

Page 1 of 157

FCC SAR TEST REPORT

For

Shanghai TUGE Data Technologies Co., Ltd.

Master Roam T6

Model No.: T6 FCC ID: 2AU4T-T6

Prepared For Address

Shanghai TUGE Data Technologies Co., Ltd.

Building C, No.888, Huanhu West 2nd Road, Nanhui New Town, Pudong New District, Shanghai, China

Prepared By Address Shenzhen Anbotek Compliance Laboratory Limited 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number Date of Test Date of Report SZAWW191017010-01

Oct.25, 2019 ~ Oct.29, 2019

ort : Nov.09,2019

Shenzhen Anbotek Compliance Laboratory Limited

Page 2 of 157

Contents

1.	State	tement of Compliance	
2.	Gene	neral Information	
	2.1	Client Information	An a state
	2.2	Testing Laboratory Information	ster Anbu
	2.3	Description of Equipment Under Test (EUT)	abotek photo
	2.4	Device Category and SAR Limits	
	2.5	Applied Standard Environment of Test Site	And
	2.6	Environment of Test Site	Anbo
	2.7	Test Configuration	
3.	Spec	ecific Absorption Rate (SAR)	tek
	3.1	Introduction	atek medlek
	3.2.00	SAR Definition	hpo. P.
4.	SAR	R Measurement System	
	4.1	E-Field Probe	104 ¹⁰ 00
	4.2	Data Acquisition Electronics (DAE)	h
	4.3	Robot	Ann
	4.4 °K	Measurement Server	cen Anbo
	4.5	Phantom	botek Anbore
	Anbe	Define Halder offen Anber Anber Anber	stek spor
	47 10	Data Storage and Evaluation	All stek in
5.el	Test	Device Holder Data Storage and Evaluation St Equipment List	Another 1
5. 6	Tice	sue Simulating Liquids	2
0. 7	Susta	sue Simulating Liquids	2
7. 8.	Sysu		
5.		Define two imaginary lines on the handset	
	8.1.	Position for Cheek/Touch	
	8.2.		And And
	8.3.	Position for Ear / 15°Tilt	hoten
bc	8.4.	Body Worn Position	
9.	Meas	asurement Procedures	
	9.1	Spatial Peak SAR Evaluation	over Anoore
	9.2	Power Reference Measurement	
	9.3	Area & Zoom Scan Procedures	
		Zoom Scan Procedures	
	9.5	Volume Scan Procedures	
	9.6	Area & Zoom Scan Procedures Zoom Scan Procedures Volume Scan Procedures Power Drift Monitoring	
10	. Conc	nducted Power	
11	Trar	ansmit Antennas	
12	. SAR	R Test Results Summary R Measurement Variability	moten Anbor 5
13	. SAR	R Measurement Variability	

Shenzhen	Anbotek	Compliance	Laboratory	Limited	
NO.	bu.	-10	202		

Address: 1/F, Building D, Sogood Science and Tech	nology Park, SanweiCommunity,	
Hangcheng Street, Bao'an District, Shenzhen, Guan	gdong, China.	
Tel:(86)755-26066440 Fax:(86)755-26014772	Email:service@anbotek.com	

Anbotek Product Safety

	ZAWW191017010-01 FCC ID: 2AU4T-T6	Page 3 of 157
14. Simultaneou	s Transmission Analysis	
15. Measuremen	t Uncertainty	71
Appendix A.	EUT Photos and Test Setup Photos	
Appendix B.	Plots of SAR System Check	
Appendix C.	Plots of SAR Test Data	
Appendix D.	DASY System Calibration Certificate	
Appendix E.	AppendixE.Extended Calibration SAR Dipole	

Shenzhen Anbotek Compliance Laboratory Limited

Page 4 of 157

TEST REPORT

Applicant	Pri	Shanghai TUGE Data Technologies Co., Ltd.
Manufacturer	ek :	Hui Zhou fortuneship technology Company Limited
Product Name	otek	Master Roam T6
Model No.	00	NT6 Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	Aupa	Master Roam
Rating(s)	An	DC 3.8V from battery

Test Standard(s) : IEEE 1528-2013; IEC 62209-2:2010; ANSI/IEEE C95.1:2005; FCC 47 CFR Part 2 (2.1093:2013);

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, IEC 62209-2:2010, FCC 47 CFR Part 2 (2.1093:2013), ANSI/IEEE C95.1:2005 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test

Prepared By

Reviewer

Oct.25, 2019 ~ Oct.29,2019

Boldry Wang

(Engineer / Bobby Wang)

alin

(Supervisor / Calvin Liu)

(Manager / Tom Chen)

on

Approved & Authorized Signer

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

compliance

ğ

Anbotek

Approved

Page 5 of 157

Version

Version No.		Date	Description		
poor stek	01 nbotek	Nov.08,2019	Original		
Anbo	ek Anbotek	Anbotek Anto hotek	Anbotek Anbor Anbotek Anbotek Anbotek		
Ant	potek Anboth	Anbu Anbotek Anbotek	Anbotek Anotek Anbotek Anbotek Anbo		
18H	Anbotek Ant	wotek Anbotek Anbo	er Anborek Anborek Anborek Anbore Ar		
potek	Anboton	anbotek Anbotek Ar	both Annbotek Anbotek Anbotek		
Anbotek	Anboutek	Anbotek Anboten	Anbotek Anbotek Anbotek Anbotek		

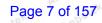
Shenzhen Anbotek Compliance Laboratory Limited

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

E	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit	
Frequency Band	Body&Hotspot	(W/Kg)	
GSM 850	0.258	poto Ant stek	
PCS 1900	0.208	Anbotek Anbo lek	
WCDMA Band 2	0.310	anbotek Anbor	
WCDMA Band 5	0.328	A. abotek Anbote.	
LTE Band 2	0.162	k hotek anbote	
LTE Band 4	0.212 poter price	Ano tek	
LTE Band 5	0.367	oten Anbor A	
LTE Band 7	0.231	1.6	
LTE Band 12	0.283	Anbotek Anbote.	
LTE Band 17	0.369	An wotek Anbotek	
LTE Band 38	0.404	And otek unbotek	
LTE Band 41	0.534	Anboy A.	
WIFI 2.4G	0.515	otek Anbote An	
Simultaneous SAR	1.049	botek Anboten A	
Test Result	PASS	An hotek Anboten	


This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Per KDB 941225 D06, a hotspot mode enabled device can provide wireless internet access to nearby Wi-Fi devices by routing the traffic through an available WWAN connection. For head SAR test, the EUT was set at voice call mode and at data transmitting mode (WWAN) for body SAR test. So the maximum Hotspot SAR are just the same with Body SAR.

Shenzhen Anbotek Compliance Laboratory Limited

2. General Information

2.1 Client Information

Applicant:	Shanghai TUGE Data Technologies Co., Ltd.
Address of Applicant:	Building C, No.888, Huanhu West 2nd Road, Nanhui New Town, Pudong New District, Shanghai, China
Manufacture:	Hui Zhou fortuneship technology Company Limited
Address of Manufacture:	NO.86, Hechang 7th West Road, Zhong Kai Hi-tech Development District, Huizhou City, Guangdong Province, P.R.China (Phase II plant)

2.2 Testing Laboratory Information

Test Site:	Shenzhen Anbotek Compliance Laboratory Limited
Address:	1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District,
	Shenzhen, Guangdong, China

2.3 Description of Equipment Under Test (EUT)

Master Roam T6
T6 ostek Anborek Anborek Anborek Anborek Anborek Anborek Anborek
DC 3.8V from battery
ET612-MB-V0.2
Android 7.0
GSM850, PCS1900
GSM/GPRS/EGPRS
GSM850:Power Class 4 PCS1900:Power Class 1
GMSK for GSM/GPRS/EGPRS, 8PSK for EGPRS downlink only
R99
12 Anbours And hotek Anbolek Anbolek Anbolek Anbolek Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

nbotek Product Safety Product Safety

Report No.: SZAWW191017010-01

FCC ID: 2AU4T-T6

Page 8 of 157

EGPRS Multislot Class	12 Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Antenna type:	FPC antenna
WCDMA	
Operation Band:	FDD Band II & Band V
Power Class:	Power Class 3
Modilation Type:	QPSK for WCDMA/HSUPA/HSDPA
WCDMA Release Version:	R99 Annotes Annotes Annotes Annotes Annotes Annotes
HSDPA Category:	Release 7, CAT14
HSUPA Category:	Release 6, CAT6
Antenna type:	Not Supported
LTE	
Operation Band:	E-UTRA Band 2, Band 4, band5, band7, band12, band17, band38, band41
Support Bandwidth:	Band 4: ☑1.4MHz,☑3MHz,☑5MHz,☑10MHz,☑15MHz,☑20MHz Band 5: ☑1.4MHz,☑3MHz,☑5MHz,☑10MHz, Band 7: ☑5MHz,☑10MHz,☑15MHz,☑20MHz Band 12: ☑1.4MHz,☑3MHz,☑5MHz,☑10MHz, Band 17: ☑5MHz,☑10MHz,☑15MHz,☑10MHz, Band 38: ☑5MHz,☑10MHz,☑15MHz Band 41: ☑5MHz,☑10MHz,☑15MHz
TX/RXFrequency Range:	Band 2: 1850MHz-1910MHz/1930MHz-1990MHz Band 4: 1710MHz-1755MHz/2110MHz-2155MHz Band 5: 824MHz-849MHz/869MHz-894MHz Band 7: 2500MHz-2570MHz/2620MHz-2690MHz Band 12: 699MHz-716MHz/729MHz-746MHz Band 17: 704MHz-716 MHz/734MHz-746MHz Band 38: 2570MHz- 2620MHz/2570MHz- 2620MHz Band 41: 2496MHz-2690MHz/2496MHz-2690MHz
Modulation Type:	QPSK, 16QAM
Release Version:	Release 9
Category:	Cat 4 Anborek Anborek Anborek Anborek Anborek Anborek
Antenna Type:	FPC antenna

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 9 of 157

WIFI 2.4G	
Supported type:	802.11b/802.11g/802.11n(H20)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	3dBi otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek

2.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. according to IEEE Std C95.1, 1999:((IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz). It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

2.5 Applied Standard

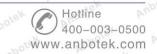
The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- IEEE 1528-2013
- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEC 62209-2:2010
- IEC 62209-2:2010
- KDB 248227 D01
- KDB 447498 D01
- KDB 616217 D04
- KDB 648474 D04
- KDB 865664 D01
- KDB 941225 D01
 KDB 941225 D06
- KDB 941225 D07

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 10 of 157


2.6 Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Shenzhen Anbotek Compliance Laboratory Limited

Page 11 of 157

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$

SAR is expressed in units of Watts per kilogram (W/kg)

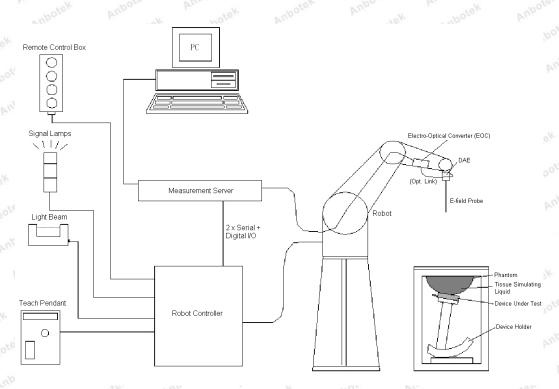
SAR measurement can be either related to the temperature elevation in tissue by

 $SAR = C\left(\frac{\delta T}{\delta t}\right)$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.


Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 12 of 157

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

Shenzhen Anbotek Compliance Laboratory Limited

Nbotek 安博检测 **Product Safety Anbotek Testina**

Report No.: SZAWW191017010-01

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

FCC ID:

E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		Ant
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	sm ^{bo}	21-
Directivity	 ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) 	A 4. 1.6 ⁴	pote Anb P
Dynamic Range	10 μ W/g to 100 mW/g; Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)	rtoot	×
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	Photo of EX3DV4	Anbr

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 13 of

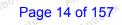


Photo of DAE

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- ➢ High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

FCC ID: 2AU4T-T6

Page 15 of 157

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;
	Center ear point: 6 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	Length: 1000 mm; Width: 500 mm;
	Height: adjustable feet
Measurement Areas	Left Hand, Right Hand, Flat Phantom
	Ambolie America America Amboliek P
	Anboten Anbo tek potek
	Anbotek Anbor All potek Any tek
	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

10.	
Shell Thickness	$2 \pm 0.2 \text{ mm} (\text{sagging: } <1\%)$
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm
9	Minor axis:400 mm
	tek Anboten Anbo tek abotet pol
	stek spotek Anbou An stek
2	All potek Anboter And And
	Anbole And atek Anbolek Anbo
	Photo of ELI4 Phantom
	and the spotest And the spotes

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

安博检测 Anbotek **Product Safety Anbotek Testing**

Report No.: SZAWW191017010-01

FCC ID: 2AU4T-T6 Page 16 of 157 frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of \pm 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 17 of 157

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvFi
Anbo	- Diode compression point	dcpi
Device parameters:	- Frequency	f lak votek
	- Crest factor	cf
Media parameters:	- Conductivity	σ _{Anboten} Anbo
	- Density	P Anbotek Anb

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as: Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

FCC ID: 2AU4T-T6 Page 18 of 157

 $V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes: $\mathbf{E}_{\mathbf{i}} = \sqrt{\frac{V_{\mathbf{i}}}{Norm_{i} \cdot ConvF}}$

H-field Probes: $\mathbf{H}_{\mathbf{i}} = \sqrt{V_{\mathbf{i}}} \cdot \frac{\mathbf{a}_{i0} + \mathbf{a}_{i1}\mathbf{f} + \mathbf{a}_{i2}\mathbf{f}^2}{c}$

with V_i = compensated signal of channel i,(i = x, y, z) Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF= sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $\mathbf{E}_{\rm tot} = \sqrt{\mathbf{E}_{\rm x}^2 + \mathbf{E}_{\rm y}^2 + \mathbf{E}_{\rm z}^2}$

The primary field data are used to calculate the derived field units.

 $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

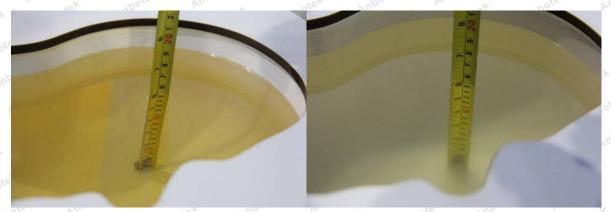
Page 19 of 157

5. Test Equipment List

Manufacture		Turne (Mandal	Serial	Calibr	ation
r	Name of Equipment	Type/Model	Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	4d154	Jun. 16,2018	Jun. 15,2021
SPEAG	1750MHz System Validation Kit	D1750V2	1021	Jul. 03,2019	Jul. 02,2022
SPEAG	1900MHz System Validation Kit	D1900V2	5d175	Jun. 15,2019	Jun. 14, 2022
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2018	Jun. 14,2021
SPEAG	2600MHz System Validation Kit	D2600V2	1058	Jun. 19,2018	Jun. 18,2021
SPEAG	750MHz System Validation Kit	D750V3	1163	Sep. 03,2019	Sep.02,2022
SPEAG	5000MHz System Validation Kit	D5GHzV2	1003	Mar. 13,2018	Mar. 12,2021
SPEAG	Data Acquisition Electronics	DAE4	1549	Mar.19.2019	Mar.18.2020
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May.06,2019	May.05,2020
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Jun.11,2019	Jun.10, 2020
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Meter	N1914A	MY50001102	Dec. 06, 2018	Nov. 06, 2019
Agilent	Power Sensor	N8481H	MY51240001	Dec. 06, 2018	Nov. 06, 2019
R&S	Spectrum Analyzer	N9020A	MY51170037	Dec. 06, 2018	Nov. 06, 2019
Agilent	Signal Generation	N5182A	MY48180656	Dec. 06, 2018	Nov. 06, 2019
Worken	Directional Coupler	0110A05601O-1 0	COM5BNW1 A2	Dec. 06, 2018	Nov. 06, 2019

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it


Shenzhen Anbotek Compliance Laboratory Limited

Page 20 of 157

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Liquid depth in the Head Phantom (750MHz)

Liquid depth in the Head Phantom (835MHz)

Liquid depth in the Head Phantom (1750MHz)

Liquid depth in the Head Phantom (2450MHz) Shenzhen Anbotek Compliance Laboratory Limited

Liquid depth in the Head Phantom (2600MHz)

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: SZAWW191017010-01

FCC ID: 2AU4T-T6

Page 21 of 157

The following table gives the recipes for tissue simulating liquid.

Frequency	Water Sugar Cellul		Cellulose	Salt Preventol		DGBE	Conductivity	Permittivity			
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(er)			
	For Head										
900	40.3	57.9	0.2	1.4	^{ek} 0.2 pn ^{b0}	0	0.97	41.5			
1750	55.2	0.0010	0	0.3	pote ^k 0 pr	44.5	1.37	40.1 M			
1800,1900,2000	55.2	0 Aup	0 And	0.3	0100	44.5	1.40	40.0			
2450	55.0	ke ^k 0 p	nboten 0 A	0	0	45.0	1.80	39.2			
				For Bod	ly						
900	50.8	48.2	N.Oole	0.9	ex 0.1 mbo	ora 0 ^{Ma}	0.97	55.2			
1750	70.2	0 obotel	Qupoter	0.4	otek 0	29.4	1.49	53.4 M			
1800,1900,2000	70.2	0	tek 0 Anbo	0.4	0	29.4	1.52	53.3			
2450	68.6	0	wote ^{tt} 0	bote 0	0	31.4	1.95	52.7			

The following table shows the measuring results for simulating liquid.

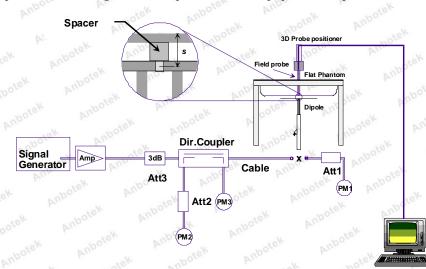
Dielectric Performance of Tissue Simulating Liquid

Tissue	Measured	Target	Tissue		Measured Tissue					
Туре	Frequency (MHz)	٤ _r	σ	٤r	Dev. (±5%)	σ	Dev. (±5%)	Liquid Temp.	Test Data	
750B	750	0.96	55.5	0.94	-2.08%	55.18	-0.58%	22.4	10/25/2019	
835B	900	0.97	55.2	0.95	-2.06%	54.78	-0.76%	22.6	10/26/2019	
1750B	1750	1.49	53.4	1.46	-2.01%	54.19	1.48%	22.4	10/29/2019	
1900B	1900	1.52	53.3	1.55	1.97%	53.32	0.04%	22.6	10/27/2019	
2450B	2450	e ^k 1.95	52.7	1.95	0.00%	50.69	-3.81%	22.7	10/29/2019	
2600B	2600	2.16	52.5	2.20	1.85%	51.41	-2.08%	22.5	10/28/2019	

Shenzhen Anbotek Compliance Laboratory Limited

Page 22 of 157

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Shenzhen Anbotek Compliance Laboratory Limited

Photo of Dipole Setup

Validation Results

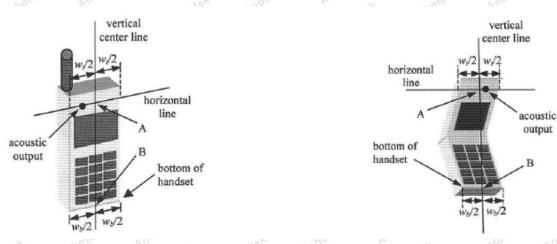
Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Frequency (MHz)	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)	Date
750B	Body	250	8.78	2.22	8.88	1.14%	10/25/2019
835B	Body	250	9.57 MO	2.41	9.64	0.73%	10/26/2019
1750B	Body	250	36.7	9.16 M	36.64	-0.16%	10/29/2019
1900B	Body	250	40.1	10.04	40.16	0.15%	10/27/2019
2450B	Body	250	51.8	12.93	51.72	-0.15%	10/29/2019
2600B	Body	250	56.8	14.22	56.88	0.14%	10/28/2019

Note:

- 1. The graph results see system check.
- 2. Target Values used derive from the calibration certificate.

Shenzhen Anbotek Compliance Laboratory Limited



Page 24 of 157

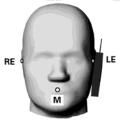
8. EUT Testing Position

8.1. Define two imaginary lines on the handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Handset Vertical and Horizontal Reference Lines

Shenzhen Anbotek Compliance Laboratory Limited



Page 25 of 157

8.2. Position for Cheek/Touch

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

LE

Cheek Position

8.3. Position for Ear / 15° Tilt

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 8.3).

Anut

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 26 of 157

8.4. Body Worn Position

mother phantom

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

molneng jerz

Body Worn Position

Shenzhen Anbotek Compliance Laboratory Limited

Page 27 of 157

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek 交博施测 Product Safety Anbotek Testing Report No.: SZAWW191017010-01

surface

Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

FCC ID:

9.3 Area & Zoom Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		\leq 3 GHz	> 3 GHz
×	Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
ő	Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20°±1°
3		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Sr. 7	Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

Page 28

p	ort No.: SZAWW1910	017010-0	1 FCC ID	: 2AU4T-T6	Page 29 of 157	
P	Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	
		uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm	
	Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
P		grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
	Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	
	a	1.4	C 1 .	• • • • • • • •	1.0.1.1.	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Shenzhen Anbotek Compliance Laboratory Limited

10.Conducted Power

Anbo	¥	Conduc	ted power	measurer	nent results	s (GSM850/1)	900)	NoK.	poter
Mode	Txslot	Burst Av	verage Pow	er (dBm)	Tune-up Limit	Calculation (dB)	Frame-	Averaged (dBm)	Power
		128	190	251	(dBm)	(UB)	128	190	251
GS	SM	32.65	32.58	32.34	33	-9.03	23.62	23.55	23.31
0000	1Txslot	32.21	32.84	32.53	33	-9.03	23.18	23.81	23.50
GPRS	2Txslot	29.71	29.79	29.72	An 30 tek	-6.02	23.69	23.77	23.70
850 (GMSK)	3 Txslot	27.50	27.51	27.54	28	-4.26	23.24	23.25	23.28
(GIVISK)	4 Txslot	26.32	26.24	26.28	27.000	-3.01	23.31	23.23	23.27
50000	1 Txslot	32.14	32.35	32.42	ote ^K 33 Anto	-9.03	23.11	23.32	23.39
EGPRS	2Txslot	29.61	29.72	29.65	30	-6.02 M	23.59	23.70	23.63
850	3 Txslot	27.41	27.48	27.35	28	-4.26	23.15	23.22	23.09
(GMSK)	4 Txslot	26.28	26.20	26.18	27	-3.01	23.27	23.19	23.17
Mode	Txslot	Burst Average Power (dBm)		Tune-up Limit	Calculation	Frame-Averaged P (dBm)		ower	
		512	661	810	(dBm) 🔬	id ^k (dB) _{kilo} d	128	190	251
GS	SM	30.45	30.61	30.47	30	-9.03	21.42	21.58	21.44
	1 Txslot	30.74	30.56	30.43	30	-9.03	21.71	21.53	21.40
GPRS	2 Txslot	27.87	27.92	27.83	Anboa	-6.02	21.85	21.90	21.81
1900	3 Txslot	25.20	25.57	25.30	26	-4.26	20.94	21.31	21.04
(GMSK)	4 Txslot	24.19	24.36	24.38	25	-3.01	21.18	21.35	21.37
50000	1 Txslot	32.23	32.75	32.26	30	-9.03	23.20	23.72	23.23
EGPRS	2 Txslot	29.41	29.79	29.74	28	6.02 N	23.39	23.77	23.72
1900 (CMSK)	3 Txslot	27.21	27.25	27.23	26	-4.26	22.95	22.99	22.97
(GMSK)	4 Txslot	26.18	26.21	26.47	25	-3.01	23.17	23.20	23.46

<GSM Conducted power>

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

- 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
- 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02 dB
- 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
- 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01 dB
- According to the conducted power as above, the GPRS/EGPRS measurements are performed with 2Txslots for GPRS/EGPRS 850 and GPRS/EGPRS 1900.

Shenzhen Anbotek Compliance Laboratory Limited

Page 31 of 157

<WCDMA Conducted power>

Conducted power measurement results (WCDMA Band II/V)

Item	Band	FDD Band II result (dBm) Test Channel			Tune-up Limit	
	Band					
	ARFCN	9262	9400	9538	(dBm)	
AMR	12.2kbps AMR	23.22	23.34	23.29	24	
RMC	12.2kbps RMC	23.32	23.69	23.46	24	
	Sub - Test 1	22.24	22.31	22.27	23	
	Sub - Test 2	21.41	21.32	21.31	22	
HSDPA	Sub - Test 3	21.22	21.33	21.25	22	
	Sub - Test 4	20.43	20.55	20.53	21	
	Sub - Test 1	22.51	22.47	22.33	23	
	Sub - Test 2	21.22	21.30	21.41	22	
HSUPA	Sub - Test 3	21.50	21.48	21.55	22	
	Sub - Test 4	20.43	20.40	20.34	21	
	Sub - Test 5	20.34	20.42	20.40	21	

	Dand	FDD Band V result (dBm)		FDD Band V result (dBm) Tune	
Item	Band	Test Channel			Limit
	ARFCN	4132	4183	4233	(dBm)
AMR	12.2kbps AMR	23.11	23.14	23.04	24
RMC	12.2kbps RMC	23.24	23.83	otek 23.35 mbo	24
	Sub - Test 1	22.11	22.27	22.34	23
	Sub - Test 2	21.35	21.32	21.12	22
HSDPA	Sub - Test 3	21.12	21.21	21.13	22
	Sub - Test 4	20.15	20.17	20.15	21
	Sub - Test 1	22.75	22.63	22.74	23
	Sub - Test 2	21.71	21.74	21.72	22
HSUPA	Sub - Test 3	21.14	21.12	21.14	22
	Sub - Test 4	20.33	20.45	20.13	100 ¹⁰ 21
	Sub - Test 5	20.34	20.51	20.54	21

Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 32 of 157

<LTE Conducted Power>

Conducted Power Measurement Results (LTE FDD Band 2)

RB Size/Offset	Frequency (MHz)	Average Power	Tune-up Limit (dBm)
botek Anbote, Anb	hote. half	a contraction of the second	200
otek Nabotek Anbo	olen N	100	23.5
1 RB low	Les.	ADD' PI'	23.5
Anbor An otek Anbore		NORE NO	23.5
Anboten Anbo	Dr. Pr.	ALOF .	23.5
1 RB mid	hotek 1000.0 bo		23.5
v oter and	ter hip	21.30	23.5
pole An potek Anboten	1850.7	21.87	23.5
1 RB high	1880.0	22.47	23.5
aboten Anbo	1909.3	21.63	23.5
abotek Anbote Anu	1850.7	23.00	23.5
00 /0 TCD 10W	1880.0	21.77	23.5
KET AP	1909.3	22.22	23.5
oter Anor tek	1850.7	22.83	23.5
50% RB mid	1880.0	22.48	23.5
httek Anboten Anbo	1909.3	22.54	23.5
Ann atek anbotek Anbot	1850.7	22.18	23.5
	1880.0	22.64	23.5
K Anbols Ant stek	1909.3	23.25	23.5
otek Anbota Anto stek	1850.7	22.83	23.5
100% RB	1880.0	22.18	23.5
indo tek nbotek Anbote	1909.3	22.72	23.5
Anborek hotek Anbore	1851.5	23.37	23.5
Not Pit	1851.5	21.77	23.5
Anbote, Ano tek	1908.5	21.76	23.5
	1851.5	1°	23.5
1 RB mid	1851.5	22.47	23.5
nbot All hotek Anboten	1908.5	22.70	23.5
Anbote And atek abotek	1851.5	N	23.5
1 RB high		22.39	23.5
Anbotek Anbote Ant	1908.5	22.20	23.5
ak boten Anboten Ar	100	1001	23.5
50% RB low	100	100	23.5
nboten Anton tek nbotek	200°	¥	23.5
anbotek Annor An	NOLO P	04	23.5
50% RB mid	1851.5	22.62	23.5
	1 RB low 1 RB mid 1 RB high 50% RB low 50% RB mid 50% RB High 100% RB 1 RB low 1 RB low 1 RB mid 1 RB mid 50% RB low	RB Size/Offset (MHz) 1 RB low 1850.7 1 RB low 1909.3 1 RB mid 1850.7 1 RB mid 1850.7 1 RB mid 1880.0 1909.3 1850.7 1 RB mid 1880.0 1909.3 1850.7 1 RB high 1880.0 1909.3 1850.7 50% RB low 1880.0 1909.3 1850.7 50% RB mid 1880.0 1909.3 1850.7 50% RB mid 1880.0 1909.3 1850.7 50% RB High 1880.0 1909.3 1850.7 100% RB 1880.0 1909.3 1851.5 1 RB low 1851.5 1 RB low 1851.5 1 RB mid 1851.5 1 RB high 1851.5 1 RB high 1851.5 1 RB high 1851.5 1 RB high 1851.5 1 00% RB low 1851.5 1 00% RB low <td>RB Size/Offset (MHz) (dBm) 1 RB low 1850.7 23.26 1 RB low 1880.0 22.59 1 909.3 23.34 1 RB mid 1850.7 22.20 1 RB mid 1860.7 22.37 1 909.3 21.30 1909.3 21.30 1 RB mid 1860.7 21.87 1909.3 21.63 1 RB high 1860.0 22.47 1909.3 21.63 50% RB low 1850.7 23.00 23.00 23.25 50% RB mid 1850.7 22.83 24.83 1909.3 22.22 22.22 22.22 22.22 50% RB mid 1880.0 22.48 1909.3 22.54 1909.3 22.54 1860.7 22.18 100% RB 1880.0 22.18 1909.3 22.72 100% RB 1880.0 22.18 1909.3 22.72 1 RB low 1851.5 21.76 1851.5 21.76 1 RB nigh 1851.5</td>	RB Size/Offset (MHz) (dBm) 1 RB low 1850.7 23.26 1 RB low 1880.0 22.59 1 909.3 23.34 1 RB mid 1850.7 22.20 1 RB mid 1860.7 22.37 1 909.3 21.30 1909.3 21.30 1 RB mid 1860.7 21.87 1909.3 21.63 1 RB high 1860.0 22.47 1909.3 21.63 50% RB low 1850.7 23.00 23.00 23.25 50% RB mid 1850.7 22.83 24.83 1909.3 22.22 22.22 22.22 22.22 50% RB mid 1880.0 22.48 1909.3 22.54 1909.3 22.54 1860.7 22.18 100% RB 1880.0 22.18 1909.3 22.72 100% RB 1880.0 22.18 1909.3 22.72 1 RB low 1851.5 21.76 1851.5 21.76 1 RB nigh 1851.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

	Anbotek Testing	Anbote, Ano	ek Anbotek	Anboro
Report No.: S	ZAWW191017010-01	FCC ID: 2AU4T-T6		ge 33 of 15
	And det anbotek anbot	1908.5	22.90	23.5
	Anbo tek potek Anb	1851.5	22.59	23.5
	50% RB High	1851.5	22.53	23.5
	ek Anboten Anbo	1908.5	22.85	23.5
	hotek Anbotek Anbo.	1851.5	21.44	23.5
	100% RB	1851.5	23.01	23.5
hotek	Anbors All hotek Anbore	1908.5	23.04	23.5
	Anboten Anbo	1852.5	22.98	23.5
	1 RB low	1880.0	21.67	23.5
	ok shotek Anboro P	1907.5	21.81	23.5
	An botek Anboten	1852.5	23.40	23.5
	1 RB mid	1880.0	22.84	23.5
	anboten Anbo iek botel	1907.5	21.93	23.5
	1 RB high	1852.5	22.18	23.5
	1 RB high	1000.0	22.60	23.5
	K notek Anbotek A	1907.5	22.14	23.5
5 MHz	And tek abotek	1852.5	23.36	23.5
5 MHz	50% RB low	1880.0	22.74	23.5
	abotek Anbote Ant	1907.5	21.63	23.5
Anbotek	50% PR mid	1852.5	21.77	23.5
	50% RB mid	1880.0	22.05	23.5
	Anbo tak spotek At	1907.5	22.89	23.5
	Anbour Att wotek	1852.5	22.49	23.5
	50% RB High	1880.0	22.06	23.5
nbotek Ant	wotek Anbotek Anbo	1907.5	22.37	23.5
	tek nbotek Anboi	1852.5	22.82	23.5
	100% RB	1880.0	22.55	23.5
potek	100% RB		23.50	23.5
by.	t coter pripe	1855.0	23.32	23.5
	1 RB low	1880.0	21.45	23.5
	1 RB low	1905.0	22.13	23.5
	nbot All otek Nnboten	1855.0	23.00	23.5
	1 RB mid	1880.0	22.67	23.5
	Anbotek Anbot At	1905.0	22.32	23.5
10 MHz	wolet and Al	1855.0	23.44	23.5
	1 RB high	1880.0	22.73	23.5
	An otek unbolek	1905.0	22.12	23.5
	nooten And tek abotek	1855.0	21.95	23.5
	50% RB low	1880.0	21.56	23.5
	An botek Anboton Anb	1905.0	22.15	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Anbotek	安博检测
Product Safety	Anbotek Testing
Report No.:	SZAWW191017010-01

	FCC ID: 2AU4T-T6	abote Ant Pa	ige 34 of 157
Anbotek Anbote Alle Anbote Anbote	1855.0	21.68	23.5
50% RB mid	1880.0	22.92	23.5
	1905.0	22.26	23.5 MIN
eek Anbotek Anbotek Anbotek	1855.0	22.58	23.5
50% RB High	1880.0	22.53	23.5
hoten Anbor A. tek abote.	1905.0	23.15	23.5
	1855.0	22.83	23.5
100% RB	1880.0	22.65	23.5
Anbo ek sbotek Anbotes Anb	1905.0	23.38	23.5
1 RB low	1857.5	23.20	23.5
	1880.0	22.34	23.5
	1902.5	21.53	23.5
And tek aboten Anbo A otek	1857.5	23.01	23.5
	1880.0	22.64	23.5
	1902.5	22.29	23.5
ik anboter Am ek abotek A	1857.5	22.22	23.5
1 RB high	1880.0	21.94	23.5
tek nyotek Anboto K Ant	1902.5	22.41	23.5
nbotek Anbotek Anbotek Anbotek Anbotek	1857.5	23.47	23.5
	1880.0	22.92	23.5
15 MHz 50% RB low	1902.5	22.52	23.5
k aboten And K atek Ar	1857.5	21.86	23.5
50% RB mid	1880.0	22.65	23.5
an and totek Anboten Ano	1902.5	23.01	23.5
nbotek Anbotek Anbotek Anbotek Anbotek	1857.5	22.51	23.5
	1880.0	22.87	23.5
50% RB High	1902.5	22.62	23.5
anboter Anu k sotek An	1857.5	22.26	23.5
1-0* DN	1880.0	22.62	23.5
100% RB	1902.5	23.01	23.5
nbotek Anbotek Anbotek Anbotek	1860.0	23.10	23.5
1 RB low	1880.0	21.98	23.5
Anbotek Anbotek Anbotek Anbotek	1900.0	22.39	23.5
boter And atek And	1860.0	21.51	23.5
1 DB mid	1880.0	21.75	23.5
	1900.0	22.84	23.5
hotek Anbrek Anborek Anborek Anborek	1860.0	22.13	23.5
1 RB high	1880.0	22.63	23.5
Anbolek Anbolek Anbole Anbole	1900.0	22.57	23.5
50% RB low	1860.0	22.03	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Anbotek	安博检测
Product Safety	Anbotek Testing
Report No.:	SZAWW191017010-01
Report No	SZAVVV 19101/010-0

AWW191017010-01	FCC ID: 2AU4T-T6	poten Anbo Page	e 35 of 157
Anbors An otek M	1880.0	23.44	23.5
	1900.0	22.40	23.5
Anboten Anbo	1860.0	22.35	23.5 M ⁰⁰
50% RB mid	1880.0	22.74	23.5
	1900.0	23.28	23.5
All All All Anbo	1860.0	22.27	23.5
50% RB High	1880.0	22.75	23.5
Anbotek Anbot At	1900.0	21.63	23.5
abotek Anbot	1860.0	22.47	ote ^k 23.5 phot
100% RB	1880.0	22.36	23.5
	1900.0	22.53	23.5

Conducted Power Measurement Results (LTE FDD Band 4)

TX Channel	RB Size/Offset	Frequency	Average Power	Tune-up Limit
Bandwidth	RB Size/Oliset	(MHz)	[dBm]	(dBm)
otek Anbold	1 RB low	1710.7	22.30	23.5
	102	1732.5	22.24	23.5
	otek Anbote Ant botek	1754.3	23.12	23.5
	1 RB mid	1710.7	22.44	23.5
Anbotek	1 RB mid	1732.5	22.09	23.5
	And otek Anbotek Anbor	1754.3	22.47	23.5
	And tek potek And	1710.7	22.52	23.5
	1 RB high	1732.5	23.16	23.5
	otek Anbote, And otek	1754.3	21.36	23.5
Anbotek Ant	nbotek Anboten Anbo	1710.7	21.94	23.5
1.4 MHz	50% RB low	1732.5	23.47	23.5
Anbotek	50% RB low	1754.3	21.42	23.5
	Anbou tek abotek Anbo	1710.7	22.73	23.5
		1732.5	21.64	23.5
	101	1754.3	21.90	23.5
		1710.7	21.54	23.5
	50% RB High	1732.5	22.86	23.5
	50% RB High	1754.3	22.79	23.5
	Anboton Anbotek Anbot	1710.7	21.52	23.5
		1732.5	22.49	23.5
	tek nbotek Anbote An	1754.3	21.94	23.5
Anboten Anb	hotek Anbotak Anbotak	1711.5	23.27	23.5
3 MHz	1 RB low	1732.5	22.35	23.5
3 MHz	Andorek Andorek Andorek	1753.5	22.07	23.5
	1 RB mid	1711.5	21.82	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

otek 1	2 插 松 30	nbotek Anbotek		
ct Safety	唐检测			
	botek Testing VW191017010-01	FCC ID: 2AU4T-T6		age 36 of 157
	pole All tek aboten	1732.5	22.10	23.5
Anbotek		1753.5	22.82	23.5
Anbo	Anboten Anbote And	1711.5	22.81	23.5
Anbotek	1 RB high	1732.5	23.18	23.5
tek Anbolen	Ann otek Anbotek	1753.5	22.60	23.5
tek spor	And And tek	1711.5	21.63	23.5
ntek ent	50% RB low	1732.5	22.77	23.5
		1753.5	22.67	23.5
Anbotek	Anbotek Anbotek Anbo	1711.5	22.52	23.5
Anbotek k	50% RB mid		23.07	23.5
ek Anbolek		1753.5	23.21	23.5
	K Antore Ant otek	1711.5	21.87	23.5
potek Anbote	50% RB High	1732.5	21.54	23.5
Anbotek Anb	hotek Anbotek Anbor	1753.5	22.56	23.5
Anbotek	and tek anbotek Anbol	1711.5	21.78	23.5
Anbotek	100% RB		22.02	23.5
K Anbotek	Anbote Ant Ant	1753.5	22.47	23.5
	k Anboten Anbo	1712.5	22.52	23.5
or pro		1732.5	22.63	23.5
unbotek Anb	1 RB low	1752.5	21.66	23.5
poter	inbor An botek Anbor	1712.5	23.28	23.5
Anbotek	1 RB mid	10	22.30	23.5
6 50 C		1752.5	21.92	23.5
otek Antotek	c abover Ann	1712.5	22.86	23.5
otek Antotek	1 RB high	1732.5	22.42	23.5
note Ant	lek botek Anboten	1752.5	22.41	23.5
Anbotek A	nbotek Anbotek Anbote	1712.5	23.32	23.5
5 MHz	50% RB low	V. In O Y	22.16	23.5
Pro alt	Anbotek Anbotek An	1752.5	21.81	23.5
Anbotek	Loter And	1712.5	22.40	23.5
Any Any		1732.5	22.48	23.5
bote. Pup	50% RB mid	1752.5	21.81	23.5
	1001 14 100	1712.5	22.48	23.5
Anbotek	50% RB High		21.57	23.5
Part	50% RB High	1752.5	21.66	23.5
Anbotek	Anbotek Anbotek P	1712.5	A TIPOT	23.5
tek Anbotek	100% RB	1732.5	21.86 21.13	23.5
hotek Anbo	ten Anbioovintis An abotek	1752.5	22.15	23.5
10 MHz	1 RB low	1715.0	23.26	23.5
10 MHz	1 RB low	1732.5	22.36	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Pro

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

botek +	安博检测			
oduct Safety	Anbotek Testing			
Report No.: SZ	ZAWW191017010-01 F	CC ID: 2AU4T-T6		age 37 of 157
	And stek Anbotek Anbot	1750.0	22.17	23.5
	Anbotek Anbotek Anbot	1715.0	23.07	23.5
	1 RB mid	1732.5	22.47	23.5
	ek Anbote. And	1750.0	21.59	23.5
	1 RB bigh	1715.0	23.15	23.5
	1 RB high	1732.5	22.44	23.5
	Anbor All botek Anboten	1750.0	22.74	23.5
	Anbote Anbote Anbote	1715.0	23.08	23.5
	50% RB 10W	1732.5	22.00	23.5
	ek ubotek Anbotek Ant	1750.0	22.49	23.5
	An hotek Anboten	1715.0	21.16	23.5
	50% RB mid	1732.5	21.78	23.5
	anboten Anbo tak botek	1750.0	23.14	23.5
	50% RB High	1715.0	23.15	23.5
	50% RB High	1102.0	23.12	23.5
	And otek Anbotek Anb	1750.0	21.74	23.5
	And tek abotek	1715.0	22.05	23.5
	100% RB	1732.5	22.39	23.5
	abotek Anbote Ann atek	1750.0	22.75	23.5
Anbo	Anbotek Anbote Ano	1717.5	22.87	23.5
	1 RB low	1732.5	22.29	23.5 Dole
	Anbe tek nbotek Anb	1747.5	22.38	23.5
	Anbo ak botek A	1717.5	22.70	23.5
nbotek Ant	1 RB mid	1732.5	22.16	23.5
Anbotek Ant		1747.5	21.84	23.5
	1 RB high	1717.5	22.76	23.5
		1732.5	22.28	23.5
	1 RB high		22.50	23.5
	6 Anbor An est	1717.5	23.32	23.5
15 MHz	NOT NOU P	1732.5	21.69	23.5
	50% RB low	1747.5	22.63	23.5
	nbor k sotek unboter	1717.5	21.34	23.5
	50% RB mid	1732.5	22.52	23.5
	Anbotek Anbot Anbo	1747.5	21.79	23.5
	oter And	1717.5	22.41	23.5
	191		21.92	23.5
	when wold And	1747.5	22.02	23.5
	npo p. Lok bote	1717.5	22.12	23.5
	100% DD	1732.5	22.17	23.5
K anbotek	Andolek Ando	1747.5	22.57	23.5
100			Pol Pol	

Produ

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek 安博检测			
Product Safety Anbotek Testing	CC ID: 2AU4T-T6		age 38 of 157
notek Anbout Athe stek notek	1720.0	22.57	23.5
1 RB low	1732.5	22.36	23.5
And Andrew Andrew Andrew	1745.0	22.39	23.5 M
nbotek Anbor An Anboter An	1720.0	22.04	23.5
Annotes Anno 1 RB mid	1732.5	21.91	23.5
Anbe botek Anbotek Anboerte Ind An	1745.0	21.20	23.5
Ant sotek Anboten Anto sek sotek	1720.0	22.37	23.5
1 RB high	1732.5	21.82	23.5
1 RB high	1745.0	22.05	23.5
botek Anbote k Lotek Anbotek Anb	1720.0	21.51	23.5
20 MHz 50% RB low	1732.5	22.04	23.5
Andotek Andotek Anbole Antotek	1745.0	21.75	23.5
And tek nootek Andon K notek	1720.0	21.55	23.5
50% RB mid	1732.5	22.62	23.5
K Anbotek Anbotek Anbotek Anbot	1745.0	21.52	23.5
otek Anbolen And otek Anboleh Anb	1720.0	21.87	23.5
50% RB High	1732.5	22.13	23.5
50 % RB High	1745.0	21.88	23.5
	1720.0	22.05	23.5
100% RB	1732.5	22.37	23.5
ek Anbotek Anbotek Anbotek Anbotek	1745.0	22.52	23.5

Conducted Powe	r Measurement	Results	(LTE FDD Band S	5)
-----------------------	---------------	---------	-----------------	----

TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	Average Power [dBm]	Tune-up Limit (dBm)
Anbore	1 RB low	824.7	21.54 M	23.5
	1 RB low	836.5	21.87	23.5
	1 RB low	848.3	22.74	23.5
	Anbola Ana otek	824.7	21.67	23.5
	1 RB mid	836.5	22.17	23.5
	stek nbotek Anbore	848.3	21.10	23.5
	nbb Ak botek Anbote	824.7	22.60	23.5
1.4 MHz	1 RB high	836.5	21.56	23.5
	Anbolek Anbolek Anbol	848.3	22.36	23.5
	Anboter Anbor ok	824.7	22.34	23.5
	50% RB low	836.5	21.84	23.5
	ak botek Anboten	848.3	22.14	23.5
	nbos k kotek Anbotek	824.7	21.17 March 21	23.5
	50% RB mid	836.5	22.57	23.5
	Anbotek Anbot An	848.3	21.63	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

<u>tek</u>	安博检测
afety	Anbotek Testing
ort No.:	SZAWW191017010-01
	tek afety ort No.:

Report No.: SZAWW191017010-01 F(CC ID: 2AU4T-T6	he Au Pa	ge 39 of 157
Anbotek Anbotek Pantopotek Anbotek	824.7	22.51	23.5
50% RB High	836.5	23.07	23.5 ¹⁰
A. Note And	848.3	21.66	23.5 March
	824.7	22.58	23.5
	836.5	21.13	23.5
abotek Anbotek Anbotek	848.3	22.16	23.5
1 RB low	825.5	22.54	23.5
Andorek Andorek 1 RB low	836.5	21.89	23.5
Anborek Anborek Anbore And	847.5	22.20	23.5
And	825.5	23.25	23.5
	836.5	21.84	23.5
Anbotek Anotek Anbotek Anbotek	847.5	22.79	23.5
	825.5	22.19	23.5
	836.5	23.11	23.5
1 RB high	847.5	22.57	23.5
10	825.5	23.37	23.5
3 MHz 50% RB low	836.5	22.80	23.5
	847.5	22.96	23.5
Anbotek Anbotek Anbotek Anbotek	825.5	22.36	23.5
	836.5	22.68	23.5
aboter And w otek Anbor	847.5	22.18	23.5
K Anbotek Anbotek Anbotek Anbo	825.5	22.31	23.5
50% RB High	836.5	22.46	23.5
ek totek Anboten Anbo	847.5	22.15	23.5
bold All	825.5	21.96	23.5
100% 00	836.5	21.79	23.5
Anbor Annok hoten Anbo	847.5	23.14	23.5
	826.5	22.76	23.5
1 RB low	836.5	22.41	23.5
	846.5	21.87	23.5
potek Anbotek Anbotek Anbotek	826.5	22.48	23.5
1 RB mid	836.5	21.39	23.5
Anbotek Anbotek Anbotek Anbotek	846.5	21.88	23.5
5 MHz	826.5	22.57	23.5
D11	836.5	23.08	23.5
N N	846.5	22.66	23.5
botek Anb tek Anbotek Anbotek	826.5	21.77	23.5
50% RB low	836.5	23.24	23.5
Anbotek Anbotek Anbotek	846.5	21.40	23.5
50% RB mid	826.5	22.59	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

botek 安博检测			
duct Safety Anbotek Testing			
	C ID: 2AU4T-T6		age 40 of 157
Anbotek Anbotek Anbotek Anbotek	836.5	22.43	23.5
Anbotek Anbotek Anbotek Anbotek Anbote	846.5	22.28	23.5
ek boten Ando	826.5	21.87	23.5
	836.5	22.67	23.5
botek Anbolet Anb	846.5	22.12	23.5
Anbotek Arbotek Anbotek Anbotek	826.5	21.98	23.5
100% RB	836.5	21.73	23.5
All otek Anboten Anbo All note	846.5	21.82	23.5
ak botek Anbotek Anbors Am	829.0	21.88	23.5
1 RB low	836.5	22.10	23.5
potek Anboten Anbotek Anbotek p	844.0	22.15	23.5
tek poter And w notek	829.0	22.77	23.5
1 RB mid	836.5	21.69	23.5
	844.0	22.30	23.5
1 RB high of the set	829.0	22.12	23.5
1 RB high	836.5	22.64	23.5
otek Anbotek Anbor An abotek A	844.0	22.05	23.5
k joten Anbo h jek	829.0	21.77	23.5
	836.5	23.10	23.5
10 MHz 50% RB low	844.0	21.02	23.5
Anbotek Anbotek Anbotek Anbotek Anbotek	829.0	22.43	23.5
50% RB mid	836.5	23.06	23.5
tek potek Anbote Ant otek Ar	844.0	21.91	23.5
or An totek Anboten Anbo	829.0	22.35	23.5
50% RB High	836.5	22.85	23.5
And rek abor An	844.0	21.85	23.5
stek sopor pill	829.0	22.33	23.5
100% RB	836.5	21.35	23.5
Ant sole Anbotek Anbo tek	844.0	21.87	23.5

Conducted Power Measurement Results (LTE FDD Band 7)

TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	Average Power [dBm]	Tune-up Limit (dBm)
eek sootek	Ambolo Am otek Ambol	2502.5	22.59	23.5
	1 RB low	2535	22.64	23.5
	tek anbotek Anbot Al	2567.5	23.46	23.5
5 MHz	tek abotek Anboto	2502.5	22.85	23.5
	1 RB mid	2535	22.81	23.5
	Ambotes Amb sotek Ambotek	2567.5	22.44	23.5
	1 RB high	2502.5	23.18	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek	安博检测
Product Safety	Anbotek Testing
Report No.:	SZAWW191017010-01

port No.: SZAWW191017010-01	FCC ID: 2AU4T-T6		age 41 of 157
Anbotek Anbotek Anbotek A	2535	22.36	23.5
Anbotek Anbotek Anbotek A	2567.5	22.74	23.5
oter paper	2502.5	22.23	23.5
50% RB low	2535	21.70	23.5
Anbe stek nabore	2567.5	22.49	23.5
50% PP mid	2502.5	21.73	23.5
50 % KB IIIU	2535	22.77	23.5
hotek Anboten Anbo hek	2567.5	21.64	23.5
101	2502.5	21.89	23.5
50% RB High	2535	23.27	23.5
Anbor Annotek Anbotek	2567.5	22.39	23.5
	2502.5	21.58	23.5
100% RB	2535	21.11	23.5
tek potek Anbor A	2567.5	21.82	23.5
1 RB low	2505	22.95	23.5 MINOTE
	2535	22.45	23.5
Anbotek Anborek Anbotek	2565	22.03	23.5
tek shloten And k sot	2505	23.25	23.5
1 RB mid	2535	22.15	23.5
V LOV	101	21.18	23.5
Annotest Annotest 1 RB high	2505	22.39	23.5
1 RB high	2535	22.15	23.5
Anbotek Anbor Annotek	2565	22.50	23.5
ek Antolek Anbora Am	2505	22.17	23.5
) MHz 50% RB low	2535	23.03	23.5
	2565	21.35	23.5
Anbotek Anbotek Anbotek	2505	22.48	23.5
50% RB mid	2535	22.69	23.5
Anbotek Anbotek Anbotek	2565	23.03	23.5
Al ptek Anbotes Anbo	2505	23.50	23.5
50% RB High	2535	22.24	23.5
poten Anbo A stek Ant	2565	21.56	23.5
abote. Ann tek	2505	21.59	23.5
100% BB	2535	22.30	23.5
All Anboten Anbo	2565	22.71	23.5 M
ak Anbotek Anbotek Anbotek	2507.5	22.13	23.5
1 RB low	2535	22.47	23.5
5 MHz	2562.5	22.82	23.5
cler habe	2507.5	22.56	23.5
1 RB mid	2535	22.10	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

o p				
nbotek	安博检测 Apportek Testing			
	Albuten resting			
Report No.: S	ZAWW191017010-01 F	CC ID: 2AU4T-T6	abote Ant Pa	age 42 of 157
	Anbo Ar notek Anboter	2562.5	21.55	23.5
	Anbote Ant Anbotek Anbot	2507.5	23.25	23.5
	1 RB high	2535	23.25	23.5
	ek nbotek Anbote An	2562.5	22.63	23.5
	at botek Anbote	2507.5	21.92	23.5
	50% RB low	2535	23.39	23.5
	Anboten Anbo hek abotek	2562.5	22.80	23.5
	FOO(DD mid	2507.5	22.72	23.5
	50% RB mid	2535	23.46	23.5
	K hotek Anbotek Ant	2562.5	21.51	23.5
	Ann dek anbotek	2507.5	21.87	23.5
Anbotek Ar	50% RB High	2535	23.13	23.5
Anbotek	Anbotek Anbos At hotek	2562.5	21.96	23.5
	Anbolek Anbole Annote	2507.5	21.33	23.5
	100% RB	2535	22.56	23.5
	Anti ntek Anbotek Anb	2562.5	21.81	23.5
Anbotek Anbot	And tek abolek	2510	21.60	23.5
	1 RB low	2535	21.89	23.5
	abotek Anbote, Anu stek	2560	22.62	23.5
Anbotek	1 RB mid	2510	23.24	23.5
	1 RB mid	2535	22.23	23.5
	Anburtek Anb	2560	22.86	23.5

20 MHz

2510 22.39 23.5 1 RB high 2535 21.98 23.5 22.24 2560 23.5 21.64 2510 23.5 50% RB low 23.5 2535 22.14 2560 21.86 23.5 21.31 2510 23.5 50% RB mid 2535 22.25 23.5 2560 22.88 23.5 23.5 2510 22.79 50% RB High 2535 23.43 23.5 22.73 23.5 2560 2510 21.45 23.5 22.33 23.5 100% RB 2535 23.5 2560 23.34

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 43 of 157

TX Channel	RB Size/Offset	Frequency	Average Power	Tune-up Limit
Bandwidth	RB Size/Offset	(MHz)	[dBm]	(dBm)
unbotek Anbo	ak botek Anboten	699.7	22.43	23.5
-100 P.	1 RB low	707.5	22.51	23.5
Anbotek	Anbor An jok soter	715.3	22.23	23.5
Anbotek	Anbotek Anbotek Anbotek	699.7	22.11	23.5
	1 RB mid	707.5	22.81	23.5 M
tek Anbotek		715.3	21.29	23.5
stek nbo	Amu tek nbotek p	699.7	23.31	23.5
Anbotek An	1 RB high	707.5	22.10	23.5
Anos		715.3	22.39	23.5
Anbotek	hotek Anbore Ann	699.7	22.09	23.5
1.4 MHz	50% RB low	707.5	21.58	23.5
1.4 MHZ	Anbor tek anbotek Anbr	715.3	21.40	23.5
tek npot	Anbolis All hotek A	699.7	21.33	23.5
	50% RB mid	707.5	22.17	23.5
about At	abotek Anbotek Anbo	715.3	21.93	23.5
Anbotek	An hoter Ano	699.7	22.54	23.5
aboten	50% RB High	707.5	22.71	23.5
ek Anbotek		715.3	21.72	23.5
potek Anbote	K Anbota Ano stek	699.7	22.36	23.5
	100% RB	707.5	21.20	23.5
Anbotek Ant	100% RB	715.3	22.66	23.5
Anbotek	inbor ak botek Anboter	700.5	22.59	23.5
Anbotek	1 RB low	707.5	22.65	23.5
ak abotek		714.5	22.76	23.5
Pri		700.5	22.62	23.5
otek Anbote		707.5	22.05	23.5
boten Anb	And 1 RB mid	714.5	22.20	23.5
Anbotek P	ADD AN ALLON	700.5	23.33	23.5
3 MHz	1 RB high	707.5	22.60	23.5
	Anbotek Anbo tek All	714.5	22.74	23.5
LO.	Anbotek Anbote And	700.5	22.95	23.5
otek Anbote	50% RB low	707.5	22.90	23.5
obotek Anbr	k Antotek Anbotek	714.5	22.33	23.5
notek b	nbotek Anbor A.	700.5	22.33	23.5
Anu	50% RB mid	707.5	22.06	23.5
Anbotek	Anbotek Anbotek Anbo	714.5	23.12	23.5

Conducted Power Measurement Results (LTE FDD Band 12)

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek	安博检测
Product Safety	Anbotek Testing
Report No.:	SZAWW191017010-01

	-CC ID: 2AU4T-T6	nbote Ant Pa	ige 44 of 157
Anbolek Anbolek Andopolek Anbolek	700.5	22.48	23.5
50% RB High	707.5	21.66	23.5
Anbo tek Anbotek Anbote Ant	714.5	21.79	23.5 M
Anbotek Anbotek Anbotek A	700.5	21.02	23.5
4000/ DD	707.5	21.17	23.5
hotek Arbote And tek abotek	714.5	22.02	23.5
1 BB low	701.5	21.79	23.5
1 RB low	707.5	22.57	23.5
Anborek abotek Anbore Anb	713.5	22.58	23.5
Anbotek Anbotek Anbotek Anbotek Anbotek	701.5	22.73	23.5
1 RB mid	707.5	21.74	23.5
botek Anpotek Anboro Ano	713.5 And	22.29	23.5
tek aboten Anbo k otek		22.40	23.5
	707.5	23.07	23.5
Anbotek Anto otek Anbotek Anbo	713.5	22.63	23.5
	100 h 10 P	21.67	23.5
5 MHz 50% RB low	707.5	22.74	23.5
	713.5	21.65	23.5
potek Antotek Anbotek Anbotek Anbotek	701.5	22.41	23.5
50% RB mid	707 F	21.61	23.5
aboten Anber K sotek Anbor	713.5	22.72	23.5
Anbotek Anbotek Anbotek An	0.1	22.41	23.5
50% RB High	707.5	22.49	23.5
All wotek Anboten Anbo	713.5	21.94	23.5
otek Antotek Anbotek Anbotek Anbotek	701.5	21.08	23.5
100% PR	707 6	22.22	23.5
100% RB	713.5	21.77	23.5
New appoint parts		21.60	23.5
1 RB low	707.5	22.68	23.5
1 RB low	711.0	22.03	23.5
oten Anbouch hotek Anbolt	704.0	21.77	23.5
1 RB mid	707.5	21.83	23.5
Anbotek Anbotek Anbotek Anbote	711.0	21.26	23.5
10 MHz	14	23.05	23.5
And Lak bos An	707.5	22.11	23.5
And K hotek Anboic P	711.0	22.45	23.5
itek Anbritek Anbotek Anbotek	704.0	22.15	23.5
50% RB low	707.5	22.60	23.5
50% PP mid	711.0	22.23	23.5
50% RB mid	704.0	21.72	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

eport No.: SZAWW191017010-01	FCC ID: 2AU4T-T6	abotek Anbo Pa	ge 45 of 157
nbotek Anbot Ain otek Anbo	707.5	22.22	23.5
An hotek Anboten Anbo	711.0	22.05	23.5
And otek Anboten Anbo sek	704.0	22.50	23.5
50% RB High	707.5	21.89	23.5
tek Anbo ek botek Anboter	711.0	23.02	23.5
botek Albore All otek Anbotek	704.0	21.49	23.5
100% RB	707.5	21.32	23.5
Ant otek Anborek Anbor An	711.0	22.46	23.5

TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	Average Power [dBm]	Tune-up Limit (dBm)
NOT PY	ek Anboten Anbo	706.5	22.39	23.5
	1 RB low	710	22.48	23.5
Dry .		713.5	23.11	23.5
otek Anbotek	Anbo tek abotek Anb	706.5	22.60	23.5
stek photer	1 RB mid	710	22.27	23.5
nbotek Anbou		713.5	21.90	23.5
	1 RB high	706.5	22.94	23.5
- op-	1 RB high	710	22.76	23.5
Anbotek Ant		713.5	22.36	23.5
ek aboten	And tek abotek Anb	706.5	23.42	23.5
5 MHz	50% RB low	710	23.01	23.5
tek potek		713.5	22.51	23.5
Anbotek Antotek	K Anboten And	706.5	22.14	23.5
	EUV DD mid	710	22.25	23.5
aboten And	tek nbotek Anbote	713.5	23.19	23.5
ek Anbotek P	tek abotek Anbo	706.5	22.17	23.5
potek Anbotek	50% RB High	710	22.21	23.5
por Ar potek	Anboten Anot tek	713.5	23.30	23.5
Anbotek Anbotek	k Anbotek Anbot	706.5	21.71	23.5
Anbotek Anbote	100% RB	710	22.48	23.5
abote Any	or An botek Anboten	713.5	23.22	23.5
ek Anbotek A		709	23.45	23.5
potek Anbotek	1 RB low	otek 710 bole	22.87	23.5
V SIGN	Anbotek Anbo Lok	hotek 711 Anbote	22.28	23.5
10 MHz	Anbotek Anbou	709	21.84	23.5
boten Anbo		710	21.70	23.5
Anbotek Anbo	An potek Anbotek	711	22.72	23.5
p. stek	1 RB high	709	22.15	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

AWW191017010-01	FCC ID: 2AU4T-T6	abotek Anbore Pa	age 46 of 157
	710	21.89	23.5
Anboten Anbo	711	22.65	23.5
Anboten Anbo Ak	709	21.70	23.5
50% RB low	And 710 pole	22.10	23.5
	711	21.84	23.5
ou An otek Anboten	709	21.14	23.5
50% RB mid	710	21.65	23.5
Anbotek Anbot A.	711	22.16	23.5 ⁰⁰⁰
abotek Anbols An	709	22.48	23.5 March 23.5
50% RB High	710 710 move	23.21	23.5
	711	22.84	23.5
oter And tek obotek	709	22.57	23.5
100% RB	710	22.26	23.5
	711	22.40	23.5
An hoter And	Kek.	upor pri	K woll

Conducted Power Measurement Results (LTE FDD Band 38)

TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	Average Power [dBm]	Tune-up Limit (dBm)
Anbor	1 RB low	2572.5	22.32	23.5
	1 RB low	2595.0	21.69	23.5
	1 RB low	2617.5	21.87	23.5
	k Anbor k An otek M	2572.5	21.96	23.5
	1 RB mid	2595.0	22.69	23.5
Anbotek Ant	oren Anno 1 RB mid	2617.5	22.56	23.5
	ind tek potek Anboth	2572.5	23.05	23.5
	1 RB high	2595.0	22.03	23.5
	1 RB high	2617.5	22.47	23.5
	Anboten Anos otek An	2572.5	22.26	23.5
5 MHz	10r po	2595.0	22.14	23.5
Anbotek Anb	50% RB low	2617.5	22.20	23.5
	nbo ok botek Anbote	2572.5	22.02	23.5
	50% RB mid	2595.0	21.52	23.5
	Anboten Anbo tek noot	2617.5	22.06	23.5
	Anbotek Anbor All	2572.5	22.63	23.5
	50% RB High	2595.0	21.52	23.5
	ak notek Anboten	2617.5	23.32	23.5
	hotek Anbotek Anbotek	2572.5	23.45	23.5
	100% RB	2595.0	22.49	23.5
	An anbotek Anbotes Anbo	2617.5	22.11	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek	安博检测
Product Safety	Anbotek Testing
Report No.:	SZAWW191017010-01

Report No.: SZAWW191017	010-01 F	FCC ID: 2AU4T-T6	hpoten Anbo Pa	age 47 of 157
Anbotek Anboto A	abotek Anbotek	2575.0	21.72	23.5
Anbotek Anbotek Anbotek	1 RB low	2595.0	22.85	23.5
Pri k voter		2615.0	22.79	23.5 M
otek Anbotek Anbotek	Anbore	2575.0	23.30	23.5
bor pir	1 RB mid	2595.0	22.40	23.5
Anbotek Anbotek Anbo		2615.0	22.35	23.5
	hou kanbotek	2575.0	23.48	23.5
Anbotek Anbotek	I RB high	2595.0	21.84	23.5
Anbotek Anbotek	RB high	2615.0	21.98	23.5
	Anboten Ar	2575.0	23.28	23.5
	0% RB low	2595.0	21.70	23.5
nbortowniz At Anbotek Anbo		2615.0	22.19	23.5
And tek aboten Ar	N/ DP mid	2575.0	23.05	23.5
Anbotek Anbotek An	0% RB mid	2595.0	23.20	23.5
Anbotek Anbotek 50	1% RB mid	2615.0	22.92	23.5
tek Anbolek Anbolen	An abotek An	No.	22.57	23.5
50 And And And So	% RB High	2595.0	22.56	23.5
botek Anbol And 50	Anu otek	2615.0	21.90	23.5
Anbotek Anbotek Anbo	poren Aupo	2575.0	22.05	23.5
- 0 ⁰	100% RB	2595.0	21.74	23.5
Anbotek Anboten		2615.0	22.38	23.5
10°	An abotek Ant	2577.5	22.76	23.5
	1 RB low	2595.0	22.54	23.5
botek Anboten Anbo		2612.5	22.52	23.5
Anbotek Anbotek Anbo	poter Antoo Lok	2577.5	21.63	23.5
bote kne	1 RB mid	2595.0	22.41	23.5
botek Anbo	I RB mid	2612.5	21.76	23.5
10. 10	Ant abotek Ant		22.23	23.5
ek Anbor Anbotek	I RB high	2595.0	22.84	23.5
potek Anbote, Anbo	I RB high	2612.5	22.68	23.5
15 MHz	otek Anbois	2577.5	23.30	23.5
aboten Anbo 50	0% RB low	2595.0	22.96	23.5
aboten Anbo	hotek Anbote	2612.5	22.15	23.5
k Anbotek Anbotek	And abotek And	2577.5	21.95	23.5
otek Anbotek Anbotek 50		2595.0	22.11	23.5
	0% RB mid	2612.5	23.45	23.5
Anbotek Anbotek Anb	otek Anborer	2577.5	22.68	23.5
50	% RB High	2595.0	21.57	23.5
Anbotek Anbotek A	inbo tek nbotel	2612.5	23.44	23.5
Ann tek potek	100% RB	2577.5	22.39	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

oduct Safety	安博检测 Anbotek Testing			
	ZAWW191017010-01 F	CC ID: 2AU4T-T6	hoten Anb Pa	age 48 of 157
	Anbottek Anbotek Anbote	2595.0	22.38	23.5
K botek	Anbote Ant stek nbot	2612.5	22.08	23.5
	K Anboten Anbo tek	2580.0	22.80	23.5
		2595.0	22.75	23.5
	o An notek Anboten	2610.0	23.25	23.5
	thore An otek Anbotek	2580.0	22.33	23.5
	1 RB mid	2595.0	22.91	23.5
	nbotek Anbot All note	2610.0	23.46	23.5
	k Anbotek Anbotek Am	2580.0	23.38	23.5
	1 RB high	2595.0	23.48	23.5
	And atek anbotek	2610.0	22.34	23.5
	nooter And tek potek	2580.0	23.35	23.5
20 MHz	50% RB low	2595.0	21.71	23.5
	h potek Anbote Anu	2610.0	23.40	23.5
	hotek Anbote Ann	2580.0	21.65	23.5
	50% RB mid	2595.0	22.28	23.5
	stok Anbo esk abotek p	2610.0	23.49	23.5
	der hap	2580.0	22.34	23.5
	50% RB High	2595.0	22.91	23.5
Anbotek	otek Anbor An	2610.0	22.03	23.5
	100% RB	2580.0	21.69	23.5
	100% RB	2595.0	22.36	23.5
	tok Anbor Antek	2610.0	23.27	23.5 ×

Conducted Power Measurement Results (LTE FDD Band 41)

TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	Average Power [dBm]	Tune-up Limit (dBm)
wet wote	Anbore Ant stek	2498.5	21.56	23.5
	stek Anbotek Anbo A	2545.5	22.28	23.5
	1 RB low	2593.0	22.31	23.5
	nbor An botek Anboten	2640.5	22.30	23.5
	Anbote Ant sotek Anbotek	2687.5	23.40	23.5
	Anbore Ann tek noot	2498.5	22.24	23.5
5 MHZ	5 MHz	2545.5	22.31	23.5
	1 RB mid	2593.0	22.92	23.5
	ak notek Anboten	2640.5	22.36	23.5
	abote Ant sotek anbotek	2687.5	21.88	23.5
	Anboten And Hoke abotek	2498.5	22.35	23.5
	1 RB high	2545.5	22.24	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Report No.: SZ	ZAWW191017010-01	FCC ID: 2AU4T-T6	nboten Anb Pa	age 49 of 157
abotek	Anbotek Anbotek Anbotek	2593.0	22.13	23.5
Anbotek		2640.5	22.34	23.5 ¹⁰⁰
LP.V		2687.5	22.15	23.5
k Anbotek		2498.5	22.45	23.5
otek Anbo	botek Anbotek Anboten	2498.5	23.42	23.5
botek Ar		2545.5	22.57	23.5
un votek	50% RB low	2593.0	22.20	23.5
AMD	An anbotek Anboten Anbo	2640.5	22.41	23.5
Anbotek		2687.5	22.63	23.5
Anbotek	ek Anbotek Anbotek A	2498.5	21.73	23.5
tek nbo		2545.5	22.36	23.5
nbotek An	50% RB mid	2593.0	22.29	23.5
nb- tek	anbotek Anbotek Anbo	2640.5	22.45	23.5
Anbor		2687.5	23.25	23.5
Anbotek	Anbotek Anbotek Anb	2498.5	22.30	23.5
Anbotek	Anbe tek nbotek A	2545.5	22.36	23.5
tek npot	50% RB High	2593.0	22.71	23.5
botek Anbor	otek Anboter Anbotek	2640.5	22.21	23.5
		2687.5	23.23	23.5
Anbotek	Anbotek Anbotek Anbo	2498.5	22.16	23.5
Anbotek		2545.5	22.36	23.5
Anbotek	100% RB	2593.0	22.71	23.5
tek Anbote		2640.5	22.50	23.5
ak at		2687.5	23.07	23.5
1000 K	nbotek Anbotek Anbo	2501.0	22.46	23.5
Anboten		2548.0	22.12	23.5
Anbotek	1 RB low	2593.0	22.74	23.5
Anbotek		2638.0	22.35	23.5
		2685.0	22.47	23.5 AM
2.8	otek Anborek Anborotek	2501.0	22.07	23.5
potek Anb	obotek Anbotek Anbotek	2548.0	21.89	23.5
aboten P	1 RB mid	2593.0	22.06	23.5
10 MHz	Anbotek Anbotek Anbot	2638.0	21.94	23.5
Anbotek	Anboten Anbo tek	2685.0	21.39	23.5
Anw stel	Anbolet Anbols All	2501.0	21.89	23.5
ek Anbotel		2548.0	22.14	23.5
potek Anbr	1 RB high	2593.0	22.79	23.5
abotek A	nbotek Anbotek Anbotek	2638.0	22.36	23.5
Allek		2685.0	22.53	23.5
Anu	50% RB low	2501.0	22.01	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

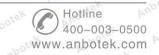
+n Val

	Anbotek	安博检测
	Product Safety	Anbotek Testing
ex-	Report No.:	SZAWW191017010-01

Report No.: SZAWW191017010-01	FCC ID: 2AU4T-T6	botek Anbo Pa	age 50 of 157
abotek Anbor Ann atek anbot	2548.0	22.21	23.5
lok bot pit	2593.0	22.34	23.5
	2638.0	22.36	23.5 M
Pri Nub	2685.0	21.50	23.5
otek Anbo A. tek nbote.	2501.0	21.96	23.5
aboten Allos in otek Nabote	2548.0	22.21	23.5
50% RB mid	2593.0	21.99	23.5
DV FC AV	2638.0	22.36	23.5
to the shore And	2685.0	22.40	23.5 M
A wolle' AND	2501.0	22.34	23.5
or pri v oter vob	2548.0	22.35	23.5
50% RB High	2593.0	22.10	23.5
	2638.0	22.25	23.5
Anny tek abotek Anboy A	2685.0	22.42	23.5
Anbo, Ant	2501.0	21.52	23.5
Anbor All tek aboten A	2548.0	21.47	23.5
100% RB	2593.0	21.72	23.5
NOT AN AV	2638.0	21.63	23.5
Let Automation Print and Automation	2685.0	21.57	23.5
And set bote. And	2503.5	21.60	23.5
bor prive ster sup		22.15	23.5
1 RB low	2593.0	22.57	23.5
	2635.5	22.36	23.5
tek otote And v otek	2682.5	21.58	23.5
ok noter Anbo history	2503.5	23.29	23.5
MO. N. YOUNG TO	2550.5	22.87	23.5
1 RB mid	2593.0	21.94	23.5
1 RB mid	2635.5	22.60	23.5
15 MHz	2682.5	22.41	23.5
	2503.5	22.78	23.5
bor All Aller Moor	2550.5	22.33	23.5
1 RB high	2593.0	22.88	23.5
abotek Anbort All atek Anbo	2635.5	22.58	23.5
abotek Anbor An otek Ar	2682.5	22.65	23.5
ek Anbotek Anbotek Anbotek	2503.5	21.83	23.5
All y oter habe	2550.5	22.40	23.5
50% RB low	2593.0	23.42	23.5
hote Ant tek nbot	2635.5	22.36	23.5
500/ DD mid	2682.5	23.11	23.5
50% RB mid	2503.5	22.15	23.5

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

botek 安博检测			
Anbotek Testing Report No.: SZAWW191017010-01 FCC	C ID: 2AU4T-T6		age 51 of 157
tek about Ann k otek	2550.5	22.54	23.5
ter pour All K soter	2593.0	21.63	23.5
Per all	2635.5	22.63	23.5
tek Anbotek Anbotek Anbotek Anbotek	2682.5	23.33	23.5
botek Anbole, Anbotek Anbotek In	2503.5	22.69	23.5
botek Anbolek Anbolek Anbolek Anbolek	2550.5	22.85	23.5
50% RB High	2593.0	23.21	23.5
- VS	2635.5	22.78	23.5
ALC: NOT	2682.5	23.25	23.5
ek Anbotek Anbotek Anbotek Anbotek	2503.5	21.05	23.5
otek anbolen Anbo jek abotek an	2550.5	22.31	23.5
100% RB	2593.0	22.57	23.5
Anbo tek nbotek Anbotes Anu	2635.5	22.45	23.5
Anbor Ak notek Anboren Anbor et	2682.5	23.46	23.5
ak abotek Anbotek Anbotek Anbotek	2506.0	22.86	23.5
ek Ambotek Anbotek Ambotek Ambotek	2553.0	22.65	23.5
1 RB low	2593.0	22.74	23.5
poten Andorek Andorek Andorek	2633.0	22.58	23.5
	2680.0	23.43	23.5
Anbotek Anbotek Anbotek Anbotek Anbotek	2506.0	22.10	23.5
Anbor Anbo	2553.0	22.36	23.5
Anboret Anboret Anboret Anboret	2593.0	22.83	23.5
at boten And	2633.0	22.51	23.5
otek antotek Anbotek Anbotek Anbor A	2680.0	22.28	23.5
Anbort Anti Lek abote Anbo	2506.0	22.32	23.5
abote, kno v otek subor	2553.0	22.25	23.5
1 RB high	2593.0	23.12	23.5
20 MHz	2633.0	22.18	23.5
rek abotek Anbor An atek ap	2680.0	23.15	23.5
tek pote Ann	2506.0	21.84	23.5
abor Arr Ander Ander	2553.0	22.36	23.5
50% RB low	2593.0	22.62	23.5
aboten Anbot	2633.0	22.48	23.5
k botek Anboten Anu stek anboten	2680.0	21.01	23.5
All abote And	2506.0	22.04	23.5
All Aller And	2553.0	22.10	23.5
50% DB mid	2593.0	22.95	23.5
bote And And And And	2633.0	22.87	23.5
Anbotek Anbotek Anbotek	2680.0	22.25	23.5
50% RB High	2506.0	22.68	23.5


Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Anbote

Andotek resting	Anbors An	Lek boten	Anbo
: SZAWW191017010-01 F0	CC ID: 2AU4T-T6	hor Arr Pa	age 52 of 157
Anbour An notek Anboten	2553.0	22.54	23.5
k Anboten Anbo	2593.0	22.33	23.5
otek Anbotek Anbos An	2633.0	22.24	23.5
ek nbotek Anbote An	2680.0	22.48	23.5
nbo A. hotek Anbote.	2506.0	22.35	23.5
Arbotek Anbotek Anbotek	2553.0	22.38	23.5
100% RB	2593.0	21.67	23.5
Anbotek Anbor Air pote	2633.0	22.74	23.5 ⁰⁰⁰
tek pootek Anbote And	2680.0	23.08	23.5

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Product Safety

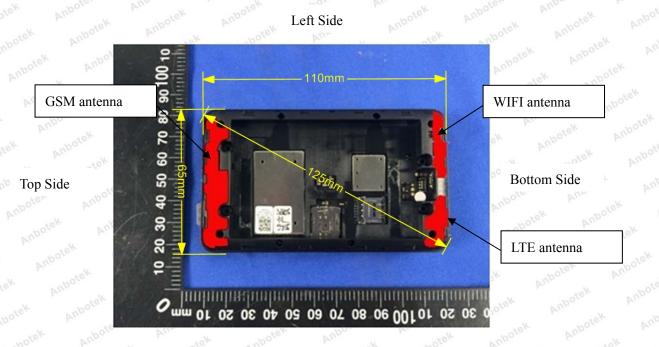
Report No.: SZAWW191017010-01

<WIFI 2.4GHz Conducted Power>

FCC ID: 2AU4T-T6

Page 53 of 157

Mode	Channel	Frequency (MHz)	Power(dBm)	Test Rate Data
	Anboten An	2412	17.75	1 Mbps
802.11b	6.eh	2437	16.91	1 Mbps
	x 11 _{botek}	2462	15.68	1 Mbps
	A 1 hotek	2412	15.33	6 Mbps
802.11g	6 Mar	2437	16.57	6 Mbps
	Inboten 11 Anbo	2462	15.75	6 Mbps
	Anbotel Ant	2412	14.73	MCS0
802.11n(20MHz)	6	2437	16.24	MCS0
	11 tex	2462	14.85	MCS0


Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 54 of 157

11..Transmit Antennas

Right Side

Distance of The Antenna to the EUT surface and edge										
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side				
LTE	<25mm	<25mm	>25mm	<25mm	>25mm	<25mm				
GSM	<25mm	<25mm	<25mm	>25mm	<25mm	<25mm				
WLAN	<25mm	<25mm	>25mm	<25mm	<25mm	>25mm				
or bu.			P			101				

Positions for SAR tests; Hotspot mode										
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side				
LTE	Yes	Yes	No	Yes	No	Yes				
GSM	Yes	Yes	Yes	No	Yes	Yes				
WLAN	Yes	Yes	No	Yes	Yes	No				

General Note: Referring to KDB 941225 D06 v02, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

Shenzhen Anbotek Compliance Laboratory Limited

Page 55 of 157

12.SAR Test Results Summary

General Note:

3.

- Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor
- Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary
- Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- Per KDB 941225 D05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- Per KDB 941225 D05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05, 16QAM SAR testing is not required.
- Per KDB 941225 D05, Smaller bandwidth output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05, smaller bandwidth SAR testing is not required.
- Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥ 0.8 W/Kg; if the deviation among the repeated measurement is $\leq 20\%$, and the measured SAR < 1.45W/Kg, only one repeated measurement is required.

Shenzhen Anbotek Compliance Laboratory Limited

Page 56 of 157

Test Position	Channel/ Frequency(Test Mode	Duty Cycle	Maximum Allowed Power	Conducted Power	Drift ± 0.21dB Drift	Measure	imit SAR	ng 1.6 W/k Report ed	g Graph
	MHz)			(dBm)	(dBm)	(dB)	d SAR _{1g} (W/kg)	Factor	SAR _{1g} (W/kg)	Results
	Те	st position	of Body-	worn acces	sory & Hots	pot Mode (I	Distance 10	mm)		
Rear Side	190/836.6	2Txslots	1:4.15	30.00	29.79	-0.04	0.246	1.05	0.258	Figure 1
Front Side	190/836.6	2Txslots	1:4.15	30.00	29.79	-0.02	0.154	1.05	0.162	N/A
Left Edge	190/836.6	2Txslots	1:4.15	30.00	29.79	0.05	0.187	1.05	0.196	N/A
Right Edge	190/836.6	2Txslots	1:4.15	30.00	29.79	0.10	0.195	1.05	0.205	N/A
Top Edge	190/836.6	2Txslots	1:4.15	30.00	29.79	-0.07	0.218	1.05	0.229	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Anbou	Autobotek	Worst (Case Pos	sition of Bo	dy with EGP	RS(Distanc	e 10mm)	hotek	Anbr	ster
Rear Side	190/836.6	2Txslots	1:4.15	30.00	29.72	-0.07	0.239	1.07	0.255	N/A

SAR Values GSM 850

Note: 1.The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Page 57 of 157

	Channel/			Maximum	Conducted	Drift \pm 0.21dB	L	.imit SAR₁	_{lg} 1.6 W/k	g
Test	Frequency(M Hz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Report ed SAR _{1g} (W/kg)	Graph Results
	Test	t position c	of Body-	worn acces	sory & Hots	pot Mode (D	Distance 10	mm)		J
Rear Side	661/1880	2Txslots	1:4.15	28.00	27.92	-0.11	0.204	1.02	0.208	Figure 2
Front Side	661/1880	2Txslots	1:4.15	28.00	27.92	-0.10	0.134	1.02	0.136	N/A
Left Edge	661/1880	2Txslots	1:4.15	28.00	27.92	-0.05	0.189	1.02	0.193	N/A
Right Edge	661/1880	2Txslots	1:4.15	28.00	27.92	0.03	0.195	1.02	0.199	N/A
Top Edge	661/1880	2Txslots	1:4.15	28.00	27.92	-0.01	0.201	1.02	0.205	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	.e.V	Annabotel	N/A
	Anbo	Worst C	ase Po	sition of Bo	dy with EGP	RS(Distance	e 10mm)	po.		tek
Rear Side	661/1880	2Txslots	1:4.15	28.00	27.92	-0.03	0.199	1.02	0.203	N/A

SAR Values GSM 1900

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 SAR Values [WCDMA Band V]

Page 58 of 157

	Channel/				Conducte	Drift ± 0.21d B	Limit SAR _{1g} 1.6 W/kg				
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	d Power (dBm)	Drift (dB)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Reporte d SAR _{1g} (W/kg)	Graph Results	
	Т	est position	of Body	-worn acce	essory & Hot	spot Mode	(Distance 1	l0mm)	<u> </u>		
Rear Side	4183/836.6	RMC 12.2K	1:1	24.00	23.83	0.05	0.315	1.04	0.328	Figure 3	
Front Side	4183/836.6	RMC 12.2K	1:1	24.00	23.83	0.04	0.274	1.04	0.285	N/A	
Left Edge	4183/836.6	RMC 12.2K	ex1:1	24.00	23.83	-0.07	0.298	1.04	0.310	N/A	
Right Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.83	0.05	0.305	1.04	0.317	N/A	
Top Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.83	-0.03	0.312	1.04	0.324	N/A	
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	otek	Anboten	N/A	

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Channel/				Maximum	Conducted	Drift \pm 0.21dB		Limit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	т	est position	n of Boo	dy-worn acc	essory & Ho	tspot Mode	e (Distance ²	l0mm)		
Rear Side	9400/1880	RMC 12.2K	1:1	24.00	23.69	0.15	0.289	1.07	0.310	Figure 4
Front Side	9400/1880	RMC 12.2K	1:1	24.00	23.69	0.03	0.201	1.07	0.216	N/A
Left Edge	9400/1880	RMC 12.2K	1:1	24.00	23.69	0.05	0.268	1.07	0.288	N/A
Right Edge	9400/1880	RMC 12.2K	1:1%	24.00	23.69	-0.01	0.279	1.07	0.300	N/A
Top Edge	9400/1880	RMC 12.2K	1:1	24.00	23.69	0.04	0.284	1.07	0.305	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	otek	Anboten	N/A

SAR Values [WCDMA Band II]

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 SAR Values [LTE Band 2]

Page 60 of 157

	Channel/			Maximum	Conducted	Drift ± 0.21dB		Limit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	•	Test position	of Body	y-worn acce	essory & Hot	spot Mode	(Distance 1	0mm)		
Rear Side	1860.0	n ^{boll} 1RB	1:1	23.50	23.10	-0.10	0.148	1.10	0.162	N/A
Front Side	1860.0	1RB	1:1	23.50	23.10	-0.09	0.097	1.10	0.106	rupo, k
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	1860.0	1RB	l:1	23.50	23.10	0.05	0.129	⁰¹⁰ 1.10	0.141	N/A
Top Edge	N/A pote	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	1860.0	1RB M	1:1	23.50	23.10	-0.04	0.137	1.10	0.150	N/A
Rear Side	1880.0	50%RB	nº1:1	23.50	23.44	-0.13	0.156	1.01	0.158	Figure 5
Front Side	1880.0	50%RB	1:100	23.50	23.44	-0.02	0.105	1.01	0.106	N/A
Left Edge	N/A	N/A	N/A	o ^{ven} N/A	N/A	N/A	N/A	N/A M	N/A	N/A
Right Edge	1880.0	50%RB	1:1	23.50	23.44	0.07	0.134	o ^{te^N1.01}	0.136	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	1880.0	50%RB	^{1.6} 1:1	23.50	23.44	-0.02	0.147	1.01	0.149	N/A

Note: 1. The value with green color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR uses a context on the state of the s

SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required. 5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Page 61 of 157

	~0V	71	1			14		200		- day
	Channel/			Maximum	Conducted	Drift ± 0.21dB		Limit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Т	est position	of Body	-worn acce	ssory & Hots	spot Mode	(Distance 1	0mm)	1	
Rear Side	1720.0	1RB	1.1	23.50	22.57	-0.05	0.168	1.24	0.208	N/A
Front Side	1720.0	1RB	1:1	23.50	22.57	0.07	0.124	1.24	0.154	N/A
Left Edge	N/A	N/A	™ N/A	N/A	N/A	N/A	N/A M	N/A	N/A	N/A
Right Edge	1720.0	1RB	1:1	23.50	22.57	0.04	0.141	1.24	0.175	N/A
Top Edge	otek N/A prib	N/A	N/A	N/A	N/A noo	N/A	N/A	N/A	N/A	N/A
Bottom Edge	1720.0	1RB	1:1	23.50	22.57	-0.05	0.153	1.24	0.190	N/A
Rear Side	1732.5	50%RB	1:1	23.50	22.62	-0.10	0.173	1.22	0.212	Figure 6
Front Side	1732.5	50%RB	1:1.0	23.50	22.62	0.04	0.134	1.22	0.164	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A
Right Edge	1732.5	50%RB	1:1	23.50	22.62	0.03	0.157	1.22	0.192	N/A
Top Edge	otek N/A MO	N/A M	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	1732.5	50%RB	1:1	23.50	22.62	-0.01	0.169	1.22	0.207	N/A

SAR Values [LTE Band 4]

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power. 4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 SAR Values [LTE Band 5]

Page 62 of 157

	Channel/			Maximum	Conducted	Drift ± 0.21dB		Limit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Т	est position	of Body	-worn acce	ssory & Hots	spot Mode	(Distance 10	Omm)		
Rear Side	829.0	1RB	1:1	23.50	22.77	0.08	0.310	1.18	0.367	N/A
Front Side	829.0	1RB	1:1	23.50	22.77	0.11	0.201	1.18	0.238	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	829.0	1RB	· 1:1	23.50	22.77	0.11	0.274	1.18	0.324	N/A
Top Edge	N/A how	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	829.0	1RB M	1:1	23.50	22.77	-0.08	0.293	1.18	0.347	N/A
Rear Side	836.5	50%RB	1:1	23.50	23.10	-0.11	0.317	1.10	0.348	Figure 7
Front Side	836.5	50%RB	1:100	23.50	23.10	-0.05	0.205	1.10	0.225	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	836.5	50%RB	1:1	23.50	23.10	0.08	0.281	o ^{ten} 1.10	0.308	N/A
Top Edge	K N/A pote	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	836.5	50%RB	1:1	23.50	23.10	-0.04	0.305	1.10	0.334	N/A

Note: 1. The value with green color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Nbotek 安博检测 **Product Safety Anbotek Testing** Report No.: SZAWW191017010-01

FCC ID: 2A SAR Values [] TE B hd

Page 63 of 157

101	Channel/	N.	. oter	Maximum	ES [LIE BA	Drift ± 0.21dB	hore	Limit SAR	_{1g} 1.6 W/kg	-16 ^h
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Т	est position	of Body	-worn acce	ssory & Hots	spot Mode	(Distance 10	Dmm)		
Rear Side	2510	1RB	1:1	23.50	23.24	0.08	0.218	1.06	0.231	N/A
Front Side	2510	1RB	1:1	23.50	23.24	-0.02	0.171	1.06	0.182	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	2510	1RB	* 1:1	23.50	23.24	0.10	0.196	1.06	0.208	N/A
Top Edge	N/A hour	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	2510	1RB	1:1	23.50	23.24	-0.08	0.207	1.06	0.220	N/A
Rear Side	2535	50%RB	kn ^b 1:1	23.50	23.43	-0.07	0.224	1.02	0.228	Figure 8
Front Side	2535	50%RB	101°0	23.50	23.43	-0.05	0.182	1.02	0.185	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	2535	50%RB	1:1	23.50	23.43	0.08	0.205	1.02	0.208	N/A
Top Edge	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	2535	50%RB	1:1	23.50	23.43	-0.04	0.219	1.02	0.223	N/A

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power. 4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Page 64 of 157

			p.	SAN Value	5 [LI L Dai					
	Channel/			Maximum	Conducted	Drift ± 0.21dB		Limit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Т	est position	of Body	-worn acce	ssory & Hot	spot Mode	(Distance 10	0mm)		<u> </u>
Rear Side	704.0	1RB	1:1	23.50	23.05	0.02	0.255	1.11	0.283	Figure 9
Front Side	704.0	1RB	1:1	23.50	23.05	0.04	0.179	1.11	0.199	N/A
Left Edge	N/A noor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	704.0	1RB	1:1	23.50	23.05	-0.03	0.211	1.11	0.234	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A N/A	⊳ ^{ove} N/A	N/A	N/A	N/A N/A	N/A
Bottom Edge	704.0	1RB	1:10	23.50	23.05	-0.05	0.236	1.11	0.262	N/A
Rear Side	711.0	50%RB	1:1	23.50	23.02	-0.02	0.251	1.12	0.280	N/A
Front Side	711.0	50%RB	1:1	23.50	23.02	-0.04	0.171	^{1.12}	0.191	N/A
Left Edge	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	711.0	50%RB	1:1	23.50	23.02	0.05	0.205	1.12	0.229	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	711.0	50%RB	1:1.4	23.50	23.02	-0.02	0.229	1.12	0.256	N/A
		to the Date	12.1				100	1	0.5	17 ···

SAR Values [LTE Band 12]

Note: 1.The value with green color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Page 65 of 157

-V-	2010	Ann				in in l	ofer.	NUD		Yay
	Channel/			Maximum	Conducted	Drift ± 0.21dB		Limit SAR	_{1g} 1.6 W/kg	
Test Position	Channel/ Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	1	Test position	of Body	-worn acce	ssory & Hots	spot Mode	(Distance 1	Omm)	•	I
Rear Side	709	1RB	1:1	23.50	23.45	0.01	0.355	1.01	0.359	Figure 10
Front Side	709	1RB	1:1	23.50	23.45	0.03	0.284	1.01	0.287	N/A
Left Edge	N/A	N/A	[≪] N/A	N/A	N/A	N/A	N/A M	N/A	N/A	N/A
Right Edge	709	1RB	1:1	23.50	23.45	0.05	0.311	1.01	0.315	N/A
Top Edge	ter N/A	N/A ANY	N/A	N/A	N/A nbo	N/A	N/A	N/A	N/A	N/A
Bottom Edge	709	1RB	(¹⁾ 1:1	23.50	23.45	-0.03	0.336	1.01	0.340	N/A
Rear Side	710	50%RB	1:1°	23.50	23.21	-0.04	0.345	1.07	0.369	N/A
Front Side	710	50%RB	1:1	23.50	23.21	0.02	0.281	1.07	0.300	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	× 710 000	50%RB	1:1	23.50	23.21	0.05	0.307	1.07	0.328	N/A
Top Edge	N/A	tek N/A and	N/A	N/A	N/A	N/A pro	N/A	N/A	N/A	N/A
Bottom Edge	710	50%RB	nb1:1	23.50	23.21	-0.07	0.331	1.07	0.354	N/A

SAR Values [LTE Band 17]

Note: 1. The value with green color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 SAR Values [LTE Band 38]

Page 66 of 157

	Channell			Maximum	Conducted	Drift ± 0.21dB		Limit	SAR _{1g} 1.6	W/kg	
Test Position	Channel/ Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Duty Factor	Reported SAR _{1g} (W/kg)	Graph Results
		Test po:	sition of	Body-worn	accessory 8	Hotspot N	lode (Distar	nce 10mm)			
Rear Side	2595.0	1RB	1:1.58	23.50	23.48	-0.05	0.251	1.005	1.58	0.398	N/A
Front Side	2595.0	1RB	1:1.58	23.50	23.48	0.01	0.194	1.005	1.58	0.308	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	🕺 N/A 💦	N/A	N/A	N/A	N/A N/A	N/A
Right Edge	2595.0	1RB	1:1.58	23.50	23.48	0.02	0.220	1.005	1.58	0.349	N/A
Top Edge	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	2595.0	1RB	1:1.58	23.50	23.48	-0.03	0.235	1.005	1.58	0.373	N/A
Rear Side	2610.0	50%RB	1:1.58	23.50	23.49	0.06	0.255	1.002	1.58	0.404	Figure 11
Front Side	2610.0	50%RB	1:1.58	23.50	23.49	-0.07	0.201	1.002	1.58	0.318	N/A
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A
Right Edge	2610.0	50%RB	1:1.58	23.50	23.49	0.10	0.224	1.002	1.58	0.355	N/A
Top Edge	N/A	N/A	N/A	N/A N/A	N/A M	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	2610.0	50%RB	1:1.58	23.50	23.49	-0.05	0.239	1.002	1.58	0.378	N/A

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode 6.TDD LTE was tested using UL-DL configuration 0 with 6 UL sub frames and 2S sub frames using extended cyclic prefix only and special sub frame configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Sec. 4, the duty factor using extended cyclic prefix is 0.633(cf=1.58). 7. Duty Factor= 1/X where X is the duty cycle.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:

age 67 of 15

	Channell			Maximum	Conducted	Drift ± 0.21dB		Limit	SAR _{1g} 1.6	W/kg	53°
Test Position	Channel/ Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Duty Factor	Reported SAR _{1g} (W/kg)	Graph Results
		Test pos	sition of	Body-worn	accessory 8	Hotspot N	lode (Distar	nce 10mm)			
Rear Side	2680.0	1RB	1:1.58	23.50	23.43	0.02	0.305	1.016	1.58	0.490	Figure 12
Front Side	2680.0	1RB	1:1.58	23.50	23.43	-0.03	0.201	1.016	1.58	0.323	N/A
Left Edge	N/A POP	N/A	N/A	N/A South	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	2680.0	1RB	1:1.58	23.50	23.43	0.01	0.289	1.016	1.58	0.464	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	2680.0	1RB	1:1.58	23.50	23.43	-0.05	0.302	1.016	1.58	0.485	N/A
Rear Side	2593.0	50%RB	1:1.58	23.50	22.95	0.07	0.298	1.135	1.58	0.534	N/A
Front Side	2593.0	50%RB	1:1.58	23.50	22.95	-0.03	0.197	1.135	1.58	0.353	N/A
Left Edge	o ^{ten} N/A An ^{br}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	2593.0	50%RB	1:1.58	23.50	22.95	0.09	0.264	1.135	1.58	0.473	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	2593.0	50%RB	1:1.58	23.50	22.95	-0.10	0.281	1.135	1.58	0.504	N/A

SAR Values [LTE Band 41]

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode 6.TDD LTE was tested using UL-DL configuration 0 with 6 UL sub frames and 2S sub frames using extended cyclic prefix only and special sub frame configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Sec. 4, the duty factor using extended cyclic prefix is 0.633(cf=1.58).

7. Duty Factor= 1/X where X is the duty cycle.

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek 安博检测 **Product Safety** Anbotek Testing Report No.: SZAWW191017010-01

Service

Channel/

Frequency

(MHz)

Test

Position

FCC ID: 2AU4T-T6

Page 68 of 157

(W/kg)

Results

	tek	SAR Val	ues [WIF	12.4G]				
		Maximum		Drift		imit SAD.	a 1.6 W/kg	
			Conducted	\pm 0.21dB			g 1.0 W/Kg	r.
	Duty	Allowed						
	-		Power	Drift	Measured		Reported	
(Cycle	Power	<i></i>	(dB)	SAR _{1g}	Scaling Factor	SAR _{1g}	Graph

(W/kg)

Factor

Test position of Body-worn accessory & Hotspot Mode (Distance 10mm)

(dBm)

(dBm)

Rear Side	1/2412	DSSS	1:1,0	18.00	17.75	-0.05	0.486	1.06	0.515	Figure13
Front Side	1/2412	DSSS	1:1	18.00	17.75	-0.03	0.302	1.06	0.320	N/A
Left Edge	1/2412	DSSS	1:1	18.00	17.75	0.04	0.411	1.06	0.435	N/A
Right Edge	1/2412	N/A	N/A	N/A	N/A bot	N/A	N/A	N/A	N/A	N/A
Top Edge	1/2412	N/A	N/A	N/A	• ^{>*} N/A 🔊	N/A	N/A	N/A	N/A	N/A
Bottom Edge	1/2412	DSSS	1:1	18.00	17.75	0.02	0.442	1.06	0.468	N/A

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3.Per KDB 248227-SAR is measured using the highest measured maximum output power channel for the initial test configuration.

4. Per KDB 248227- Channels with measured maximum output power within 1/4 dB of each other are considered to have the same maximum output, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement. And when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. 5. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg the ODFM SAR test is not required.

Remark: The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was

0.545 W/Kg(0.515*(18/17)=0.545) So ODFM SAR test is not required.

Shenzhen Anbotek Compliance Laboratory Limited

Page 69 of 157

13.SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

1	Frequency (MHz)	Mode	Anbote	Test Position	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)	P P
	N/A	N/A	P	N/A	N/A	N/A	N/A	N/A	N/A	6

SAR Measurement Variability

Shenzhen Anbotek Compliance Laboratory Limited

Page 70 of 157

14. Simultaneous Transmission Analysis

Application Simultaneous Transmission information:

Mode	Air-Interface	Can Transmission Simultaneously
And	GSM+WLAN	YES
An ^b 2	WCDMA +WLAN	YES
3 ^{bor}	LTE+WLAN	YES
tek 4 Anbot	GSM+ LTE	No him isk apo
otek 5 not	WCDMA+ LTE	And nek opole No Ander K

Simultaneous transmission SAR for WIFI 2.4G and GSM/WCDMA/ LTE

	1.04	- 20 Y		100					- SY			1		-0.5	0.1	
6		GSM 850	GSM 1900	WCD MA Band V	MA	LTE Band 2	LTE Band 4	LTE Band 5	LTE Band 7	LTE Band 12	LTE Band 17	LTE Band 38	LTE Band 41	WIFI	MAX. ΣSAR ₁	Peak location separation ratio
X	Rear Side	0.258	0.208	0.328	0.310	0.162	0.212	0.367	0.231	0.283	0.369	0.404	0.534	0.515	1.049	N/A
	Front Side	0.162	0.136	0.285	0.216	0.106	0.164	0.238	0.185	0.199	0.300	0.318	0.353	0.320	0.673	N/A
	Left Edge	0.196	0.193	0.310	0.288	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.435	0.745	N/A
0	Right Edge	0.205	0.199	0.317	0.300	0.141	0.192	0.324	0.208	0.234	0.328	0.355	0.473	N/A	0.473	N/A
	Top Edge	0.229	0.205	0.324	0.305	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.324	N/A
0	Bottom Edge	N/A	N/A p	N/A	N/A	0.150	0.207	0.347	0.223	0.262	0.354	0.378	0.504	0.468	0.972	N/A

MAX. Σ SAR_{1g} =1.049 W/kg<1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required for WIFI 2.4G and GSM/WCDMA/LTE.

Shenzhen Anbotek Compliance Laboratory Limited

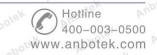
FCC ID: 2AU4T-T6

Page 71 of 157

15.Measurement Uncertainty

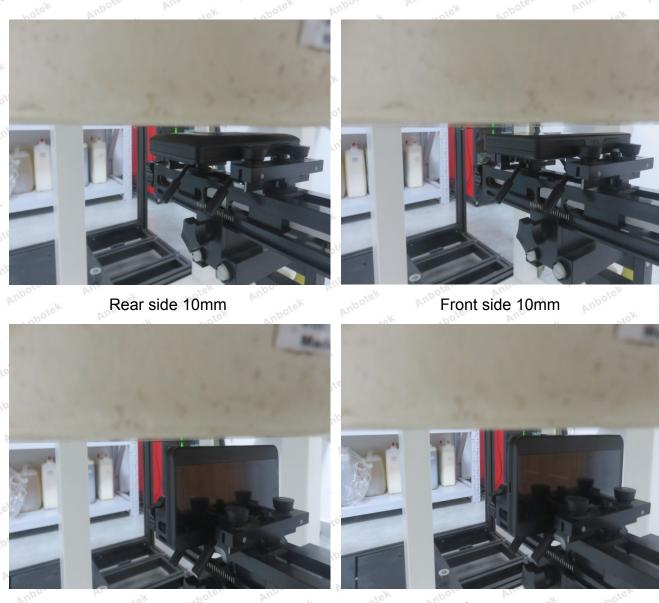
	All woter	Anbo	r	+eK		bolo	Ann	· · ·	otek
NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.Un cert. ui (1g)	Stand.Un cert. ui (10g)	Veff
1	Repeat	0.4	Nootek	1.ev.	Anbote 1	e#1	0.4	0.4	9
nstru	iment								
2	Probe calibration	7 Anb	N	2 otto	1	Alporer	3.5	3.5	unbote ^K
3,10	Axial isotropy	4.7	R	√3	0.7	0.7	1.9	1.9	00 00 00
4	Hemispherical isotropy	9.4	RANDO	√ 3	0.7	0.7	3.9	3.9	otek 00
5.0	Boundary effect	1.0	ipote R	√3	1	Anboto. 1	0.6	o ^{ve^N0.6}	nbotek xo
6	Linearity	4.7	Anb R K	√3	obolek	Ant 1 An	2.7	2.7	Anbo 800
7	Detection limits	1.0	R Anbot	√3	Alpote	K 1 otek	0.6	0.6	8
8	Readout electronics	0.3	e ^k N An	1	1 ^{An1}	bolek	0.3	0.3 Amb	8
9 ^{tek}	Response time	0.8	R _K	√ <mark>3</mark> ₀	xe ¹⁴ 1	Allook	0.5	0.5	000
10	Integration time	2.6	And Rotek	√3 ▷	nbotek 1	K 1 Ani	1.5	1.5	8
11	Ambient noise	3.0	R	_√3	Ant Ant	ote ^k 1	1.7	1.7	vek oo
12	Ambient reflections	3.0	po ^{te^kR}	√3	1 P	nbote 1	× 1.7 Anto	1.7	x0
13	Probe positioner mech. restrictions	0.4	R Anbotek	√3 _A	ibote ^k	1Ant	"port	0.2	8
14	Probe positioning with respect to phantom shell	2.9	otek	otek V3 nbotek	Anto	note		ton PL	por
	Max.SAR evaluation	1.0	Anbotek R abotek	√3 √3	po'd ^K	Ano I _A nb	0.6	0.6	Anbote Anote

Shenzhen Anbotek Compliance Laboratory Limited


Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 72 of 157

Test s	ample related								
16	Device positioning	3.8	nbotek N	Anbor 1 Ant	1 ^{syo} c	Pup.	3.8	3.8	99
17	Device holder	5.1	Nootek	1	Anboten 1	^{هر} 1	5.1	5.1	5 Shape
18	Drift of output power	5.0	tek R Anbo	√3	An 1 An	potek 1	2.9	2.9	o ^{tek} oo
Phan	tom and set-up								
19	Phantom uncertainty	4.0	Anbotek R	√3	unboliek	1 AF	2.3	2.3	on a constant
20	Liquid conductivity (target)	5.0	R _A nbo	ok V3	0.64	0.43	1.8	1.2	otek oo Anibi
21e	Liquid conductivity (meas)	2.5	ipote'N	Anyote	0.64	0.43	1.6	o ^{tek} 1.2	00010K
22	Liquid Permittivity (target)	5.0	Anboto Rotek	A √3 A	0.6	0.49	1.7	Ant.5°K	100 potel
23	Liquid Permittivity (meas)	2.5	ek N Ant	o ^t 9 ^K	0.6	0.49	Anboten 1.5	1.2	00
apotel	Anboter Anbor	lek Al	botek	Aupore	N.	Ano	ek Ant	oter p	nbolotek
Combined standard		potek	RSS	U _c	$=\sqrt{\sum_{i=1}^{n} C}$	² _i ² U ² _i	11.4%	11.3%	236
G -	anded ertainty(P=95%)	Anbotek Anbotek	U = k U	_c ,k=	2 Anbote	otek	22.8%	22.6%	Lek Anbo


Shenzhen Anbotek Compliance Laboratory Limited

Appendix A. EUT Photos and Test Setup Photos

Right side 10mm

Left side 10mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6

Page 74 of 157

Top side 10mm Bottom side 10mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 75 of 157

Appendix B. Plots of SAR System Check

System Performance Check at 750 MHz Body Date: 10/25/2019

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1163

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f =750MHz; σ = 0.94 mho/m; ϵ r = 55.18; ρ = 1000 kg/m3

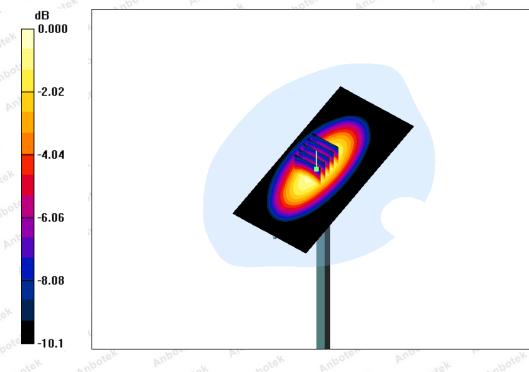
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(10.09, 10.09, 10.09); Calibrated: 5/6/2019;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 1549; Calibrated: 3/19/2019
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x131x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.31 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.1 V/m; Power Drift = -0.141 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.22 mW/g; SAR(10 g) = 1.43 mW/g

Maximum value of SAR (measured) = 2.40 mW/g

System Performance Check 750MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 76 of 157

System Performance Check at 835 MHz Body Date: 10/26/2019

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d154 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 54.78$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

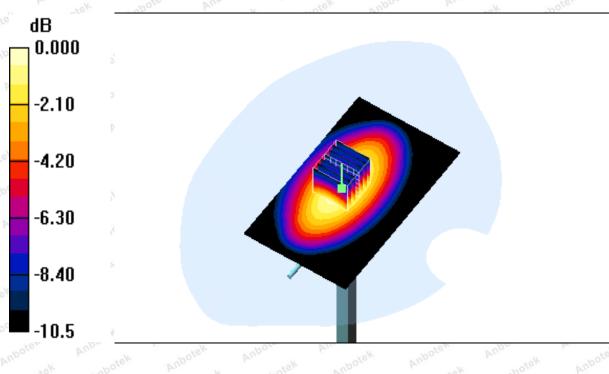
DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(9.88, 9.88, 9.88); Calibrated: 5/6/2019;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 1549; Calibrated: 3/19/2019
- Phantom: ELI 4.0; Type: QDOVA001BA;

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.72 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.81 mW/g

System Performance Check 835MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 77 of 157

System Performance Check at 1750 MHz Body

Date: 10/29/2019

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1021

Communication System: CW; Frequency: 1750MHz; Duty Cycle: 1:1

Medium parameters used: f=1750MHz; σ = 1.46mho/m; ϵ r = 54.19; ρ = 1000 kg/m3

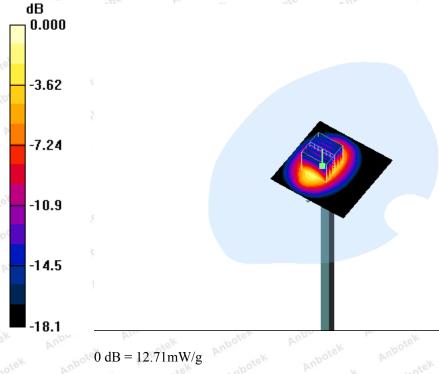
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(8.24, 8.24, 8.24); Calibrated: 5/6/2019;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 1549; Calibrated: 3/19/2019
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 12.60 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.17 V/m; Power Drift = 0.03dB

Peak SAR (extrapolated) = 15.81 W/kg

SAR(1 g) =9.16 mW/g; SAR(10 g) = 4.74 mW/g

Maximum value of SAR (measured) = 12.71 mW/g

System Performance Check 1750MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 78 of 157

System Performance Check at 1900 MHz Body

Date: 10/27/2019

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175

Communication System: CW; Frequency: 1900MHz; Duty Cycle: 1:1

Medium parameters used: f =1900MHz; σ = 1.55 mho/m; ϵ r = 53.32; ρ = 1000 kg/m3

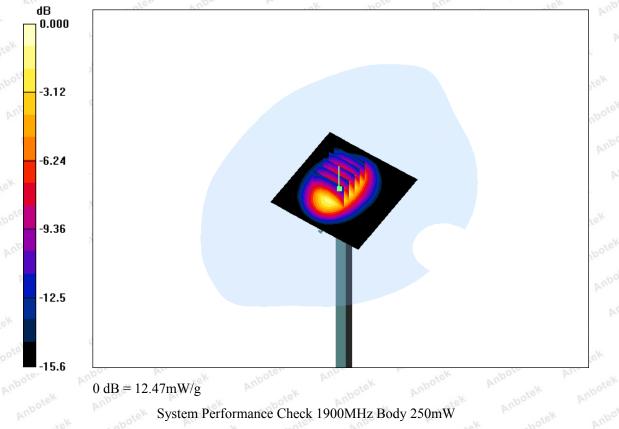
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.97, 7.97, 7.97); Calibrated: 5/6/2019;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 1549; Calibrated: 3/19/2019
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 12.8 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.9 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.04 mW/g; SAR(10 g) = 5.39 mW/g

Maximum value of SAR (measured) = 12.47 mW/g

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 79 of 157

System Performance Check at 2450MHz Body

Date: 10/29/2019

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Communication System: CW; Frequency: 2450MHz; Duty Cycle: 1:1

Medium parameters used: f =2450MHz; σ = 1.95 mho/m; ϵ r = 50.69; ρ = 1000 kg/m3

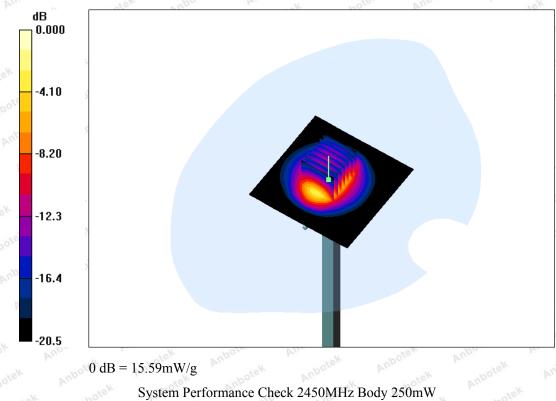
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.53, 7.53, 7.53); Calibrated: 5/6/2019;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 1549; Calibrated: 3/19/2019
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 16.2 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.5 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 12.93 mW/g; SAR(10 g) = 6.47 mW/g

Maximum value of SAR (measured) = 15.59 mW/g

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AU4T-T6 Page 80 of 157

System Performance Check at 2600MHz Body

Date: 10/28/2019

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1058

Communication System: CW; Frequency: 2600MHz; Duty Cycle: 1:1

Medium parameters used: f=2600MHz; σ =2.20 mho/m; ϵ r = 51.41; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.38, 7.38, 7.38); Calibrated: 5/6/2019;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 1549; Calibrated: 3/19/2019
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 25.1 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.4 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 14.22 mW/g; SAR(10 g) = 6.39 mW/g

Maximum value of SAR (measured) = 22.98 mW/g

Shenzhen Anbotek Compliance Laboratory Limited

