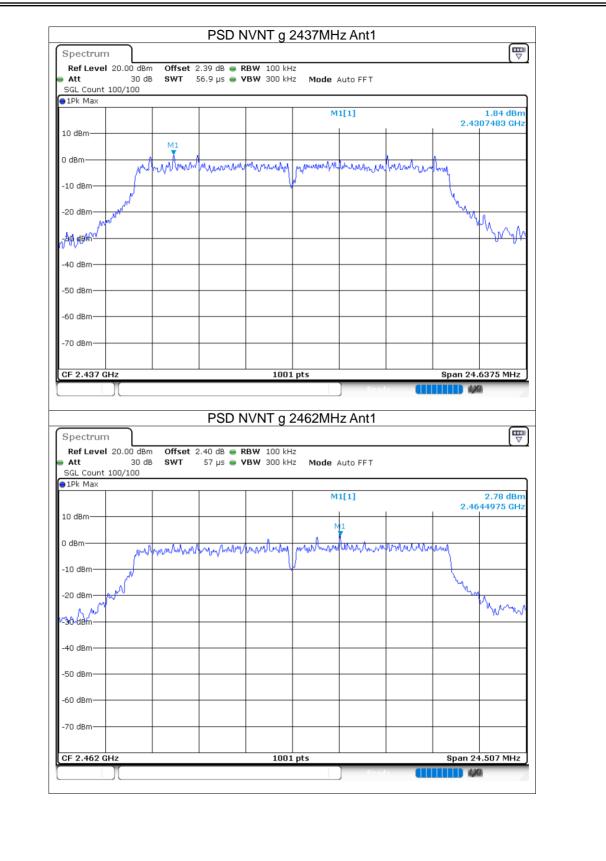


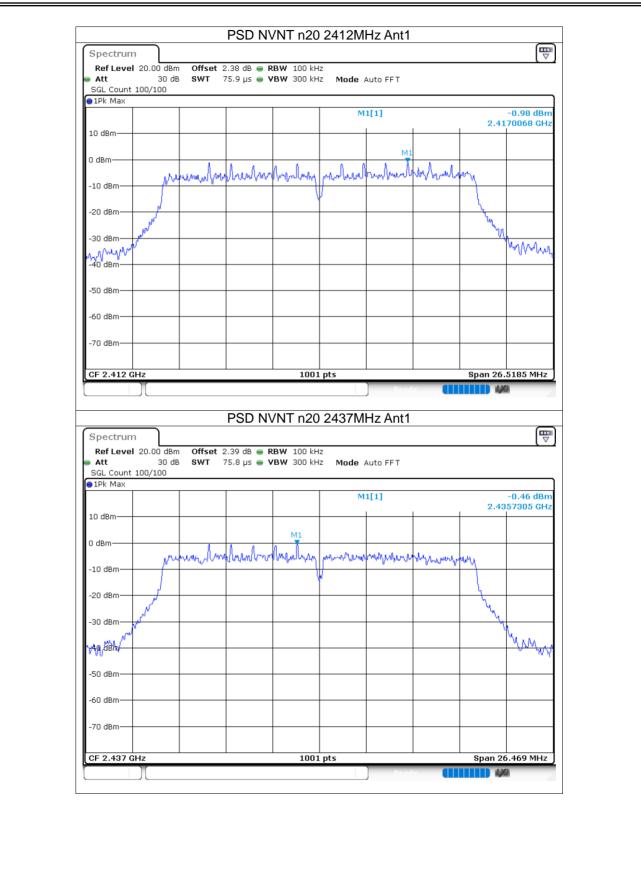


8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	2.35	8	Pass
NVNT	b	2437	Ant1	-9.69	8	Pass
NVNT	b	2462	Ant1	3.29	8	Pass
NVNT	g	2412	Ant1	1.02	8	Pass
NVNT	g	2437	Ant1	1.84	8	Pass
NVNT	g	2462	Ant1	2.78	8	Pass
NVNT	n20	2412	Ant1	-0.98	8	Pass
NVNT	n20	2437	Ant1	-0.46	8	Pass
NVNT	n20	2462	Ant1	-0.49	8	Pass



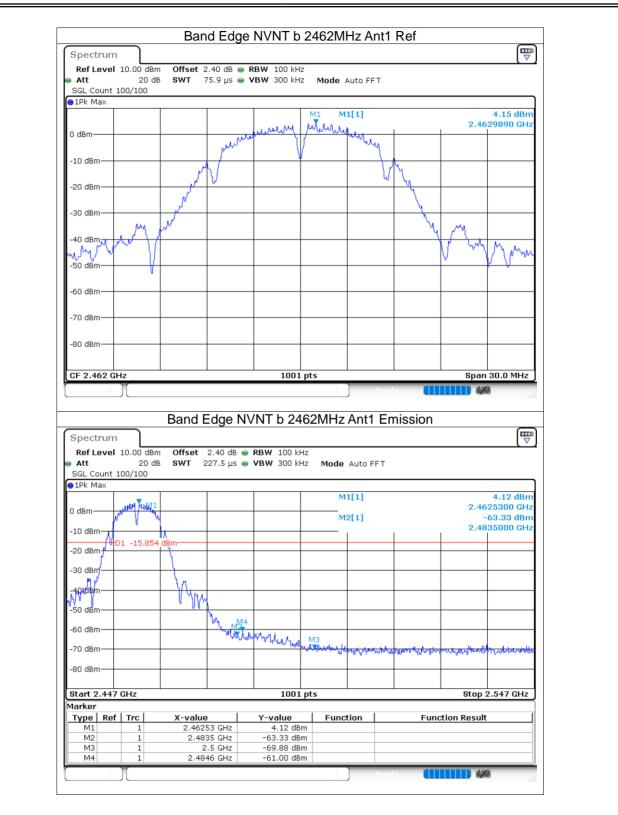


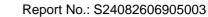


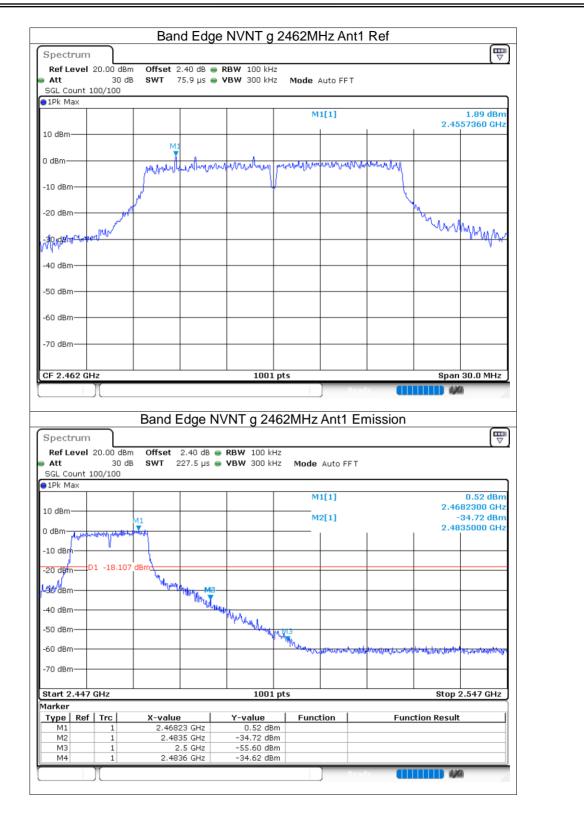
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB SW		● RBW 100 kH ● VBW 300 kH				
SGL Count 100 1Pk Max	/100			lz Mode Au	to FFT		
DIPK Max							
				M1[1]	2.4	-0.49 dBm 557270 GHz
10 dBm							
		41					
0 dBm			Mer I.	1.4	MMunuhan	. Marine	
-10 dBm	prowbal	June north	New Mylow Crand	Manana	. An all all a server	y w www	
10 0.011				r			
-20 dBm	N N					\	
	N					- L V	
-30 dBm							hu.d
40, dBm							Why
100							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.462 GHz			1001	L pts		Span 2	6.496 MHz

8.6 BAND EDGE

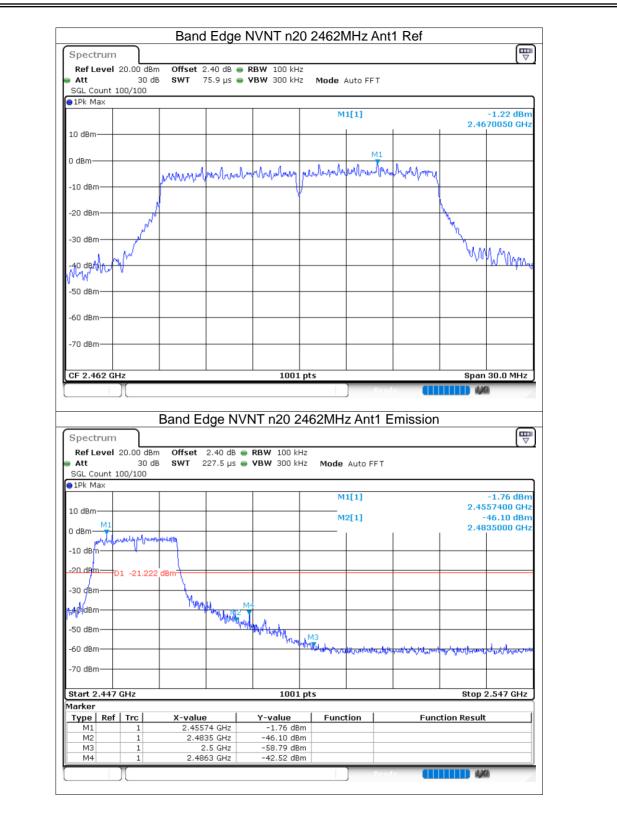
	02					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-66.7	-20	Pass
NVNT	b	2462	Ant1	-65.15	-20	Pass
NVNT	g	2412	Ant1	-40.52	-20	Pass
NVNT	g	2462	Ant1	-36.51	-20	Pass
NVNT	n20	2412	Ant1	-41.99	-20	Pass
NVNT	n20	2462	Ant1	-41.29	-20	Pass



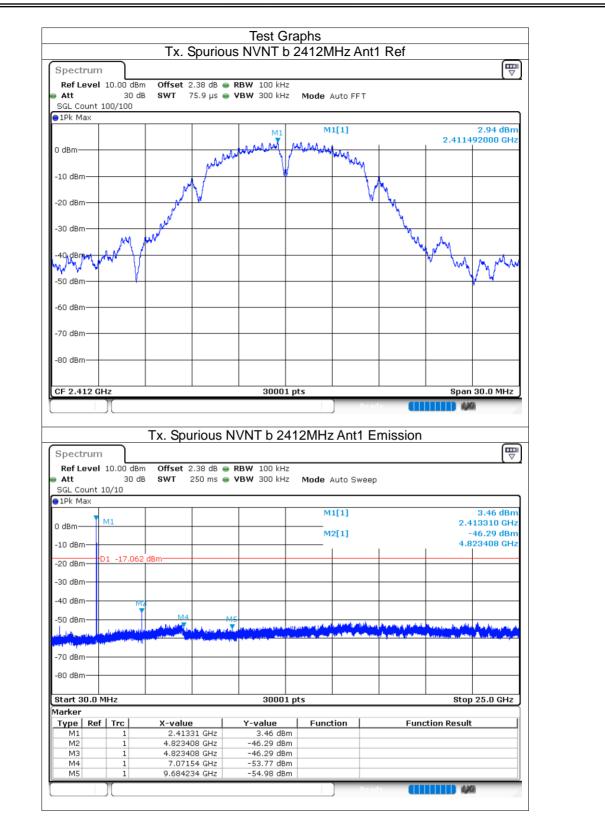




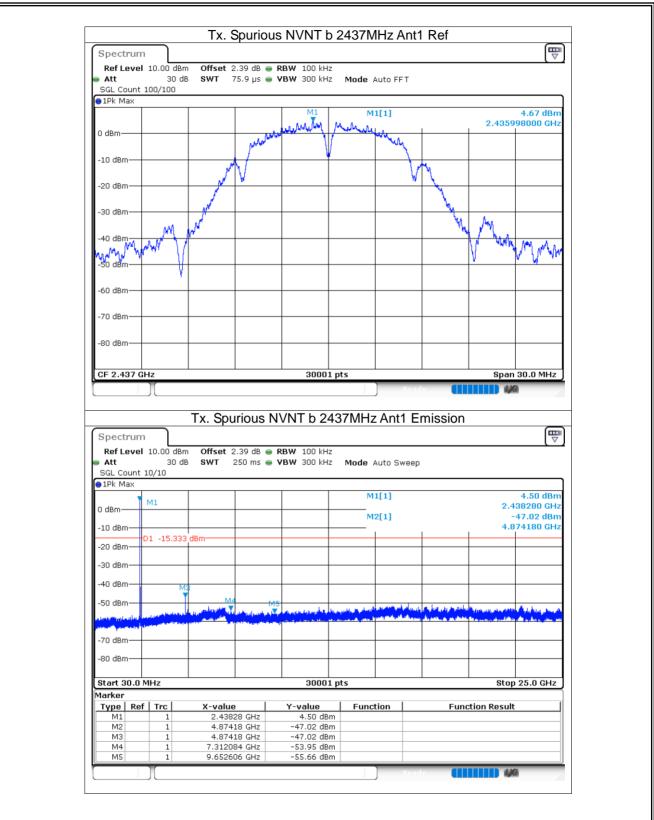
Spectrur	n								
	20.00 dBn			RBW 100 kHz					
Att SGL Count	30 dE 100/100	3 SWT 75	.9 µs 😑 '	VBW 300 kHz	Mode A	uto FFT			
● 1Pk Max	. 100/100								
					M1	l[1]			1.15 dBm
10 dBm					1			2.4	170050 GHz
TO UBIII						M1			
0 dBm						•			
		summe	udugrolm	metrophy	Norsberrilly	whenthe	Mumming		
-10 dBm—									
		l.N° ∣		1			<u>۲</u>		
-20 dBm—								Myn -	
1-1-00-1	MANNA							Mar	- analon the the
¹ 36/48H	yyy m								a and and and
-40 dBm									-
-50 dBm—									
-60 dBm—									
70.45									
-70 dBm—									
CF 2.412	GHz			1001	pts			Spa	n 30.0 MHz
		Band Ed	dge N\	/NT g 24	12MHz	Ant1 En	nission		
Spectrur						Ant1 En	nission		
	n 1 20.00 dBn 30 dE	n Offset 2.	.38 dB 👄	RBW 100 kH	Iz		nission		
Ref Leve Att SGL Count	el 20.00 dBn 30 dB	n Offset 2.	.38 dB 👄		Iz		nission		
Ref Leve Att	el 20.00 dBn 30 dB	n Offset 2.	.38 dB 👄	RBW 100 kH	iz Iz Mode i	Auto FFT	nission		
Ref Leve Att SGL Count 1Pk Max	el 20.00 dBn 30 dB	n Offset 2.	.38 dB 👄	RBW 100 kH	iz Iz Mode i		nission	2.4	.1.15 dBm 1.69600 GHz
Ref Leve Att SGL Count	el 20.00 dBn 30 dB	n Offset 2.	.38 dB 👄	RBW 100 kH	iz iz Mode i M1	Auto FFT	nission		1.15 dBm •169600 GHz ⋈2ֳ8.67 dBm
Ref Leve Att SGL Count 1Pk Max	el 20.00 dBn 30 dB	n Offset 2.	.38 dB 👄	RBW 100 kH	iz iz Mode i M1	Auto FFT	nission		1.15 dBm 169600 GHz
Ref Leve Att SGL Count 1Pk Max	el 20.00 dBn 30 dB	n Offset 2.	.38 dB 👄	RBW 100 kH	iz iz Mode i M1	Auto FFT	nission		1.15 dBm •169600 GHz ⋈2ֳ8.67 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm	el 20.00 dBn 30 dE t 100/100	n Offset 2. 3 SWT 22	.38 dB 👄	RBW 100 kH	iz Mode . 	Auto FFT			1.15 dBm •169600 GHz ⋈2ֳ8.67 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm	el 20.00 dBn 30 dB	n Offset 2. 3 SWT 22	.38 dB 👄	RBW 100 kH	iz Mode . 	Auto FFT			1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm	el 20.00 dBn 30 dE t 100/100	n Offset 2. 3 SWT 22	.38 dB 👄	RBW 100 kH	iz Iz Mode M1 M2	Auto FFT [[1] 2[1]			1.15 dBm •169600 GHz ⋈2ֳ8.67 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm	el 20.00 dBn 30 dE t 100/100	n Offset 2. 3 SWT 22	.38 dB 👄	RBW 100 kH	iz Iz Mode M1 M2	Auto FFT [[1] 2[1]			1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	el 20.00 dBn 30 dE t 100/100	n Offset 2. 3 SWT 22	.38 dB 👄	RBW 100 kH	iz Iz Mode M1 M2	Auto FFT [[1] 2[1]			1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Leve Att SGL Count PIPK Max 10 dBm	el 20.00 dBn 30 dE t 100/100	dBm	38 dB ● 7.5 µs ●	RBW 100 kH	iz Iz Mode M1 M2	Auto FFT [[1] 2[1]			1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	el 20.00 dBn 30 dE t 100/100	n Offset 2. 3 SWT 22	38 dB ● 7.5 µs ●	RBW 100 kH	iz Mode . 	Auto FFT [[1] 2[1]			1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm	el 20.00 dBn 30 dE t 100/100	dBm	38 dB ● 7.5 µs ●	RBW 100 kH	iz Iz Mode M1 M2	Auto FFT [[1] 2[1]			1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	20.00 dBn 30 dE 100/100	dBm	38 dB ● 7.5 µs ●	RBW 100 kH	IZ IZ Mode M M1 M2	Auto FFT [[1] 2[1]		honen ky ploto	1.15 dBm 169600 GHz M28.67 dBm 00000 GHz Muse Muse Muse 1.15 dBm 1.15 dBm 1.
Ref Level Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.32	20.00 dBn 30 dE 100/100	dBm	38 dB ● 7.5 µs ●	RBW 100 kH	IZ IZ Mode M M1 M2	Auto FFT [[1] 2[1]		honen ky ploto	1.15 dBm 169600 GHz M28.67 dBm 000000 GHz
Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.32 Marker	20.00 dBn 30 dE 100/100	dBm	38 dB ● 7.5 µs ●	RBW 100 kH	IZ Mode MI M1 M2	Auto FFT	MSU	Stop	1.15 dBm 169600 GHz ₩28.67 dBm ØDp000 GHz ₩1 ₩1 ₩1 ₩1 ₩1 ₩1 12.427 GHz
Ref Level Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.32 Marker Type Re M1	20.00 dBn 30 dE 100/100	о Offset 2. 3 SWT 22 ² dBm dBm dBm x ² value 2.41696	38 dB ● 7.5 µs ●	RBW 100 kH VBW 300 kH	iz Mode . M1 M2 ytherest with a pts Funct	Auto FFT	MSU	honen ky ploto	1.15 dBm 169600 GHz ₩28.67 dBm ØDp000 GHz ₩1 ₩1 ₩1 ₩1 ₩1 ₩1 12.427 GHz
Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.32 Marker Type	20.00 dBn 30 dE 100/100	а Offset 2. 3 SWT 22 ⁻ dBm dBm dBm dBm dBm dBm z z z z z z z z z z z z z z z z z z	38 dB ● 7.5 µs ●	RBW 100 kH VBW 300 kH Image: State of the state of th	12 12 Mode M1 M2 	Auto FFT	MSU	Stop	1.15 dBm 169600 GHz ₩28.67 dBm ØDp000 GHz ₩1 ₩1 ₩1 ₩1 ₩1 ₩1 12.427 GHz

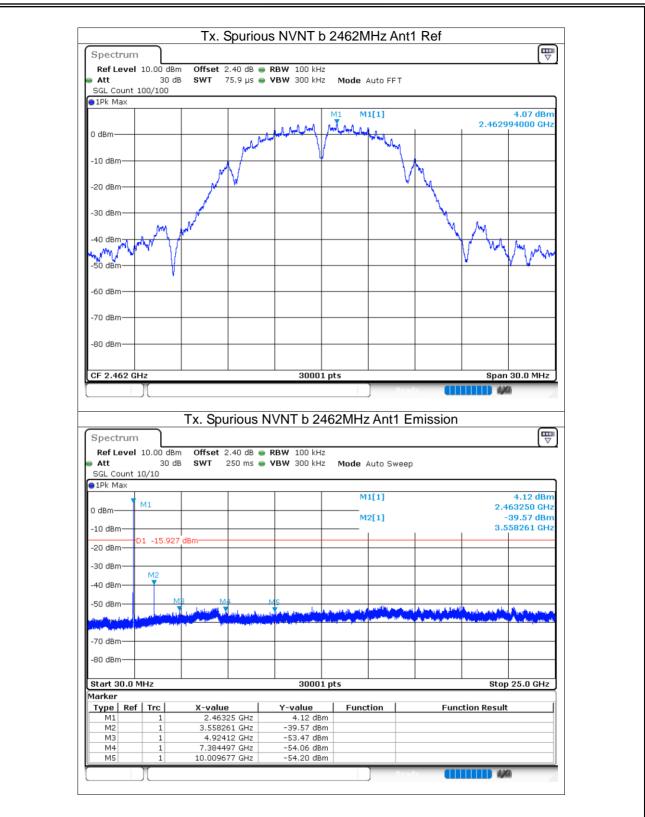


SGL Count	el 20.00 dBn 30 dB			(BW 100 kH) /BW 300 kH)		Auto FFT			
●1Pk Max					M	1[1]			-3.31 dBm
10 dBm								2.4	191330 GHz
0 dBm				harrow		n thomas with the	M1		
-10 dBm—		ranna	PIUNINANIAN	round	parter a shore a	14 J 2400 J 040 0	e and we have d		
-20 dBm—				Ì					
-20 0011	<i>س</i> ر (Wy the	
-30 dBm—	Martin							M M	M
U40 dBm	เ⊮บ							Ŷ	Marma
-50 dBm—									
-60 dBm—									
-30 ubiii-									
-70 dBm—									+
25.0.440									
CF 2.412	GHz			1001	pts			Spa	n 30.0 MHz
Spectrur		Band E	dge NVN	NT n20 2	412MH] Read z Ant1 E	mission		
🛛 Att	m al 20.00 dBm 30 dB	n Offset	2.38 dB 👄	NT n20 2 RBW 100 kH VBW 300 kH	łz		mission		
Ref Leve	m al 20.00 dBm 30 dB	n Offset	2.38 dB 👄	RBW 100 kH	łz		mission		(\
Ref Leve Att SGL Count P1Pk Max	m al 20.00 dBm 30 dB	n Offset	2.38 dB 👄	RBW 100 kH	lz Iz Mode		mission		-1.23 dBm
Ref Leve Att SGL Count	m al 20.00 dBm 30 dB	n Offset	2.38 dB 👄	RBW 100 kH	Hz Hz Mode M	Auto FFT	mission	2.4	-1.23 dBm 195600 GHz
Ref Leve Att SGL Count P1Pk Max	m al 20.00 dBm 30 dB	n Offset	2.38 dB 👄	RBW 100 kH	Hz Hz Mode M	Auto FFT		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm	m al 20.00 dBm 30 dB	n Offset	2.38 dB 👄	RBW 100 kH	Hz Hz Mode M	Auto FFT		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count PPK Max 10 dBm	m al 20.00 dBm 30 dB	n Offset 3 SWT 2	2.38 dB 👄	RBW 100 kH	Hz Hz Mode M	Auto FFT		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm- 0 dBm- -10 dBm-	m 20.00 dBm 30 dE 100/100	n Offset 3 SWT 2	2.38 dB 👄	RBW 100 kH	iz iz Mode M 	Auto FFT 1[1] 2[1]		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 9 1Pk Max 10 dBm	m 20.00 dBm 30 dE 100/100	n Offset 3 SWT 2	2.38 dB 👄	RBW 100 kH	iz iz Mode M 	Auto FFT 1[1] 2[1]		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm	m 20.00 dBm 30 dE 100/100	n Offset 3 SWT 2	2.38 dB 👄	RBW 100 kH	iz iz Mode M 	Auto FFT 1[1] 2[1]		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 30 dBr 30 dB t 100/100	dBm	2.38 dB 👄	RBW 100 kH	Hz Hz Mode M	Auto FFT 1[1] 2[1]		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	n 30 dBr 30 dB t 100/100	dBm	2.38 dB • 227.5 µs •	RBW 100 kH	iz iz Mode M 	Auto FFT 1[1] 2[1]		2.4	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 9 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	n 20.00 dBn 30 dE 100/100	dBm	2.38 dB • 227.5 µs •	RBW 100 kH	Hz Hz M M M M	Auto FFT 1[1] 2[1]		2.4 2.4 White war with	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz
Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.32 Marker	n 30 dB 30 dB 100/100	dBm	2.38 dB • 227.5 µs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M M M	Auto FFT 1[1] 2[1]	under a second	2.4 2.4 10-10-10-10-10-10-10-10-10-10-10-10-10-1	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 00000 GHz -37,49 dBm -37,49 dBm -3
Ref Leve Att SGL Count 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm Start 2.32 Marker Type Res M1	n 30 dB 30 dB 100/100	dBm	2.38 dB • 227.5 µs •	RBW 100 kH	اع Mode اع Mode الم الم الم الم الم الم الم الم الم الم	Auto FFT 1[1] 2[1]	under a second	2.4 2.4 White you Will	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 00000 GHz -37,49 dBm -37,49 dBm -3
Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm 50 dBm -70 dBm Start 2.32 Marker Type	m 30 dBm	dBm dBm x-value 2.419	2.38 dB • 227.5 µs •	RBW 100 kH	الت Mode	Auto FFT 1[1] 2[1]	under a second	2.4 2.4 10-10-10-10-10-10-10-10-10-10-10-10-10-1	-1.23 dBm 195600 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 000000 GHz -37,49 dBm 00000 GHz -37,49 dBm -37,49 dBm -37



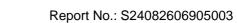
8.7 CONDUCTED RF SPURIOUS EMISSION Verdict Condition Mode Frequency (MHz) Antenna Max Value (dBc) Limit (dBc) NVNT 2412 -49.23 -20 Pass b Ant1 NVNT b 2437 Ant1 -51.69 -20 Pass NVNT 2462 Ant1 -43.63 -20 Pass b NVNT -20 Pass 2412 Ant1 -45.85 g -20 Pass NVNT 2437 Ant1 -52.34 g NVNT 2462 Ant1 -53.15 -20 Pass g NVNT n20 2412 Ant1 -47.75 -20 Pass Pass NVNT n20 2437 Ant1 -48.2 -20 NVNT n20 2462 Ant1 -45.87 -20 Pass





Spectrum	<u> </u>					
Ref Level Att SGL Count	20.00 d 30			Mode Auto FFT		
⊖1Pk Max						
				M1[1]		-1.71 dBm 2.4159860 GHz
10 dBm						2.4139000 GH2
0 dBm				M1		
		palapathanta	My polar manager	moutput why why why why	with share the	
-10 dBm			¥			
		N			<u>)</u>	
-20 dBm	A	1997 1997				
jakalika (NAN [*]					man
No Maria	νγ					10 V V
-40 dBm						
ie dom						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.412 G	Hz		1001 pt			
Spectrum		Tx. Spurious		Re	ady Contract	Span 30.0 MHz
Spectrum Ref Level	20.00 d	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1		Span 30.0 MHz
-	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	Re		
Ref Level Att	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1 Mode Auto Swee		
Ref Level Att SGL Count 1Pk Max	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1		-2.33 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1 Mode Auto Swee M1[1]		
Ref Level Att SGL Count 1Pk Max	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1 Mode Auto Swee		-2.33 dBm 2.4230 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1 Mode Auto Swee M1[1]		-2.33 dBm 2.4230 GHz -47.56 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 d 30	Bm Offset 2.38 dB (NVNT g 241	I2MHz Ant1 Mode Auto Swee M1[1]		-2.33 dBm 2.4230 GHz -47.56 dBm
Ref Level Att SGL Count IPk Max O dBm O dBm -10 dBm -10 dBm	20.00 d 30	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	I2MHz Ant1 Mode Auto Swee M1[1]		-2.33 dBm 2.4230 GHz -47.56 dBm
Ref Level Att SGL Count IPk Max O dBm O dBm -10 dBm -10 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	I2MHz Ant1 Mode Auto Swee M1[1]		-2.33 dBm 2.4230 GHz -47.56 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	I2MHz Ant1 Mode Auto Swee M1[1]		-2.33 dBm 2.4230 GHz -47.56 dBm
Mef Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	Mode Auto Sweet	ep	-2.33 dBm 2.4230 GHz -47.56 dBm
Main Mile Att SGL Count SGL Count 10 dBm 10 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	Mode Auto Sweet	ep	-2.33 dBm 2.4230 GHz -47.56 dBm
Mef Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (10 dBm	NVNT g 241	Mode Auto Sweet	ep	-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	Mode Auto Sweet	ep	-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	Mode Auto Sweet	ep	-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 d 30 10/10	Bm Offset 2.38 dB (dB SWT 265 ms (NVNT g 241	Mode Auto Swee	ep	-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker	D1 -21.7	Bm Offset 2.38 dB (dB SWT 265 ms (10 dBm 10 dBm 13 M4 M 14 M 14 M	NVNT g 241	Mode Auto Sweet		-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 30.0 Marker Type	20.00 d 30 10/10 D1 -21.7	Bm Offset 2.38 dB (dB SWT 265 ms)	NVNT g 241	Mode Auto Swee	ep	-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker	20.00 d 30 10/10 D1 -21.7 MHz MHz	Bm Offset 2.38 dB (dB SWT 265 ms (10 dBm 10 dBm 13 M4 M 14 M 14 M	NVNT g 241	Mode Auto Sweet		-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type M1 M2 M3	20.00 d 30 10/10 D1 -21.7 MHz MHz	Bm Offset 2.38 dB (dB SWT 265 ms)	NVNT g 241	Mode Auto Sweet		-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz
Mef Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 30.0 Marker Type Mark	20.00 d 30 10/10 D1 -21.7 MHz MHz	Bm Offset 2.38 dB (dB SWT 265 ms)	NVNT g 241	Mode Auto Sweet		-2.33 dBm 2.4230 GHz -47.56 dBm 2.5182 GHz

-					is NVNT g				Ē
Spect		L							
	evel	20.00 di			RBW 100 kHz				
Att SGL Cr	unt 1	30 .00/100	dB SWT 7	эга ћа 🖷	VBW 300 kHz	Mode Auto F	- 1		
O 1Pk M		.00/ 100							
						M1[1]			2.43 dBm
								2.4	394880 GHz
10 dBm	+								
						M1			
0 dBm-			andmerry	withm	moundary w	marchart	al Martine Los		
			(a box		i W				
-10 dBn	n				Ť.		- t		
	_		J					h	
-20 dBn		N	N					M.	
00 JD-	1 10	Marin						L NA	white white
-30 dBr	len'	M.,							A AR AN AR
-40 dBn									
-50 dBn									
-JU UBN									
-60 dBn									
oo ubli	Τ								
-70 dBn									
-70 ubli	·								
GF 2.4	37 GH	lz	Tx. Spu	irious N	1001 p		Postv III	Spai	n 30.0 MHz)
Spect	rum				NVNT g 243		Produ 1	Spar	m 30.0 MHz)
Spect Ref L	rum)(20.00 d	3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant		Spar	
Spect Ref L Att	rum evel)(3m Offset 2	2.39 dB 👄	NVNT g 243			Spar	
Spect Ref L	rum evel)(3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant		Spar	
Spect Ref L Att SGL Co	rum evel)(3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant		Spar	
Spect Ref L Att SGL Co	evel)(3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1]			-1.02 dBm 2.4500 GHz
Spect RefL Att SGL Co 1Pk M 10 dBm	evel)(3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL Cc 1Pk M 10 dBm 0 dBm-	evel)(3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1]			-1.02 dBm 2.4500 GHz
Spect RefL Att SGL Co 1Pk M 10 dBm	evel)(3m Offset 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1]			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL Cc 1Pk M 10 dBm 0 dBm-	evel)(Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1]			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL CC 1Pk M 10 dBm 0 dBm- -10 dBm -20 dBn	evel	20.00 di 30 0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1]			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect RefL SGL Cc IPk M 10 dBm 0 dBm- -10 dBm	evel	20.00 di 30 0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1]			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL CC 1Pk M 10 dBm 0 dBm- -10 dBm -20 dBn	M1	20.00 di 30 0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1] M2[1]			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL Cc 1Pk M 10 dBm -10 dBm -20 dBm -20 dBn -30 dBn	mum 1 mum 1	20.00 d 30 .0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1] M2[1]	weep		-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL CC 1Pk M 10 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	M1	20.00 di 30 0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243 RBW 100 kHz	37MHz Ant Mode Auto S M1[1] M2[1]			-1.02 dBm 2.4500 GHz -49.92 dBm
Spect Ref L Att SGL Cc 1Pk M 10 dBm -10 dBm -20 dBm -20 dBn -30 dBn	M1	20.00 d 30 .0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243	37MHz Ant Mode Auto S M1[1] M2[1]	weep		-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L Att SGL CC 1Pk M 10 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	M1 M1 M1 M1	20.00 d 30 .0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243	37MHz Ant Mode Auto S M1[1] M2[1]	weep		-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL Cc ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	M1 M1 M1 M1	20.00 d 30 .0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243	37MHz Ant Mode Auto S M1[1] M2[1]	weep		-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL Cc ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm		20.00 d 30 0/10	Bm Offset 2 dB SWT 2	2.39 dB 👄	NVNT g 243	37MHz Ant Mode Auto S M1[1] M2[1]	weep		-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL CC 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm Start 3 Marker	m m m m m m m m m m m m m m m m m m m	20.00 di 30 0/10 11 -17.5	Sm Offset 2 dB SWT 2		NVNT g 243	87MHz Ant Mode Auto S M1[1] M2[1] M2 M2 A		1 	-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL Co 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 3 Marker Type	m m m m m m m m m m m m m m m m m m m	20.00 dl 30 0/10	Bin Offset 2 dB SWT 2		NVNT g 243	37MHz Ant Mode Auto S M1[1] M2[1]			-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL CC 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm Start 3 Marker	m m m m m m m m m m m m m m m m m m m	20.00 di 30 0/10 11 -17.5	am Offset 2 dB SWT 2 55 dBm 2 אייראלעליע אייראלעליע אייראלעליע אייראלעליע אייראלעליע אייראלעליע אייראלעליע ג-value		NVNT g 243	87MHz Ant Mode Auto S M1[1] M2[1] M2 M2 A		1 	-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL Cc 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -70 dBm Start 3 Marker Type M1 M2 M3	m m m m m m m m m m m m m m m m m m m	20.00 dl 30 0/10 1 -17.5 Hz IHz	Sm Offset 2 dB SWT 2 55 dBm 3 2 M4 4 10		NVNT g 24: RBW 100 kHz VBW 300 kHz 	87MHz Ant Mode Auto S M1[1] M2[1] M2 M2 A		1 	-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz
Spect Ref L SGL CC PIPK M 10 dBm- -10 dBm- -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 3 Marker Type M1 M2	m m m m m m m m m m m m m m m m m m m	20.00 d 30 0/10 1 -17.5 	Bin Offset 2 dB SWT 2 55 dBm 355 dBm 32 M4 34 May 2000 2000 2000 2000 2000 2000 2000 200		NVNT g 243 RBW 100 kHz VBW 300 kHz 	87MHz Ant Mode Auto S M1[1] M2[1] M2 M2 A		1 	-1.02 dBm 2.4500 GHz -49.92 dBm 6.3355 GHz


Spectru	m									□
Ref Lev Att SGL Cour	el 20	30			■ RBW 100 kHz ■ VBW 300 kHz		uto FFT			(~)
⊖1Pk Max										
						M1	[1]			2.79 dBm
10 dBm—								1	2.46	44880 GHz
10 000						M1				
0 dBm	_					untering	anto calvo	الم المراجع		
			Marino	mphilippin	mound	hollings for Dana alle	he him a d	manger		
-10 dBm—	-			_	¥			+		
			J ²					- Vu	h.	
-20 dBm—		, J	<u>~</u>						M.	
	<u>а</u> .	MM							"Mub	munn
NIMPENPEC,	why	r								- Month
-40 dBm—										
-40 UBM-										
-50 dBm—				_						
-60 dBm—	_									
-70 dBm—	-									
CF 2.462	GHz				1001	nts			Span	30.0 MHz
			Tx. Sp	ourious	NVNT g 24		Ant1 E	iv 🛄		
Spectru Ref Lev Att).00 dł 30	Sm Offset	: 2.40 dB (NVNT g 24	l62MHz				
Ref Lev	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	l62MHz				
Ref Lev Att	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	62MHz Mode A	uto Sweep			
Ref Lev Att SGL Cour 1Pk Max	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	62MHz Mode A				.0.02 dBm
Ref Lev Att SGL Cour	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	Mode A	uto Sweep			0.02 dBm 2.4760 GHz 50.36 dBm
Ref Lev Att SGL Cour 1Pk Max	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	Mode A	uto Sweer			0.02 dBm 2.4760 GHz
Ref Lev Att SGL Cour 1Pk Max	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	Mode A	uto Sweer			0.02 dBm 2.4760 GHz 50.36 dBm
Ref Lev SGL Cour PIPK Max 10 dBm 0 dBm -10 dBm	el 20	30	Sm Offset	: 2.40 dB (NVNT g 24	Mode A	uto Sweer			0.02 dBm 2.4760 GHz 50.36 dBm
Ref Lev Att SGL Cour 1Pk Max 10 dBm— 0 dBm— -10 dBm— -20 dBm—	el 20	30	Bm Offset dB SWT	: 2.40 dB (NVNT g 24	Mode A	uto Sweer			0.02 dBm 2.4760 GHz 50.36 dBm
Ref Lev Att SGL Cour 1Pk Max 10 dBm 0 dBm -10 dBm	el 20	30	Bm Offset dB SWT	: 2.40 dB (NVNT g 24	Mode A	uto Sweer			0.02 dBm 2.4760 GHz 50.36 dBm
Ref Lev Att SGL Cour 1Pk Max 10 dBm— 0 dBm— -10 dBm— -20 dBm—	el 20	30	Bm Offset dB SWT	: 2.40 dB (NVNT g 24	Mode A	uto Sweer			0.02 dBm 2.4760 GHz 50.36 dBm
Ref Lev Att SGL Cour 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	el 20	30 '10 -17.2:	Sm Offset dB SWT	: 2.40 dB (265 ms (NVNT g 24	Mode A	27			0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	el 20	30 '10 -17.2:	Sm Offset dB SWT	: 2.40 dB (265 ms (NVNT g 24	Mode A	27			0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour PIPK Max 10 dBm	el 20	30	Sm Offset dB SWT	: 2.40 dB (265 ms (NVNT g 24	Mode A	27			0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour 1Pk Max 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm	el 20	30 '10 -17.2:	Sm Offset dB SWT	: 2.40 dB (265 ms (NVNT g 24	Mode A	27			0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour IPk Max 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	el 20 ht 10/	30 (10 -17.2:	Sm Offset dB SWT	: 2.40 dB (265 ms (NVNT g 24	Mode A Mode A M1 M2	27			0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour IPK Max 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.	el 20 ht 10/	30 (10 -17.2:	Sm Offset dB SWT	: 2.40 dB (265 ms (NVNT g 24	Mode A Mode A M1 M2	27			0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour 9 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm Start 30. Marker Type		30 '10 -17.2 pt-dhav z	3m Offset dB SWT	2.40 dB (265 ms (NVNT g 24	Mode A Mode A M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	2 2 2	0 		0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour 91Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm To dBm -70 dBm -70 dBm Start 30. Marker M1		30 /10 -17.2: , , , , , , , , , , , , , , , , , , ,	Am Offset dB SWT	2.40 dB 265 ms	NVNT g 24 RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 kHz NUT NUT NUT NUT NUT NUT	Mode A Mode A M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	2 2 2	0 	: 	0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour 91Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Marker Type		30 '10 -17.2 pt-dhav z	Amount of the second se	2.40 dB (265 ms (NVNT g 24	Mode A Mode A M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	2 2 2	0 	: 	0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz
Ref Lev Att SGL Cour 1Pk Max 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30. Marker Type R M1 M2		30 '10 -17.2 x z Frc 1 1	۲۰۰۰ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹	2.40 dB (265 ms)	NVNT g 24 RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 kHz VBW 300 kHz 100 kHz VBW 300 kHz 100 kHz VBW 300 kHz 100 kHz 0.02 dBn -50.36 dBn	Mode A Mode A M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	2 2 2	0 	: 	0.02 dBm 2.4760 GHz 50.36 dBm 5.9385 GHz

Spect	rum			-						E
-		20.00 dB	m Offcot 3		RBW 100 kH	7				
Att	evei	20.00 UD 30 d			VBW 300 kH		Auto FFT			
SGL C	ount	100/100		_						
⊖1Pk M	lax									
						M	1[1]			-3.31 dBm
10 - 10								1	2.41	73650 GHz
10 dBm										
0 dBm-										
			proportion	mound	mansuray	pulmentally	Warmen W	when when		
-10 dBr	n-t		Í							
00 JD-			h						n	
-20 dBr	n-t	1	,						4	
		and the second							ma a	
-30 dBr	n	.0							M.M.	A harden and
AN AB	-VrA	'VV								MARMAN
-40 dBr	n-+									
-50 dBr	n									
60 Jp-	_									
-60 dBr	"									
70 -10-										
-70 dBr	"									
CF 2.4	12 G	Hz			1001				0	
		J	Tx. Spur	ious NV	/NT n20 :) Rear Iz Ant1	emissio		30.0 MHz)
		20.00 dB	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MF				(The second seco
Ref L Att	.evel	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	′NT n20∶	2412MF				
Ref L Att	evel	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MF				
Ref L Att	evel	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode /	Auto Sweep		n	
Ref L Att SGL Co 1Pk M	ount	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode /			n	
Ref L Att SGL Co 1Pk M 10 dBm	ount lax	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL Co 1Pk M	ount lax	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz
Ref L Att SGL Co 1Pk M 10 dBm	ount lax M1	20.00 dB 30 d	m Offset 2	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL CC 1Pk M 10 dBm 0 dBm-	ount lax M1	20.00 dB 30 d 10/10	m Offset 2 B SWT :	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL CC 1Pk M 10 dBm 0 dBm-	ount lax M1	20.00 dB 30 d 10/10	m Offset 2 B SWT :	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL CC 1Pk M 10 dBm 0 dBm-	evel	20.00 dB 30 d	m Offset 2 B SWT :	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L SGL C(1Pk M 10 dBm 0 dBm- -10 dBr -20 dBr -30 dBr	evel	20.00 dB 30 d 10/10	m Offset 2 B SWT :	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL CC 1Pk M 10 dBm 0 dBm- -10 dBm -20 dBr -30 dBr -40 dBr	evel	20.00 dB 30 d 10/10	m Offset 2 B SWT :	2.38 dB 👄 I	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L SGL C(1Pk M 10 dBm 0 dBm- -10 dBr -20 dBr -30 dBr	evel	20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT	2.38 dB	(NT n20) RBW 100 KH	2412MH	Auto Sweep 1[1] 2[1]		n 2	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL CC 1Pk M 10 dBm 0 dBm- -10 dBm -20 dBr -30 dBr -40 dBr	evel	20.00 dB 30 d 10/10	m Offset 2 B SWT	2.38 dB 👄 1 265 ms 👄 '	(NT n20) RBW 100 KH	2412MH ^z Mode / M	Auto Sweep 1[1] 2[1]			-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL Cd 10 dBm 10 dBm -10 dBm -20 dBr -20 dBr -40 dBr -50 dBr -50 dBr		20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT	2.38 dB	(NT n20) RBW 100 KH	2412MH	Auto Sweep 1[1] 2[1]			-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L Att SGL Cc 1Pk M 10 dBm -10 dBm -20 dBr -30 dBr -40 dBr -50 dBr		20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT	2.38 dB	(NT n20) RBW 100 KH	2412MH	Auto Sweep 1[1] 2[1]			-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L SGL CC 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm	n n n n n n n n n n n n n n n n n n n	20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT	2.38 dB		2412MH 2 Mode / M	Auto Sweep 1[1] 2[1]		n 	-1.87 dBm 2.3970 GHz 51.07 dBm 5.7267 GHz
Ref L SGL CC SGL CC 1PK M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 3		20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT	2.38 dB	(NT n20) RBW 100 KH	2412MH 2 Mode / M	Auto Sweep 1[1] 2[1]		n 	-1.87 dBm 2.3970 GHz 51.07 dBm
Ref L SGL CC 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm		20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT	2.38 dB		2412MH 2 Mode / M	Auto Sweep 1[1] 2[1]		n 	-1.87 dBm 2.3970 GHz 51.07 dBm 5.7267 GHz
Ref L Att SGL CC PIPK M 10 dBm -10 dBm -10 dBm -20 dBr -30 dBr -30 dBr -30 dBr -30 dBr -70 dBr Start 3 Warker Type M1	evel	20.00 dB 30 c 10/10 D1 -23.31	m Offset 2 B SWT :	2.38 dB 265 ms	/NT n20 2	2412MH	Auto Sweep 1[1] 2[1]		n 1: 	-1.87 dBm 2.3970 GHz 51.07 dBm 5.7267 GHz
Ref L Att SGL CC SGL CC SG	evel	20.00 dB 30 c 10/10 D1 -23.31 WHz WHz Trc 1 1	m Offset 2 B SWT 2 2 dBm- 2 dB	2.38 dB 265 ms ///////////////////////////////////	/NT n20 /	2412MH	Auto Sweep 1[1] 2[1]		n 1: 	-1.87 dBm 2.3970 GHz 51.07 dBm 5.7267 GHz
Ref L Att SGL CC 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -70 dBm Start 3 Marker Type M1 M2 M3	evel	20.00 dB 30 c 10/10 D1 -23.31 WHz MHz I Trc 1 1 1	m Offset 2 B SWT 2 2 dBm 2 dBm 2 dBm 4 dBm 2 dBm	2.38 dB 265 ms ///////////////////////////////////	/NT n20 . RBW 100 kH vBW 300 kH 	2412MH	Auto Sweep 1[1] 2[1]		n 1: 	-1.87 dBm 2.3970 GHz 51.07 dBm 5.7267 GHz
Ref L Att SGL CC SGL CC SG	evel	20.00 dB 30 c 10/10 D1 -23.31 WHz WHz Trc 1 1	m Offset 2 B SWT : 2 dBm 2 dBm 2 dBm 4 4 5 72 4 74 4 7,28;	2.38 dB 265 ms ///////////////////////////////////	/NT n20 /	2412MH	Auto Sweep 1[1] 2[1]		n 1: 	-1.87 dBm 2.3970 GHz 51.07 dBm 5.7267 GHz

Spect	rum				NVNT n2					₽
-		20.00 dBn	Offset 3	2 30 dB 👄	RBW 100 kHz	,				Į∨,
Att		30 dE			VBW 300 kHz		Auto FFT			
		00/100								
⊖1Pk M	ax					M	1[1]			-2.84 dBm
							1(1)		2.4	394880 GHz
10 dBm										
0 dBm-						M1		manyahara		
-10 dBn			man	num	mannew	hunnham	hallannarth	www.		
-10 080					I V					
-20 dBn	ו								<u> </u>	
		, Ur							4	
-30 dBn	י—								<u> </u>	
		M							J.	an 1-01
-40.dbh	r Cherry	м							"V"	n rahara
ľ										
-50 dBn	ר ו									
-60 dBn										
SS abli										
-70 dBn	η									
05.0.4					1001					
UF 2.4	37 GH	1Z			1001	Dts				n 30.0 MHZ T
CF 2.4)[Tx. Spur	ious N\	1001 /NT n20 2] Peed Iz Ant1	Emissio		n 30.0 MHz
Spect Ref L	rum	20.00 dBr	n Offset 2	2.39 dB 👄	/NT n20 2	2437MF				
Spect Ref L	rum evel	20.00 dBm 30 dE	n Offset 2	2.39 dB 👄	/NT n20 2	2437MF				
Spect Ref L Att	rum evel	20.00 dBm 30 dE	n Offset 2	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep			
Spect Ref L Att SGL Co 1Pk M	rum evel ount 1 ax	20.00 dBm 30 dE	n Offset 2	2.39 dB 👄	/NT n20 2	2437MH				₩
Spect Ref L Att SGL Co	rum evel ount 1 ax	20.00 dBm 30 dE	n Offset 2	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep			
Spect Ref L Att SGL Co 1Pk M	rum evel ount 1 ax	20.00 dBm 30 dE	n Offset 2	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1]		n	-2.97 dBm 2.4500 GHz
Spect RefL Att SGL Co 1Pk M 10 dBm	rum evel ount 1 ax	20.00 dBm 30 dE	n Offset 2	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1]		n	-2.97 dBm 2.4500 GHz -51.04 dBm
Spect RefL SGL Cc IPk M 10 dBm 0 dBm- -10 dBm	rum evel ount 1 ax	20.00 dBn 30 dB 0/10	Offset 2 3 SWT	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1]		n	-2.97 dBm 2.4500 GHz -51.04 dBm
Spect Ref L Att SGL Cc 1Pk M 10 dBm- -10 dBm- -20 dBn	rum evel ount 1 ax	20.00 dBm 30 dE	Offset 2 3 SWT	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1]		n	-2.97 dBm 2.4500 GHz -51.04 dBm
Spect RefL SGL Cc IPk M 10 dBm 0 dBm-	rum evel ount 1 ax	20.00 dBn 30 dB 0/10	Offset 2 3 SWT	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1]		n	-2.97 dBm 2.4500 GHz -51.04 dBm
Spect Ref L Att SGL Cc 1Pk M 10 dBm- -10 dBm- -20 dBn	rum evel bunt 1 ax	20.00 dBn 30 dB 0/10	Offset 2 3 SWT	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1]		n	-2.97 dBm 2.4500 GHz -51.04 dBm
Spect Ref L Att SGL Cc 10 dBm 0 dBm- -10 dBm -20 dBm -30 dBn	rum evel ount 1 M1	20.00 dBn 30 dE 0/10	dBm	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1] 2[1]			-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL CC 1Pk M 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	rum evel ount 1 ax	20.00 dBn 30 dB 0/10	Offset 2 3 SWT	2.39 dB 👄	/NT n20 2	2437MH	Auto Sweep 1[1] 2[1]			-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L Att SGL Cc 10 dBm 0 dBm- -10 dBm -20 dBm -30 dBn	rum evel ount 1 ax	20.00 dBn 30 dE 0/10	dBm	2.39 dB 265 ms	/NT n20 2	2437MH	Auto Sweep 1[1] 2[1]			-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL CC 1Pk M 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	MI	20.00 dBn 30 dE 0/10	dBm	2.39 dB 265 ms	/NT n20 2	2437MH	Auto Sweep 1[1] 2[1]			-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL CC ID dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm	rum evel unt 1 max	20.00 dBn 30 dE 0/10	dBm	2.39 dB 265 ms		2437MH	Auto Sweep 1[1] 2[1]		n 	-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L Att SGL Cc ID dBm- 10 dBm- -10 dBm- -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	rum evel unt 1 max	20.00 dBn 30 dE 0/10	dBm	2.39 dB 265 ms	/NT n20 2	2437MH	Auto Sweep 1[1] 2[1]		n 	-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL CC IPk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 3 Marker Type	rum evel ount 1 MJ	20.00 dBn 30 dE 0/10 1 -22.836	dBm	2.39 dB 265 ms	/NT n20 2	2437MF Mode / M M M M	Auto Sweep 1[1] 2[1]		n 	-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL Cc SGL Cc IDK M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 3 Marker Type M1	rum evel ount 1 MJ	20.00 dBn 30 dE 0/10 1 -22.836	dBm	2.39 dB 265 ms	/NT n20 2 RBW 100 kHz VBW 300 kHz 	2437MH	Auto Sweep 1[1] 2[1]		Mi 	-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL CC IPk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 3 Marker Type	rum evel ount 1 MJ	20.00 dBn 30 dE 0/10 1 -22.836	dBm X-value 2. 23.35 4.71	2.39 dB 265 ms	/NT n20 2 RBW 100 kHz VBW 300 kHz VBW 100 kHz VBW 100 kHz VBW 100 kHz VBW 100 kHz VBW 300	2437MH	Auto Sweep 1[1] 2[1]		Mi 	-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz
Spect Ref L SGL CC PIPK M 10 dBm- -10 dBm- -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm Start 3 Marker Type M1 M2	rum evel ount 1 MJ	20.00 dBn 30 dE 0/10 1 -22.836	dBm X-value 2. 2. 2. 2. 3. 4.71 7.49	2.39 dB 265 ms	/NT n20 2 RBW 100 kHz VBW 300 kHz VBW 400	2437MF Mode / M M m m pts Func n n n	Auto Sweep 1[1] 2[1]		Mi 	-2.97 dBm 2.4500 GHz -51.04 dBm 23.3501 GHz

●1Pk Max					м	1[1]			0.30 dBm
10 dBm-							1	2.46	70050 GHz
10 dBm						М1			
0 dBm					h	•			
-10 dBm		MANNA	muluum	mailulain	manne	a range and the	Munthany		
					ľ			λ	
-20 dBm	<i>لر</i>							June 1	
-30 dBm	5							- U	
, Alasmith	M							- Wy	mmag
· v	•								ľ
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.462 GH	Iz			1001	l pts	I		Span	30.0 MHz
Spectrum Ref Level)(1 1	Offset 2	.40 dB 👄 R	NT n20	Iz		Emission	<u>וווווווווווווווווווווווווווווווווווו</u>	l I I I I I I I I I I I I I I I I I I I
Spectrum Ref Level	20.00 dBm 30 dB	Offset 2	.40 dB 👄 R	RBW 100 kH	z Iz Mode /	Auto Sweep		איז	
Spectrum Ref Level 1 Att SGL Count 1 91Pk Max	20.00 dBm 30 dB	Offset 2	.40 dB 👄 R	RBW 100 kH	z Iz Mode /				0.19 dBm 2.4760 GHz
Spectrum Ref Level : • Att SGL Count 1	20.00 dBm 30 dB	Offset 2	.40 dB 👄 R	RBW 100 kH	z Mode / M	Auto Sweep		:	0.19 dBm
Spectrum Ref Level : • Att SGL Count 1 • 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset 2	.40 dB 👄 R	RBW 100 kH	z Mode / M	Auto Sweep 1[1]		:	0.19 dBm 2.4760 GHz 45.58 dBm
Spectrum Ref Level : Att SGL Count 1 PIPK Max 10 dBm -10 dBm -10 dBm	20.00 dBm 30 dB	Offset 2 SWT 2	.40 dB 👄 R	RBW 100 kH	z Mode / M	Auto Sweep 1[1]		:	0.19 dBm 2.4760 GHz 45.58 dBm
Spectrum Ref Level : Att SGL Count 1 PIPK Max 10 dBm -10 dBm -10 dBm	20.00 dBm 30 dB 0/10	Offset 2 SWT 2	.40 dB 👄 R	RBW 100 kH	z Mode / M	Auto Sweep 1[1]		:	0.19 dBm 2.4760 GHz 45.58 dBm
Spectrum Ref Level : Att SGL Count 1 P1Pk Max 10 dBm -10 dBm -20 dBm D	20.00 dBm 30 dB 0/10	Offset 2 SWT 2	.40 dB 👄 R	RBW 100 kH	z Mode /	Auto Sweep 1[1]		:	0.19 dBm 2.4760 GHz 45.58 dBm
Spectrum Ref Level 3 Att SGL Count 1 IPK Max 10 dBm -10 dBm -20 dBm -30 dBm	7 20.00 dBm 30 dB 0/10	Offset 2 SWT 2 dBm-	.40 dB	RBW 100 kH /BW 300 kH	IZ IZ Mode / M M	Auto Sweep 1[1] 2[1]			0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : Att SGL Count 1 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7 20.00 dBm 30 dB 0/10	Offset 2 SWT 2	.40 dB 🖷 R 65 ms 🖶 V	RBW 100 kH	IZ IZ Mode / M M	Auto Sweep 1[1] 2[1]			0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : SGL Count 1 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	7 20.00 dBm 30 dB 0/10	Offset 2 SWT 2 dBm-	.40 dB	RBW 100 kH /BW 300 kH	IZ IZ Mode / M M	Auto Sweep 1[1] 2[1]			0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : Att SGL Count 1 IPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm	7 20.00 dBm 30 dB 0/10 1 -19.696	Offset 2 SWT 2 dBm-	.40 dB	RBW 100 kH /BW 300 kH	2 Mode / M M M	Auto Sweep 1[1] 2[1]		: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : Att SGL Count 1 PIPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 30.0 M Marker	T 20.00 dBm 30 dB 0/10 1 -19.696 1 -19.696	dBm	.40 dB R 265 ms V	2BW 100 kH /BW 300 kH	Z Mode /	Auto Sweep		j.hyJwskyPrisychay Stop	0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : SGL Count 1 IPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -70 dBm Start 30.0 M Marker Type Ref M1	1 -19.696 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Offset 2 SWT 2 dBm dBm X-value 2.47	.40 dB R	۲۵۵ ۲ ۲۰۰۹ ۲۵۵ ۲۵۹ ۲۵۹ ۲۵۹ ۲۵۹ ۲۵۹ ۲۵۹ ۲۵۹ ۲۵۹ ۲۵	2 Mode / 2 Mode / M M M M M M M M M M M M M	Auto Sweep		: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : SGL Count 1 PIPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm Start 30.0 M Marker Type Ref M1 M2 M3	Trc 1 1 1	Offset 2 SWT 2 dBm dBm <u>M4</u> www.www www. www. www. www. www. www.	.40 dB R 265 ms V 265 ms V 265 ms V 266 GHz 77 GHz 29 GHz	2BW 100 kH /BW 300 kH /BW 300 kH ////////////////////////////////////	الا معرفة المعرفة المعرفة معرفة المعرفة معرفة معرفة معرفة المعرفة معرفة مع معرفة معرفة معلي معرفة مع	Auto Sweep		j.hyJwskyPrisychay Stop	0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz
Spectrum Ref Level : SGL Count 1 9 TPk Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm Start 30.0 M Marker Type Ref M1 M2	Trc 1	Offset 2 SWT 2 dBm dBm <u>X-value</u> 2.47 3.57 4.975 7.547	.40 dB R 265 ms V 265 ms V	BW 100 kH /BW 300 kH ////////////////////////////////////	الا من المن المن المن المن المن المن الم	Auto Sweep		j.hyJwskyPrisychay Stop	0.19 dBm 2.4760 GHz 45.58 dBm 3.5770 GHz