SPECIFICATION Daxian Communication Technology Limited ### Shenzhen Daxian Technology Co., Ltd. # Rhino Mobility LLC T100 Main+diversity+BT&WIFI&GPS antenna ### **Product specification** | Guest
households | Rhino Mobility LLC | frequency band | WCDMA: B1/2/4/5
LTE
B1/B2/B3/B4/B5/B7/B12/B13/B14/B17/B1
8/B19/B20/B25/B26/B29/B30/B41B66/B71
BT/WIFI/GPS+diversity | |---------------------|--|---------------------|---| | Project name | T100 | version | V05 | | Material
No. | Main: 1T-100XX-009
Div: 2T-100XX-009
BT&WIFI&GPS: 3T-100XX-009 | color | Black | | R F design | Xitian.Chen | structure
design | 学 Yezhi.Bi | | Quality
Manager | Ziyin.Hu | R & D
director | 承读书集開意 | | Date | | 2023-07-11 | | | client confirmation: | | | |--|-----|--| | Whether the assembly meets your requirements: \square OK | □NG | | #### Shenzhen Topant Technology Co., Ltd. Shangshuijing Village, No. 513, ihua Road, BujiTown, Longgang District, Shenzhen (opposite to theNational Defense Training Base) reached the 7thfloor of the Industrial Park Complex TEL:0755-28576002 FAX:0755-84276383 Shanghai Branch: Room 201, Building 8 No, 3000Longdong Avenue, Integrated Circuit IndustrialZone, Zhangjiang Hi-tech Park, Shanghai TEL:021-61630552 FAX:755-84276383 ### Change resume | version
number | Change content | Reason for change | Initiate change Party | date | Modifier | |-------------------|----------------|-------------------|-----------------------|-------------|----------| | V1.0 | create | | | 2023. 7. 11 | ## www. Topant.com.cn Confidential requirement ### **Index** | 1.Electrical specification standard | 4-6 | |--|-------| | 1.1 -1.1.2Main+DIV+BWG Antenna matching | 7-9 | | 1.2 Antenna composition | 9 | | 2、 The Equipment of Active Test | 10 | | 3、test | 11 | | 3.1 The Test of standing Wave (VSWR) | 11 | | 3.1.1 test connection | 11 | | 3.2 Measurement of Efficiency, Power (TRP) and Sensitivity (TIS) | 11 | | 3.2.1 Test site | 11 | | 3.2.2 Test instrument | 11 | | 3.2.3 test data | 11-23 | | 3.2.4-3.2.15 OTA Passive Efficiency&Gain Test | 12-23 | | 4. Attachment chart | 24-29 | | 4.1-4.9.2 VSWR parameter diagram | 24-29 | ## www. Topant.com.cn Confidential requirement #### 1. Electrical specification standard #### The frequency range of the antenna is $\underline{1920MHz-2170MHz.1850MHz-1990MHz.1710MHz-1880MHz.1710MHz-2155MHz.824MHz-894MHz.2500MHz-2690MHz.699MHz-746MHz.777MHz-756MHz.788MHz-768MHz.704MHz.746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-746MHz.774MHz-74M$ 815MHz - 875MHz, 830MHz - 890MHz, 832MHz - 821MHz, 1850MHz - 1995MHz, 814MHz - 894MHz, 717MHz - 728MHz, 2305MHz - 2360MHz, 2496MHz, 2700MHz, 1710MHz - 2200MHz, 612MHz, 651MHz, 2700MHz, 2700M 400MHz-2500MHz.5150MHz - GPS : 1575MHz. The following table indicates the electrical performance specifications of the antenna. The antenna is designed and manufactured by a large display. | WCDMA<E -band B1 | | | | | | |--------------------|-----------------------|-----------------|---------------------------|------|--| | | band (MHz) | | band (MHz) | | | | band | The transmit
TX | VSWR | The receiving end RX | VSWR | | | W/LTE -B1 | 1920~1980 | €4 | 2110~2170 | ≪4 | | | | | WCDMA<E -band | B2 | | | | | band (MHz) | | band (MHz) | VSWR | | | band | The transmit
TX | VSWR | VSWR The receiving end RX | | | | W/LTE -B2 | 1850~1910 | €4 | 1930~1990 | €4 | | | | | LTE -band B | 3 | | | | | band (MHz) | | band (MHz) | | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | | LTE -B3 | 1710~1785 | €4 | 1805~1880 | €4 | | | | | WCDMA<E -ban | d B4 | | | | | band (MHz) | VSWR | band (MHz) | | | | band | The transmitter TX | | The receiving end RX | VSWR | | | W/LTE -B4 | 1710~1755 | ≪4 | 2110~2155 | ≪4 | | | | | WCDMA<E -ban | d B5 | | | | | band (MHz) | | band (MHz) | | | | band | The transmitter
TX | VSWR | The receiving end RX | VSWR | | | W/LTE -B5 | 824~849 | ≪4 | 869~894 | ≪4 | | | | | LTE -band B | 7 | | | | | band (MHz) | | band (MHz) | | | | band | The transmitter
TX | VSWR | The receiving end RX | VSWR | | | LTE -B7 | 2500~2570 | €4 | 2620~2690 | ≪4 | | | | | LTE -band B1 | 12 | | | | | band (MHz) | | band (MHz) | | | | band | The transmitter
TX | VSWR | The receiving end RX | VSWR | | | LTE -B12 | 699~716 | €4 | 729~746 | €4 | | #### www. Topant.com.cn #### **Confidential requirement** | | | LTE -band B13 | 3 | | |----------|--------------------|---------------|----------------------|------| | | band (MHz) | | band (MHz) | | | band | The transmit
TX | VSWR | The receiving end RX | VSWR | | LTE-B13 | 777~787 | €4 | 746~756 | ≤4 | | | | LTE -band B14 | 1 | | | | band (MHz) | | band (MHz) | | | band | The transmit
TX | VSWR | The receiving end RX | VSWR | | LTE -B14 | 788~798 | €4 | 758~768 | €4 | | | | LTE -band B | 17 | | | | band (MHz) | | band (MHz) | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | LTE -B17 | 704~716 | ≤4 | 734~746 | ≪4 | | | | LTE -band B | 18 | | | | band (MHz) | | band (MHz) | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | LTE -B18 | 815~830 | €4 | 860~875 | €4 | | | | LTE -band B | 19 | | | | band (MHz) | | band (MHz) | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | LTE -B19 | 830~845 | €4 | 875~890 | ≤4 | | | | LTE -band B2 | 20 | | | | band (MHz) | | band (MHz) | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | LTE -B20 | 832~862 | €4 | 791~821 | ≪4 | | | | LTE -band B2 | 25 | | | | band (MHz) | | band (MHz) | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | LTE -B25 | 1850~1915 | ≤4 | 1930~1995 | ≪4 | | | | LTE -band B2 | 26 | | | <u> </u> | band (MHz) | | band (MHz) | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | | | | | | ## www. Topant.com.cn Confidential requirement | | LTE -band B29 | | | | | |----------|--------------------|---------------|---------------------------|------|--| | band | band (MHz) | band (MHz) | | | | | | The transmit TX | VSWR | VSWR The receiving end RX | | | | LTE -B29 | 717~728 | €4 | 717~728 | €4 | | | | | LTE -band B30 | | | | | | band (MHz) | | band (MHz) | | | | band | The transmit TX | VSWR | The receiving end RX | VSWR | | | LTE -B30 | 2305~2315 | €4 | 2350~2360 | €4 | | | | | LTE -band B4 | 1 | | | | | band (MHz) | VCWD | band (MHz) | | | | band | The transmitter TX | | The receiving end RX | VSWR | | | LTE -B41 | 2496~2690 | €4 | 2496~2690 | €4 | | | | | LTE -band B6 | 6 | | | | | band (MHz) | | band (MHz) | | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | | LTE -B66 | 1710~1780 | ≪4 | 2110~2200 | ≤4 | | | | | LTE -band B7 | 1 | | | | | band (MHz) | | band (MHz) | | | | band | The transmitter TX | VSWR | The receiving end RX | VSWR | | | LTE -B71 | 612~651 | ≪4 | 612~651 | ≪4 | | | Frequency Range | Frequency (MHz) | VSWR | |-----------------|-------------------------|------| | ВТ | 2400 ~ 2500 | ≤ 2 | | WIFI | 2400 ~ 2500, 5150~ 5850 | ≤ 2 | | GPS | 1575MHz | ≤ 2 | ## www. Topant.com.cn Confidential requirement #### 1.1 antenna matching--MAIN | RF1: 0Ω | | |--------------------|---------------| | RF2:3.9NH | | | RF3:12NH | | | RF4:27NH | | | Resident position: | 33 N H | | | Antenna switch logic | |----------|--| | all off: | LTE 71 | | RF1: on | WCDMA 1/2/4/5 LTE 1/2/3/4/5/7/18/19/25/26/30/41/66 | | RF2:on | LTE B20 | | RF3:on | LTE 13/14 | | RF4:on | LTE 12/17
| #### www. Topant.com.cn #### Confidential requirement #### 1.1.1 antenna matching--diversity | Al. | Diversity antenna switch logic | |----------|--| | all off: | LTE 71 | | RF1: on | WCDMA 1/2/4/5 LTE 1/2/3/4/5/7/18/19/25/26/30/41/66 | | RF2:on | LTE B20 | | RF3:on | LTE 13/14 | | RF4:on | LTE 12/17 | #### www. Topant.com.cn #### **Confidential requirement** #### 1.1.2 antenna matching--BT&WIFI&GPS #### 1.2 Antenna composition The antenna is mainly composed of <u>FPC.</u> #### www. Topant.com.cn #### **Confidential requirement** ### 2. The Equipment of Active Test Satimo 3D Chamber $6 \times 4 \times 4$ (m) Agilent 8960 E5515c Network analyzer-R&S ZVL Figure 2 #### www. Topant.com.cn #### **Confidential requirement** #### 3 test #### 3.1 The Test of standing Wave (VSWR) **3.1.1 The Test of standing Wave (VSWR):** In turn, the connection of the VSWR testing device is as follows: RES ZVL Network Analyzer / testing Line / testing tool **Actual measurement (with diagram)** #### 3.2 Measurement of Efficiency, Power (TRP) and Sensitivity (TIS) #### **3.2.1** Test site: Large-scale microwave darkroom. The test frequency range is 400MHz / 6GHz, the static range is 50cm circumferential and the reflectivity is less than-50 dB.. #### 3.2.2 Test instrument: Rs ZVL Network Analyzer, Agilent8960 E5515C, Standard Horn Antenna, French SATIMO-SG24SYSTEM system, Printer, etc. ### 3.2.3 test data : In microwave anechoic chambers, the power and sensitivity values measured are shown in the following table: #### OTA Active Test: | FRE-Band | TRP | TIS | FRE-Band | TRP | TIS | |----------|--------|---------|----------|-----------------------|--------| | | 19.53 | | | 16.71 | | | B1 | 18.95 | 8 | B18 | 16.99 | | | | 19.35 | -97.34 | | 17.68 | -97.33 | | | 19.68 | 3 | | 17.53 | 3 | | B2 | 19.6 | | B19 | 17.66 | | | | 19.3 | -96.91 | | 18.18 | -96.51 | | | 19.92 | | | 20.05 | | | B3 | 19.61 | | B20 | 19.71 | : | | | 19.95 | -94.95 | | 19.56 | -95.59 | | | 20.5 | 9 | | 20.28 | | | B4 | 20.46 | | B25 | 20 | | | | 20.24 | -99.17 | | 20.06 | -100.5 | | | 17.39 | | B26 | 17.13 | | | B5 | 17.66 | (3) | | 17.81 | | | | 18. 21 | -95.67 | | 18.46 | -98.96 | | | 21.31 | | B30 | 20.78 | | | B7 | 21.35 | | | 21.03 | | | | 21.42 | -94.87 | | 21.12 | -99.08 | | | 16.43 | | | 20.62 | | | B12 | 17.33 | 3 | B66 | 20.82 | : | | | 18.53 | -98.54 | | 21.12 | -99.85 | | | 20.13 | 8 | | 17.24 | -95.42 | | B13 | 20.17 | | B71 | 19.22 | | | | 20.09 | -92.32 | | 20.36 | | | | 21.68 | | 200000 | 24.6 | | | B14 | 21.82 | 9 | B41 | 24. 32 | | | | 21.81 | -95. 26 | | 23.72 | -93.16 | | | 17.81 | 3 | | i and sort i with a l | : | | B17 | 18.18 | | | | | | | 18.96 | -95. 91 | | | | #### www. Topant.com.cn #### **Confidential requirement** #### 3.2.4 OTA Passive Efficiency&Gain Test--B850--MAIN: | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | |--|---|--|--|--|---|---|---| | 820 | 32.18 | -4. 92 | -0.61 | 1910 | 49.74 | -3.03 | 1.01 | | 830 | 36. 29 | -4.4 | -0.56 | 1920 | 48.39 | -3.15 | 0.79 | | 840 | 37. 69 | -4.24 | -0.72 | 1930 | 46.88 | -3. 29 | 0.58 | | 850 | 39. 43 | -4.04 | -0.87 | 1940 | 46.97 | -3. 28 | 0.6 | | 860 | 45.74 | -3.4 | -0.47 | 1950 | 45. 4 | -3. 43 | 0.49 | | 870 | 47.5 | -3.23 | 0.6 | 1960 | 43. 41 | -3.62 | 0.16 | | 880 | 45.31 | -3.44 | -0.13 | 1970 | 44. 52 | -3.51 | 0.14 | | 890 | 41.19 | -3.85 | -0.41 | 1980 | 44.15 | -3.55 | -0.16 | | | | | | 1990 | 41.27 | -3.84 | -0.5 | | 1700 | 59.4 | -2.26 | 4.05 | 2000 | 39.05 | -4.08 | -0.81 | | 1710 | 56.59 | -2.47 | 3.82 | 2010 | 37.86 | -4. 22 | -0.74 | | 1720
1730 | 54. 61
54. 16 | -2.63
-2.66 | 3.62
3.43 | 2020
2030 | 38. 26
37. 41 | -4. 17
-4. 27 | -0.34
-0.54 | | 1740 | 54. 81 | -2.61 | 3.16 | 2040 | 36.64 | -4. 36 | -0.54 | | 1750 | 54. 89 | -2.61 | 3.05 | 2050 | 38. 2 | -4.18 | -0.57 | | 1760 | 56. 48 | -2.48 | 2.97 | 2060 | 37.78 | -4. 23 | -0.53 | | 1770 | 57.4 | -2. 41 | 2. 99 | 2070 | 37.03 | -4. 31 | -0.72 | | 1780 | 58. 93 | -2.3 | 2.94 | 2080 | 36.49 | -4.38 | -0.5 | | 1790 | 58. 42 | -2.33 | 2.94 | 2090 | 36. 51 | -4.38 | -0.17 | | 1800 | 58. 59 | -2.32 | 2.89 | 2100 | 36.84 | -4.34 | 0.03 | | 1810 | 58. 49 | -2.33 | 2.83 | 2110 | 36.4 | -4.39 | -0.22 | | 1820 | 56.59 | -2.47 | 2.7 | 2120 | 36.76 | -4.35 | -0.51 | | 1830 | 55.17 | -2.58 | 2. 51 | 2130 | 38. 29 | -4.17 | -0.39 | | 1840 | 54. 24 | -2.66 | 2.45 | 2140 | 39.07 | -4.08 | -0.19 | | 1850 | 52.97 | -2.76 | 2. 29 | 2150 | 40.15 | -3.96
-3.8 | 0.16 | | 1860
1870 | 53. 17
53. 56 | -2.74
-2.71 | 2. 28
2. 11 | 2160
2170 | 41.68
42.55 | -3.71 | 0.44
0.79 | | 1880 | 53.4 | -2.72 | 1.89 | 2180 | 43.73 | -3.59 | 1.07 | | 1890 | 53. 48 | -2.72 | 1.58 | 2190 | 43. 45 | -3.62 | 1.22 | | 1900 | 51.84 | -2.85 | 1.33 | 2200 | 43.94 | -3.57 | 1.55 | | Freq | Effi | Effi | Gain | Para | Effi | Effi | Gain | | (MHz) | | | 100000000000000000000000000000000000000 | Freq
(MHz) | | (dB) | (dBi) | | | 1 (%) | I (dR) | (dB1) | | 1 1 20 7 | | | | | (%)
44.3 | (dB)
-3.54 | (dBi) | 10 000000000000000000000000000000000000 | (%) | D 23 1776 | | | 2210
2220 | 44. 3
44. 15 | -3.54 | 1. 62
1. 76 | 2510
2520 | 55. 77
57. 6 | -2. 54
-2. 4 | 4. 96
5. 16 | | 2210 | 44.3 | | 1.62 | 2510 | 55.77 | -2.54 | 4. 96 | | 2210
2220 | 44.3
44.15 | -3. 54
-3. 55
-3. 44
-3. 44 | 1.62
1.76
1.88
1.92 | 2510
2520 | 55. 77
57. 6 | -2. 54
-2. 4
-2. 47
-2. 38 | 4. 96
5. 16
4. 95
5. 16 | | 2210
2220
2230
2240
2250 | 44. 3
44. 15
45. 32
45. 24
44. 98 | -3. 54
-3. 55
-3. 44
-3. 44
-3. 47 | 1.62
1.76
1.88
1.92
1.99 | 2510
2520
2530
2540
2550 | 55. 77
57. 6
56. 56
57. 86
56. 92 | -2. 54
-2. 4
-2. 47
-2. 38
-2. 45 | 4. 96
5. 16
4. 95
5. 16
5. 09 | | 2210
2220
2230
2240
2250
2260 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13 | -3. 54
-3. 55
-3. 44
-3. 44
-3. 47
-3. 46 | 1. 62
1. 76
1. 88
1. 92
1. 99
2. 02 | 2510
2520
2530
2540
2550
2560 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3 | -2. 54
-2. 4
-2. 47
-2. 38
-2. 45
-2. 73 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99 | | 2210
2220
2230
2240
2250
2260
2270 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5 | -3. 54
-3. 55
-3. 44
-3. 47
-3. 46
-3. 52 | 1. 62
1. 76
1. 88
1. 92
1. 99
2. 02
2. 01 | 2510
2520
2530
2540
2550
2560
2570 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67 | -2. 54
-2. 4
-2. 47
-2. 38
-2. 45
-2. 73
-2. 95 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99
4. 76 | | 2210
2220
2230
2240
2250
2260
2270
2280 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9 | -3. 54
-3. 55
-3. 44
-3. 44
-3. 47
-3. 46
-3. 52
-3. 78 | 1. 62
1. 76
1. 88
1. 92
1. 99
2. 02
2. 01
2. 01 | 2510
2520
2530
2540
2550
2560
2570
2580 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76 | -2. 54
-2. 47
-2. 38
-2. 45
-2. 73
-2. 95
-3. 12 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99
4. 76
4. 58 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33 | -3. 54
-3. 55
-3. 44
-3. 47
-3. 46
-3. 52
-3. 78
-3. 73 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.01
2.25 | 2510
2520
2530
2540
2550
2560
2570
2580
2590 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92 | -2. 54
-2. 4
-2. 47
-2. 38
-2. 45
-2. 73
-2. 95
-3. 12
-3. 2 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99
4. 76
4. 58
4. 43 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02 | -3. 54
-3. 55
-3. 44
-3. 47
-3. 46
-3. 52
-3.
78
-3. 73
-3. 66 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.01
2.25
2.49 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21 | -2. 54
-2. 47
-2. 38
-2. 45
-2. 73
-2. 95
-3. 12
-3. 2
-3. 35 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99
4. 76
4. 58
4. 43
4. 21 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33 | -3. 54
-3. 55
-3. 44
-3. 47
-3. 46
-3. 52
-3. 78
-3. 73 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.01
2.25 | 2510
2520
2530
2540
2550
2560
2570
2580
2590 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92 | -2. 54
-2. 4
-2. 47
-2. 38
-2. 45
-2. 73
-2. 95
-3. 12
-3. 2 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99
4. 76
4. 58
4. 43 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58 | -3. 54
-3. 55
-3. 44
-3. 47
-3. 46
-3. 52
-3. 78
-3. 73
-3. 66
-3. 61 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.01
2.25
2.49
2.82 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84 | -2. 54
-2. 47
-2. 38
-2. 45
-2. 73
-2. 73
-2. 95
-3. 12
-3. 2
-3. 35
-3. 48 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 99
4. 76
4. 58
4. 43
4. 21
4. 01 | | 2210
2220
2230
2240
2250
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 | 1.62
1.76
1.88
1.99
2.02
2.01
2.01
2.25
2.49
2.82
3.27
3.68
3.91 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84
45. 07
45. 94
47. 1 | -2. 54 -2. 47 -2. 38 -2. 73 -2. 95 -3. 12 -3. 32 -3. 35 -3. 48 -3. 38 -3. 27 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 76
4. 58
4. 43
4. 21
4. 01
3. 94
4. 14
4. 15 | | 2210
2220
2230
2240
2250
2250
2260
2270
2280
2290
2300
2310
2310
2320
2330
2340
2350 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
47. 34
47. 94
48. 44 | -3. 54 -3. 55 -3. 44 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.25
2.49
2.82
2.82
3.27
3.68
3.91
4.05 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84
45. 07
45. 94 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 35 -3. 48 -3. 38 -3. 27 -3. 1 | 4. 96
5. 16
4. 95
5. 16
5. 09
4. 76
4. 58
4. 43
4. 21
4. 01
3. 94
4. 15
4. 4 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 44
48. 86 | -3. 54 -3. 55 -3. 44 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.01
2.25
2.49
2.82
3.27
3.68
3.91
4.05 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2610
2620
2630
2640
2650
2660 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84
45. 07
45. 94
47. 1
48. 94
49. 47 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 27 -2. 95 -3. 12 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 | | 2210
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2320
2340
2350
2360
2370 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 34
48. 86
49. 18 | -3. 54 -3. 55 -3. 44 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 | 1.62
1.76
1.88
1.92
1.99
2.02
2.01
2.01
2.25
2.49
2.82
3.27
3.68
4.05
4.19 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2610
2620
2630
2640
2650
2660
2670 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84
45. 07
45. 94
47. 1
48. 94
49. 47
51. 04 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 | | 2210
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360
2370 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 86
49. 18
49. 86 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 | 1.62
1.76
1.88
1.92
2.02
2.01
2.01
2.25
2.49
2.82
3.27
3.68
3.91
4.05
4.19
4.28 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2610
2620
2630
2640
2650
2660
2670 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84
45. 07
45. 94
47. 1
48. 94
49. 47
51. 04
54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 44
48. 86
49. 18
49. 86
47. 78 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 60 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 | 1.62
1.76
1.88
1.92
2.02
2.01
2.01
2.25
2.49
3.27
3.68
3.91
4.05
4.19
4.28
4.49 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2250 2250 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2360 2370 2380 2390 2400 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
48. 46
49. 18
49. 18
49. 86
47. 78
47. 11 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 60 -3. 51 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 -3. 27 | 1.62
1.76
1.88
1.99
2.02
2.01
2.25
2.49
2.82
3.27
3.68
3.91
4.05
4.19
4.28
4.49
4.62
4.72 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2610
2620
2630
2640
2650
2660
2670 | 55. 77
57. 6
56. 56
57. 86
56. 92
53. 3
50. 67
48. 76
47. 92
46. 21
44. 84
45. 07
45. 94
47. 1
48. 94
49. 47
51. 04
54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 | | 2210 2220 2230 2240 2250 2250 2260 2270 2280 2290 2310 2310 2320 2330 2340 2350 2360 2370 2370 2380 2390 2400 2410 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 86
49. 18
49. 86
47. 78
47. 71
46. 96 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 -3. 27 -3. 28 | 1.62
1.76
1.88
1.92
2.02
2.01
2.25
2.49
2.82
2.82
3.27
3.68
3.91
4.05
4.19
4.28
4.49 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41
4. 64 4. 64 | | 2210 2220 2230 2240 2250 2250 2250 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2360 2370 2380 2390 2400 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
48. 46
49. 18
49. 18
49. 86
47. 78
47. 11 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 60 -3. 51 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 -3. 27 | 1.62
1.76
1.88
1.99
2.02
2.01
2.25
2.49
2.82
3.27
3.68
3.91
4.05
4.19
4.28
4.49
4.62
4.72 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2380 2410 2420 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 46
49. 18
49. 86
49. 18
47. 78
47. 71
46. 96
46. 05 | -3. 54 -3. 55 -3. 44 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 27 -3. 28 -3. 37 | 1.62 1.76 1.88 1.92 1.99 2.02 2.01 2.01 2.25 2.49 2.82 3.27 3.68 3.91 4.05 4.19 4.28 4.49 4.62 4.72 4.99 5.04 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2400 2410 2420 2430 2440 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 44
48. 86
49. 18
49. 86
47. 78
47. 78
47. 78
48. 44
49. 86
49. 18
49. 86
47. 78
47. 94
48. 96
46. 05
45. 03 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 60 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 02 -3. 21 -3. 27 -3. 28 -3. 37 -3. 47 -3. 47 -3. 44 | 1.62 1.76 1.88 1.92 2.02 2.01 2.01 2.25 2.49 3.68 3.91 4.05 4.19 4.28 4.49 4.62 4.72 4.99 5.04 4.94 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 2460 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
48. 86
49. 18
49. 18
49. 18
49. 18
49. 18
49. 18
40. 05
45. 03
44. 96
45. 32
46. 65 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 60 -3. 51 -3. 15 -3. 15 -3. 11 -3. 48 -3. 32 -3. 37 -3. 68 -3. 02 -3. 21 -3. 27 -3. 28 -3. 37 -3. 47 -3. 47 -3. 44 -3. 31 | 1.62 1.76 1.88 1.92 2.02 2.01 2.01 2.25 2.49 3.68 3.91 4.05 4.19 4.62 4.72 4.99 5.04 5.04 4.94 4.96 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2410 2420 2430 2440 2450 2460 2470 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 86
49. 18
49. 86
47. 78
47. 11
46. 96
46. 05
45. 03
44. 96
45. 03
47. 47 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 -3. 27 -3. 28 -3. 37 -3. 47 -3. 47 -3. 44 -3. 31 -3. 24 | 1.62 1.76 1.88 1.92 2.02 2.01 2.01 2.25 2.49 2.82 3.68 3.91 4.05 4.19 4.28 4.49 4.62 4.72 4.99 5.04 5.04 4.94 4.96 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2350 2360 2370 2380 2370 2380 2410 2420 2430 2440 2450 2460 2470 2480 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 44
48. 86
49. 18
49. 86
47. 78
47. 11
46. 96
46. 05
45. 03
44. 96
45. 96 | -3. 54 -3. 55 -3. 44 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 -3. 27 -3. 28 -3. 37 -3. 47 -3. 47 -3. 47 -3. 44 -3. 31 -3. 24 -3. 18 | 1.62 1.76 1.88 1.92 1.99 2.02 2.01 2.25 2.49 2.82 3.27 3.68 3.91 4.05 4.19 4.28 4.49 4.62 4.72 4.99 5.04 5.04 4.96 4.96 4.96 4.96 4.96 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2410 2420 2430 2440 2450 2460 2470 | 44. 3
44. 15
45. 32
45. 24
44. 98
45. 13
44. 5
41. 9
42. 33
43. 02
43. 58
45. 18
47. 34
47. 94
48. 86
49. 18
49. 86
47. 78
47. 11
46. 96
46. 05
45. 03
44. 96
45. 03
47. 47 | -3. 54 -3. 55 -3. 44 -3. 47 -3. 46 -3. 52 -3. 78 -3. 73 -3. 66 -3. 61 -3. 45 -3. 25 -3. 19 -3. 15 -3. 11 -3. 08 -3. 02 -3. 21 -3. 27 -3. 28 -3. 37 -3. 47 -3. 47 -3. 44 -3. 31 -3. 24 | 1.62 1.76 1.88 1.92 2.02 2.01 2.01 2.25 2.49 2.82 3.68 3.91 4.05 4.19 4.28 4.49 4.62 4.72 4.99 5.04 5.04 4.94 4.96 | 2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | 55. 77 57. 6 56. 56 57. 86 56. 92 53. 3 50. 67 48. 76 47. 92 46. 21 44. 84 45. 07 45. 94 47. 1 48. 94 49. 47 51. 04 54. 57 | -2. 54 -2. 47 -2. 38 -2. 45 -2. 73 -2. 95 -3. 12 -3. 2 -3. 35 -3. 48 -3. 46 -3. 38 -3. 27 -3. 1 -3. 06 -2. 92 -2. 63 -2. 46 | 4. 96 5. 16 4. 95 5. 16 5. 09 4. 99 4. 76 4. 58 4. 43 4. 21 4. 01 3. 94 4. 14 4. 15 4. 4 4. 33 4. 41 4. 64 4. 64 | #### www. Topant.com.cn #### **Confidential requirement** #### 3.2.5 OTA Passive Efficiency&Gain Test--B12--MAIN: | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | |--|--|--|---|--|---|--|--| | (MHz)
700 | (%)
21.34 | (dB)
-6.71 | (dBi)
-2.1 | (MHz)
1910 | (%)
40.35 | (dB)
-3.94 | (dBi)
0.18 | | 710 | 24. 43 | -6.12 | -1.23 | 1920 | 42.46 | -3.72 | 0.18 | | 720 | 30.17 | -5.2 | -0.44 | 1930 | 42.8 | -3.69 | 0.08 | | 730 | 33. 28 | -4.78 | -0.18 | 1940 | 43. 55 | -3.61 | 0.17 | | 740 | 36. 52 | -4.37 | 0.1 | 1950 | 42. 42 | -3.72 | 0.01 | | 750 | 36.99 | -4.32 | 0.22 | 1960 | 41.2 | -3.85 | -0.11 | | 760 | 36.82 | -4.34 |
0.25 | 1970 | 42. 28 | -3.74 | 0 | | 770 | 35.61 | -4. 48 | 0.43 | 1980 | 41.46 | -3.82 | -0.22 | | 780 | 35. 71 | -4. 47 | 0.67 | 1990
2000 | 37. 96
35. 75 | -4. 21
-4. 47 | -0.7
-1.11 | | 1700 | 19.98 | -6.99 | -1 | 2010 | 34. 63 | -4. 61 | -1.52 | | 1710 | 18.37 | -7.36 | -1.29 | 2020 | 35.18 | -4.54 | -1.48 | | 1720 | 16.96 | -7.7 | -1.55 | 2030 | 34.17 | -4.66 | -1.55 | | 1730 | 15. 42 | -8.12 | -1.99 | 2040 | 33.12 | -4.8 | -1.73 | | 1740 | 14.68 | -8.33 | -2.51 | 2050 | 34. 31 | -4.65 | -1.52 | | 1750 | 14.39 | -8.42 | -2.92 | 2060 | 33.86 | -4.7 | -1.57 | | 1760 | 13.71 | -8.63 | -3.59 | 2070 | 32.84 | -4.84 | -1.67 | | 1770
1780 | 11.93
10.8 | -9.23
-9.66 | -4.51
-5.16 | 2080
2090 | 32.14
31.97 | -4. 93
-4. 95 | -1.73
-1.64 | | 1790 | 10.8 | -9.86 | -5.16
-5.37 | 2100 | 32. 23 | -4. 95
-4. 92 | -1.58 | | 1800 | 10.15 | -9. 93 | -5. 53 | 2110 | 31.52 | -5. 01 | -1.79 | | 1810 | 9.8 | -10.09 | -5.64 | 2120 | 31.48 | -5.02 | -1.81 | | 1820 | 10.14 | -9.94 | -5. 87 | 2130 | 32.5 | -4.88 | -1.46 | | 1830 | 11.85 | -9.26 | -5.28 | 2140 | 33. 24 | -4.78 | -0.96 | | 1840 | 14. 44 | -8. 41 | -4.17 | 2150 | 34. 74 | -4.59 | -0.58 | | 1850
1860 | 16.75
20.46 | -7.76
-6.89 | -3. 41
-2. 54 | 2160 | 36. 88
38. 99 | -4.33
-4.09 | -0.02
0.48 | | 1870 | 26. 22 | -5.81 | -1.4 | 2170
2180 | 41.45 | -3.83 | 1.06 | | 1880 | 31.62 | -5 | -0.57 | 2190 | 41.88 | -3.78 | 1.48 | | 1890 | 35.8 | -4. 46 | -0.08 | 2200 | 42. 47 | -3.72 | 1.64 | | 1900 | 38.02 | -4.2 | 0.11 | 2210 | 43.69 | -3.6 | 2.02 | | | | | | | | | | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | (MHz)
2220 | (%)
44. 97 | (dB)
-3.47 | (dBi)
2.08 | (MHz)
2530 | (%)
46.33 | (dB)
-3.34 | (dBi)
5.42 | | (MHz)
2220
2230 | (%)
44. 97
47. 37 | (dB)
-3.47
-3.24 | (dBi)
2.08
2.41 | (MHz)
2530
2540 | (%)
46.33
50.2 | (dB)
-3.34
-2.99 | (dBi)
5.42
5.9 | | (MHz)
2220
2230
2240 | (%)
44. 97
47. 37
48. 07 | (dB)
-3.47
-3.24
-3.18 | (dBi)
2.08
2.41
2.33 | (MHz)
2530
2540
2550 | (%)
46.33
50.2
52.18 | (dB)
-3.34
-2.99
-2.83 | (dBi)
5. 42
5. 9
6. 06 | | (MHz)
2220
2230
2240
2250 | (%)
44. 97
47. 37
48. 07
48. 38 | (dB) -3.47 -3.24 -3.18 -3.15 | (dBi)
2. 08
2. 41
2. 33
2. 49 | (MHz)
2530
2540
2550
2560 | (%)
46.33
50.2
52.18
51.5 | (dB) -3.34 -2.99 -2.83 -2.88 | (dBi)
5. 42
5. 9
6. 06
6. 15 | | (MHz)
2220
2230
2240 | (%)
44. 97
47. 37
48. 07 | (dB)
-3.47
-3.24
-3.18 | (dBi)
2.08
2.41
2.33 | (MHz)
2530
2540
2550 | (%)
46.33
50.2
52.18 | (dB)
-3.34
-2.99
-2.83 | (dBi)
5.42
5.9
6.06 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 | (dB) -3.47 -3.24 -3.18 -3.15 -3.1 -3.17 -3.5 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 | 2530
2540
2550
2560
2570
2580
2590 | (%)
46.33
50.2
52.18
51.5
51.46
50.9
50.14 | (dB) -3.34 -2.99 -2.83 -2.88 -2.89 -2.93 -3 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 | (%)
44. 97
47. 37
48. 07
48. 38
48. 99
48. 17
44. 67
44. 22 | (dB) -3.47 -3.24 -3.18 -3.15 -3.17 -3.5 -3.54 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 | (MHz)
2530
2540
2550
2560
2570
2580
2590
2600 | (%)
46. 33
50. 2
52. 18
51. 5
51. 46
50. 9
50. 14
48. 83 | (dB) -3. 34 -2. 99 -2. 83 -2. 88 -2. 89 -2. 93 -3. 11 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 | (%)
44. 97
47. 37
48. 07
48. 38
48. 99
48. 17
44. 67
44. 22
43. 89 | (dB) -3.47 -3.24 -3.18 -3.15 -3.17 -3.5 -3.54 -3.58 | (dBi) 2.08 2.41 2.33 2.49 2.58 2.61 2.11 2.08 2.05 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2600 2610 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 | (dB) -3. 34 -2. 99 -2. 83 -2. 88 -2. 89 -2. 93 -3 -3. 11 -3. 31 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 | (%)
44. 97
47. 37
48. 07
48. 38
48. 99
48. 17
44. 67
44. 22
43. 89
43. 71 | (dB) -3.47 -3.24 -3.18 -3.15 -3.17 -3.5 -3.54 -3.59 | (dBi) 2.08 2.41 2.33 2.49 2.58 2.61 2.11 2.08 2.05 2.06 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 | (%)
46. 33
50. 2
52. 18
51. 5
51. 46
50. 9
50. 14
48. 83
46. 71
46. 07 | (dB) -3.34 -2.99 -2.83 -2.88 -2.93 -3.11 -3.31 -3.37 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 | (%)
44. 97
47. 37
48. 07
48. 38
48. 99
48. 17
44. 67
44. 22
43. 89 | (dB) -3.47 -3.24 -3.18 -3.15 -3.17 -3.5 -3.54 -3.59 -3.51 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 08 2. 05 2. 06 2. 47 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2600 2610 | (%)
46. 33
50. 2
52. 18
51. 5
51. 46
50. 9
50. 14
48. 83
46. 71
46. 07
46. 47 | (dB) -3.34 -2.99 -2.83 -2.88 -2.89 -2.93 -3.11 -3.31 -3.37 -3.33 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 | (dB) -3.47 -3.24 -3.18 -3.15 -3.17 -3.5 -3.54 -3.59 | (dBi) 2.08 2.41 2.33 2.49 2.58 2.61 2.11 2.08 2.05 2.06 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 | (%)
46. 33
50. 2
52. 18
51. 5
51. 46
50. 9
50. 14
48. 83
46. 71
46. 07 | (dB) -3.34 -2.99 -2.83 -2.89 -2.99 -3.31 -3.31 -3.37 -3.33 -3.29 -3.2 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 | | (MHz) 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 57 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2630 2640 2650 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 47 46. 47 46. 89 47. 88 47. 73 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 | | (MHz) 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 43. 25 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 47 46. 47 46. 89 47. 88 47. 73 49. 19 | (dB) -3.34 -2.99 -2.83 -2.89 -2.93 -3.11 -3.31 -3.37 -3.33 -3.29 -3.21 -3.08 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2310 2320 2310 2320 2340 2350 2360 2370 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 43. 25 41. 81 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 57 -3. 64 -3. 79 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2660 2670 2680 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | 2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2350
2360
2370
2380 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 43. 25 41. 81 40. 93 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 84 -3. 79 -3. 88 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | 2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 05 43. 95 43. 25 41. 81 40. 93 37. 87 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 1 -3. 17 -3. 5 -3. 54 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 88 -4. 22 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2660 2670 2680 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2.
89 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | 2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2350
2360
2370
2380 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 43. 25 41. 81 40. 93 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 84 -3. 79 -3. 88 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2330 2340 2350 2360 2370 2380 2370 2380 2390 2410 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 41. 81 40. 93 37. 87 36. 52 35. 39 34 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 -3. 88 -4. 22 -4. 37 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 06 3. 34 3. 39 3. 5 3. 73 3. 78 4. 14 4. 22 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2380 2390 2410 2420 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 58 45. 4 44. 65 43. 95 41. 81 40. 93 37. 87 36. 52 35. 39 34 33. 47 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 51 -4. 69 -4. 75 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 4. 14 4. 22 4. 33 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 41. 81 40. 93 37. 87 36. 52 35. 39 34 33. 47 34. 19 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 51 -4. 69 -4. 75 -4. 66 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 3. 78 4. 14 4. 22 4. 33 4. 48 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2410 2420 2430 2440 2450 | (%) 44. 97 47. 37 48. 07 48. 07 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 25 43. 25 41. 81 40. 93 37. 87 36. 52 35. 39 34 33. 47 34. 19 34. 96 | (dB) -3. 47 -3. 24 -3. 18 -3. 17 -3. 5 -3. 5 -3. 54 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 51 -4. 69 -4. 75 -4. 66 -4. 56 | (dBi) 2. 08 2. 41 2. 33 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 3. 78 4. 14 4. 22 4. 33 4. 48 4. 56 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2360 2370 2380 2400 2410 2420 2430 2440 2450 2460 | (%) 44.97 47.37 48.07 48.38 48.99 48.17 44.67 44.22 43.89 43.71 44.58 45.4 44.65 43.95 43.25 41.81 40.93 37.87 36.52 35.39 34 33.47 34.19 34.96 35.85 | (dB) -3. 47 -3. 24 -3. 18 -3. 17 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 -3. 88 -4. 22 -4. 37 -4. 66 -4. 66 -4. 56 -4. 46 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 3. 78 4. 14 4. 22 4. 33 4. 48 4. 56 4. 62 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2410 2420 2430 2440 2450 | (%) 44. 97 47. 37 48. 07 48. 07 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 25 43. 25 41. 81 40. 93 37. 87 36. 52 35. 39 34 33. 47 34. 19 34. 96 | (dB) -3. 47 -3. 24 -3. 18 -3. 17 -3. 5 -3. 5 -3. 54 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 51 -4. 69 -4. 75 -4. 66 -4. 56 | (dBi) 2. 08 2. 41 2. 33 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 3. 78 4. 14 4. 22 4. 33 4. 48 4. 56 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2300 2310 2320 2330 2340 2350 2360 2370 2380 2410 2420 2430 2440 2450 2460 2470 | (%) 44.97 47.37 48.07 48.38 48.99 48.17 44.67 44.22 43.89 43.71 44.58 45.4 44.65 43.95 43.25 41.81 40.93 37.87 36.52 35.39 34 33.47 34.19 34.96 35.85 | (dB) -3. 47 -3. 24 -3. 18 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 66 -4. 56 -4. 46 -4. 44 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 3. 78 4. 14 4. 22 4. 33 4. 48 4. 56 4. 62 4. 63 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2380 2340 2410 2420 2410 2420 2430 2440 2450 2460 2470 2480 2490 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 58 43. 71 44. 58 45. 4 44. 65 43. 95 41. 81 40. 93 37. 87 34. 19 34. 96 35. 85 35. 89 36. 08 36. 42 38. 53 | (dB) -3. 47 -3. 24 -3. 18 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 5 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 51 -4. 60 -4. 46 -4. 44 -4. 43 -4. 39 -4. 14 | (dBi) 2. 08 2. 41 2. 33 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 2. 47 2. 9 3. 34 4. 22 4. 33 4. 48 4. 56 4. 62 4. 63 4. 52 4. 51 4. 74 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34 5. 26 5. 32 5. 5 | | (MHz) 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2330 2340 2350 2360 2370 2380 2370 2380 2440 2450 2440 2450 2460 2470 2480 2490 | (%) 44. 97 47. 37 48. 07 48. 38 48. 99 48. 17 44. 67 44. 22 43. 89 43. 71 44. 58 45. 4 44. 65 43. 95 41. 81 40. 93 37. 87 36. 52 35. 39 34 33. 47 34. 19 34. 96 35. 85 35. 94 36. 08 | (dB) -3. 47 -3. 24 -3. 18 -3. 15 -3. 17 -3. 5 -3. 54 -3. 58 -3. 59 -3. 51 -3. 43 -3. 57 -3. 64 -3. 79 -3. 88 -4. 22 -4. 37 -4. 51 -4. 66 -4. 46 -4. 44 -4. 43 -4. 39 | (dBi) 2. 08 2. 41 2. 33 2. 49 2. 58 2. 61 2. 11 2. 08 2. 05 2. 06 2. 47 2. 9 3. 08 3. 26 3. 34 3. 39 3. 5 3. 73 3. 73 4. 14 4. 22 4. 33 4. 48 4. 56 4. 62 4. 63 4. 52 4. 51 | (MHz) 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2670 2680 2690 | (%) 46. 33 50. 2 52. 18 51. 5 51. 46 50. 9 50. 14 48. 83 46. 71 46. 07 46. 47 46. 89 47. 88 47. 73 49. 19 51. 43 52. 97 | (dB) -3. 34 -2. 99 -2. 83 -2. 89 -2. 93 -3. 11 -3. 31 -3. 37 -3. 33 -3. 29 -3. 21 -3. 08 -2. 89 -2. 76 | (dBi) 5. 42 5. 9 6. 06 6. 15 6. 12 6. 08 5. 99 5. 74 5. 55 5. 28 5. 34 5. 23 5. 34
5. 26 5. 32 5. 42 | ## www. Topant.com.cn Confidential requirement #### 3.2.6 OTA Passive Efficiency&Gain Test--B13--MAIN: | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | |---|---|--|---|---|---|---|--| | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | 740 | 32. 99 | -4.82 | 0.54 | 1910 | 50.31 | -2.98 | 2.04 | | 750 | 34.14 | -4.67 | 0.7 | 1920 | 49.4 | -3.06 | 1.76 | | 760 | 35.64 | -4. 48 | 0.73 | 1930 | 47.98 | -3.19 | 1.61 | | 770 | 36.06 | -4. 43 | 0.95 | 1940 | 47.76 | -3.21 | 1.48 | | 780 | 38.05 | -4.2 | 1.16 | 1950 | 45.76 | -3.39 | 1.23 | | 790 | 36.61 | -4.36 | 1.34 | 1960 | 43. 48 | -3.62 | 0.69 | | 800 | 43.19 | -3.65 | 1.56 | 1970 | 44.04 | -3.56 | 0.51 | | 810 | 39. 39 | -4.05 | 0.67 | 1980 | 43.16 | -3.65 | 0.09 | | 1 | | | | 1990 | 39. 99 | -3.98 | -0.41 | | 1700 | 11.57 | -9.37 | -3.54 | 2000 | 38.09 | -4.19 | -0.64 | | 1710 | 10.97 | -9.6 | -3.86 | 2010 | 37.6 | -4. 25 | -0.56 | | 1720 | 11.08 | -9.55 | -3.89 | 2020 | 38. 89 | -4.1 | -0.1 | | 1730 | 12.33 | -9.09 | -3.45 | 2030 | 38.33 | -4.16 | -0.23 | | 1740 | 15.06 | -8. 22 | -2.67 | 2040 | 37. 57 | -4. 25 | -0.17 | | 1750 | 18.64 | -7.3 | -1.6 | 2050 | 38. 96 | -4.09 | -0.15 | | 1760 | 22. 43 | -6.49 | -0.77 | 2060 | 38. 49 | -4.15 | -0.11 | | 1770 | 25. 71 | -5.9 | -0.02 | 2070 | 37.54 | -4.25 | -0.2 | | 1780 | 30.98 | -5.09 | 0.73 | 2080 | 37.07 | -4.31 | -0.22 | | 1790 | 35.68 | -4. 48 | 1.39 | 2090 | 37.14 | -4.3 | 0.01 | | 1800 | 39.6 | -4.02 | 1.77 | 2100 | 37. 78 | -4. 23 | 0.18 | | 1810 | 42.14 | -3.75 | 1.99 | 2110 | 37. 49 | -4.26 | 0.05 | | 1820 | 44. 51 | -3.52 | 2. 25 | 2120 | 37. 87 | -4. 22 | -0.04 | | 1830 | 46.88 | -3.29 | 2.4 | 2130 | 39.1 | -4.08 | -0.18 | | 1840 | 48. 48 | -3.14 | 2.6 | 2140 | 39. 51 | -4.03 | -0.3 | | 1850 | 48.33 | -3.16 | 2.55 | 2150 | 40.34 | -3.94 | -0.09 | | 1860 | 50.11 | -3 | 2.78 | 2160 | 41.78 | -3.79 | 0.18 | | 1870 | 52.7 | -2.78 | 2.9 | 2170 | 42. 29 | -3.74 | 0.36 | | 1880 | 53.31 | -2.73 | 2.81 | 2180 | 43. 24 | -3.64 | 0.51 | | 1890 | 53.09 | -2.75 | 2.61 | 2190 | 42. 45 | -3.72 | 0.36 | | 1900 | 51.63 | -2.87 | 2.3 | 2200 | 41.49 | -3.82 | 0.46 | | | | | | | 11.10 | 0.00 | | | F | pee: | | Market Market | | | | | | Freq | Effi
(w) | Effi | Gain | Freq | Effi | Effi | Gain | | (MHz) | (%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | | (MHz)
2210 | (%)
39.63 | Effi
(dB)
-4.02 | Gain
(dBi)
0.44 | Freq
(MHz)
2510 | Effi
(%)
60.63 | Effi
(dB)
-2.17 | Gain
(dBi)
5.63 | | (MHz)
2210
2220 | (%)
39.63
37.38 | Effi
(dB)
-4.02
-4.27 | Gain
(dBi)
0.44
0.63 | Freq
(MHz)
2510
2520 | Effi
(%)
60.63
63.34 | Effi
(dB)
-2.17
-1.98 | Gain
(dBi)
5.63
5.89 | | (MHz)
2210
2220
2230 | (%)
39.63
37.38
36.69 | Effi
(dB)
-4.02
-4.27
-4.36 | Gain
(dBi)
0.44
0.63
0.82 | Freq
(MHz)
2510
2520
2530 | Effi
(%)
60.63
63.34
63.55 | Effi
(dB)
-2.17
-1.98
-1.97 | Gain
(dBi)
5.63
5.89
5.92 | |
(MHz)
2210
2220
2230
2240 | (%)
39.63
37.38
36.69
34.56 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61 | Gain
(dBi)
0.44
0.63
0.82
0.9 | Freq
(MHz)
2510
2520
2530
2540 | Effi
(%)
60.63
63.34
63.55
65.7 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82 | Gain
(dBi)
5.63
5.89
5.92
6.19 | | (MHz) 2210 2220 2230 2240 2250 | (%)
39.63
37.38
36.69
34.56
31.33 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61
-5.04 | Gain
(dBi)
0.44
0.63
0.82
0.9 | Freq
(MHz)
2510
2520
2530
2540
2550 | Effi
(%)
60.63
63.34
63.55
65.7
65.9 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19 | | (MHz) 2210 2220 2230 2240 2250 2260 | (%)
39.63
37.38
36.69
34.56
31.33
28.33 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61
-5.04
-5.48 | Gain
(dBi)
0.44
0.63
0.82
0.9
0.78
0.64 | Freq
(MHz)
2510
2520
2530
2540
2550
2560 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61
-5.04
-5.48
-5.96 | Gain
(dBi)
0.44
0.63
0.82
0.9
0.78
0.64 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05
61.38 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 | (%)
39.63
37.38
36.69
34.56
31.33
28.33
25.36
21.51 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61
-5.04
-5.48 | Gain
(dBi)
0.44
0.63
0.82
0.9
0.78
0.64 | Freq
(MHz)
2510
2520
2530
2540
2550
2560 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24 | Cain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61
-5.04
-5.48
-5.96
-6.67 | Gain
(dBi)
0.44
0.63
0.82
0.9
0.78
0.64
0.55 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05
61.38
59.75 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 2290 | (%)
39.63
37.38
36.69
34.56
31.33
28.33
25.36
21.51
19.21 | Effi
(dB)
-4.02
-4.27
-4.36
-4.61
-5.04
-5.48
-5.96
-6.67
-7.16 | Gain
(dBi)
0.44
0.63
0.82
0.9
0.78
0.64
0.55
0.22 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05
61.38
59.75
58.31 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24
-2.34 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76
5.55 | | 2210
2220
2230
2240
2250
2250
2260
2270
2280
2290
2300 | (%)
39.63
37.38
36.69
34.56
31.33
28.33
25.36
21.51
19.21
17.95 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 48
-6. 67
-7. 16
-7. 46 | Gain
(dBi)
0. 44
0. 63
0. 82
0. 9
0. 78
0. 64
0. 55
0. 22
0. 12 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05
61.38
59.75
58.31 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.12
-2.24
-2.34
-2.51 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76
5.55 | | 2210
2220
2230
2240
2250
2250
2260
2270
2280
2290
2300
2310 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 48
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48 | Gain
(dBi)
0. 44
0. 63
0. 82
0. 9
0. 78
0. 64
0. 55
0. 22
0. 12
0 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610 | Effi
(%)
60. 63
63. 34
63. 55
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24
-2.34
-2.51
-2.71 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76
5.55
5.23
5.02 | | (MHz) 2210 2220 2230 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 48
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48
-7. 25 | Gain
(dBi)
0. 44
0. 63
0. 82
0. 9
0. 78
0. 64
0. 55
0. 22
0. 12
0 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620 | Effi
(%)
60. 63
63. 34
63. 55
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24
-2.34
-2.51
-2.71
-2.77 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.13
5.93
5.76
5.55
5.23
5.02
4.81 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 48
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48
-7. 25
-6. 97 | Gain
(dBi)
0. 44
0. 63
0. 82
0. 9
0. 78
0. 64
0. 55
0. 22
0. 12
0
0. 2
0. 54 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630 | Effi
(%)
60.63
63.34
63.55
65.7
65.9
63.05
61.38
59.75
58.31
56.16
53.52
52.79 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24
-2.34
-2.51
-2.71
-2.77 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76
5.55
5.23
5.02
4.81
4.89 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 48
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48
-7. 25
-6. 97
-6. 67 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640 | Effi
(%)
60. 63
63. 34
63. 55
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24
-2.34
-2.51
-2.71
-2.77
-2.78
-2.77 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76
5.55
5.23
5.02
4.81
4.89 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48
-7. 25
-6. 97
-6. 67
-6. 67 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650 | Effi
(%)
60. 63
63. 34
63. 55
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85 | Effi
(dB)
-2.17
-1.98
-1.97
-1.82
-1.81
-2
-2.12
-2.24
-2.34
-2.51
-2.71
-2.77
-2.78
-2.77
-2.78 | Gain
(dBi)
5.63
5.89
5.92
6.19
6.19
6.13
5.93
5.76
5.55
5.23
5.02
4.81
4.89
4.78
4.83
4.64 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2310
2310
2320
2330
2340
2350
2350
2360
2370 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48
-7. 25
-6. 97
-6. 67
-6. 67
-7. 6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 67
-7. 48 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2680
2690
2610
2620
2630
2640
2650
2660
2670
2680 | Effi
(%)
60. 63
63. 34
63. 55
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53.
97
56. 52 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 71
-2. 77
-2. 78
-2. 77
-2. 78
-2. 72
-2. 72
-2. 77
-2. 78
-2. 72
-2. 74
-2. 74
-2. 74
-2. 75
-2. 77
-2. 78
-2. 72
-2. 77
-2. 78
-2. 74
-2. 74
-2. 74
-2. 74
-2. 75
-2. 77
-2. 78
-2. 77
-2. 72
-2. 77
-2. 78
-2. 74
-2. 74
-2. 74
-2. 74
-2. 75
-2. 77
-2. 78
-2. 77
-2. 78
-2. 77
-2. 78
-2. 77
-2. 78
-2. | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 83
4. 64
4. 64 | | 2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 41.31 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 55
-5. 05
-4. 36
-3. 84 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 41.31 45.15 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 48
-5. 96
-6. 67
-7. 16
-7. 46
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-4. 36
-3. 84
-3. 45 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2680
2690
2610
2620
2630
2640
2650
2660
2670
2680 | Effi
(%)
60. 63
63. 34
63. 55
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 71
-2. 77
-2. 78
-2. 77
-2. 78
-2. 72
-2. 72
-2. 77
-2. 78
-2. 72
-2. 74
-2. 74
-2. 74
-2. 75
-2. 77
-2. 78
-2. 72
-2. 77
-2. 78
-2. 74
-2. 74
-2. 74
-2. 74
-2. 75
-2. 77
-2. 78
-2. 77
-2. 72
-2. 77
-2. 78
-2. 74
-2. 74
-2. 74
-2. 74
-2. 75
-2. 77
-2. 78
-2. 77
-2. 78
-2. 77
-2. 78
-2. 77
-2. 78
-2. | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 83
4. 64
4. 64 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2370 2380 2390 2400 2410 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 45.15 47.27 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-3. 84
-3. 45
-3. 25 | Gain (dBi) 0.44 0.63 0.82 0.9 0.78 0.64 0.55 0.22 0.12 0 0.2 0.54 1 1.37 1.98 2.69 3.19 4.1 4.77 5.28 5.55 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2380 2390 2410 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 41.31 45.15 47.27 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-4. 36
-3. 84
-3. 45
-3. 25
-3. 16 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 5. 55 5. 67 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 41.31 45.15 47.27 48.32 49.25 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-4. 36
-3. 84
-3. 25
-3. 25
-3. 16
-3. 08 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 5. 55 5. 67 5. 72 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | (MHz) 2210 2220 2230 2230 2240 2250 2260 2270 2280 2390 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 41.31 45.15 47.27 48.32 49.25 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 67
-6. 67
-5. 55
-5. 55
-4. 36
-3. 45
-3. 45
-3. 25
-3. 16
-3. 08
-3. 01 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 5. 55 5. 67 5. 72 5. 65 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | (MHz) 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 | (%) 39.63 37.38 36.69 34.56 31.33 28.33 25.36 21.51 19.21 17.95 17.86 18.85 20.1 21.52 24.64 27.86 31.28 36.64 41.31 45.15 47.27 48.32 49.25 49.96 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 68
-5. 55
-5. 55
-5. 55
-4. 36
-3. 84
-3. 25
-3. 25
-3. 16
-3. 08
-3. 01
-3. 06 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 5. 55 5. 67 5. 72 5. 65 5. 58 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53.
97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2420 2430 2440 2450 2460 | (%) 39. 63 37. 38 36. 69 34. 56 31. 33 28. 33 25. 36 21. 51 19. 21 17. 95 17. 86 18. 85 20. 1 21. 52 24. 64 27. 86 31. 28 36. 64 41. 31 45. 15 47. 27 48. 32 49. 25 49. 96 49. 42 50. 67 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 04
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 67
-7. 36
-7. 48
-7. 25
-6. 97
-6. 67
-7. 48
-7. 25
-6. 97
-6. 67
-7. 48
-7. 25
-7. 25
-7. 36
-7. 36
-7. 36
-7. 36
-7. 36
-7. 36
-7. 30
-7. 30 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 5. 55 5. 67 5. 72 5. 65 5. 58 5. 46 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2340 2410 2420 2430 2440 2450 2460 2470 | (%) 39. 63 37. 38 36. 69 34. 56 31. 33 28. 33 25. 36 21. 51 19. 21 17. 95 17. 86 18. 85 20. 1 21. 52 24. 64 27. 86 31. 28 36. 64 41. 31 45. 15 47. 27 48. 32 49. 25 49. 96 49. 42 50. 67 52. 2 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-4. 36
-3. 84
-3. 45
-3. 25
-3. 16
-3. 08
-3. 06
-2. 95
-2. 82 | Gain (dBi) 0.44 0.63 0.82 0.9 0.78 0.64 0.55 0.22 0.12 0 0.2 0.54 1 1.37 1.98 2.69 3.19 4.1 4.77 5.28 5.55 5.67 5.72 5.65 5.58 5.46 5.44 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2340 2350 2360 2370 2440 2420 2430 2440 2440 2450 2460 2470 2480 | (%) 39. 63 37. 38 36. 69 34. 56 31. 33 28. 33 25. 36 21. 51 19. 21 17. 95 17. 86 18. 85 20. 1 21. 52 24. 64 27. 86 31. 28 36. 64 41. 31 45. 15 47. 27 48. 32 49. 25 49. 96 49. 42 50. 67 52. 2 52. 65 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-4. 36
-3. 36
-3. 01
-3. 08
-3. 01
-2. 95
-2. 82
-2. 79 | Gain (dBi) 0. 44 0. 63 0. 82 0. 9 0. 78 0. 64 0. 55 0. 22 0. 12 0 0. 2 0. 54 1. 37 1. 98 2. 69 3. 19 4. 1 4. 77 5. 28 5. 55 5. 67 5. 72 5. 65 5. 58 5. 46 5. 44 5. 25 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | | 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2340 2410 2420 2430 2440 2450 2460 2470 | (%) 39. 63 37. 38 36. 69 34. 56 31. 33 28. 33 25. 36 21. 51 19. 21 17. 95 17. 86 18. 85 20. 1 21. 52 24. 64 27. 86 31. 28 36. 64 41. 31 45. 15 47. 27 48. 32 49. 25 49. 96 49. 42 50. 67 52. 2 | Effi
(dB)
-4. 02
-4. 27
-4. 36
-4. 61
-5. 48
-5. 96
-6. 67
-7. 16
-7. 48
-7. 25
-6. 97
-6. 67
-6. 08
-5. 55
-5. 05
-4. 36
-3. 84
-3. 45
-3. 25
-3. 16
-3. 08
-3. 06
-2. 95
-2. 82 | Gain (dBi) 0.44 0.63 0.82 0.9 0.78 0.64 0.55 0.22 0.12 0 0.2 0.54 1 1.37 1.98 2.69 3.19 4.1 4.77 5.28 5.55 5.67 5.72 5.65 5.58 5.46 5.44 | Freq
(MHz)
2510
2520
2530
2540
2550
2560
2570
2580
2690
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Effi
(%)
60. 63
63. 34
63. 35
65. 7
65. 9
63. 05
61. 38
59. 75
58. 31
56. 16
53. 52
52. 79
52. 71
52. 87
53. 45
52. 85
53. 97
56. 52
58. 16 | Effi
(dB)
-2. 17
-1. 98
-1. 97
-1. 82
-1. 81
-2
-2. 12
-2. 24
-2. 34
-2. 51
-2. 77
-2. 78
-2. 77
-2. 72
-2. 72
-2. 72
-2. 48
-2. 35 | Gain
(dBi)
5. 63
5. 89
5. 92
6. 19
6. 13
5. 93
5. 76
5. 55
5. 23
5. 02
4. 81
4. 89
4. 78
4. 64
4. 64
4. 81
4. 77 | #### www. Topant.com.cn #### **Confidential requirement** #### 3.2.7 OTA Passive Efficiency&Gain Test--B20--MAIN: | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | |---|---|---|---|--|---|---|---| | | | | 10.000.000.000.000 | | | | | | 790
800 | 25. 88
34. 51 | -5.87
-4.62 | 0.17 | 1910
1920 | 38. 65
39. 57 | -4.13
-4.03 | -0.08
-0.14 | | 810 | 39.05 | -4.08 | 0.99 | 1930 | 39.64 | -4. 02 | -0.14 | | 820 | 44.52 | -3.51 | 1.07 | 1940 | 40.35 | -3.94 | -0.63 | | 830 | 49.59 | -3.05 | 1.33 | 1950 | 39.62 | -4.02 | -0.67 | | 840 | 45. 82 | -3.39 | 0.22 | 1960 | 38.54 | -4.14 | -0.76 | | 850 | 43.85 | -3.58 | -0.14 | 1970 | 39. 91 | -3.99 | -0.58 | | 860 | 45.18 | -3. 45 | 0.08 | 1980 | 39.59 | -4.02 | -0.63 | | 870 | 46.06 | -3.37 | 0.24 | 1990 | 36.83 | -4.34 | -1.07 | | 880 | 42. 35 | -3.73 | -0.62 | 2000 | 35.16 | -4.54 | -1.24 | | X
X | 222
233 | 60 (60
60 (60 | | 2010 | 34.86 | -4.58 | -1.27 | | 1700 | 45. 92 | -3.38 | 3.26 | 2020 | 36.01 | -4.44 | -1.04 | | 1710 | 43.59 | -3.61 | 3.11 | 2030 | 35.5 | -4.5 | -1.2 | | 1720 | 41.88 | -3. 78 | 2. 99 | 2040 | 35.15 | -4.54 | -1.27 | | 1730 | 40.7 | -3.9 | 2.75 | 2050 | 36. 91 | -4.33 | -0.91 | | 1740 | 40.86 | -3.89 | 2. 49 | 2060 | 36.89 | -4.33 | -0.59 | | 1750 | 41.64 | -3.8 | 2.35 | 2070 | 36.36 | -4.39 | -0.32 | | 1760 | 42.69 | -3.7 | 2.2 | 2080 | 36.16 | -4. 42 | -0.12 | | 1770 | 42. 24 | -3.74
-2.75 | 1.97 | 2090 | 36.26 | -4. 41
-4. 24 | -0.05 | | 1780
1790 | 42. 2
41. 11 | -3.75
-3.86 | 1.77
1.61 | 2100
2110 | 36.8
35.91 | -4. 34
-4. 45 | -0.07
-0.31 | | 1800 | 39.67 | -4.02 | 1.36 | 2110 | 35. 62 | -4. 45
-4. 48 | -0.61 | | 1810 | 36.89 | -4. 33 | 1.02 | 2130 | 36.14 | -4. 42 | -0.74 | | 1820 | 33.13 | -4.8 | 0.59 | 2140 | 36.12 | -4. 42 | -0.33 | | 1830 | 30. 43 | -5.17 | 0.2 | 2150 | 36.58 | -4.37 | -0.11 | | 1840 | 28. 9 | -5.39 | 0.04 | 2160 | 37. 52 | -4.26 | 0.36 | | 1850 | 27. 45 | -5. 61 | -0.31 | 2170 | 38.04 | -4.2 | 0.71 | | 1860 | 28. 09 | -5. 51 | -0.31 | 2180 | 39.13 | -4.08 | 1.16 | | 1870 | 30.82 | -5.11 | -0.15 | 2190 | 38. 95 | -4.09 | 1.54 | | 1880 | 33.85 | -4.7 | 0.01 | 2200 | 39. 45 | -4.04 | 1.73 | | 1890 | 36. 49 | -4.38 | 0.1 | 2210 | 40.33 | -3.94 | 2.07 | | 1900 | 37.7 | -4.24 | 0.03 | 2220 | 41.55 | -3.81 | 2.09 | | | | | | | | | | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | (MHz)
2230 | (%)
44. 06 | (dB)
-3.56 |
(dBi)
2.41 | (MHz)
2550 | (%)
49.32 | (dB)
-3.07 | (dBi)
5.11 | | (MHz)
2230
2240 | (%)
44.06
45.1 | (dB)
-3.56
-3.46 | (dBi)
2.41
2.33 | (MHz)
2550
2560 | (%)
49.32
46.39 | (dB)
-3.07
-3.34 | (dBi)
5.11
4.9 | | (MHz)
2230
2240
2250 | (%)
44.06
45.1
45.49 | (dB)
-3.56
-3.46
-3.42 | (dBi)
2. 41
2. 33
2. 32 | (MHz)
2550
2560
2570 | (%)
49.32
46.39
44.3 | (dB)
-3.07
-3.34
-3.54 | (dBi)
5.11
4.9
4.54 | | (MHz)
2230
2240 | (%)
44.06
45.1 | (dB)
-3.56
-3.46 | (dBi)
2.41
2.33 | (MHz)
2550
2560 | (%)
49.32
46.39 | (dB)
-3.07
-3.34 | (dBi)
5.11
4.9 | | (MHz)
2230
2240
2250
2260 | (%)
44.06
45.1
45.49
46.33 | (dB) -3.56 -3.46 -3.42 -3.34 | (dBi) 2. 41 2. 33 2. 32 2. 53 | (MHz)
2550
2560
2570
2580 | (%)
49.32
46.39
44.3
42.79 | (dB) -3.07 -3.34 -3.54 -3.69 | (dBi)
5.11
4.9
4.54
4.24 | | (MHz) 2230 2240 2250 2260 2270 | (%)
44.06
45.1
45.49
46.33
45.98 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 | (MHz)
2550
2560
2570
2580
2590 | (%)
49.32
46.39
44.3
42.79
41.88 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 | (%)
44.06
45.1
45.49
46.33
45.98
43.26
43.42
43.84 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.62 -3.58 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 | (%)
49. 32
46. 39
44. 3
42. 79
41. 88
40. 71
39. 73
40. 41 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 | | 2230
2240
2250
2260
2270
2280
2290
2300
2310 | (%)
44.06
45.1
45.49
46.33
45.98
43.26
43.42
43.84
44.37 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.62 -3.58 -3.53 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 | (MHz)
2550
2560
2570
2580
2590
2600
2610
2620
2630 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.58 -3.53 -3.37 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 3.93 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.58 -3.53 -3.37 -3.21 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 3.93 4.05 | | 230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.58 -3.53 -3.37 -3.21 -3.18 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2630 2640 2650 2660 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.39 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 3.93 4.05 3.98 | | 230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.53 -3.53 -3.16 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 3. 19 3. 52 3. 71 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.39 -3.2 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.98 4.09 | | 230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.58 -3.53 -3.37 -3.21 -3.18 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.39 -3.2 -2.94 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.98 4.09 4.14 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.62 -3.58 -3.53 -3.37 -3.21 -3.18 -3.16 -3.14 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 3. 19 3. 52 3. 71 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.39 -3.2 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.98 4.09 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.33 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.62 -3.58 -3.53 -3.37 -3.21 -3.18 -3.16 -3.14 -3.16 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 3. 9 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | 230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.33 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.58 -3.53 -3.37 -3.16 -3.16 -3.16 -3.14 -3.16 -3.14 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.33 48.35 45.94 44.86 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.53 -3.37 -3.21 -3.18 -3.16 -3.14 -3.38 -3.54 -3.38 -3.56 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 3. 19 3. 52 3. 71 3. 9 3. 9 4. 03 4. 11 4. 08 4. 19 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2370 2380 2390 2410 2420 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.55 45.94 44.86 44.08 | (dB) -3. 56 -3. 46 -3. 42 -3. 34 -3. 37 -3. 64 -3. 58 -3. 53 -3. 51 -3. 16 -3. 14 -3. 16 -3. 14 -3. 16 -3. 14 -3. 16 -3. 14 -3. 16 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 -3. 18 | (dBi) 2. 41 2. 33 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.55 45.94 44.86 44.08 42.84 41.77 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.53 -3.37 -3.16 -3.16 -3.14 -3.38 -3.34 -3.38 -3.79 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9
-4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.55 45.94 44.08 42.84 41.77 41.68 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.58 -3.53 -3.57 -3.21 -3.18 -3.16 -3.14 -3.38 -3.56 -3.56 -3.68 -3.79 -3.8 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 23 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2410 2420 2430 2440 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.53 48.53 48.55 45.94 44.08 42.14 | (dB) -3. 56 -3. 46 -3. 42 -3. 34 -3. 37 -3. 64 -3. 53 -3. 53 -3. 37 -3. 21 -3. 16 -3. 14 -3. 16 -3. 14 -3. 38 -3. 56 -3. 56 -3. 68 -3. 79 -3. 8 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 23 4. 36 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2410 2420 2410 2420 2430 2440 2450 2460 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.53 48.55 45.94 44.86 44.08 42.14 43.39 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.62 -3.58 -3.53 -3.37 -3.21 -3.18 -3.16 -3.14 -3.38 -3.56 -3.68 -3.79 -3.8 -3.79 -3.8 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 23 4. 36 4. 41 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2370 2410 2420 2430 2410 2420 2430 2410 2420 2430 2450 2460 2470 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.55 45.94 44.86 44.08 42.84 41.77 41.68 42.14 43.39 43.6 | (dB) -3.56 -3.46 -3.42 -3.34 -3.37 -3.64 -3.58 -3.53 -3.37 -3.21 -3.18 -3.16 -3.14 -3.38 -3.56 -3.68 -3.79 -3.8 -3.75 -3.63 -3.61 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 3. 19 3. 52 3. 71 3. 9 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 36 4. 41 4. 44 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2410 2420 2410 2420 2430 2440 2450 2460 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.53 48.55 45.94 44.86 44.08 42.14 43.39 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.62 -3.58 -3.53 -3.37 -3.21 -3.18 -3.16 -3.14 -3.38 -3.56 -3.68 -3.79 -3.8 -3.79 -3.8 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 23 4. 36 4. 41 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2370 2380 2410 2420 2430 2440 2450 2460 2470 2480 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.33 48.55 45.94 44.86 44.08 42.84 41.77 41.68 42.14 43.39 43.6 | (dB) -3. 56 -3. 46 -3. 42 -3. 34 -3. 37 -3. 64 -3. 58 -3. 53 -3. 16 -3. 14 -3. 16 -3. 14 -3. 16 -3. 14 -3. 38 -3. 48 -3. 56 -3. 68 -3. 75 -3. 81 -3. 61 -3. 6 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 23 4. 36 4. 41 4. 44 4. 23 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2340 2350 2360 2370 2380 2340 2400 2410 2420 2430 2440 2450 2450 2460 2470 2480 2490 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.55 45.94 44.86 44.08 42.84 41.77 41.68 42.14 43.39 43.65 44.56 | (dB) -3. 56 -3. 46 -3. 42 -3. 37 -3. 64 -3. 58 -3. 53 -3. 53 -3. 37 -3. 16 -3. 14 -3. 16 -3. 14 -3. 38 -3. 56 -3. 68 -3. 79 -3. 8 -3. 79 -3. 61 -3. 61 -3. 61 -3. 51 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 23 4. 36 4. 41 4. 44 4. 23 4. 32 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.11 48.27 48.53 48.33 48.55 45.94 44.86 44.08 42.84 41.77 41.68 42.14 43.39 43.65 44.56 47.4 48.85 50.01 | (dB) -3. 56 -3. 46 -3. 42 -3. 34 -3. 37 -3. 64 -3. 58 -3. 53 -3. 37 -3. 21 -3. 18 -3. 16 -3. 14 -3. 38 -3. 38 -3. 38 -3. 38 -3. 75 -3. 68 -3. 68 -3. 68 -3. 68 -3. 75 -3. 61 -3. 61 -3. 61 -3. 11 -3. 01 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 52 3. 71 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 36 4. 41 4. 44 4. 23 4. 36 4. 41 4. 44 4. 23 4. 66 4. 87 5. 15 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2400 2410 2420 2420 2440 2450 2460 2470 2480 2490 2500 2510 | (%) 44.06 45.1 45.49 46.33 45.98 43.26 43.42 43.84 44.37 46.01 47.8 48.53 48.55 45.94 44.08 42.14 43.39 43.65 44.56 47.4 48.85 | (dB) -3.56 -3.46 -3.42 -3.37 -3.64 -3.53 -3.53 -3.37 -3.11 -3.18 -3.16 -3.14 -3.38 -3.56 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.63 -3.61 -3.6 | (dBi) 2. 41 2. 33 2. 32 2. 53 2. 61 2. 18 2. 21 2. 31 2. 37 2. 73 3. 19 3. 9 4. 03 4. 11 4. 08 4. 19 4. 28 4. 3 4. 36 4. 41 4. 44 4. 23 4. 36 4. 41 4. 487 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 49. 32 46. 39 44. 3 42. 79 41. 88 40. 71 39. 73 40. 41 41. 72 43. 23 44. 9 45. 8 47. 87 50. 86 53. 21 | (dB) -3.07 -3.34 -3.54 -3.69 -3.78 -3.9 -4.01 -3.94 -3.8 -3.64 -3.48 -3.48 -3.2 -2.94 -2.74 | (dBi) 5.11 4.9 4.54 4.24 4.09 3.86 3.77 3.71 3.93 4.05 3.93 4.05 4.09 4.14 4.15 | ## www. Topant.com.cn Confidential requirement #### 3.2.8 OTA Passive Efficiency&Gain Test--B71--MAIN: | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | |--|--|--|---|--|---|--
---| | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | 620 | 19.97 | -7 | -1.82 | 1910 | 49. 28 | -3.07 | 1.57 | | | | | | - | | | | | 630 | 22. 25 | -6.53 | -1.83 | 1920 | 47.39 | -3.24 | 1.4 | | 640 | 24. 93 | -6.03 | -1.68 | 1930 | 45. 4 | -3. 43 | 1.31 | | 650 | 26.52 | -5.76 | -1.28 | 1940 | 45.08 | -3.46 | 1.13 | | 660 | 26.39 | -5.79 | -1.25 | 1950 | 43.14 | -3.65 | 0.95 | | 670 | 27.62 | -5.59 | -0.82 | 1960 | 41.01 | -3.87 | 0.6 | | 680 | 29.37 | -5.32 | -0.44 | 1970 | 41.32 | -3.84 | 0.53 | | 000 | 20.01 | 0.02 | V. 11 | 1980 | 40.75 | -3.9 | 0.25 | | 1700 | 00.70 | 0.10 | 0.07 | 00000000000000000000000000000000000000 | 15-07 15-07:150/15 17 | | 2 3000000000000000000000000000000000000 | | 1700 | 60.79 | -2.16 | 2. 97 | 1990 | 37.57 | -4. 25 | -0.31 | | 1710 | 58.89 | -2.3 | 3 | 2000 | 35. 26 | -4.53 | -0.74 | | 1720 | 57.11 | -2.43 | 2.61 | 2010 | 33.92 | -4.7 | -0.95 | | 1730 | 57.84 | -2.38 | 2.76 | 2020 | 34.14 | -4.67 | -0.81 | | 1740 | 59.46 | -2.26 | 2.71 | 2030 | 33.15 | -4.8 | -1.12 | | 1750 | 58.8 | -2.31 | 2.63 | 2040 | 31.92 | -4.96 | -1.55 | | 1760 | 59.3 | -2.27 | 2.6 | 2050 | 32. 73 | -4.85 | -1.62 | | 1770 | V5V5V5V5V | -2.2 | 2.77 | 2060 | 31.8 | -4.98 | -1.67 | | 6 (VID.5)(SS) | 60.26 | | | PARKET TO SECTION 19 | 100.10 11000 -1 | | | | 1780 | 62.51 | -2.04 | 2.78 | 2070 | 30.95 | -5.09 | -1.41 | | 1790 | 61.41 | -2.12 | 2.77 | 2080 | 30. 29 | -5.19 | -1.13 | | 1800 | 60.81 | -2.16 | 2.62 | 2090 | 30.44 | -5.17 | -0.84 | | 1810 | 59.74 | -2.24 | 2.63 | 2100 | 31.07 | -5.08 | -0.76 | | 1820 | 58.6 | -2.32 | 2.63 | 2110 | 30.7 | -5.13 | -1.02 | | 1830 | 57.53 | -2.4 | 2. 58 | 2120 | 30. 98 | -5.09 | -1.28 | | 1840 | 56.12 | -2.51 | 2.65 | 2130 | 32.14 | -4. 93 | -1.03 | | - X0000000000 | 0 10/1/00/00/00 | 0.60 0.0000 | 1 10 07 10 10 70 10 | 2140 | 0.0000000000000000000000000000000000000 | | (T | | 1850 | 53.8 | -2.69 | 2.46 | | 33. 21 | -4.79 | -0.64 | | 1860 | 53.69 | -2.7 | 2.55 | 2150 | 34. 35 | -4.64 | -0.38 | | 1870 | 54. 44 | -2.64 | 2.44 | 2160 | 36.41 | -4.39 | 0.04 | | 1880 | 53. 53 | -2.71 | 2. 29 | 2170 | 38.17 | -4.18 | 0.59 | | 2.00 | FO 0 | | 0.05 | 04.00 | 10 07 | 0.05 | 1 06 | | 1890 | 53.3 | -2.73 | 2.05 | 2180 | 40.27 | -3.95 | 1.06 | | 1890
1900 | | | | 2180 | 40.27 | -3.95
-3.91 | | | | 53.3 | -2. 73
-2. 91 | 1.77 | | | | 1.3 | | | | | | | | | | | 1900 | 51.2 | -2.91 | 1.77 | 2190 | 40.62 | -3.91 | 1.3
Gain | | 1900
Freq
(MHz) | 51.2
Effi
(%) | -2.91
Effi
(dB) | 1.77
Gain
(dBi) | 2190
Freq
(MHz) | 40.62
Effi
(%) | -3.91
Effi
(dB) | 1.3
Gain
(dBi) | | 1900
Freq
(MHz)
2200 | 51.2
Effi
(%)
41.29 | -2.91
Effi
(dB)
-3.84 | 1.77
Gain
(dBi)
1.68 | 2190
Freq
(MHz)
2490 | 40.62
Effi
(%)
36.54 | -3.91
Effi
(dB)
-4.37 | 1.3
Gain
(dBi)
4.28 | | 1900
Freq
(MHz)
2200
2210 | 51. 2
Effi
(%)
41. 29
42. 56 | -2. 91 Effi (dB) -3. 84 -3. 71 | 1.77
Gain
(dBi)
1.68
1.78 | 2190
Freq
(MHz)
2490
2500 | 40.62
Effi
(%)
36.54
40.3 | -3.91 Effi (dB) -4.37 -3.95 | 1.3
Gain
(dBi)
4.28
4.69 | | 1900
Freq
(MHz)
2200
2210
2220 | 51. 2
Effi
(%)
41. 29
42. 56
43. 44 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 | 1.77 Gain (dBi) 1.68 1.78 2 | 2190
Freq
(MHz)
2490
2500
2510 | 40. 62
Effi
(%)
36. 54
40. 3
43. 3 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 | 1.3
Gain
(dBi)
4.28
4.69
4.76 | | 1900
Freq
(MHz)
2200
2210
2220
2230 | 51. 2
Effi
(%)
41. 29
42. 56
43. 44
45. 52 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 | 2190
Freq
(MHz)
2490
2500
2510
2520 | 40. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 | | 1900
Freq
(MHz)
2200
2210
2220
2230
2240 | 51.2
Effi
(%)
41.29
42.56
43.44
45.52
45.55 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 | 2190
Freq
(MHz)
2490
2500
2510
2520
2530 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 41 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 | 2190
Freq
(MHz)
2490
2500
2510
2520
2530
2540 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 | | 1900
Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 | 1.3
Gain
(dBi)
4.28
4.69
4.76
5.11
5.1
5.36
5.33 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 41 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 | 2190
Freq
(MHz)
2490
2500
2510
2520
2530
2540 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 | | 1900
Freq
(MHz)
2200
2210
2220
2230
2240
2250
2260 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 | 1.3
Gain
(dBi)
4.28
4.69
4.76
5.11
5.1
5.36
5.33 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 41 -3. 38 -3. 47 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 51.66 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 | Gain
(dBi)
1.68
1.78
2
2.05
2.11
2.03
1.95
1.87
1.51
1.59 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 51.66 51.79 51.06 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 93 -2. 87 -2. 86 -2. 92 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 | Gain
(dBi)
1.68
1.78
2
2.05
2.11
2.03
1.95
1.87
1.51
1.59
1.77 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 | 40. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 48. 38 51. 32 53. 31 51. 66 51. 79 51. 06 51. 07 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 -2. 86 -2. 92 -2. 92 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 4.71 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 | 40. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 48. 38 51. 32 53. 31 51. 66 51. 79 51. 06 51. 07 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 -2. 86 -2. 92 -2. 99 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 4.71 4.59 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 | 51. 2 Effi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 69 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 | 40. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 48. 38 51. 32 53. 31 51. 66 51. 79 51. 06 51. 07 50. 2 48. 35 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 78 -3. 59 | Gain (dBi) 1.68 1.78 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 | 2190
Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 | 40. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 48. 38 51. 32 53. 31 51. 66 51. 79 51. 06 51. 07 50. 2 48. 35 47. 91 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2250 2270 2280 2290 2300 2310 2310 2330 2340 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 78 -3. 69 -3. 69 -3. 66 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 | #0.62 ### Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 -3. 18 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 09 42. 45 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 | -3. 91 Bffi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 -3. 18 -3. 05 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 41. 54 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 66 -3. 72 -3. 82 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2600 2610 2620 2630 2640 2650 | ## 40.62 ## Effi (%) ## 36.54 ## 40.3 ## 46.66 ## 48.38 ## 51.32 ## 51.66 ## 51.79 ## 51.06 ## 51.07 ## 50.2 ## 35 ## 47.91 ## 13 ## 52 ## 50.39 | -3. 91 Bffi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 09 42. 45 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 42 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 | 40.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 53.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 | -3. 91 Bffi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 -3. 18 -3. 05 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 41. 54 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2600 2610 2620 2630 2640 2650 | ## 40.62 ## Effi (%) ## 36.54 ## 40.3 ## 46.66 ## 48.38 ## 51.32 ## 51.66 ## 51.79 ## 51.06 ## 51.07 ## 50.2 ## 35 ## 47.91 ## 13 ## 52 ## 50.39 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 87 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 98 -2. 98 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2300 2310 2320 2330 2340 2350 2360 2370 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 41. 54 40. 2 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 66 -3. 72 -3. 82 -3. 96 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 3.26 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2610 2620 2630 2640 2650 2660 | ## 40.62 Effi (%) | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 99 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2300 2310 2320 2340 2350 2360 2370 2380 2390 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 44. 98 42. 17 41. 86 41. 89 42. 73 43. 71 43. 09 42. 45 41. 54 40. 2 38. 9 36. 28 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 | Gain (dBi) 1.68 1.78 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.51 2.85 3.06 3.13 3.21 3.26 3.31 3.59 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 | #0. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 48. 38 51. 32 53. 31 51. 66 51. 79 51. 06 51. 07 50. 2 48. 35 47. 91 48. 13 49. 52 50. 39 50. 94 52. 01 54. 82 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 98 -2. 98 -2. 93 -2. 84 -2. 61 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2250 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 41. 54 40. 2 38. 9 36. 28 34. 77 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 60 -3. 72 -3. 96 -4. 1 -4. 4 -4. 59 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 3.26 3.31 3.59 3.63 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2680 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | #0.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 55.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 50.39 50.94 52.01 54.82 56.16 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 -2. 84 -2. 61 -2. 51 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 4 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2250 2270 2280 2270 2330 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 42. 73 43. 71 43. 09 42. 45 40. 2 38. 9 36. 28 34. 77 33. 61 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 -4. 59 -4. 73 | Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.85 3.06 3.13 3.21 3.26 3.31 3.59 3.63 3.95 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2670 2680 | #0. 62 Effi (%) 36. 54 40. 3 43. 3 46. 66 48. 38 51. 32 53. 31 51. 66 51. 79 51. 06 51. 07 50. 2 48. 35 47. 91 48. 13 49. 52 50. 39 50. 94 52. 01 54. 82 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 98 -2. 98 -2. 93 -2. 84 -2. 61 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2370 2380 2390 2400 2410 2420 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 40. 2 38. 9 36. 28 34. 77 33. 61 32. 26 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 -4. 59 -4. 73 -4. 91 | Gain (dBi) 1.68 1.78 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 3.26 3.31 3.59 3.63 3.95 3.97 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2680 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | #0.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 55.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 50.39 50.94 52.01 54.82 56.16 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 -2. 84 -2. 61 -2. 51 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 4 | | 1900 Freq (MHz)
2200 2210 2220 2230 2240 2250 2260 2270 2280 2230 2330 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 40. 2 38. 9 36. 28 34. 77 33. 61 32. 26 31. 19 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 -4. 59 -4. 73 -4. 91 -5. 06 | Gain (dBi) 1.68 1.78 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 3.06 3.13 3.21 3.26 3.31 3.59 3.63 3.95 3.97 4.03 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2680 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | #0.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 55.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 50.39 50.94 52.01 54.82 56.16 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 -2. 84 -2. 61 -2. 51 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 4 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2300 2310 2320 2330 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 40. 2 38. 9 36. 28 34. 77 33. 61 32. 26 31. 19 31. 4 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 -4. 59 -4. 73 -4. 91 -5. 06 -5. 03 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 3.26 3.31 3.59 3.63 3.95 3.97 4.03 4.1 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2680 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | #0.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 55.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 50.39 50.94 52.01 54.82 56.16 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 -2. 84 -2. 61 -2. 51 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 4 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2410 2420 2430 2440 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 44. 98 42. 17 41. 86 41. 89 41. 87 42. 73 43. 71 43. 09 42. 45 40. 2 38. 9 36. 28 34. 77 33. 61 32. 26 31. 19 31. 4 31. 74 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 78 -3. 69 -3. 59 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 -4. 59 -4. 73 -4. 91 -5. 06 -5. 03 -4. 98 | Gain (dBi) 1.68 1.78 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 3.26 3.31 3.59 3.63 3.95 4.1 4.17 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2680 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | #0.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 55.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 50.39 50.94 52.01 54.82 56.16 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 -2. 84 -2. 61 -2. 51 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 4 | | 1900 Freq (MHz) 2200 2210 2220 2230 2240 2250 2260 2270 2280 2300 2310 2320 2330 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 | 51. 2 Bffi (%) 41. 29 42. 56 43. 44 45. 52 45. 55 45. 63 45. 93 44. 98 42. 17 41. 86 41. 89 41. 85 42. 73 43. 71 43. 09 42. 45 40. 2 38. 9 36. 28 34. 77 33. 61 32. 26 31. 19 31. 4 | -2. 91 Effi (dB) -3. 84 -3. 71 -3. 62 -3. 41 -3. 41 -3. 38 -3. 47 -3. 75 -3. 78 -3. 78 -3. 66 -3. 72 -3. 82 -3. 96 -4. 1 -4. 4 -4. 59 -4. 73 -4. 91 -5. 06 -5. 03 | 1.77 Gain (dBi) 1.68 1.78 2 2.05 2.11 2.03 1.95 1.87 1.51 1.59 1.77 1.94 2.51 2.85 3.06 3.13 3.21 3.26 3.31 3.59 3.63 3.95 3.97 4.03 4.1 | 2190 Freq (MHz) 2490 2500 2510 2520 2530 2540 2550 2560 2570 2680 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | #0.62 Effi (%) 36.54 40.3 43.3 46.66 48.38 51.32 55.31 51.66 51.79 51.06 51.07 50.2 48.35 47.91 48.13 49.52 50.39 50.94 52.01 54.82 56.16 | -3. 91 Effi (dB) -4. 37 -3. 95 -3. 64 -3. 31 -3. 15 -2. 9 -2. 73 -2. 86 -2. 92 -2. 92 -2. 92 -3. 16 -3. 2 -3. 18 -3. 05 -2. 98 -2. 93 -2. 84 -2. 61 -2. 51 | 1.3 Gain (dBi) 4.28 4.69 4.76 5.11 5.1 5.36 5.33 5.13 4.94 4.75 4.71 4.59 4.33 4.15 4.11 4.05 4.08 3.98 4.04 4 | #### www. Topant.com.cn #### **Confidential requirement** #### 3.2.9 OTA Passive Efficiency&Gain Test--B850--diversity: | Freq (MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | |--|--|--|--|--|---|--|--| | 820 | 25. 41 | -5. 95 | -3.19 | 1910 | 25. 46 | -5.94 | -0.98 | | 830 | 25. 99 | -5. 85 | -2. 93 | 1920 | 25.19 | -5.99 | -0.79 | | 840 | 30.73 | -5.12 | -2.35 | 1930 | 25.01 | -6.02 | -0.55 | | 850 | 30.23 | -5.2 | -1.98 | 1940 | 25.08 | -6.01 | -0.38 | | 860 | 32. 31 | -4. 91 | -1.54 | 1950 | 24. 42 | -6.12 | -0.17 | | 870 | 32. 91 | -4.83 | -1.17 | 1960 | 23.82 | -6.23 | -0.38 | | 880 | 30.57 | -5.15 | -1.48 | 1970 | 25.15 | -5.99 | 0.03 | | 890 | 27.3 | -5.64 | -2.2 | 1980 | 25.97 | -5.86 | 0.06 | | 900 | 23.14 | -6.36 | -2.58 | 1990 | 25.08 | -6.01 | 0.16 | | 910 | 22. 57 | -6. 46 | -3. 46 | 2000 | 24. 85 | -6.05 | 0.34 | | 4700 | 00.40 | F 04 | 4 07 | 2010 | 25. 46 | -5.94 | 0.16 | | 1700 | 30.13 | -5. 21 | -1.27 | 2020 | 26.79 | -5. 72
-5. 06 | 0.06 | | 1710
1720 | 27. 81
26. 19 | -5. 56
-5. 82 | -1.66
-1.99 | 2030
2040 | 25.93
24.9 | -5.86
-6.04 | 0.02
-0.11 | | 1730 | 25.6 | -5.92 | -2.04 | 2050 | 25.33 | -5.96 | -0.04 | | 1740 | 24. 78 | -6.06 | -2.18 | 2060 | 24.86 | -6.05 | -0.1 | | 1750 | 23.34 | -6.32 | -2.36 | 2070 | 24. 52 | -6.1 | -0.14 | | 1760 | 23. 48 | -6.29 | -2.48 | 2080 | 24.8 | -6.06 | -0.09 | | 1770 | 24. 84 | -6.05 | -2.31 | 2090 | 25.54 | -5.93 | 0.08 | | 1780 | 26.02 | -5. 85 | -2.27 | 2100 | 26.57 | -5.76 | 0.21 | | 1790 | 25. 29 | -5. 97 | -2.1 | 2110 | 26.76 | -5.73 | 0.25 | | 1800 | 25. 53 | -5. 93 | -2.03 | 2120 | 27.5 | -5.61 | 0.45 | | 1810 | 27.03 | -5. 68 | -1.35 | 2130 | 29.05 | -5.37 | 0.71 | | 1820 | 27. 42 | -5.62 | -1.16 | 2140 | 30.16 | -5.21 | 0.87 | | 1830 | 26.79 | -5.72 | -0.94 | 2150 | 31.45 | -5.02 | 1.1 | | 1840 | 26.86 | -5. 71 | -0.77 | 2160 | 33. 27 | -4.78 | 1.39 | | 1850 | 27.01 | -5.69 | -0.86 | 2170 | 34. 31 | -4.65 | 1.59 | | 1860 | 27. 39 | -5. 62 | -0.74 | 2180 | 35.1 | -4.55 | 1.75 | | 1870 | 26.84 | -5. 71 | -1.18 | 2190 | 34.71 | -4.6 | 1.77 | | 1880
1890 | 26.51 | -5. 77
-5. 71 | -1.06
-1.15 | 2200
2210 | 34. 93
35. 45 | -4.57
-4.5 | 1.83
1.87 | | 1900 | 26. 87
26. 36 | -5. 79 | -0.99 | 2220 | 34. 68 | -4.6 | 1.78 | | 1000 | 20.00 | 0.10 | 0.00 | 2220 | 04.00 | 1.0 | 1.10 | | 0 00 | | 40.00 | (C) (V) (C) (A) | 10000 | 2 3/4 5/4/4 | | | | Freq | Effi
(%) | Effi
(AR) | Gain
(dRi) | Freq | Effi
(%) | Effi
(dR) | Gain
(dBi) | | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | (MHz)
2230 | (%)
35. 43 | (dB)
-4. 51 | (dBi)
1.82 | (MHz)
2550 | (%)
33.63 | (dB)
-4.73 | (dBi)
1.72 | | (MHz)
2230
2240 | (%)
35. 43
35. 82 | (dB)
-4.51
-4.46 | (dBi)
1.82
1.93 | (MHz)
2550
2560 | (%)
33.63
32.98 | (dB)
-4.73
-4.82 | (dBi)
1.72
1.74 | | (MHz)
2230 | (%)
35. 43 | (dB)
-4. 51 | (dBi)
1.82 | (MHz)
2550 | (%)
33.63 | (dB)
-4.73 | (dBi)
1.72
1.74
1.71 | | (MHz)
2230
2240
2250 | (%)
35. 43
35. 82
36. 48 | (dB)
-4.51
-4.46
-4.38 | (dBi)
1.82
1.93
2.11 | (MHz)
2550
2560
2570 | (%)
33.63
32.98
33.3 | (dB)
-4.73
-4.82
-4.78 | (dBi)
1.72
1.74 | | (MHz) 2230 2240 2250 2260 2270 2280 | (%)
35. 43
35. 82
36. 48
36. 88 | (dB) -4.51 -4.46 -4.38 -4.33 -4.3 | (dBi)
1.82
1.93
2.11
2.24
2.39
1.97 | 2550
2560
2570
2580
2590
2590
2600 | (%)
33.63
32.98
33.3
33.41
34.15
34.76 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 59 | (dBi)
1.72
1.74
1.71
1.63
1.65
1.56 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 | (dB) -4.51 -4.46 -4.38 -4.33 -4.3 -4.55 -4.45 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 | 2550
2560
2570
2580
2590
2600
2610 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 59 -4. 65 | (dBi)
1.72
1.74
1.71
1.63
1.65
1.56
1.49 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 | (%)
35. 43
35. 82
36. 48
36. 88
37. 19
35. 05
35. 85
35. 92 | (dB) -4. 51 -4. 46 -4. 38 -4. 33 -4. 3 -4. 55 -4. 45 |
(dBi)
1.82
1.93
2.11
2.24
2.39
1.97
2.09
2.01 | (MHz)
2550
2560
2570
2580
2590
2600
2610
2620 | (%) 33.63 32.98 33.3 33.41 34.15 34.76 34.25 33.07 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 67 -4. 59 -4. 65 -4. 81 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 | | 2230
2240
2250
2260
2270
2280
2290
2300
2310 | (%)
35. 43
35. 82
36. 48
36. 88
37. 19
35. 05
35. 85
35. 92
36. 27 | (dB) -4. 51 -4. 46 -4. 38 -4. 33 -4. 3 -4. 55 -4. 45 -4. 45 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 | (MHz)
2550
2560
2570
2580
2590
2600
2610
2620
2630 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 69 -4. 65 -4. 81 -4. 92 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 | (%)
35. 43
35. 82
36. 48
36. 88
37. 19
35. 05
35. 85
35. 92
36. 27
36. 8 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.44 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 | (dB) -4. 73 -4. 82 -4. 76 -4. 67 -4. 67 -4. 65 -4. 81 -4. 92 -4. 92 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 | (%)
35. 43
35. 82
36. 48
36. 88
37. 19
35. 05
35. 85
35. 92
36. 27
36. 8
37. 19 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.45 -4.34 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 | (dB) -4. 73 -4. 82 -4. 76 -4. 67 -4. 67 -4. 65 -4. 81 -4. 92 -5. 06 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 | (dB) -4. 51 -4. 46 -4. 38 -4. 33 -4. 3 -4. 55 -4. 45 -4. 45 -4. 44 -4. 34 -4. 3 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 65 -4. 81 -4. 92 -5. 06 -5. 39 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.44 -4.34 -4.34 -4.48 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 31. 16 28. 93 26. 87 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 65 -4. 81 -4. 92 -5. 06 -5. 39 -5. 71 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 0.5 0.92 0.62 0.12 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 | (dB) -4. 51 -4. 46 -4. 38 -4. 33 -4. 3 -4. 55 -4. 45 -4. 45 -4. 44 -4. 34 -4. 3 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 | (dB) -4. 73 -4. 82 -4. 78 -4. 76 -4. 67 -4. 65 -4. 81 -4. 92 -5. 06 -5. 39 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.34 -4.34 -4.34 -4.34 -4.48 -4.45 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 | (dB) -4.73 -4.82 -4.78 -4.76 -4.67 -4.59 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 86 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.44 -4.34 -4.34 -4.48 -4.45 -4.45 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2310 2320 2330 2340 2350 2360 2370 2380 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 68 35. 86 | (dB) -4. 51 -4. 46 -4. 38 -4. 33 -4. 55 -4. 45 -4. 45 -4. 44 -4. 34 -4. 34 -4. 41 -4. 48 -4. 45 -4. 45 -4. 45 -4. 45 -4. 51 -4. 52 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 2.26 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2380 2390 2400 2410 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 37 35. 37 35. 38 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.41 -4.34 -4.41 -4.48 -4.51 -4.52 -4.73 -4.73 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.67 2.63 2.44 2.38 2.49 1.97 2.69 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2380 2390 2410 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 37 35. 29 33. 66 33. 67 33. 68 33. 13 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.44 -4.3 -4.44 -4.3 -4.45 -4.51 -4.52 -4.73 -4.73 -4.73 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.69 2.67 2.63 2.44 2.26 1.94 1.87 1.65 1.59 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2410 2420 2430 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 37 35. 29 33. 66 33. 37 33. 67 33. 68 33. 13 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.34 -4.34 -4.34 -4.45 -4.45 -4.73 -4.73 -4.73 -4.73 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 2.26 1.94 1.87 1.65 1.59 1.38 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2260 2270 2280 2310 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 37 35. 29 33. 66 33. 67 33. 68 33. 13 33. 17 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.41 -4.34 -4.34 -4.51 -4.52 -4.73 -4.73 -4.73 -4.8 -4.79 -4.69 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 2.26 1.94 1.87 1.65 1.59 1.38 1.18 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2260 2270 2280 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 37 35. 29 33. 66 33. 67 33. 68 33. 13 33. 17 33. 97 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.44 -4.34 -4.34 -4.45 -4.45 -4.473 -4.73 -4.73 -4.73 -4.73 -4.79 -4.69 -4.57 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 1.87 1.65 1.59 1.38 1.18 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24
31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2400 2410 2420 2430 2440 2450 2460 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 37 35. 29 33. 66 33. 17 33. 68 33. 17 33. 97 34. 95 | (dB) -4. 51 -4. 46 -4. 38 -4. 33 -4. 55 -4. 45 -4. 45 -4. 44 -4. 34 -4. 3 -4. 41 -4. 48 -4. 45 -4. 51 -4. 52 -4. 73 -4. 73 -4. 79 -4. 69 -4. 57 -4. 48 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 1.87 1.65 1.59 1.38 1.18 1.32 1.42 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 2460 2470 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 37 35. 29 33. 66 33. 67 33. 68 33. 17 33. 97 34. 95 35. 68 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.41 -4.48 -4.51 -4.52 -4.73 -4.73 -4.79 -4.69 -4.57 -4.48 -4.44 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 1.87 1.65 1.59 1.38 1.18 1.32 1.42 1.67 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2340 2440 2420 2430 2440 2450 2460 2470 2480 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 37 35. 29 33. 66 33. 17 33. 68 33. 17 33. 97 34. 95 | (dB) -4.51 -4.46 -4.38 -4.33 -4.3 -4.55 -4.45 -4.45 -4.44 -4.3 -4.41 -4.48 -4.51 -4.52 -4.73 -4.73 -4.73 -4.79 -4.69 -4.44 -4.4 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 2.26 1.94 1.87 1.65 1.59 1.38 1.18 1.18 1.12 1.42 1.67 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 2460 2470 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 37 35. 29 33. 66 33. 67 33. 68 33. 13 33. 17 33. 97 34. 95 35. 68 35. 99 36. 27 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.41 -4.48 -4.51 -4.52 -4.73 -4.73 -4.79 -4.69 -4.57 -4.48 -4.44 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 1.87 1.65 1.59 1.38 1.18 1.32 1.42 1.67 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 2450 2460 2470 2480 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 37 35. 29 33. 66 33. 37 33. 97 34. 95 35. 68 35. 99 36. 27 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.44 -4.3 -4.48 -4.45 -4.51 -4.52 -4.73 -4.73 -4.73 -4.69 -4.48 -4.44 -4.44 -4.46 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.63 2.44 2.26 1.94 1.87 1.65 1.59 1.38 1.18 1.32 1.42 1.67 1.74 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2260 2270 2280 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 2460 2460 2470 2480 2490 2500 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 37 35. 29 33. 66 33. 37 35. 29 33. 67 33. 68 33. 17 33. 97 34. 95 35. 68 35. 99 36. 27 35. 09 | (dB) -4.51 -4.46 -4.38 -4.33 -4.35 -4.45 -4.45 -4.45 -4.41 -4.34 -4.35 -4.73 -4.73 -4.73 -4.73 -4.73 -4.8 -4.49 -4.44 -4.46 -4.55 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.69 2.67 2.63 2.44 2.26 1.94 1.87 1.65 1.59 1.38 1.18 1.32 1.42 1.42 1.47 1.67 1.75 1.58 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | | (MHz) 2230 2240 2250 2260 2260 2270 2280 2390 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 | (%) 35. 43 35. 82 36. 48 36. 88 37. 19 35. 05 35. 85 35. 92 36. 27 36. 8 37. 19 36. 26 35. 68 35. 86 35. 37 35. 29 33. 66 33. 67 33. 67 33. 68 33. 17 33. 97 34. 95 35. 68 35. 99 36. 27 35. 09 34. 71 | (dB) -4.51 -4.46 -4.38 -4.33 -4.55 -4.45 -4.45 -4.45 -4.41 -4.34 -4.35 -4.73 -4.73 -4.73 -4.73 -4.73 -4.74 -4.40 -4.40 -4.45 -4.46 -4.45 -4.46 | (dBi) 1.82 1.93 2.11 2.24 2.39 1.97 2.09 2.01 2.06 2.47 2.73 2.69 2.67 2.63 2.44 2.26 1.94 1.87 1.65 1.59 1.38 1.18 1.32 1.42 1.67 1.74 1.75 1.58 1.71 | (MHz) 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 | (%) 33. 63 32. 98 33. 3 33. 41 34. 15 34. 76 34. 25 33. 07 32. 22 32. 24 31. 16 28. 93 26. 87 26. 55 24. 84 | (dB) -4.73 -4.82 -4.76 -4.67 -4.65 -4.81 -4.92 -5.06 -5.39 -5.71 -5.76 -6.05 | (dBi) 1.72 1.74 1.71 1.63 1.65 1.56 1.49 1.26 1.14 1.05 0.92 0.62 0.12 0.29 0.01 | ## www. Topant.com.cn Confidential requirement #### 3.2.10 OTA Passive Efficiency&Gain Test--B12--diversity: | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | |---|--
--|--|---|--|--|---| | (MHz) | (%) | (dB) | (dBi) | (MHz) | (%) | (dB) | (dBi) | | 700 | 19.8 | -7.03 | -3.71 | 1910 | 23.5 | -6. 29 | -1.17 | | 710 | 20.15 | -6.96 | -3.75 | 1920 | 23.19 | -6.35 | -1.01 | | 720 | 22. 48 | -6.48 | -3.27 | 1930 | 23.15 | -6.35 | -0.76 | | 730 | 23. 97 | -6.2 | -2.67 | 1940 | 23. 26 | -6.33 | -0.53 | | 740 | 23.07 | -6.37 | -2.67 | 1950 | 22.77 | -6.43 | -0.38 | | 750 | 20.86 | -6.81 | -3.18 | 1960 | 22. 26 | -6.52 | -0.56 | | 760 | 23.39 | -6.31 | -2.67 | 1970 | 23.7 | -6.25 | -0.05 | | 770 | 22.72 | -6.44 | -3.07 | 1980 | 24. 58 | -6.09 | 0.04 | | 780 | 24. 21 | -6.16 | -2.96 | 1990 | 23.92 | -6.21 | 0.07 | | | | - | | 2000 | 23.7 | -6. 25 | 0.24 | | 1700 | 29.74 | -5. 27 | -1.57 | 2010 | 24. 46 | -6.12 | 0.14 | | 1710 | 26.83 | -5.71 | -2.21 | 2020 | 25. 75 | -5. 89 | -0.08 | | 1720 | 24.74 | -6.07 | -2.69 | 2030 | 24. 95 | -6.03 | -0.29 | | 1730 | 23. 72 | -6.25 | -2.92 | 2040 | 23. 89 | -6.22 | -0.6 | | 1740 | 22.64 | -6.45 | -3.14 | 2050 | 24.18 | -6.17 | -0.63 | | 1750 | 21.03 | -6.77 | -3.55 | 2060 | 23.59 | -6. 27 | -0.65 | | 1760 | 20.86 | -6.81 | -3.46 | 2070 | 23. 21 | -6.34 | -0.66 | | 1770 | 21.92 | -6.59 | -2.94 | 2080 | 23. 46 | -6.3 | -0.61 | | 1780 | 22.72 | -6.44 | -2.68 | 2090 | 24.14 | -6.17
-5.98 | -0.43 | | 1790 | 21.96 | -6.58 | -2.33 | 2100 | 25. 26 | | -0.28 | | 1800
1810 | 22. 03
23. 45 | -6.57
-6.3 | -2.23
-1.47 | 2110
2120 | 25. 48
26. 23 | -5. 94
-5. 81 | -0.19
-0.02 | | 1820 | 23. 49 | -6.22 | -1.47 | 2130 | 27.9 | -5. 54 | 0.34 | | 1830 | 23.54 | -6. 28 | -1.19 | 2140 | 28. 97 | -5. 38 | 0.34 | | 1840 | 23.82 | -6.23 | -0.83 | 2150 | 30.53 | -5.15 | 0.46 | | 1850 | 24.15 | -6.17 | -0.9 | 2160 | 32. 46 | -4. 89 | 1.02 | | 1860 | 24.7 | -6.07 | -0.83 | 2170 | 33.59 | -4.74 | 1.2 | | 1870 | 24. 24 | -6.15 | -1.24 | 2180 | 34. 5 | -4.62 | 1.43 | | 1880 | 24. 31 | -6.14 | -1.18 | 2190 | 34.14 | -4.67 | 1.48 | | 1890 | 24.8 | -6.06 | -1.3 | 2200 | 34. 4 | -4.63 | 1.53 | | 1900 | 24.38 | -6.13 | -1.12 | 2210 | 34.8 | -4.58 | 1.59 | | | 21.00 | 0.10 | 1.10 | 2010 | 01.0 | 1.00 | | | | | | | | | | | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | Freq
(MHz) | Effi
(%) | Effi
(dB) | Gain
(dBi) | | Freq | Effi | Effi | Gain | Freq | Effi | Effi | Gain | | Freq
(MHz)
2220 | Effi
(%)
34.04 | Effi
(dB)
-4.68 | Gain
(dBi)
1.52 | Freq
(MHz)
2530 | Effi
(%)
34.7 | Effi
(dB)
-4.6 | Gain
(dBi)
1.52 | | Freq
(MHz)
2220
2230 | Effi
(%)
34.04
34.58 | Effi
(dB)
-4.68
-4.61 | Gain
(dBi)
1.52
1.67 | Freq
(MHz)
2530
2540 | Effi
(%)
34.7
34.81 | Effi
(dB)
-4.6
-4.58 | Gain
(dBi)
1.52
1.68 | | Freq
(MHz)
2220
2230
2240 | Effi
(%)
34.04
34.58
34.81 | Effi
(dB)
-4.68
-4.61
-4.58
-4.52
-4.48 | Gain
(dBi)
1.52
1.67
1.68
1.86 | Freq
(MHz)
2530
2540
2550 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92 | Effi
(dB)
-4.6
-4.58
-4.65 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270 | Effi
(%)
34.04
34.58
34.81
35.32
35.67
35.84 | Effi
(dB)
-4.68
-4.61
-4.58
-4.52
-4.48
-4.46 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09 | Freq
(MHz)
2530
2540
2550
2560
2570
2580 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03 | Effi
(dB)
-4.6
-4.58
-4.65
-4.75
-4.7 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280 | Effi
(%)
34.04
34.58
34.81
35.32
35.67
35.84
33.44 | Effi
(dB)
-4.68
-4.61
-4.58
-4.52
-4.48
-4.76 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67 | Effi
(dB)
-4.6
-4.58
-4.65
-4.75
-4.7
-4.68
-4.6 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 76 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 66
-4. 62 | Gain
(dBi)
1.52
1.67
1.68
1.86
2.09
1.63
1.74 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6
-4. 54
-4. 61 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41
1.23
1.17 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56 | Gain
(dBi)
1. 52
1. 67
1. 68
1. 86
1. 95
2. 09
1. 63
1. 74
1. 66 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33.
92
34. 03
34. 67
35. 12
34. 58
33. 28 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01
35. 79 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74
1.66
1.7 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
33. 28 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 64
-4. 61
-4. 78
-4. 89 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41
1.23
1.17
0.88
0.8 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01
35. 79
36. 55 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74
1.66
1.7 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
33. 28
32. 42
32. 33 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41
1.23
1.17
0.88
0.8 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01
35. 79
36. 55
35. 91 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 60
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74
1.66
1.7
1.95
2.3 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
33. 28
32. 42
32. 33
31. 22 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41
1.23
1.17
0.88
0.8 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01
35. 79
36. 55
35. 91
35. 46 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 66
-4. 66
-4. 56
-4. 56
-4. 46
-4. 37
-4. 45
-4. 55 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74
1.66
1.7
1.95
2.3
2.38
2.45 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
33. 28
32. 42
32. 33
31. 22
28. 86 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.41
1.23
1.17
0.88
0.8
0.67
0.58 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360 | Bffi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
34. 22
34. 49
35. 01
35. 79
36. 55
35. 91
35. 46
35. 82 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 5
-4. 45 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.45 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
33. 28
32. 42
32. 33
31. 22
28. 86
26. 75 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6
-4. 54
-4. 61
-4. 78
-4. 89
-5. 06
-5. 4 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.8
0.67
0.58
0.25
-0.27 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01
35. 79
36. 55
35. 91
35. 46 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 66
-4. 66
-4. 56
-4. 56
-4. 46
-4. 37
-4. 45
-4. 55 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74
1.66
1.7
1.95
2.3
2.38
2.45 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660 | Effi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
33. 28
32. 42
32. 33
31. 22
28. 86 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 6
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.8
0.67
0.58
0.25
-0.27 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2300
2310
2320
2330
2340
2350
2360
2370 | Effi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 45
-4. 51 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.45 2.45 2.37 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 73
-5. 77 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.8
0.67
0.58
0.25
-0.27 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2390
2310
2320
2330
2340
2350
2360
2370
2380 | Effi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 33. 44 34. 22 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 51 | Gain
(dBi)
1. 52
1. 67
1. 68
1. 86
1. 95
2. 09
1. 63
1. 74
1. 66
1. 7
2. 3
2. 38
2. 45
2. 45
2. 45
2. 18 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi (%) 34. 7 34. 81 34. 25 33. 49 33. 92 34. 03 34. 67 35. 12 34. 58 32. 42 32. 33 31. 22 28. 86 26. 75 26. 5 24. 88 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2300
2310
2320
2330
2340
2350
2360
2370
2380 | Effi
(%)
34. 04
34. 58
34. 81
35. 32
35. 67
35. 84
33. 44
34. 22
34. 49
35. 01
35. 79
36. 55
35. 91
35. 46
35. 82
35. 41
35. 34
33. 67 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 52
-4. 73 | Gain
(dBi)
1. 52
1. 67
1. 68
1. 86
1. 95
2. 09
1. 63
1. 74
1. 66
1. 7
1. 95
2. 3
2. 38
2. 45
2. 37
2. 18
1. 92 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi (%) 34. 7 34. 81 34. 25 33. 49 33. 92 34. 03 34. 67 35. 12 34. 58 32. 42 32. 33 31. 22 28. 86 26. 75 26. 5 24. 88 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | |
Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400 | Effi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 33. 44 34. 22 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 | Effi
(dB)
-4. 68
-4. 61
-4. 52
-4. 48
-4. 46
-4. 76
-4. 60
-4. 62
-4. 50
-4. 45
-4. 45
-4. 51
-4. 52
-4. 73
-4. 73 | Gain
(dBi)
1.52
1.67
1.68
1.86
1.95
2.09
1.63
1.74
1.66
1.7
1.95
2.3
2.38
2.45
2.45
2.37
2.18 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi (%) 34. 7 34. 81 34. 25 33. 49 33. 92 34. 03 34. 67 35. 12 34. 58 32. 42 32. 33 31. 22 28. 86 26. 75 26. 5 24. 88 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2300
2310
2320
2330
2340
2350
2360
2370
2380
2400
2410
2420 | Bffi (%) 34.04 34.58 34.81 35.32 35.67 35.84 34.49 35.01 35.79 36.55 35.91 35.46 35.82 35.41 35.34 33.67 33.57 33.21 33.11 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 52
-4. 73
-4. 73
-4. 73
-4. 79
-4. 8 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi (%) 34. 7 34. 81 34. 25 33. 49 33. 92 34. 03 34. 67 35. 12 34. 58 32. 42 32. 33 31. 22 28. 86 26. 75 26. 5 24. 88 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2300
2310
2320
2330
2340
2350
2360
2370
2380
2400
2410
2420
2430
2430 | Effi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 33. 44 34. 22 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 67 33. 67 33. 57 33. 21 33. 11 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 52
-4. 73
-4. 73
-4. 73
-4. 74
-4. 79
-4. 89 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.24 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi (%) 34. 7 34. 81 34. 25 33. 49 33. 92 34. 03 34. 67 35. 12 34. 58 32. 42 32. 33 31. 22 28. 86 26. 75 26. 5 24. 88 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq (MHz) 2220 2230 2240 2250 2260 2270 2280 2390 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 2440 2450 | Effi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 33. 44 34. 22 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 67 33. 57 33. 21 33. 96 35. 06 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 46
-4. 76
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 45
-4. 73
-4. 73
-4. 73
-4. 74
-4. 79
-4. 79
-4. 8
-4. 69
-4. 55 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.24 1.07 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq (MHz) 2220 2230 2240 2250 2260 2270 2280 2300 2310 2320 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2420 2430 2440 2450 2460 | Effi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 33. 44 34. 22 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 67 33. 57 33. 21 33. 96 35. 06 35. 75 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 46
-4. 76
-4. 66
-4. 66
-4. 62
-4. 46
-4. 37
-4. 45
-4. 51
-4. 52
-4. 73
-4. 73
-4. 73
-4. 74
-4. 79
-4. 8
-4. 69
-4. 69
-4. 69
-4. 69
-4. 75
-4. 75
-4. 74 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.24 1.07 1.14 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2340 2410 2420 2430 2440 2450 2460 2470 | Bffi (%) 34.04 34.58 34.81 35.32 35.67 35.84 34.22 34.49 35.01 35.79 36.55 35.91 35.46 35.82 35.41 35.34 33.67 33.67 33.96 35.75 36.11 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 52
-4. 48
-4. 76
-4. 60
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 51
-4. 52
-4. 73
-4. 73
-4. 73
-4. 74
-4. 79
-4. 69
-4. 55
-4. 49
-4. 55
-4. 49 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.45 2.37 2.18 1.67 1.59 1.4 1.24 1.07 1.14 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq
(MHz)
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2350
2360
2370
2380
2400
2410
2420
2420
2430
2440
2450
2460
2470
2480 | Bffi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 34. 22 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 67 33. 67 33. 57 33. 21 33. 11 33. 96 35. 06 35. 75 36. 11 36. 42 | Effi
(dB)
-4. 68
-4. 61
-4. 52
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 52
-4. 73
-4. 73
-4. 73
-4. 74
-4. 79
-4. 69
-4. 69
-4. 37
-4. 73
-4. 73
-4. 74
-4. 79
-4. 69
-4. 55
-4. 40
-4. 37
-4. 37
-4. 37
-4. 40
-4. 37
-4. 37
-4. 40
-4. 51
-4. 52
-4. 73
-4. 73
-4. 74
-4. 79
-4. 69
-4. 55
-4. 40
-4. 55
-4. 40
-4. 37
-4. 40
-4. 37
-4. 40
-4. 51
-4. 52
-4. 73
-4. 74
-4. 79
-4. 79
-4. 79
-4. 79
-4. 79
-4. 79
-4. 79
-4. 79
-4. 70
-4. 55
-4. 69
-4. 55
-5. 56
-6. 56 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.24 1.07 1.14 1.45 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq (MHz) (MHz) (220 (2230 (2240 (2250 (2260 (2270 (2280 (2290 (2300 (2310 (2320 (2330 (2340 (2350 (2360 (2370 (2380 (2370 (2380 (2390 (2410 (2420 (2430 (2440 (2450 (2460 (2470 (2480 (2490 | Bffi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 67 33. 57 33. 21 33. 11 33. 96 35. 06 35. 75 36. 11 36. 42 36. 08 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 73
-4. 73
-4. 74
-4. 79
-4.
8
-4. 69
-4. 47
-4. 49
-4. 59
-4. 47
-4. 49
-4. 59
-4. 49
-4. 59
-4. 47
-4. 49
-4. 40
-4. 40 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.07 1.14 1.45 1.46 1.51 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq (MHz) 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 | Bffi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 57 33. 57 33. 57 35. 75 35. 75 35. 75 35. 75 35. 75 35. 75 35. 75 35. 75 35. 75 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 52
-4. 73
-4. 73
-4. 73
-4. 74
-4. 79
-4. 8
-4. 69
-4. 42
-4. 39
-4. 43
-4. 49 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.38 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.07 1.14 1.45 1.45 1.46 1.51 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | | Freq (MHz) (MHz) (220 (2230 (2240 (2250 (2260 (2270 (2280 (2290 (2300 (2310 (2320 (2330 (2340 (2350 (2360 (2370 (2380 (2370 (2380 (2390 (2410 (2420 (2430 (2440 (2450 (2460 (2470 (2480 (2490 | Bffi (%) 34. 04 34. 58 34. 81 35. 32 35. 67 35. 84 34. 49 35. 01 35. 79 36. 55 35. 91 35. 46 35. 82 35. 41 35. 34 33. 67 33. 67 33. 57 33. 21 33. 11 33. 96 35. 06 35. 75 36. 11 36. 42 36. 08 | Effi
(dB)
-4. 68
-4. 61
-4. 58
-4. 48
-4. 46
-4. 76
-4. 66
-4. 62
-4. 56
-4. 46
-4. 37
-4. 45
-4. 51
-4. 73
-4. 73
-4. 74
-4. 79
-4. 8
-4. 69
-4. 47
-4. 49
-4. 59
-4. 47
-4. 49
-4. 59
-4. 49
-4. 59
-4. 47
-4. 49
-4. 40
-4. 40 | Gain (dBi) 1.52 1.67 1.68 1.86 1.95 2.09 1.63 1.74 1.66 1.7 1.95 2.3 2.45 2.45 2.37 2.18 1.92 1.88 1.67 1.59 1.4 1.07 1.14 1.45 1.46 1.51 | Freq
(MHz)
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690 | Bffi
(%)
34. 7
34. 81
34. 25
33. 49
33. 92
34. 03
34. 67
35. 12
34. 58
32. 42
32. 33
31. 22
28. 86
26. 75
26. 5 | Effi
(dB)
-4. 6
-4. 58
-4. 65
-4. 75
-4. 7
-4. 68
-4. 54
-4. 61
-4. 78
-4. 89
-4. 9
-5. 06
-5. 4
-5. 73
-5. 77
-6. 04 | Gain
(dBi)
1.52
1.68
1.54
1.52
1.49
1.44
1.23
1.17
0.88
0.67
0.58
0.25
-0.27
-0.01 | ### www. Topant.com.cn #### Confidential requirement