

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

ZigBee module MODEL NUMBER: CMBA1ZZABE

FCC ID: VPYCMABE IC: 772C-CMABE

REPORT NUMBER: 4788065238-1

ISSUE DATE: August 21, 2017

Prepared for

Murata Manufacturing Co., Ltd.
10-1, Higashikotari 1-chome, Nagaokakyo-shi Kyoto 617-8555 Japan

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

Revision History

DATE: August 21, 2017 IC:772C-CMABE

Rev.	Issue Date	Revisions	Revised By
	08/21/2017	Initial Issue	

DATE: August 21, 2017 IC:772C-CMABE

Summary of Test Results				
Clause	Test Items	FCC/IC Rules	Test Results	
1	6db DTS Bandwidth	FCC 15.247 (a) (2) IC RSS-247 Clause 5.1 (1)	Complied	
2	Peak Conducted Power	FCC 15.247 (b) (3) IC RSS-247 Clause 5.4 (4)	Complied	
3	Power Spectral Density	FCC 15.247 (3) IC RSS-247 Clause 5.2 (2)	Complied	
4	Conducted Band edge And Spurious emission	FCC 15.247 (d) IC RSS-247 Clause 5.5	Complied	
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205 IC RSS-247 Clause 5.5 IC RSS-GEN Clause 8.9	Complied	
6	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Complied	
7	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	Complied	

DATE: August 21, 2017 IC:772C-CMABE

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	СА	LIBRATION AND UNCERTAINTY	7
4.	.1.	MEASURING INSTRUMENT CALIBRATION	7
4.	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
5.	.1.	DESCRIPTION OF EUT	8
5.	.2.	MAXIMUM OUTPUT POWER	8
5.	.3.	CHANNEL LIST	8
5.	.4.	TEST CHANNEL CONFIGURATION	8
5.	.5.	THE WORSE CASE POWER SETTING PARAMETER	8
5.	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.	.7.	TEST ENVIRONMENT	9
5.	.8.	DESCRIPTION OF TEST SETUP	10
5.	.9.	MEASURING INSTRUMENT AND SOFTWARE USED	11
6.	AN	TENNA PORT TEST RESULTS	12
6.	.1.	ON TIME AND DUTY CYCLE	12
6.	.2.	6 dB BANDWIDTH & 99% BANDWIDTH	13
6.	.3.	PEAK CONDUCTED OUTPUT POWER	18
6.	.4.	POWER SPECTRAL DENSITY	21
6.	.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	24
7.	RA	DIATED TEST RESULTS	28
7.	.1.	LIMITS AND PROCEDURE	28
7.	.2.	RESTRICTED BANDEDGE	32
7.	.3.	SPURIOUS EMISSIONS (1GHz~18GHz)	36
7.	.4.	SPURIOUS EMISSIONS 18G ~ 26GHz	42
7.	.5.	SPURIOUS EMISSIONS 30M ~ 1GHz	44
7.	.6.	SPURIOUS EMISSIONS BELOW 30M	46
8.	AC	POWER LINE CONDUCTED EMISSIONS	50
9.	ΑN	TENNA REQUIREMENTS	53

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Murata Manufacturing Co., Ltd.

Address: 10-1, Higashikotari 1-chome, Nagaokakyo-shi Kyoto 617-8555

DATE: August 21, 2017

IC:772C-CMABE

Japan

Manufacturer Information

Company Name: Murata Manufacturing Co., Ltd.

Address: 10-1, Higashikotari 1-chome, Nagaokakyo-shi Kyoto 617-8555

Japan

EUT Description

Product Name ZigBee module

Brand Name N/A

Model Name CMBA1ZZABE

Serial Number N/A Model Difference N/A

Date Tested July 20, 2017 ~ August 15, 2017

APPLICABLE STANDARDS

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
INDUSTRY CANADA RSS-247 Issue 2	PASS
INDUSTRY CANADA RSS-GEN Issue 4	PASS

Prepared By:

Checked By:

Miller Ma

Engineer Project Associate

Miller Ma

Shawn Wen

Laboratory Leader

Approved By:

Stephen Guo

Laboratory Manager

2. TEST METHODOLOGY

DATE: August 21, 2017 IC:772C-CMABE

The tests documented in this report were performed in accordance with 558074 D01 DTS Meas Guidance v04, 414788 D01 Radiated Test Site v01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. The Certificate Registration Number is 4102.01. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The Designation Number is CN1187. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.

Note: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.90dB
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)
emission)	5.23dB (18GHz-26Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	ZigBee module		
Model Name	CMBA1ZZABE		
5	Operation Frequency	2405 MHz ~ 2480MHz	
Product Description	Modulation Technology	Data Rate	
Boochpaon	DSSS	250Kbps	
Rate Power	DC 3.3V		
Hardware Version	1.0		
Software Version	1.0		

5.2. MAXIMUM OUTPUT POWER

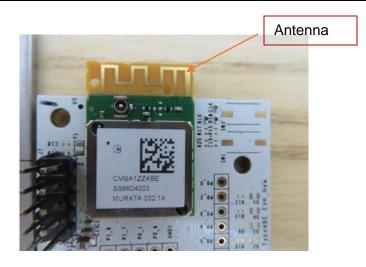
Frequency Range (MHz)	Antenna	Mode	Frequency (MHz)	Channel Number	Max EIRP (dBm)
2405-2480	1	ZigBee	2405-2480	0-15[16]	1.77

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2405	4	2425	8	2445	12	2465
1	2410	5	2430	9	2450	13	2470
2	2415	6	2435	10	2455	14	2475
3	2420	7	2440	11	2460	15	2480

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
ZIGBEE	CH 0, CH 7, CH 15	2405MHz, 2440MHz, 2480MHz


5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software Version N/A					
Modulation	Transmit	SmartRF Studio 7			
Туре	Antenna Number	CH 0	CH 7	CH 15	
GFSK	1	4.5dBm	4.5dBm	2.5dBm	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2405-2480	Internal Antenna	-1.6

Test Mode	Transmit and Receive Mode	Description
ZigBee	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	55 ~ 65%			
Atmospheric Pressure:	1025Pa			
Temperature	TN 23 ~ 28°C			
	VL	N/A		
Voltage :	VN	DC 3.3V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.8. DESCRIPTION OF TEST SETUP

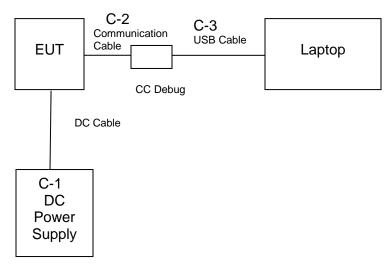
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	FCC ID
1	Laptop	ThinkPad	T410	N/A
2	CC Debug	N/A	N/A	N/A
3	DC Power Supply	ARRAY	3662A	N/A

I/O PORT

Item	Type of cable	Shielded Type	Ferrite Core	Length
C-1	DC Power	No	No	1m
C-2	Communication Cable	No	No	1m
C-3	USB	Yes	No	1m

Note: The EUT only use for upgrade.


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in an engineer mode with a softwore through a table PC.

SETUP DIAGRAM FOR TESTS

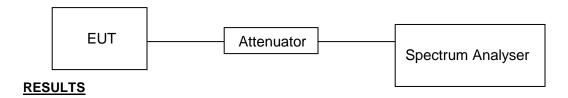
Page 10 of 53

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

	5.9. MEASURING INSTRUMENT AND SOFTWARE USED							
		Cond	lucted	Emissi	ons			
	Instrument							
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Last Cal.	Next Cal.
	EMI Test Receiver	R&S	ES	R3	1019	61	Dec.20, 2016	Dec.19, 2017
V	Two-Line V- Network	R&S	EΝ\	/216	1019	83	Dec.20, 2016	Dec.19, 2017
V	Artificial Mains Networks	Schwarzbeck	NSLK	8126	81264	465	Feb.10, 2017	Feb.10, 2018
			Softw	/are				
Used	Des	cription		Manu	ufacture	er	Name	Version
	Test Software for C	Conducted distu	rbance	F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iated E	missio	ns			
			Instru	ment				
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N90	38A	MY56 036		Feb. 24, 2017	Feb. 24, 2018
V	Hybrid Log Periodic Antenna	TDK	HLP-	3003C	1309		Jan.09, 2016	Jan.09, 2019
V	Preamplifier	HP	844	17D	2944A 99		Feb. 13, 2017	Feb. 13, 2018
V	EMI Measurement Receiver	R&S	ES	R26	1013	77	Dec. 20, 2016	Dec. 20, 2017
	Horn Antenna	TDK	HRN	-0118	1309	39	Jan. 09, 2016	Jan. 09, 2019
V	High Gain Horn Antenna	Schwarzbeck	BBHA	-9170	69 ⁻		Jan.06, 2016	Jan.06, 2019
V	Preamplifier	TDK	PA-02	2-0118	TRS-3	66	Jan. 14, 2017	Jan. 14, 2018
V	Preamplifier	TDK	PA-	02-2	TRS-3		Dec. 20, 2016	Dec. 20, 2017
$\overline{\checkmark}$	Loop antenna	Schwarzbeck	15	19B	0000	80	Mar. 26, 2016	Mar. 25, 2019
			Softw	/are				
Used	Descr	iption	М	anufact	urer		Name	Version
	Test Software for R	adiated disturba	ed disturbance Farac		t		EZ-EMC	Ver. UL-3A1
	Other instruments							
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N9030A		MY55 512		Dec. 20, 2016	Dec. 20, 2017
	Power Meter	Keysight	N9031A		MY55 024	4	Feb. 13, 2017	Feb. 13, 2018
	Power Sensor	Keysight	N93	23A	MY55 013		Feb. 13, 2017	Feb. 13, 2018
V	DC Supply	Keysight	E36	103A	MY55 020		Feb. 10, 2017	Feb. 10, 2018

6. ANTENNA PORT TEST RESULTS

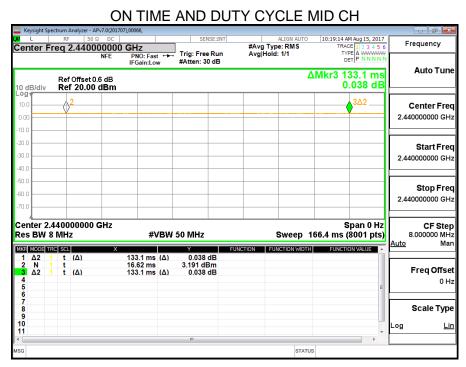
6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method


TEST SETUP

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/B Minimum VBW (KHz)
ZigBee	133.1	133.1	100%	100	0	0.01

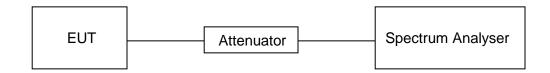
Note: Duty Cycle Correction Factor=10log(1/x).

Where: x is Duty Cycle(Linear)

6.2. 6 dB BANDWIDTH & 99% BANDWIDTH

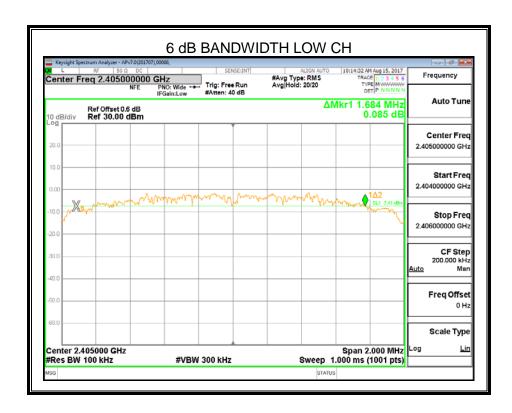
LIMITS

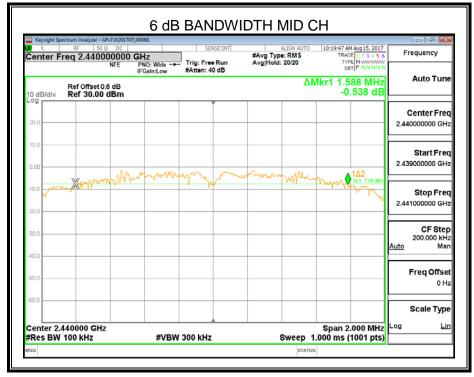
FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2					
Section	Test Item	Frequency Range (MHz)			
FCC 15.247(a)(2) RSS-247 5.2 (a)	6dB Bandwidth	>= 500KHz	2400-2483.5		
RSS-Gen Clause 6.6	99% Bandwidth	For reporting purposes only.	2400-2483.5		


TEST PROCEDURE

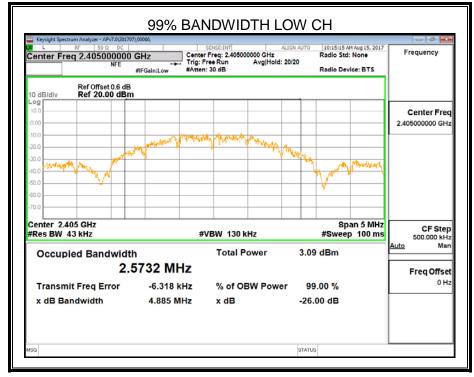
Connect the UUT to the spectrum analyser and use the following settings:

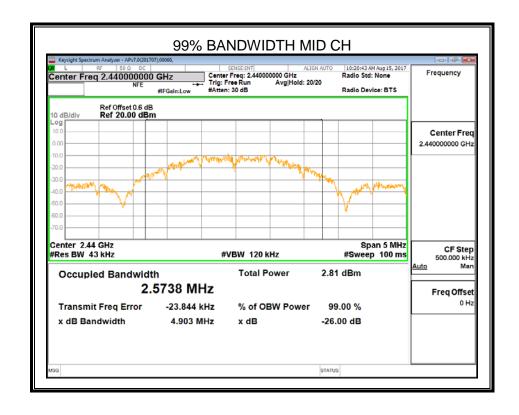
Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 6 dB Bandwidth :100K For 99% Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : ≥3 x RBW For 99% Bandwidth : approximately 3xRBW
Trace	Max hold
Sweep	Auto couple

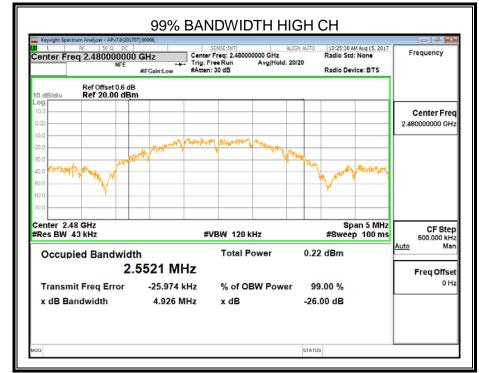

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.


TEST SETUP




RESULTS


Channel	Frequency (MHz)	6dB bandwidth (MHz)	99% Bandwidth (MHz)	Result
Low	2405	1.684	2.573	Pass
Middle	2440	1.588	2.574	Pass
High	2480	1.636	2.552	Pass

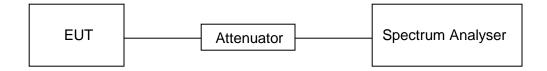


DATE: August 21, 2017 IC:772C-CMABE

6.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
FCC 15.247(b)(3) IC RSS-247 5.4 (4)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

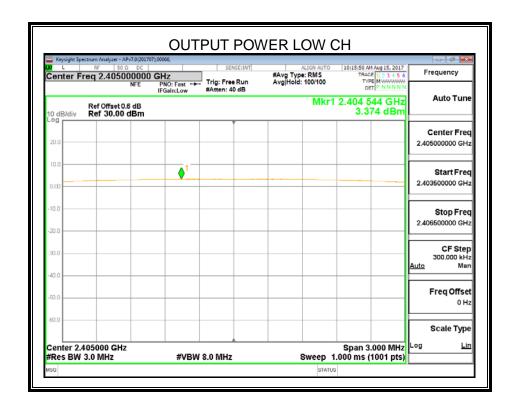

TEST PROCEDURE

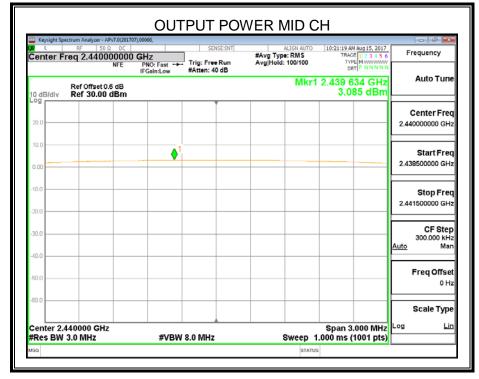
Connect the UUT to the spectrum analyser and use the following settings:

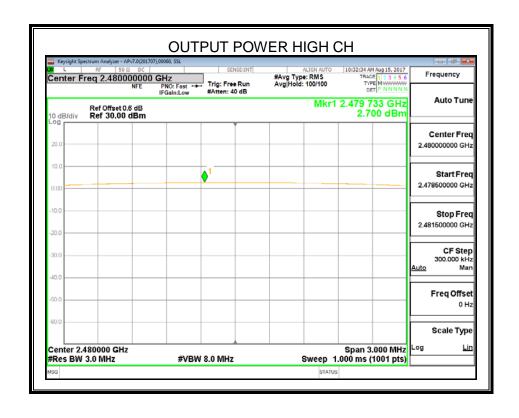
Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
RBW	≥DTS bandwidth(e.g. 1 MHz for BLE)		
VBW	≥3 × RBW		
Span	3 x RBW		
Trace	Max hold		
Sweep time	Auto couple.		

Allow trace to fully stabilize and use peak marker function to determine the peak amplitude level.

TEST SETUP




RESULTS


Test Channel	Frequency	Maximum Conducted Output Power(PK)	LIMIT
	(MHz)	(dBm)	dBm
CH 0	2405	3.37	30
CH 7	2440	3.09	30
CH 15	2480	2.70	30

DATE: August 21, 2017

IC:772C-CMABE

6.4. POWER SPECTRAL DENSITY

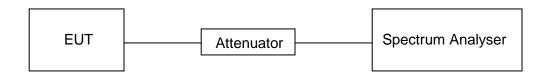
LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
FCC §15.247 (e) IC RSS-247 5.2 (2)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

DATE: August 21, 2017

IC:772C-CMABE

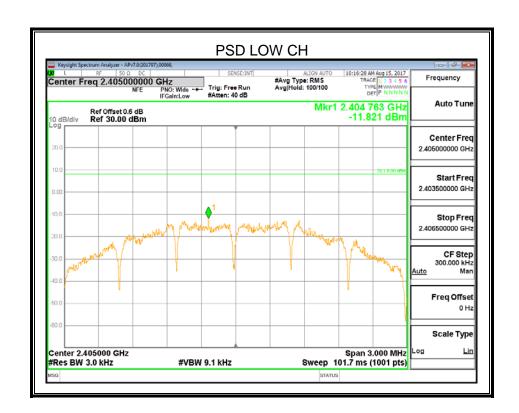
TEST PROCEDURE

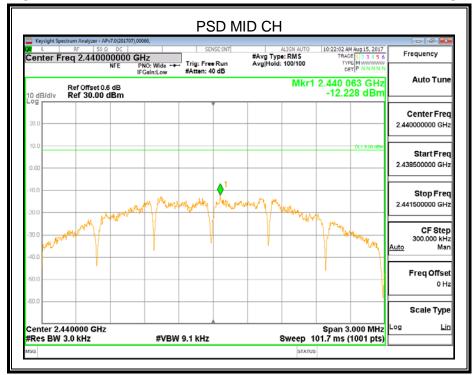

Connect the UUT to the spectrum analyser and use the following settings:

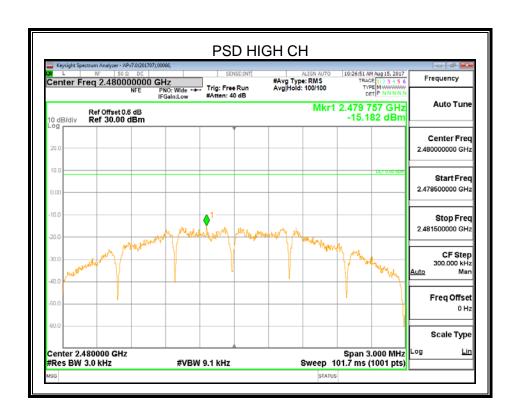
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW 100 ≤ kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


TEST SETUP




RESULTS

DATE: August 21, 2017 IC:772C-CMABE

Frequency	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
2405 MHz	-11.82	8	PASS
2440 MHz	-12.23	8	PASS
2480 MHz	-15.18	8	PASS

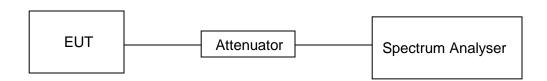
6.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

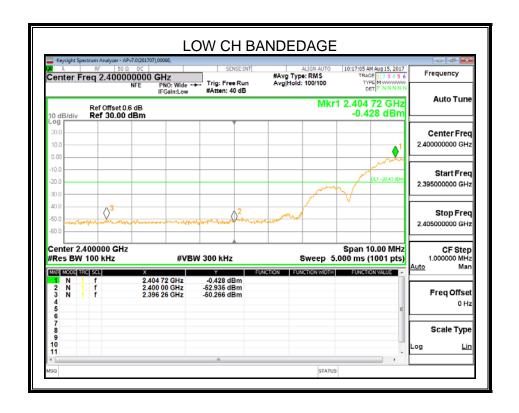
FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 2		
Section Test Item Limit		
FCC §15.247 (d) IC RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

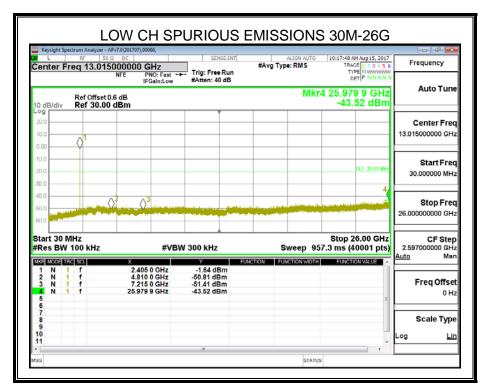
TEST PROCEDURE

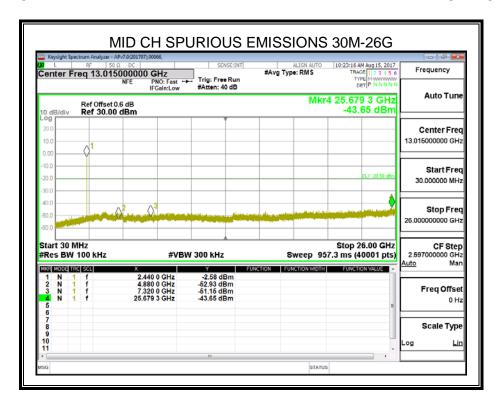
Connect the UUT to the spectrum analyser and use the following settings:

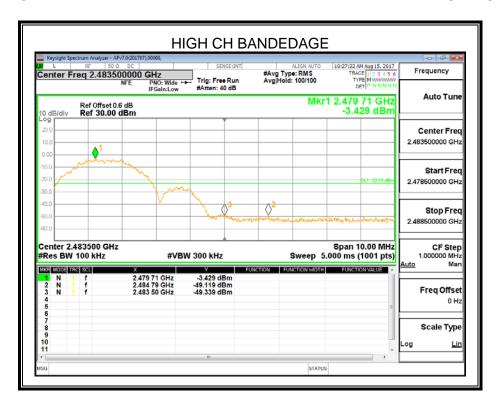

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

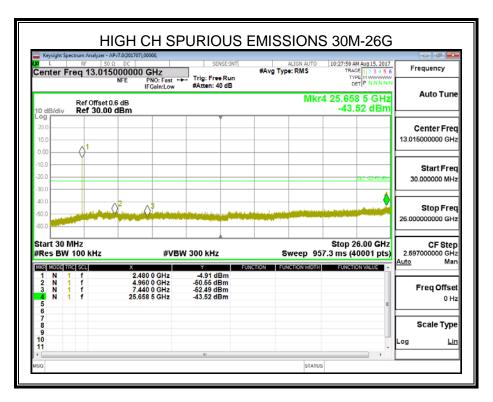
Use the peak marker function to determine the maximum PSD level.


Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum amplitude level.


TEST SETUP




RESULTS

7. RADIATED TEST RESULTS

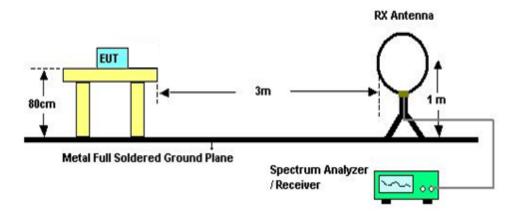
7.1. LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209

Please refer to IC RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)


Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

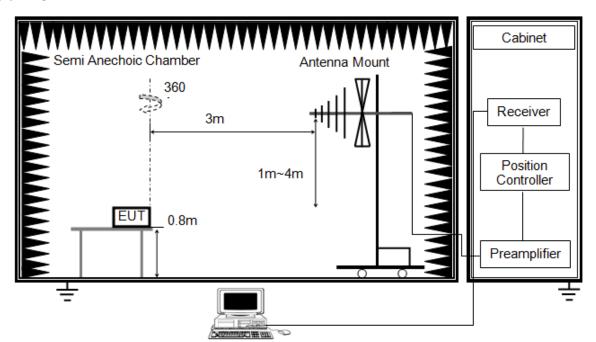
Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)	
Frequency (Miriz)	Peak	Average
Above 1000	74	54

TEST SETUP AND PROCEDURE

Below 30MHz

DATE: August 21, 2017


IC:772C-CMABE

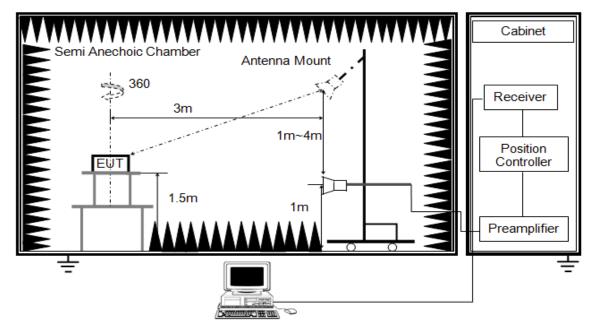
The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G

DATE: August 21, 2017

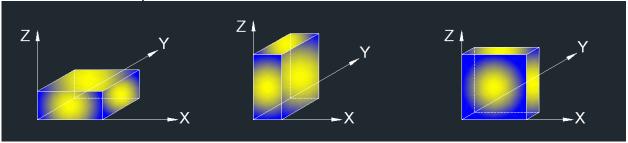

IC:772C-CMABE

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

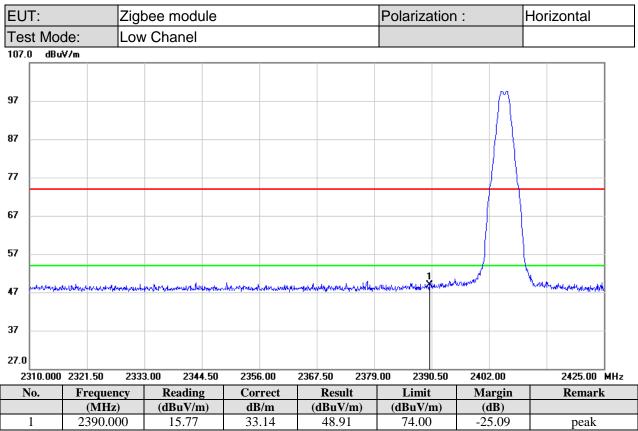
- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

DATE: August 21, 2017 IC:772C-CMABE


The setting of the spectrum analyser

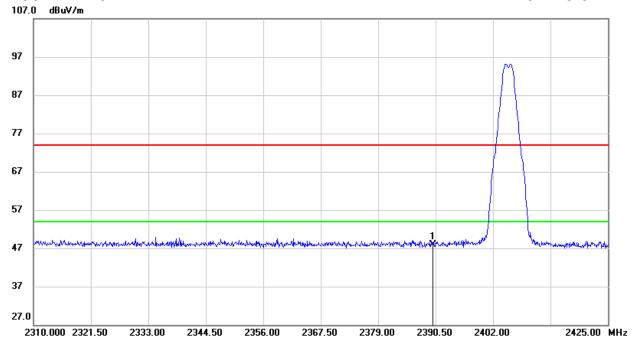
RBW	1M
VBW	3M
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For average power measurement, set the VBW to 10 Hz, while maintaining all of the other instrument settings, if the duty cycle of the EUT is less than 98%, the Duty Cycle Correction Factor shall be added to the measured emission levels. For the Duty Cycle and Correction Factor please refer to clause 6.1.ON TIME AND DUTY CYCLE.
- 8. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)


DATE: August 21, 2017 IC:772C-CMABE

X axis, Y axis, Z axis positions:

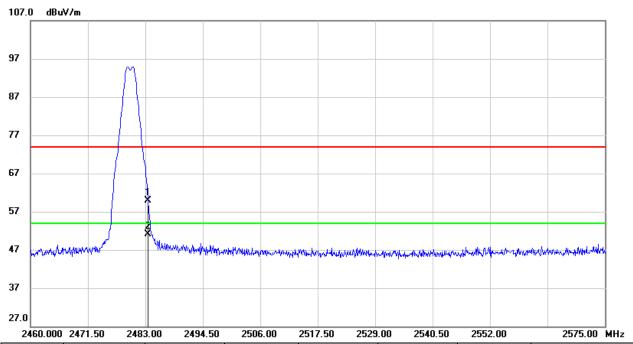
7.2. RESTRICTED BANDEDGE


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

EUT:	Zigbee module	Polarization:	Vertical
Test Mode:	Low Chanel		

DATE: August 21, 2017 IC:772C-CMABE



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	14.58	33.24	47.82	74.00	-26.18	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

DATE: August 21, 2017 IC:772C-CMABE

EUT:	Zigbee module	Polarization:	Horizontal
Test Mode:	High Chanel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	27.04	32.78	59.82	74.00	-14.18	peak
2	2483.500	18.30	32.78	51.08	54.00	-2.92	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

27.0

2460.000 2471.50

DATE: August 21, 2017 IC:772C-CMABE

2575.00 MHz

EUT:	Zigbee module	Polarization:	Vertical	
Test Mode:	High Chanel			
107.0 dBuV/m				
7				
7				
7				
7				
7				
'	*			
7 mountainment	and the second and th	ha Jarana aga a sa kanana aga	da waran kanan da kanan ka	
7				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.84	32.88	55.72	74.00	-18.28	peak
2	2483.500	14.16	32.88	47.04	54.00	-6.96	AVG

2517.50

2529.00

2540.50

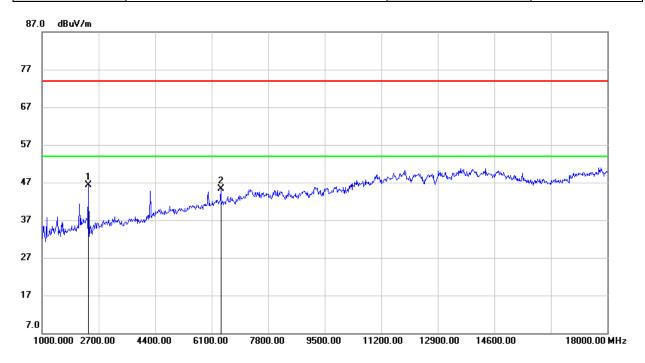
2552.00

Note: 1. Measurement = Reading Level + Correct Factor.

2494.50

2483.00

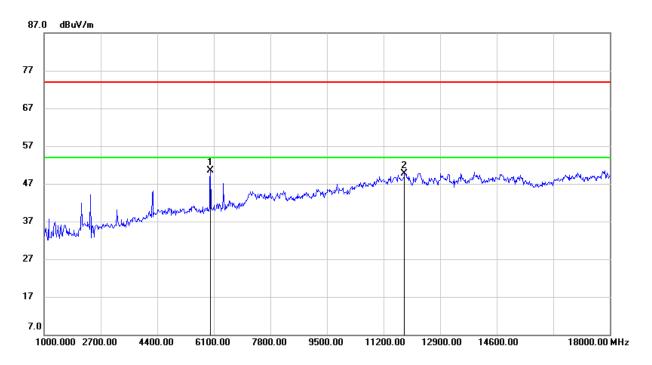
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.


2506.00

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

7.3. SPURIOUS EMISSIONS (1GHz~18GHz)

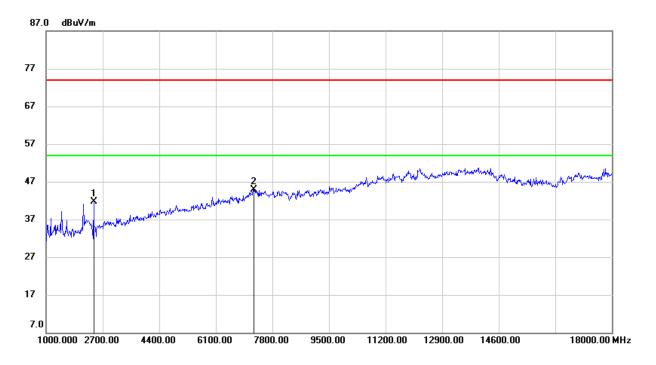
HARMONICS AND SPURIOUS EMISSIONS


EUT:	Zigbee module	Polarization:	Horizontal
Test Mode:	Low Chanel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2394.000	55.27	-8.94	46.33	74.00	-27.67	peak
2	6372.000	42.37	3.03	45.40	74.00	-28.60	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. For average power measurement, set the VBW to Minimum VBW=10 Hz (For more information, please refer to clause 7.1.ON TIME AND DUTY CYCLE).

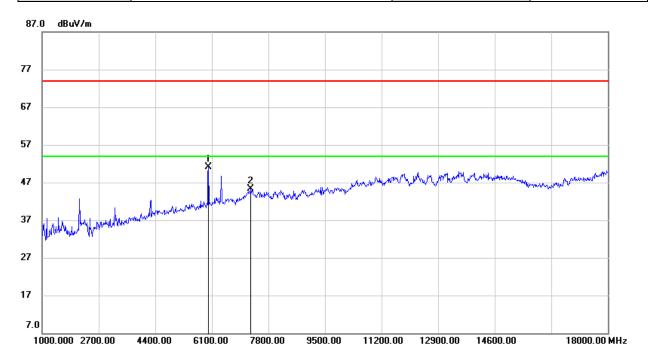
EUT:	Zigbee module	Polarization :	Vertical
Test Mode:	Low Chanel		



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5998.000	48.50	2.09	50.59	74.00	-23.41	peak
2	11829.000	34.70	15.00	49.70	74.00	-24.30	peak

Note: 1. Measurement = Reading Level + Correct Factor.

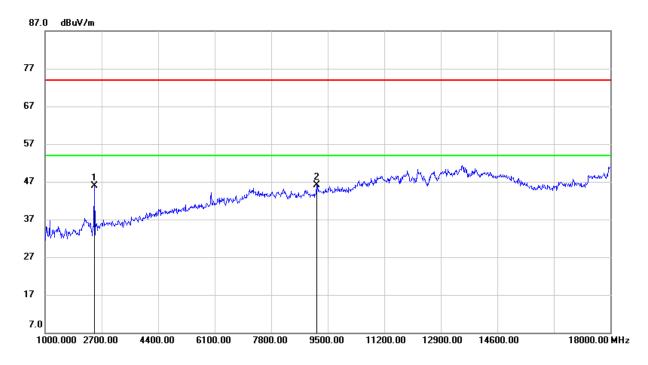
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. For average power measurement, set the VBW to Minimum VBW=10 Hz (For more information, please refer to clause 7.1.ON TIME AND DUTY CYCLE).


EUT:	Zigbee module	Polarization :	Horizontal
Test Mode:	Middle Chanel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2428.000	50.74	-9.11	41.63	74.00	-32.37	peak
2	7239.000	39.03	5.91	44.94	74.00	-29.06	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. For average power measurement, set the VBW to Minimum VBW=10 Hz (For more information, please refer to clause 7.1.ON TIME AND DUTY CYCLE).

EUT:	Zigbee module	Polarization :	Vertical
Test Mode:	Middle Chanel		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5998.000	48.97	2.09	51.06	74.00	-22.94	peak
2	7273.000	39.39	5.91	45.30	74.00	-28.70	peak

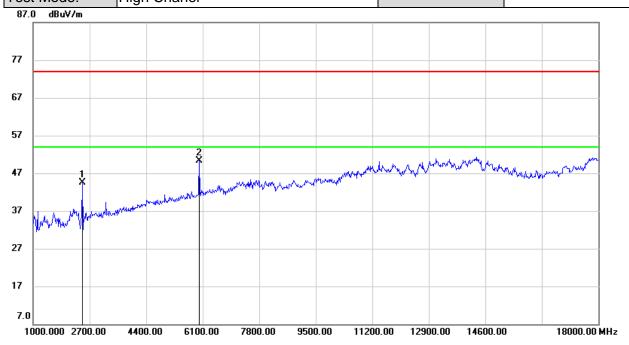
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. For average power measurement, set the VBW to Minimum VBW=10 Hz (For more information, please refer to clause 7.1.ON TIME AND DUTY CYCLE).

EUT:	Zigbee module	Polarization:	Horizontal
Test Mode:	High Chanel		

REPORT NO: 4788065238-1 FCC ID: VPYCMABE

DATE: August 21, 2017 IC:772C-CMABE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.000	55.17	-9.21	45.96	74.00	-28.04	peak
2	9160.000	37.94	8.13	46.07	74.00	-27.93	peak

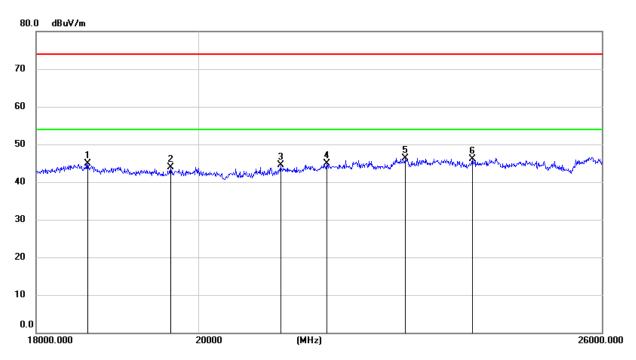

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO: 4788065238-1 FCC ID: VPYCMABE

EUT: Zigbee module Polarization : Vertical
Test Mode: High Chanel

DATE: August 21, 2017

IC:772C-CMABE


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.000	53.70	-9.11	44.59	74.00	-29.41	peak
2	5998.000	48.26	2.09	50.35	74.00	-23.65	peak

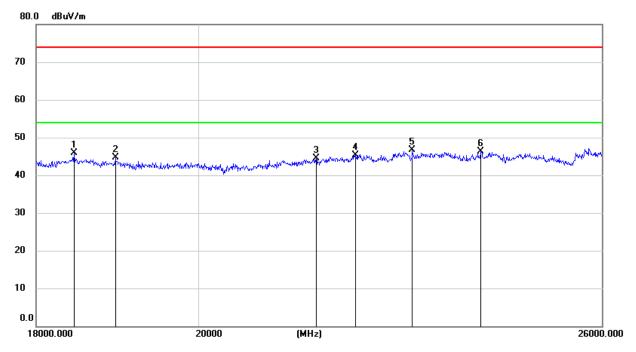
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

7.4. SPURIOUS EMISSIONS 18G ~ 26GHz

SPURIOUS EMISSIONS 18GHz TO 26GHz (WORST-CASE CONFIGURATION)

EUT:	Zigbee module	Polarization :	Horizontal
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	18612.524	50.24	-5.34	44.90	74.00	-29.10	peak
2	19646.324	49.36	-5.38	43.98	74.00	-30.02	peak
3	21099.068	49.32	-4.83	44.49	74.00	-29.51	peak
4	21744.966	49.33	-4.34	44.99	74.00	-29.01	peak
5	22885.329	49.92	-3.55	46.37	74.00	-27.63	peak
6	23900.218	49.00	-2.93	46.07	74.00	-27.93	peak


Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

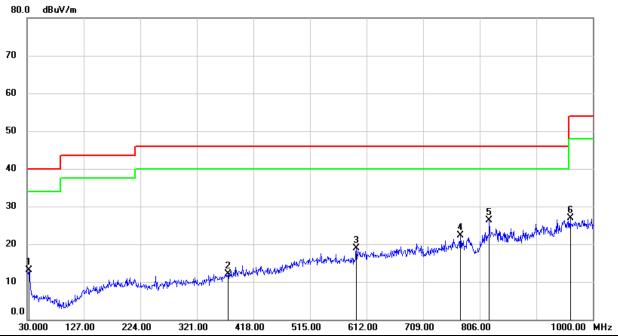
REPORT NO: 4788065238-1 FCC ID: VPYCMABE

DATE: August 21, 2017 IC:772C-CMABE

EUT:	Zigbee module	Polarization :	Vertical
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	18448.984	51.27	-5.32	45.95	74.00	-28.05	peak
2	18950.934	49.99	-5.26	44.73	74.00	-29.27	peak
3	21593.569	49.15	-4.55	44.60	74.00	-29.40	peak
4	22156.619	49.63	-4.32	45.31	74.00	-28.69	peak
5	22986.538	50.12	-3.45	46.67	74.00	-27.33	peak
6	24032.412	49.12	-2.75	46.37	74.00	-27.63	peak

Note: 1. Measurement = Reading Level + Correct Factor.

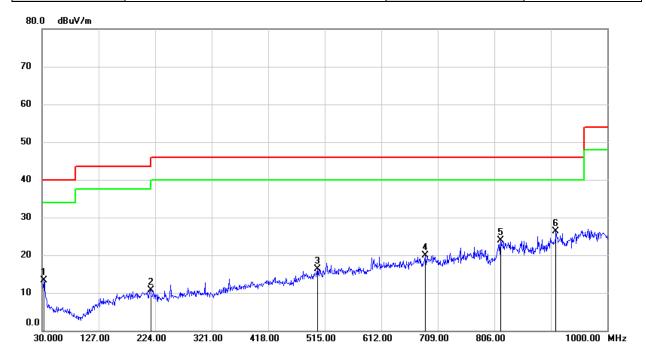

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Note 1: All the channels had been tested, but only the worst data recorded in the report.

7.5. SPURIOUS EMISSIONS 30M ~ 1GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

EUT:	Zigbee module	Polarization:	Horizontal
Test Mode:	Middle Channel		



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	32.9100	27.82	-14.68	13.14	40.00	-26.86	QP
2	374.3500	22.50	-10.34	12.16	46.00	-33.84	QP
3	594.5400	25.67	-6.69	18.98	46.00	-27.02	QP
4	773.0200	-1.33	23.59	22.26	46.00	-23.74	QP
5	822.4900	1.29	24.95	26.24	46.00	-19.76	QP
6	961.2000	0.55	26.29	26.84	54.00	-27.16	QP

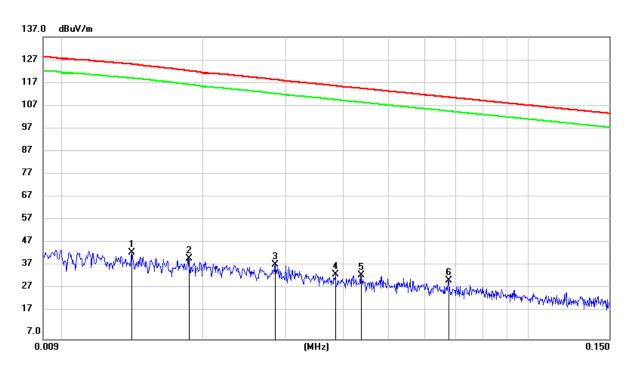
Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

EUT:	Zigbee module	Polarization:	Vertical
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	32.9100	27.93	-14.68	13.25	40.00	-26.75	QP
2	216.2400	23.60	-12.91	10.69	46.00	-35.31	QP
3	502.3900	24.07	-7.80	16.27	46.00	-29.73	QP
4	687.6599	-2.33	22.31	19.98	46.00	-26.02	QP
5	816.6700	-0.67	24.50	23.83	46.00	-22.17	QP
6	911.7300	0.77	25.46	26.23	46.00	-19.77	QP

Note: 1. Measurement = Reading Level + Correct Factor.

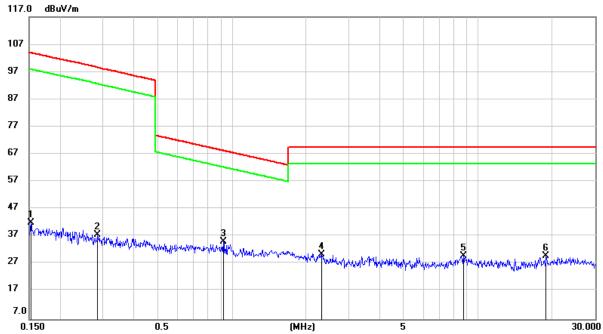

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note 1: All the channels had been tested, but only the worst data recorded in the report.

7.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS Below 30MHz (WORST-CASE CONFIGURATION)

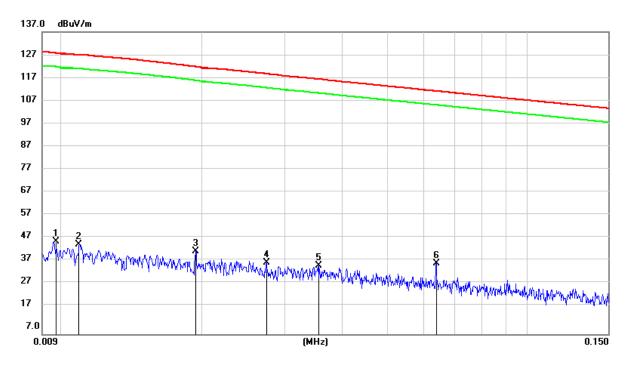
EUT:	Zigbee module	Polarization:	Horizontal
Test Mode:	Middle Channel		



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0140	24.06	20.25	44.31	125.19	-80.88	QP
2	0.0185	21.48	20.29	41.77	122.48	-80.71	QP
3	0.0285	18.65	20.31	38.96	118.59	-79.63	QP
4	0.0384	14.34	20.31	34.65	115.96	-81.31	QP
5	0.0435	14.22	20.31	34.53	114.88	-80.35	QP
6	0.0675	11.80	20.31	32.11	111.03	-78.92	QP

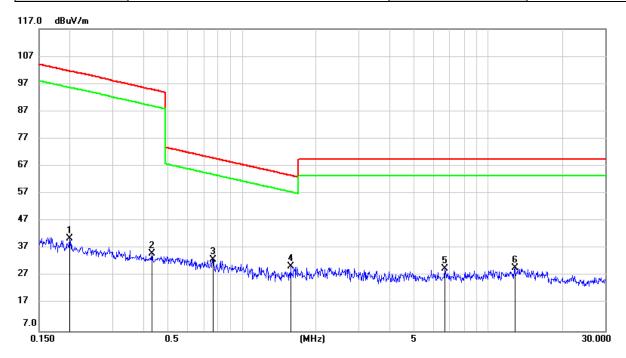
Note: Measurement = Reading Level + Correct Factor.

REPORT NO: 4788065238-1 FCC ID: VPYCMABE DATE: August 21, 2017 IC:772C-CMABE


EUT:	Zigbee module	Polarization :	Horizontal
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1524	21.66	20.42	42.08	103.95	-61.87	QP
2	0.2847	17.23	20.32	37.55	98.60	-61.05	QP
3	0.9233	14.82	20.37	35.19	68.31	-33.12	QP
4	2.3212	9.72	20.78	30.50	69.54	-39.04	QP
5	8.7293	9.02	20.99	30.01	69.54	-39.53	QP
6	18.9205	8.85	21.02	29.87	69.54	-39.67	QP

Note: Measurement = Reading Level + Correct Factor.


EUT:	Zigbee module	Polarization :	Vertical
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0095	26.62	20.25	46.87	127.98	-81.11	QP
2	0.0108	25.45	20.22	45.67	127.12	-81.45	QP
3	0.0193	22.17	20.30	42.47	122.00	-79.53	QP
4	0.0274	17.31	20.31	37.62	118.98	-81.36	QP
5	0.0355	16.18	20.31	36.49	116.69	-80.20	QP
6	0.0640	17.09	20.31	37.40	111.50	-74.10	QP

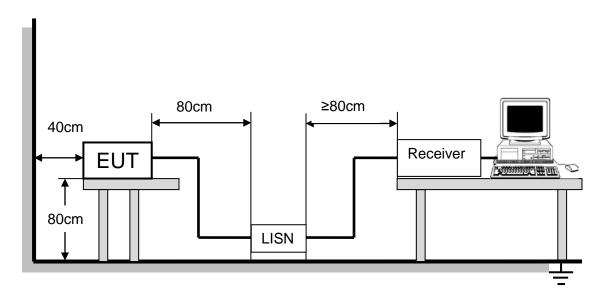
Note: Measurement = Reading Level + Correct Factor.

EUT:	Zigbee module	Polarization :	Vertical
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1995	20.35	20.37	40.72	101.60	-60.88	QP
2	0.4304	14.93	20.27	35.20	94.97	-59.77	QP
3	0.7630	12.66	20.36	33.02	69.97	-36.95	QP
4	1.5766	9.99	20.58	30.57	63.65	-33.08	QP
5	6.6623	8.71	20.90	29.61	69.54	-39.93	QP
6	12.8513	8.88	20.99	29.87	69.54	-39.67	QP

Note: Measurement = Reading Level + Correct Factor.

Note 1: All the channels had been tested, but only the worst data recorded in the report.


8. AC POWER LINE CONDUCTED EMISSIONS

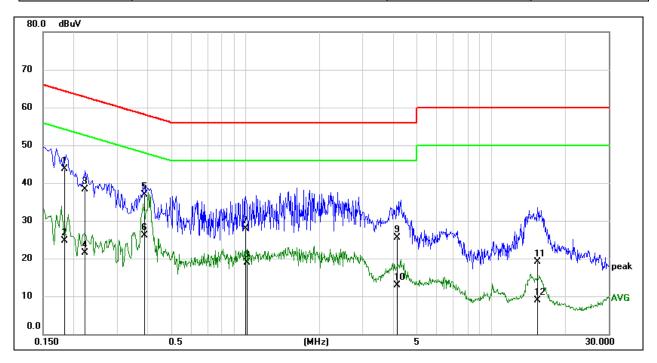
LIMITS

Please refer to FCC §15.207 (a) and RSS-Gen Clause 8.8

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCT (IVITIZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

TEST SETUP AND PROCEDURE

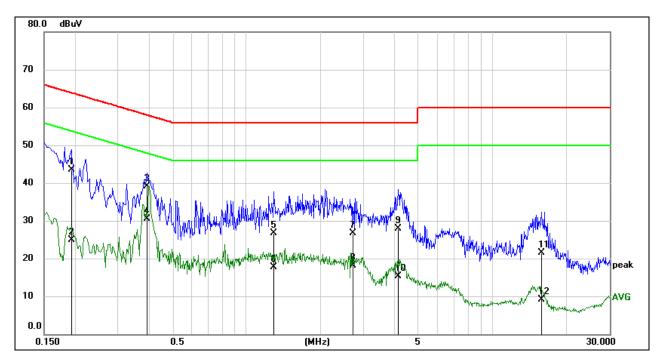
The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

Test conditions

Temperature: 23.4°C, Relative Humidity: 65%, ATM pressure:101kPa.

TEST RESULTS (WORST-CASE CONFIGURATION)


EUT:	Zigbee module	Phase :	L
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1830	33.98	9.66	43.64	64.35	-20.71	QP
2	0.1830	15.10	9.66	24.76	54.35	-29.59	AVG
3	0.2229	28.70	9.65	38.35	62.71	-24.36	QP
4	0.2229	11.81	9.65	21.46	52.71	-31.25	AVG
5	0.3871	27.22	9.65	36.87	58.13	-21.26	QP
6	0.3871	16.50	9.65	26.15	48.13	-21.98	AVG
7	1.0020	18.32	9.66	27.98	56.00	-28.02	QP
8	1.0140	9.30	9.66	18.96	46.00	-27.04	AVG
9	4.1470	15.83	9.71	25.54	56.00	-30.46	QP
10	4.1470	3.26	9.71	12.97	46.00	-33.03	AVG
11	15.4378	9.27	9.82	19.09	60.00	-40.91	QP
12	15.4378	-0.90	9.82	8.92	50.00	-41.08	AVG

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

EUT:	Zigbee module	Phase :	N
Test Mode:	Middle Channel		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1932	33.77	9.64	43.41	63.90	-20.49	QP
2	0.1932	15.17	9.64	24.81	53.90	-29.09	AVG
3	0.3941	29.51	9.65	39.16	57.98	-18.82	QP
4	0.3941	20.91	9.65	30.56	47.98	-17.42	AVG
5	1.2940	16.98	9.67	26.65	56.00	-29.35	QP
6	1.2940	8.06	9.67	17.73	46.00	-28.27	AVG
7	2.7114	16.97	9.69	26.66	56.00	-29.34	QP
8	2.7114	8.46	9.69	18.15	46.00	-27.85	AVG
9	4.1410	18.18	9.70	27.88	56.00	-28.12	QP
10	4.1410	5.55	9.70	15.25	46.00	-30.75	AVG
11	15.8140	11.63	9.85	21.48	60.00	-38.52	QP
12	15.8144	-0.68	9.85	9.17	50.00	-40.83	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

REPORT NO: 4788065238-1 FCC ID: VPYCMABE

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

DATE: August 21, 2017

IC:772C-CMABE

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ANTENNA CONNECTOR

EUT has a PCB antenna without antenna connector.

ANTENNA GAIN

The antenna gain of EUT is less than 6 dBi.

END OF REPORT