

⁸⁴⁹ NW STATE ROAD 45 NEWBERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: <u>info@timcoengr.com</u> <u>HTTP://WWW.TIMCOENGR.COM</u>

FCC TYPE APPROVAL TEST REPORT

COMPOSITE DEVICE UNDER

PART 15.231

APPLICANT	Verichip Corporation				
ADDRESS	13551 Commerce Parkway Suite 100				
	Richmond, British Columbia V6V 2L1 Canada				
FCC ID	HE7PTR				
MODEL NUMBER	PTR				
PRODUCT DESCRIPTION	RFID Tag Reader, 433.92 MHz				
DATE SAMPLE RECEIVED	March 8, 2006				
DATE TESTED	March 17, 2006				
TESTED BY	Joe Scoglio				
APPROVED BY	Mario R. de Aranzeta C.E.T.				
TIMCO REPORT NO.	493EUT6TestReport				
TEST RESULTS	🛛 PASS 🗌 FAIL				
TOTAL PAGES	15				

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

GENERAL INFORMATION 3
EMC EQUIPMENT LIST 4
TEST PROCEDURE
POWER LINE CONDUCTED INTERFERENCE
RADIATION INTERFERENCE
CALCULATION OF DUTY CYCLE 10
OCCUPIED BANDWIDTH 14

GENERAL INFORMATION

EUT Specification

The test results relate only to the items tested.				
FCC ID	HE7PTR			
Model Number	PTR			
Serial Number	N/A			
Product Description	RFID Tag Reader, Composite Device			
Operating Frequency	433.92 MHz			
Max. output power	78 dBuV/m			
EUT Power	Primary Power	110VAC/60HZ		
	Secondary Power	N/A		
Test Item	Prototype			
	Pre-Production			
	Production			
Type of Equipment	Fixed			
	🛛 Mobile			
	Portable			

Test standards

FCC Part 15, Subparts B and C, IC RSS-213 & ICES-003, ANSI C63.17 - 1998 (or 2005 Draft where applicable) & ANSI C63.4 - 2003

Modification to the DUT

No modification was made to the DUT during testing.

Test exercise (e.g software description, test signal, etc.)

The EUT was set in continuous transmit mode of operation.

Test Facility

All tests are carried out at Timco Engineering Inc. at the address of 849 NW State Road 45 Newberry, FL 32669.

EMC EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date	
3-Meter OATS	TEI	N/A	N/A	N/A Listed 1/11/06		
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/27/04	3/26/07	
Analyzer Tan Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 12/7/05	12/7/07	
Analyzer Tan Tower RF Preselector	HP	85685A	3221A01400	CAL 12/7/05	12/7/07	
Analyzer Tan Tower Quasi- Peak Adapter	HP	85650A	3303A01690	CAL 12/8/05	12/8/07	
Analyzer Tan Tower Preamplifier	HP	8449B-H02	3008A00372	CAL 12/8/05	12/8/07	
Analyzer Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/13/05	4/13/07	
Analyzer Blue Tower RF Preselector	HP	85685A	2926A00983	CAL 9/5/05	9/5/07	
Analyzer Blue Tower Quasi- Peak Adapter	HP	85650A	2811A01279	CAL 4/13/05	4/13/07	
Analyzer Silver Tower Spectrum Analyzer	HP	8566B Opt 462	3552A22064 3638A08608	CAL 12/8/04	12/8/06	
Analyzer Silver Tower RF Preselector	HP	85685A	2620A00294	CAL 4/27/04	12/8/06	
Analyzer Silver Tower Quasi- Peak Adapter	HP	85650A	3303A01844	CAL 12/8/04	12/8/06	
Analyzer Open- Frame Tower Preamplifier	HP	8449B	3008A01075	CAL 8/8/05	8/8/07	
Antenna: Biconnical	Electro- Metrics	BIA-25	1171	CAL 4/29/05	4/29/07	
Antenna: Biconnical	Eaton	94455-1	1096	CAL 8/17/04	8/17/06	
Antenna: Biconnical	Eaton	94455-1	1057	CAL 12/12/05	12/12/07	
Antenna: Log- Periodic	Electro- Metrics	LPA-25	1122	CAL 8/26/04	8/26/06	
Active Loop Antenna	ETS-Lindgren	6502	00062529	CAL 3/30/06	3/30/08	

TEST PROCEDURE

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz. The ambient temperature of the UUT was 98.3°F with a humidity of 40%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 849 N.W. State Road 45, Newberry, FL 32669.

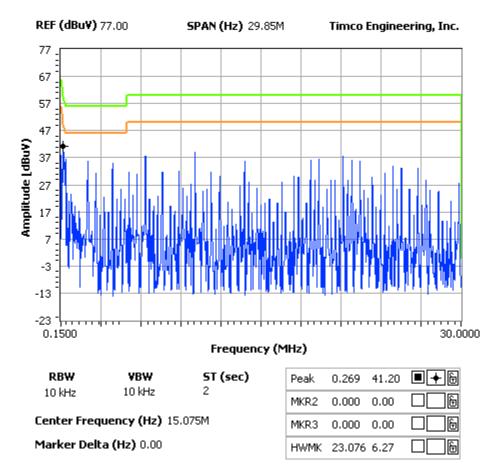
POWER LINE CONDUCTED INTERFERENCE

Rules part no.: 15.207(a)

Requirements:

Part 15.207 (a)				
Emission Frequency	FCC Conducted Limit (dBµV)			
(MHz)	Quasi-peak (QP)	Average (AV)		
0.15 - 0.5	66 to 56 *	56 to 46 *		
0.5 - 5	56	46		
5 - 30	60	50		
* Decreases with the logarithm of the frequency.				

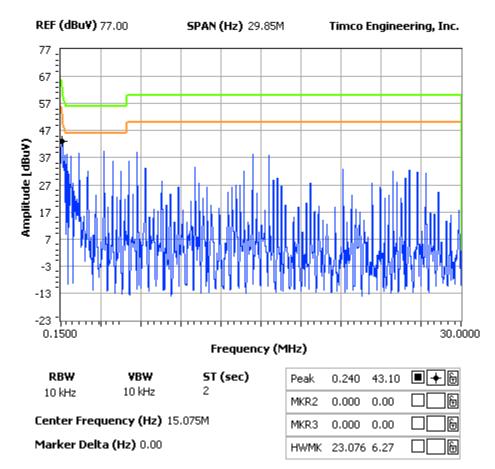
Test procedure: The procedure used was ANSI STANDARD C63.4-2003 using 50uH LISN. Both lines were observed with the UUT transmitting. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed. The spectrum was scanned from .15 to 30 MHz.


Test data: Please refer to the following plots

NOTES:

493cut6 ac line conducted line 1

FCC 15.107 Mask Class B



NOTES:

493cut6 ac line conducted line 2

FCC 15.107 Mask Class B

RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBµV)	Field Strength of Harmonics and Spurious Emissions (dBµV/m @ 3m)
40.66 to 40.70	67.04	47.04
70 to 130	61.94	41.94
130 to 174	61.94 to 71.48	41.94 to 51.48
174 to 260	71.48	51.48
260 to 470	71.48 to 81.94	51.48 to 61.94
470 and above	81.94	61.94

The limit for average field strength dbuv/m for the fundamental frequency = $80.82 \text{ dB}\mu\nu/m$. No fundamental is allowed in the restricted bands.

The limit for average field strength dbuv/m for the harmonics and spurious frequencies = $60.82 \text{ dB}\mu\text{v/m}$. Spurious in the restricted bands must be less than 54 dB μ v/m or 15.209.

TEST DATA:

Emission Frequency	*	Meter Reading	Ant. Pol	Coax Loss	Correction Factor	Duty Cycle Factor	Field Strength	Margin
MHz		dBuV	V/H	dB	dB	dB	dBuV/m	dB
433.90		66.4	V	3.24	16.40	8.04	77.99	2.83
1,307.70	**	21.2	Н	1.35	24.92	8.04	39.43	14.57
1,735.60		27.0	V	1.57	27.31	8.04	47.83	12.99
2,169.50		11.0	Η	1.77	28.40	8.04	33.12	27.70

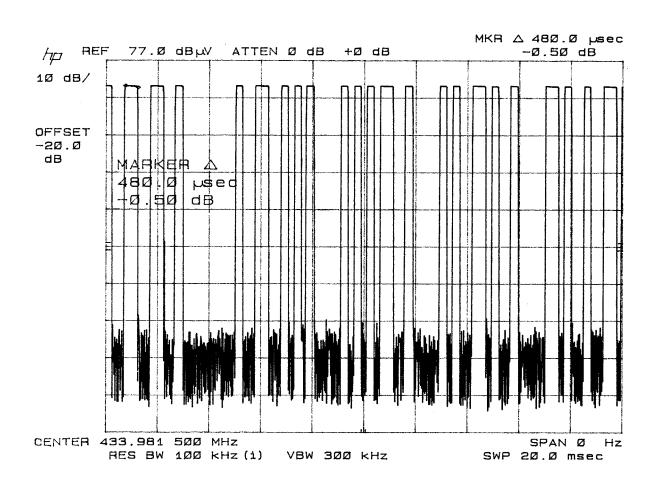
** -DENOTES RESTRICTED BANDS.

Where F is the frequency in MHz, the formulas for calculating the maximum
permitted fundamental field strengths are as follows:
1) for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636;
2) for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)-7083.3333.

Emissions attenuated more than 20 dB below the permissible value are not reported.

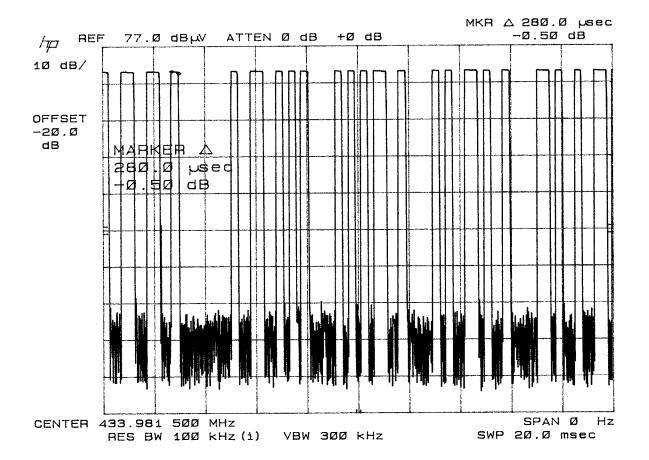
Sample Calculation of Limit @ 315 MHz:

41.6667 (433.9)-7083.3333 = 10,995.85 uV/m 20log(10,995.85) = 80.82 dBuV/m limit @ 433.9 MHz

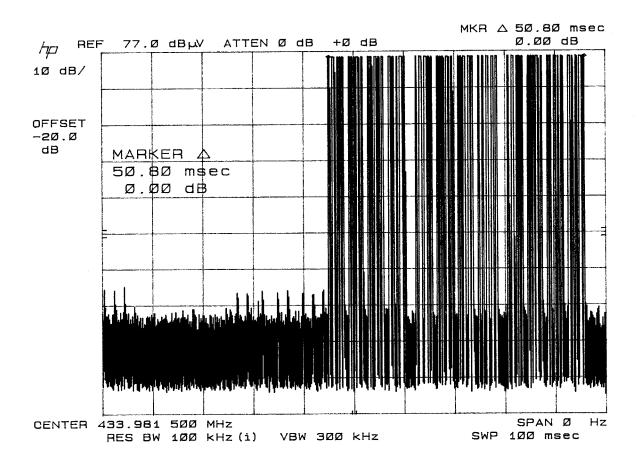


CALCULATION OF DUTY CYCLE

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100 milliseconds. This sweep determines the duration of the pulse train, which in this case is millisecond. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100 millisecond Plot, the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100 ms. If the pulse train is longer than 100 ms then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100 ms the total on time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there were 41 short pulses .280 mS long and 18 long pulses .480 ms long for a total of 20.12 ms ON TIME within a 50.8 ms pulse train. The average field strength is determined by multiplying the peak field strength by the percent on time.


dB = 20*log(ON TIME)/PERIOD dB = 20*log(20.12/50.8) dB = 20*log(0.396) dB = -8.044

DUTY CYCLE PLOT - LONG PULSES



DUTY CYCLE PLOT - SHORT PULSES

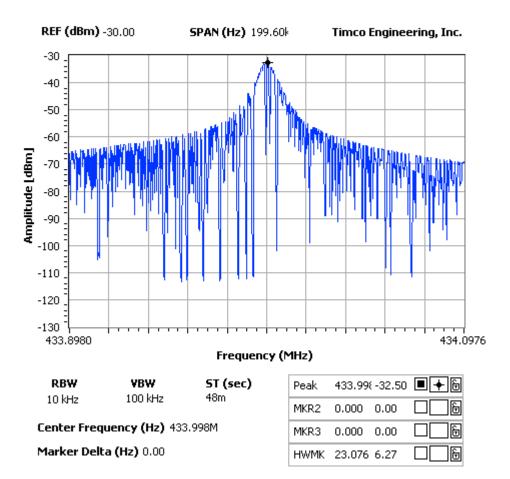
DUTY CYCLE PLOT

OCCUPIED BANDWIDTH

Rules Part No.: 15.231(C)

Requirements: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Method Of Measurement: A small sample of the transmitter output was fed into the spectrum analyzer and the following plot was generated. The vertical scale is set to 10 dB per division.


Test Data: The following plot represents the emissions taken for the device.

OCCUPIED BANDWIDTH PLOT

NOTES:

493but6 occupied bandwidth

