

Test Report

Applicant	:	Shenzhen Jooan Technology Co., Ltd
		Building 101-3, 5 and 6, No.8, Guixiang Community
Address	:	Square Road, Guanlan Street, Longhua District,
		Shenzhen, China
Product Name	:	Smart Camera
Brand Mark	:	N/A
Model	:	C9TS-U
Series model	:	C9QS-U, C9CS-U
FCC ID	:	2BBQ4-C9TS-U
Report Number	:	BLA-EMC-202412-A6401
Date of Receipt	:	Dec. 23, 2024
Date of Test	:	Dec. 23, 2024 to Dec. 27, 2024
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Compiled by: Mark then Review by: Sweets

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

The test report is effective only with both signature and specialized stamp and The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full. The results described in this report do not represent the quality or characteristics of the sampled batch, nor do they represent any similar or identical products that are not explicitly stated.

Table of Contents

1 General information	5
1.1 General information	5
1.2 General description of EUT	
2 Test summary	
3 Test Configuration	
3.1 Test mode	8
3.2 Operation Frequency each of channel	8
3.3 Test channel	9
3.4 Auxiliary equipment	
3.5 Test environment	
4 Laboratory information	10
4.1 Laboratory and accreditations	
4.1 Laboratory and accreditations	10
5 Test equipment	
6 Test result	14
6.1 Antenna requirement	14
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	15
6.3 Conducted peak output Power	
6.4 Minimum 6dB bandwidth	20
6.5 Power spectrum density	21
6.6 Conducted Band Edges Measurement	
6.7 Conducted spurious emissions	
6.8 Radiated spurious emissions	
6.9 Radiated emissions which fall in the restricted bands	35
7 Appendix A	54
7.1 Maximum Conducted Output Power	54
7.2 -6dB Bandwidth	55
7.3 Occupied Channel Bandwidth	62
7.4 Maximum Power Spectral Density Level	69
7.5 Band Edge	76
BlueAsia of Technical Services (Shenzhen) Co.,Ltd.	
Tel: +86-755-23059481	

Page	3	of	1()9

7.6 Conducted RF Spurious Emission	85
Appendix B: photographs of test setup	98
Appendix C: photographs of EUT	100

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Revise Record

Version No.	Date	Description
01	Dec. 31, 2024	Original

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

1 General information

1.1 General information

Applicant	Shenzhen Jooan Technology Co., Ltd		
	Building 101-3, 5 and 6, No.8, Guixiang Community Square		
Address	Road, Guanlan Street, Longhua District, Shenzhen, China		
Manufacturer	Shenzhen Jooan Technology Co., Ltd		
Address	Building 101-3, 5 and 6, No.8, Guixiang Community Square		
	Road, Guanlan Street, Longhua District, Shenzhen, China		
Factory	Shenzhen Jooan Technology Co., Ltd		
Address	Building 101-3, 5 and 6, No.8, Guixiang Community Square		
	Road, Guanlan Street, Longhua District, Shenzhen, China		

1.2 General description of EUT

Product Name	Smart Camera			
Model No.	C9TS-U			
Series model	C9QS-U, C9CS-U			
Differences of Series	The above models are identical in PCB layout, internal structure and			
model	components, only model No. and color is different.			
Operation Frequency:	2412MHz-2472MHz			
Operation Frequency	802.11b/g/n(HT20): 2412MHz to 2462MHz			
Operation Frequency:	802.11n(HT40): 2422MHz to 2452MHz			
	802.11b: DSSS(CCK/QPSK/BPSK)			
Modulation Type:	802.11g: OFDM(BPSK/QPSK/16QAM/64QAM)			
	802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)			
Channel Spacing:	5MHz			
Number of Channels:	802.11b/g/n(HT20):13			
Number of Channels.	802.11n(HT40):9			
Antenna Type:	FPC antenna			
Antenna Gain:	2dBi(Provided by customer)			
	Input:100-240V, 50/60Hz 0.35A Max			
Power supply:	Device Input: 5V 1.5A			

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com

Page 6 of 109

Hardware Version	N/A
Software Version	N/A
Note: For a more detailed o	lescription, please refer to Specification or User's Manual supplied by

the applicant and/or manufacturer.

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 7 of 109

2 Test summary

No.	Test item	FCC standard	Test Method(Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Conducted Peak Output Power	§15.247 (b)(3)	ANSI C63.10-2013, Clause 11.9.1.3	Pass
4	Minimum 6dB Bandwidth	§15.247 (a)(2)	ANSI C63.10-2013, Clause 11.8.1	Pass
5	Power Spectrum Density	§15.247 (e)	ANSI C63.10-2013, Clause 11.10.2	Pass
6	Conducted Band Edges Measurement	§15.247(d)	ANSI C63.10-2013, Clause 11.13.3.2	Pass
7	Conducted Spurious Emissions	§15.247(d)	ANSI C63.10-2013, Clause 11.11	Pass
8	Radiated Spurious Emissions	§15.247 (d) §15.209	ANSI C63.10-2013 Clause 6.4&6.5&6.6	Pass
9	Radiated Emissions which fall in the restricted bands	§15.247 (d) §15.205	ANSI C63.10-2013 Clause 6.10.5	Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

3 Test Configuration

3.1 Test mode

Test Mode Note 1	Description
ТХ	Keep the EUT in continuously transmitting mode with modulation. (Duty cycle>98%)
RX	Keep the EUT in receiving mode
TX Low channel	Keep the EUT in continuously transmitting mode in low channel
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel
TX high channel	Keep the EUT in continuously transmitting mode in high channel

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use; the EUT was operated in the engineering mode ^{Note 2} to fix the TX or Rx frequency that was for the purpose of the measurements.

Note 2: Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

Power level setup in software						
Test Software Name		SecureCRT				
Mode	Channel	Frequency (MHz)	Soft Set			
802.11b/g/n(HT20)/n(HT40)	1	2412				
	6	2437				
	11	2462	TX lovel + Default			
	3	2422	TX level : Default			
	9	2452				

3.2 Operation Frequency each of channel

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	5	2432MHz	9	2452MHz	13	2472MHz
2	2417MHz	6	2437MHz	10	2457MHz		
3	2422MHz	7	2442MHz	11	2462MHz		

Page 9 of 109

r							1
	4	2427MHz	8	2447MHz	12	2467MHz	

	Operation Frequency each of channel(802.11n HT40)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
3	2422MHz	7	2442MHz	11	2462MHz				
4	2427MHz	8	2447MHz						
5	2432MHz	9	2452MHz						
6	2437MHz	10	2457MHz						

3.3 Test channel

For 802.11b/g/n (HT20), the lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz); 802.11n HT40, the lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

3.4 Auxiliary equipment

Device Type Manufacturer		Model Name	Serial No.	Remark				
PC	Lenovo	E460C	N/A	From lab (No.BLA-ZC-BS-2022005)				
AC adapter	PISEN	ZY2207-A521H	N/A	From lab				
Note:								
"" mean no any auxiliary device during testing.								

3.5 Test environment

Environment	Temperature	Voltage
Normal	25°C	AC 120V

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.				
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,				
Address.	Shenzhen, Guangdong Province, China				
CNAS accredited No.:	L9788				
A2LA Cert. No.:	5071.01				
FCC Designation No.:	CN1252				
ISED CAB identifier No.:	CN0028				
Telephone:	+86-755-28682673				
FAX:	+86-755-28682673				

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

Page 11 of 109

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date	
BLA-EMC-002-01	Anechoic	9*6*6	SKET	N1/A	0004/0/07	2027/3/26	
BLA-EIVIC-002-01	chamber	chamber	SKEI	N/A	2024/3/27	2027/3/20	
BLA-EMC-002-02	Control room	966 control	SKET	N1/A	2024/3/27	2027/3/26	
BLA-EINIC-002-02	Control room	room	SKEI	N/A	2024/3/21	2021/3/20	
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07	
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28	
BLA-EMC-065	Broadband	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27	
BLA-EINIC-005	antenna	VULB9100	Schwarzbeck	01005P	2024/06/29	2026/06/27	
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A	
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A	

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-001-01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15
BLA-EMC-001-02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07
BLA-EMC-012	Broadband antenna	VULB9168	Schwarzbeck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28
BLA-EMC-014	Amplifier	PA_000318G- 45	SKET	PA201804 3003	2024/08/08	2025/08/07
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2024/06/28	2025/06/27
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28	2025/06/27
BLA-EMC-066	Amplifier	LNPA_30M01 G-30	SKET	SK202106 0801	2024/06/28	2025/06/27
BLA-EMC-086	Amplifier	LNPA_18G40 G-50dB	SKET	SK202207 1301	2024/06/28	2025/06/27
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 12 of 109

BLA-XC-03	Coaxial Cable	N/A	BlueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	N/A	BlueAsia	V04	N/A	N/A

Conducted Emissions

Equipment	Name	Model	Manufactu re	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2024/06/28	2025/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat 6	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01045	2024/06/28	2025/06/27
BLA-EMC-096	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01075	2024/06/28	2025/06/27
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A
			~			

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 13 of 109

RF conducted

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003-003	Shield room	5*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-016	Signal Generator	N5182A	Agilent	MY52420567	2024/06/28	2025/06/27
BLA-EMC-038	Spectrum	N9020A	Agilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-042	Power sensor	RPR3006W	DARE	14100889SN042	2024/08/08	2025/08/07
	Radio					
BLA-EMC-044	communication	CMW500	R&S	132429	2024/08/08	2025/08/07
	tester					
BLA-EMC-064	Signal Generator	N5182B	KEYSIGHT	MY58108892	2024/06/28	2025/06/27
BLA-EMC-079	Spectrum	N9020A	Agilent	MY54420161	2024/08/08	2025/08/07
BLA-EMC-088	Audio Apolyzor	ATS-1	Audio	ATS141094	2024/06/28	2025/06/27
DLA-EIVIC-U00	Audio Analyzer	A13-1	Precision	A13141094	2024/00/20	2023/00/27

Test software

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE(Below 1GHz)
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE(Above 1GHz)
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

6 Test result

6.1 Antenna requirement

Test Standard	47 CFR Part 15, Subpart C 15.203
Test Method	N/A

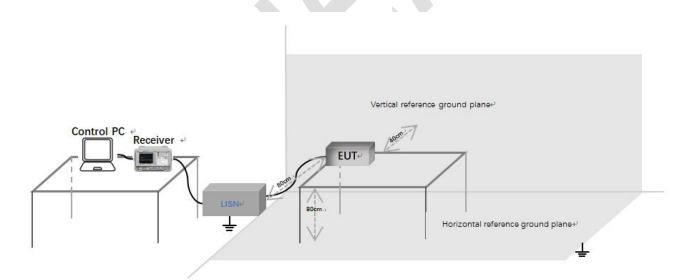
6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is FPC antenna. The best case gain of the antenna is 2dBi.

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com


6.2 Conducted emissions at AC power line (150 kHz-30 MHz)

Test Standard	47 CFR Part 15, Subpart C 15.207	
Test Method	ANSI C63.10 (2013) Section 6.2	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.2.1 Limit

6.2.1 Limit				
	Conducted limit(dBµV)			
Frequency of emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
*Decreases with the logarithm of the frequency.				

6.2.2 Test setup

Description of test setup connection:

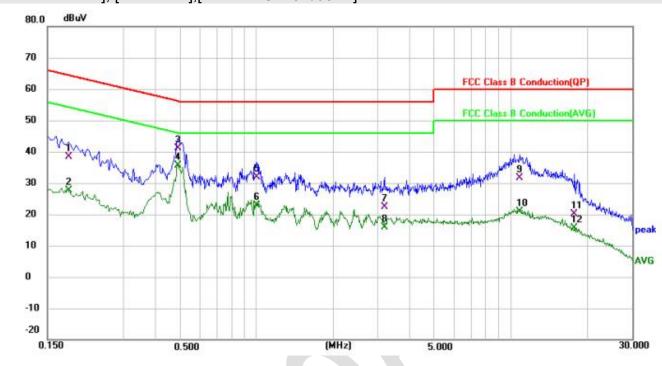
- Connect the control PC to the receiver through a USB to GPIB cable; a)
- b) The receiver is connected to the LISN through a coaxial line;
- Connect the power port of LISN to the EUT. C)

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

6.2.3 Procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

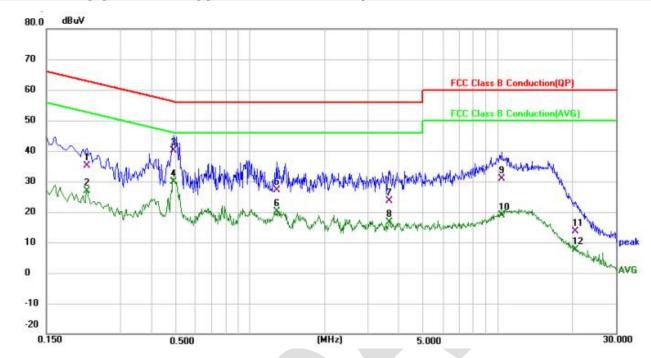

LISN=Read Level+ Cable Loss+ LISN Factor

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 17 of 109

6.2.4 Test data

[Test mode: TX]; [Line: Line]; [Power: AC120V/60Hz]


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1819	28.05	10.22	38.27	64.40	-26.13	QP
2		0.1819	17.33	10.22	27.55	54.40	-26.85	AVG
3		0.4900	31.22	9.84	41.06	56.17	-15.11	QP
4	*	0.4900	25.91	9.84	35.75	46.17	-10.42	AVG
5		1.0020	22.08	9.78	31.86	56.00	-24.14	QP
6		1.0020	13.18	9.78	22.96	46.00	-23.04	AVG
7		3.1740	12.28	10.06	22.34	56.00	-33.66	QP
8		3.1740	5.80	10.06	15.86	46.00	-30.14	AVG
9		10.8300	31.56	0.03	31.59	60.00	-28.41	QP
10		10.8300	20.80	0.03	20.83	50.00	-29.17	AVG
11		17.8420	7.50	12.54	20.04	60.00	-39.96	QP
12		17.8420	3.00	12.54	15.54	50.00	-34.46	AVG

Test Result: Pass

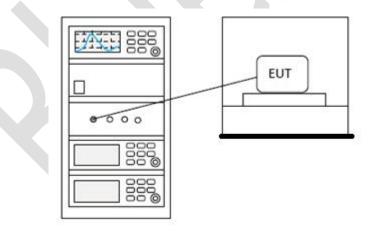
BlueAsia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 18 of 109

[Test mode: TX]; [Line: Neutral]; [Power: AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2180	24.96	10.20	35.16	62.89	-27.73	QP
2		0.2180	16.65	10.20	26.85	52.89	-26.04	AVG
3	*	0.4900	30.38	9.80	40.18	56.17	-15.99	QP
4		0.4900	20.16	9.80	29.96	46.17	-16.21	AVG
5		1.2780	17.36	9.75	27.11	56.00	-28.89	QP
6		1.2780	10.37	9.75	20.12	46.00	-25.88	AVG
7		3.6420	13.66	10.00	23.66	56.00	-32.34	QP
8		3.6420	6.64	10.00	16.64	46.00	-29.36	AVG
9		10.3700	30.54	0.39	30.93	60.00	-29.07	QP
10		10.3700	18.61	0.39	19.00	50.00	-31.00	AVG
11	X	20.6980	0.69	12.99	13.68	60.00	-46.32	QP
12		20.6980	-5.37	12.99	7.62	50.00	-42.38	AVG

Page 19 of 109


6.3 Conducted peak output Power

Test Standard	47 CFR Part 15, Subpart C 15.247(b)(3)	
Test Method	ANSI C63.10 (2013) Section 11.9.1.3	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.3.1 Limit

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

6.3.2 Test setup

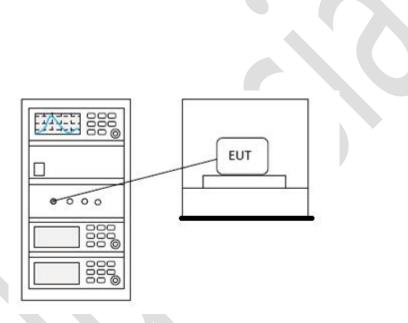
6.3.3 Test data

Pass: Please refer to appendix A for details

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com

Page 20 of 109


6.4 Minimum 6dB bandwidth

Test Standard	47 CFR Part 15, Subpart C 15.247(a)(2)	
Test Method	ANSI C63.10 (2013) Section 11.8.1	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.4.1 Limit

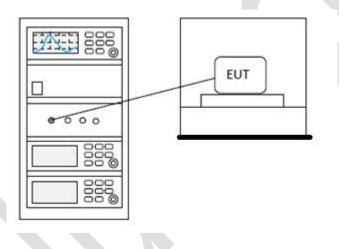
≥500 kHz

6.4.2 Test setup

6.4.3 Test data

Pass: Please refer to appendix A for details

Page 21 of 109


6.5 Power spectrum density

Test Standard	47 CFR Part 15, Subpart C 15.247(e)	
Test Method	ANSI C63.10 (2013) Section 11.10.2	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.5.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.5.2 Test setup

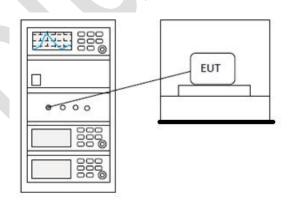
6.5.3 Test data

Pass: Please refer to appendix A for details

Test Standard	47 CFR Part 15, Subpart C 15.247(d)	
Test Method	ANSI C63.10 (2013) Section 11.13	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.6 Conducted Band Edges Measurement

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

6.6.3 Test data

Pass: Please refer to appendix A for details

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

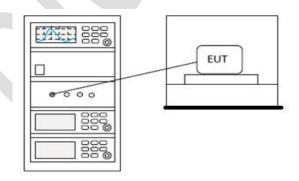
Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com

Page 23 of 109

Test Standard	47 CFR Part 15, Subpart C 15.247(d)	
Test Method	ANSI C63.10 (2013) Section 11.11	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.7 Conducted spurious emissions

6.7.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com

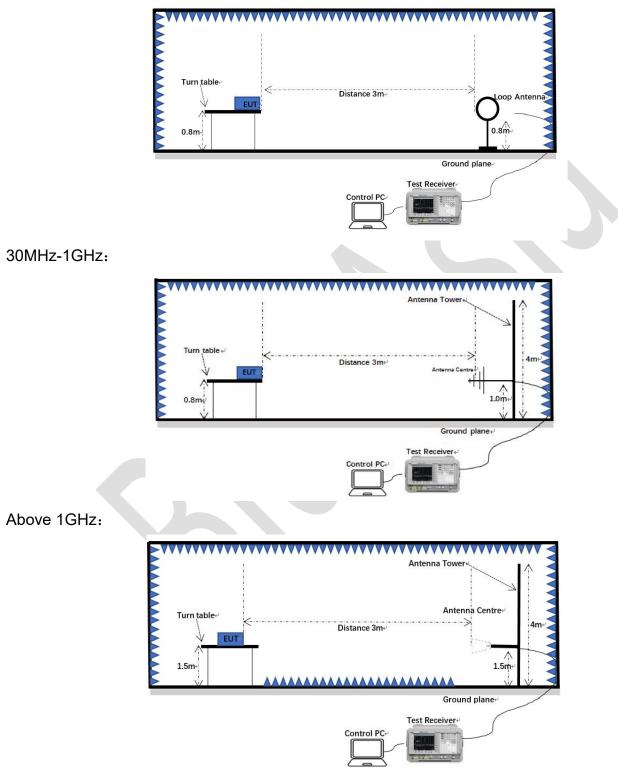
Page 24 of 109

6.8 Radiated spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247(d)	
Test Method	ANSI C63.10 (2013) Section11.11	
Test Mode (Pre-Scan)	ТХ	
Test Mode (Final Test)	ТХ	

6.8.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page 25 of 109

6.8.2 Test setup

Below 1GHz:

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

6.8.3 Procedure

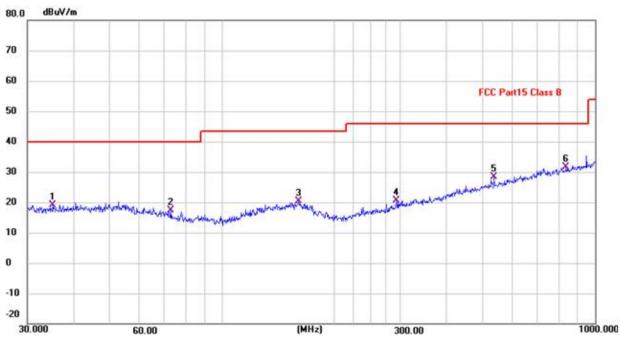
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

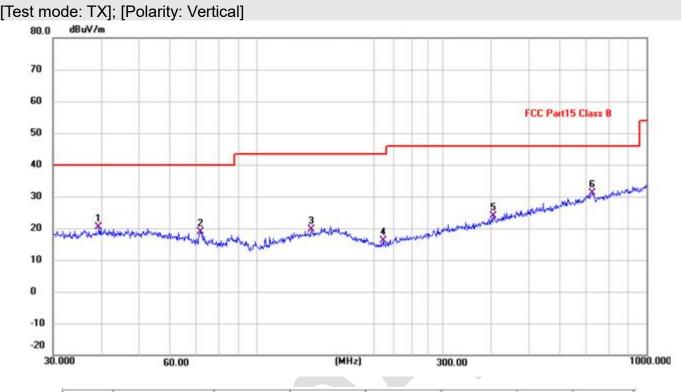
BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481


Page 27 of 109

6.8.4 Test data

Remark: During the test, pre-scan the 802.11b/g/n mode, and found the 802.11b mode which it is worse case, only the worse case lowest channel of 1Mbps for 802.11b was recorded in the report.

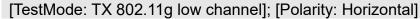
Below 1GHz

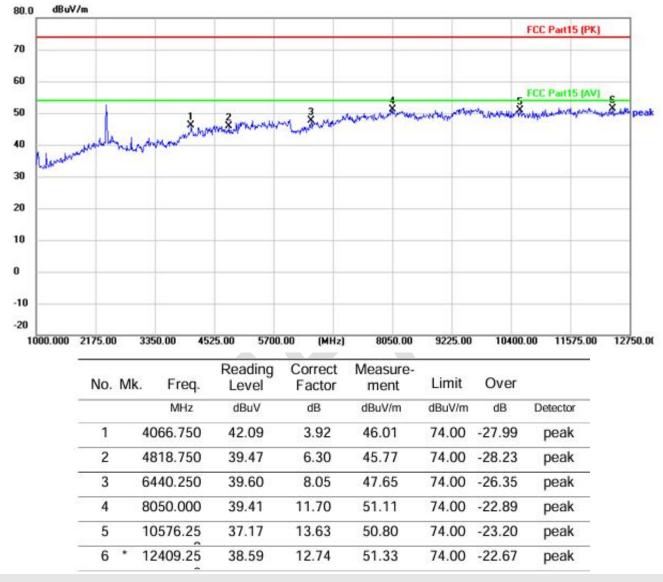


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	35.1278	0.49	18.76	19.25	40.00	-20.75	QP
2	72.8466	1.10	16.31	17.41	40.00	-22.59	QP
3	160.3456	-0.10	20.41	20.31	43.50	-23.19	QP
4	293.0842	0.94	19.64	20.58	46.00	-25.42	QP
5	535.7073	2.66	25.69	28.35	46.00	-17.65	QP
6 *	836.2443	1.43	30.25	31.68	46.00	-14.32	QP

Page 28 of 109

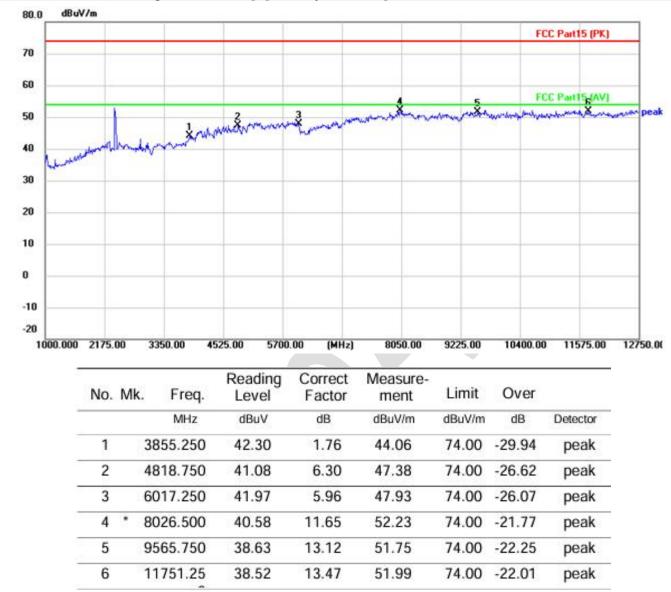
[Test mode: TX];	[Polarity:	Vertica

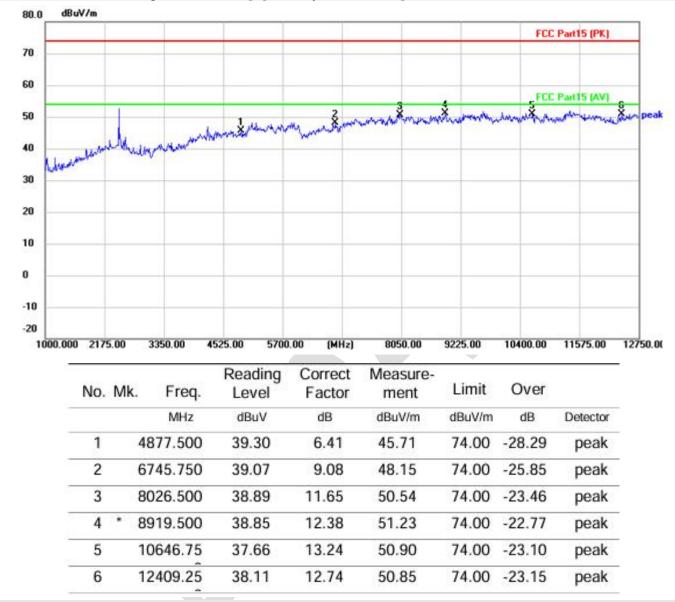

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	39.2991	1.00	19.27	20.27	40.00	-19.73	QP
2	71.5806	2.27	16.55	18.82	40.00	-21.18	QP
3	137.9028	-0.19	19.92	19.73	43.50	-23.77	QP
4	210.7860	0.11	16.03	16.14	43.50	-27.36	QP
5	404.6665	0.89	23.09	23.98	46.00	-22.02	QP
6 *	726.8052	2.10	29.08	31.18	46.00	-14.82	QP



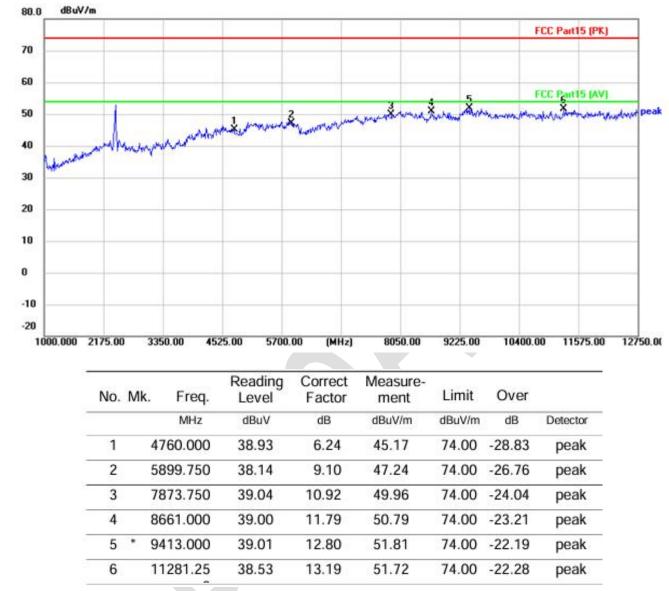
Page 29 of 109

Remark: During the test, pre-scan the 802.11b/g/n mode, and found the 802.11g mode which it is worse case, only the worse case for 802.11g was recorded in the report.

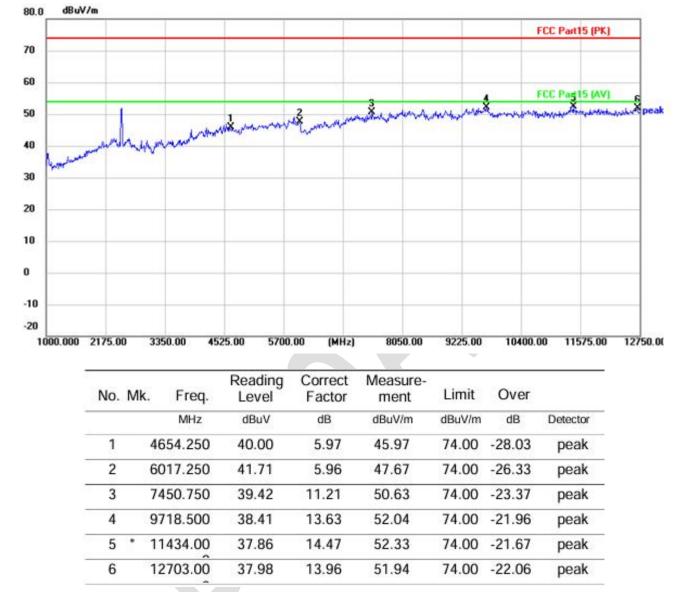

Above 1GHz:


Page 30 of 109

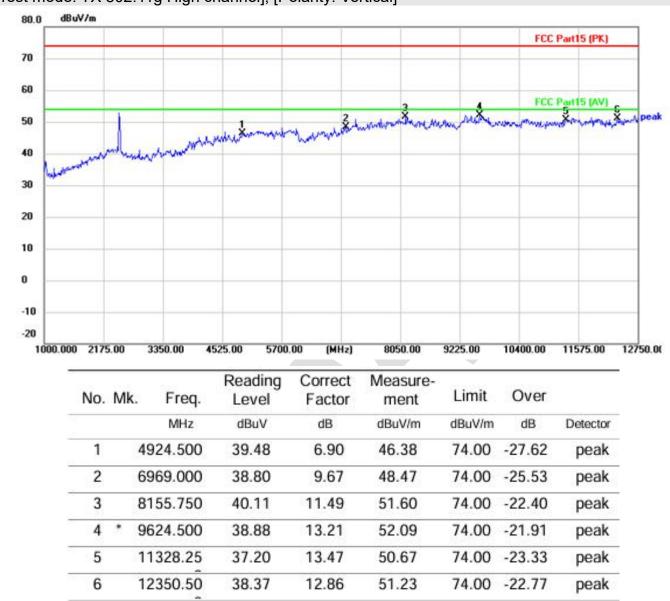
[Test mode: TX 802.11g low channel]; [Polarity: Vertical]


Page 31 of 109

[TestMode: TX 802.11g mid channel]; [Polarity: Horizontal]


Page 32 of 109

[TestMode: TX 802.11g mid channel]; [Polarity: Vertical]


Page 33 of 109

[Test mode: TX 802.11g High channel]; [Polarity: Horizontal]

Page 34 of 109

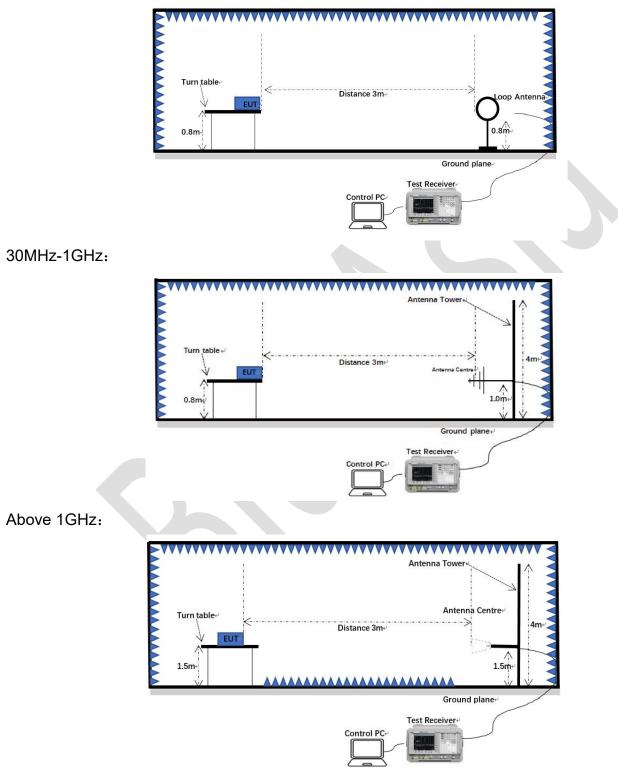
[Test mode: TX 802.11g High channel]; [Polarity: Vertical]

6.9 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart C 15.247(d)		
Test Method ANSI C63.10 (2013) Section 6.12			
Test Mode (Pre-Scan)	ТХ		
Test Mode (Final Test)	ТХ		

6.9.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page 36 of 109

6.9.2 Test setup

Below 1GHz:

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

6.9.3 Procedure

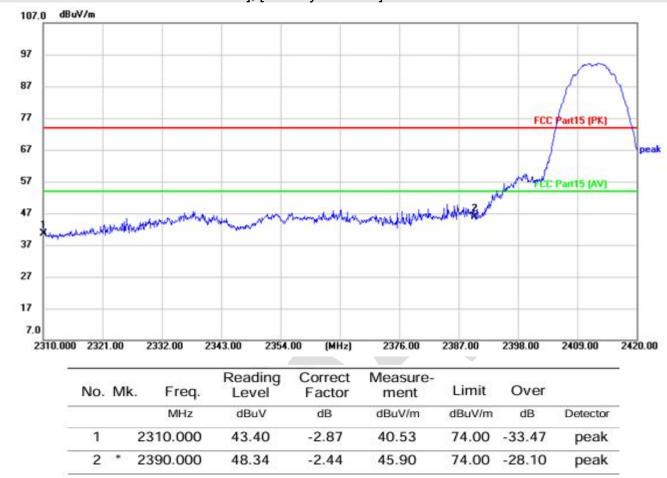
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Page 38 of 109

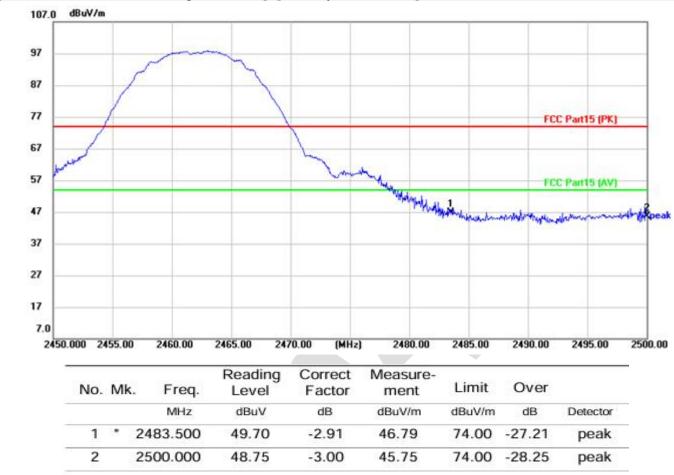
6.9.4 Test data



Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

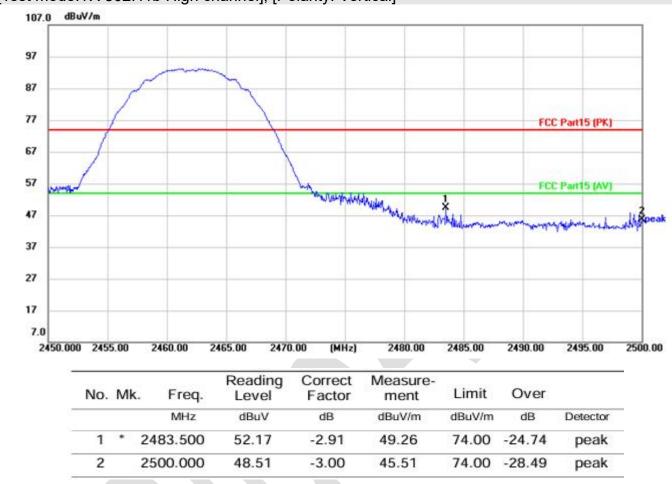
Page 39 of 109


[Test mode:TX 802.11b low channel]; [Polarity: Vertical]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

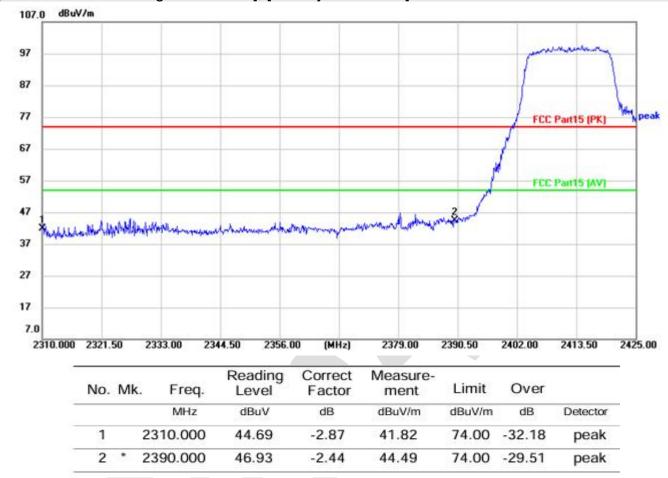
Page 40 of 109


[Test mode: TX 802.11b High channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

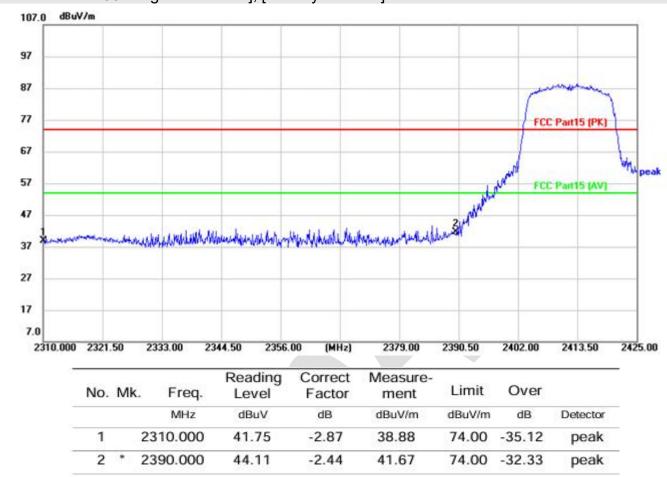
Page 41 of 109


[Test mode:TX 802.11b High channel]; [Polarity: Vertical]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

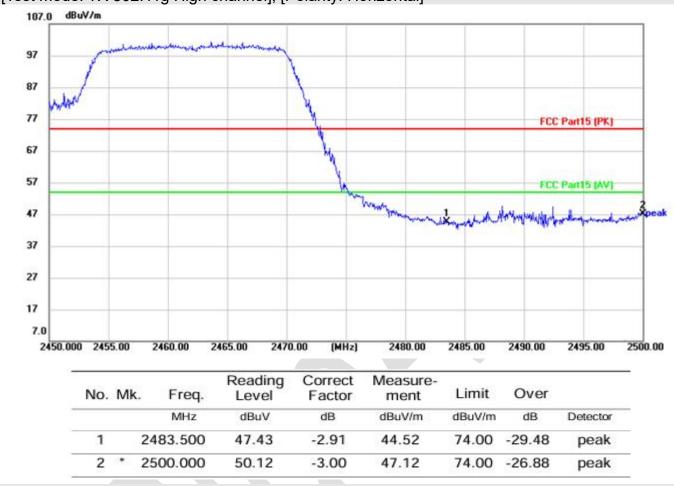
Page 42 of 109

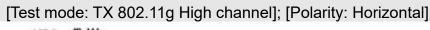

[Test mode: TX 802.11g low channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

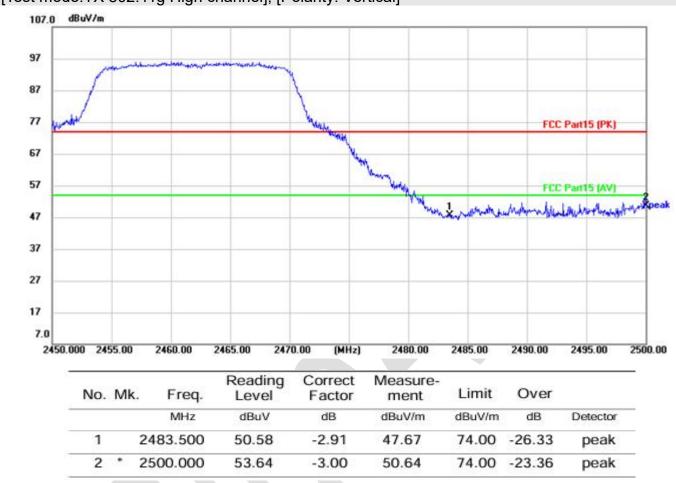
Page 43 of 109

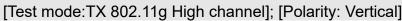

[Test mode:TX 802.11g low channel]; [Polarity: Vertical]


Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

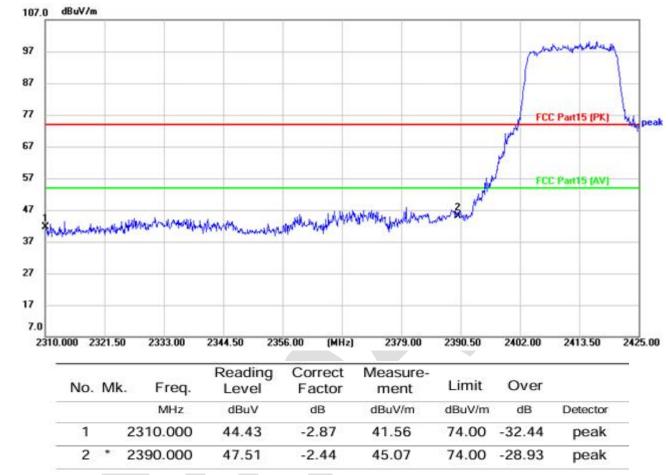
Page 44 of 109




Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

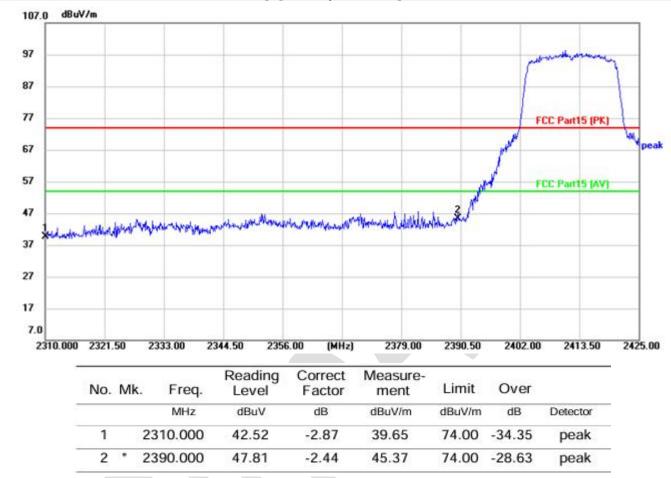
Page 45 of 109



Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

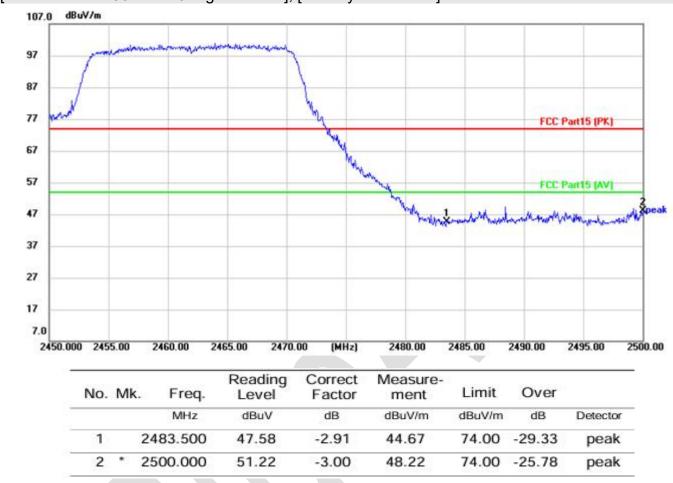
Page 46 of 109

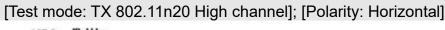

[Test mode: TX 802.11n20 low channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

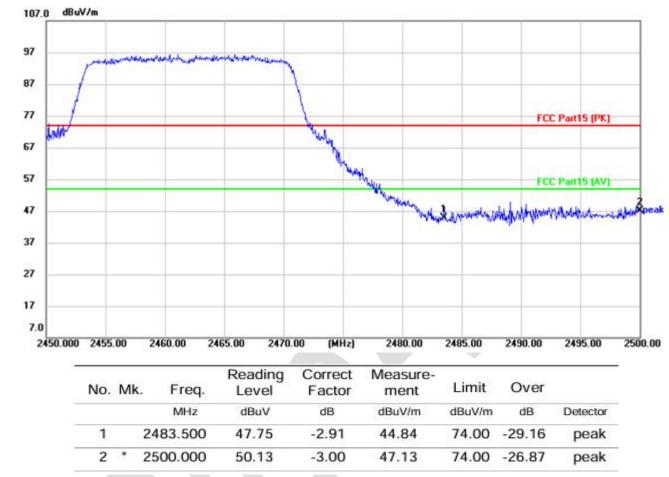
Page 47 of 109


[Test mode:TX 802.11n20 low channel]; [Polarity: Vertical]


Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

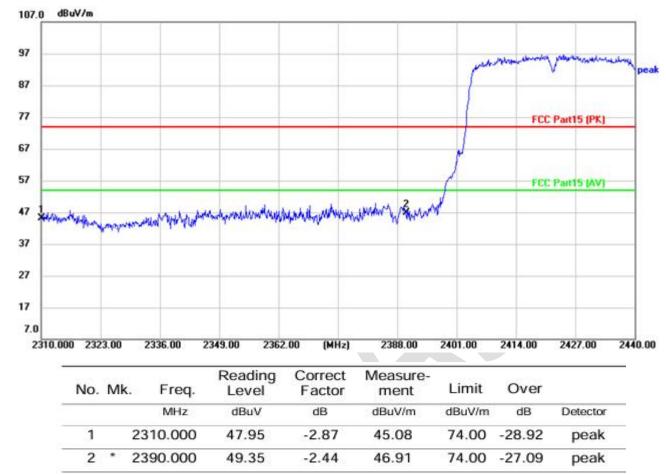
Page 48 of 109



Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

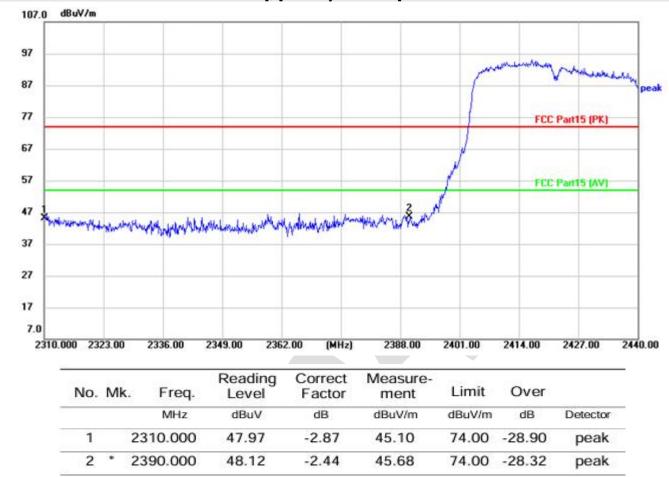
Page 49 of 109


[Test mode:TX 802.11n20 High channel]; [Polarity: Vertical]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

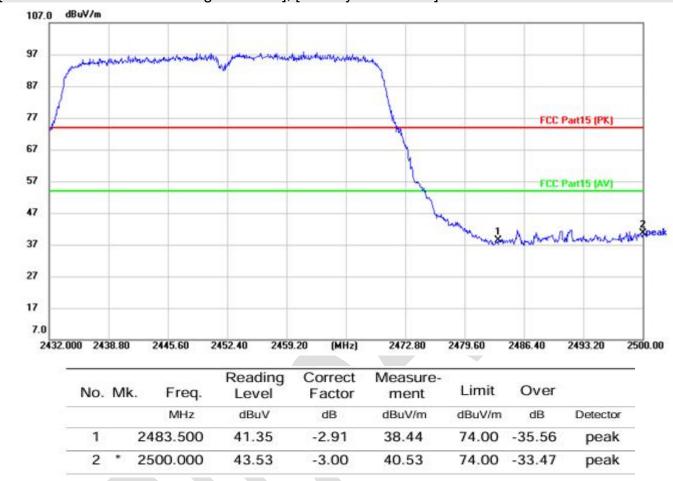
Page 50 of 109


[Test mode: TX 802.11n40 low channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

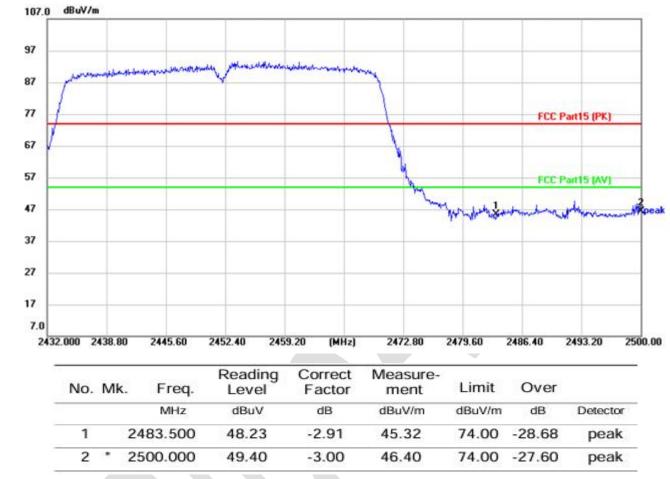
Page 51 of 109


[Test mode:TX 802.11n40 low channel]; [Polarity: Vertical]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 52 of 109


[Test mode: TX 802.11n40 High channel]; [Polarity: Horizontal]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 53 of 109

[Test mode:TX 802.11n40 High channel]; [Polarity: Vertical]

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 54 of 109

7 Appendix A

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	9.44	30	Pass
NVNT	b	2437	Ant1	9.70	30	Pass
NVNT	b	2462	Ant1	10.16	30	Pass
NVNT	g	2412	Ant1	14.58	30	Pass
NVNT	g	2437	Ant1	14.95	30	Pass
NVNT	g	2462	Ant1	15.29	30	Pass
NVNT	n20	2412	Ant1	13.71	30	Pass
NVNT	n20	2437	Ant1	14.11	30	Pass
NVNT	n20	2462	Ant1	14.54	30	Pass
NVNT	n40	2422	Ant1	13.51	30	Pass
NVNT	n40	2437	Ant1	13.71	30	Pass
NVNT	n40	2452	Ant1	14.04	30	Pass

7.1 Maximum Conducted Output Power

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 55 of 109

7.2-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	7.829	0.5	Pass
NVNT	b	2437	Ant1	7.802	0.5	Pass
NVNT	b	2462	Ant1	7.794	0.5	Pass
NVNT	g	2412	Ant1	16.539	0.5	Pass
NVNT	g	2437	Ant1	16.315	0.5	Pass
NVNT	g	2462	Ant1	16.363	0.5	Pass
NVNT	n20	2412	Ant1	17.267	0.5	Pass
NVNT	n20	2437	Ant1	17.592	0.5	Pass
NVNT	n20	2462	Ant1	17.571	0.5	Pass
NVNT	n40	2422	Ant1	35.096	0.5	Pass
NVNT	n40	2437	Ant1	35.354	0.5	Pass
NVNT	n40	2452	Ant1	35.089	0.5	Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 56 of 109

-6dB Bandwidth NVNT b 2412MHz Ant1

-6dB Bandwidth NVNT b 2437MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 57 of 109

-6dB Bandwidth NVNT b 2462MHz Ant1

-6dB Bandwidth NVNT g 2412MHz Ant1

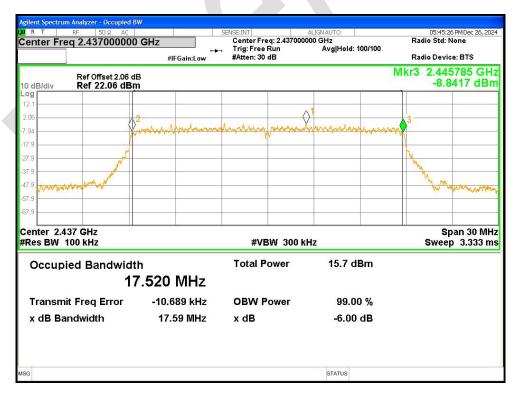
BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 58 of 109

-6dB Bandwidth NVNT g 2437MHz Ant1

-6dB Bandwidth NVNT g 2462MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481



Page 59 of 109

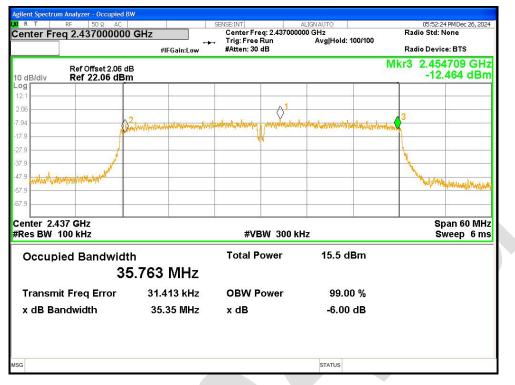
-6dB Bandwidth NVNT n20 2412MHz Ant1

-6dB Bandwidth NVNT n20 2437MHz Ant1

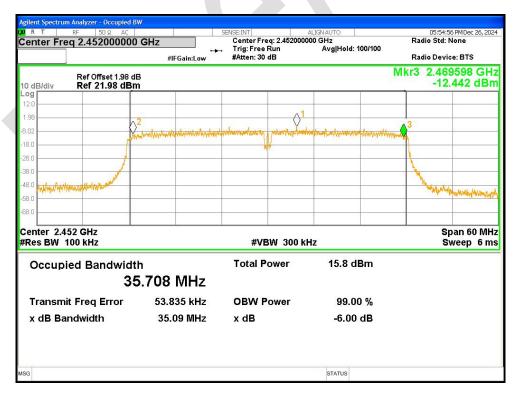
BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 60 of 109

-6dB Bandwidth NVNT n20 2462MHz Ant1


-6dB Bandwidth NVNT n40 2422MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481



Page 61 of 109

-6dB Bandwidth NVNT n40 2437MHz Ant1

-6dB Bandwidth NVNT n40 2452MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481

Page 62 of 109

7.3 Occupied Channel Bandwidth

Condition	Mode	Frequency	Antenna	99% OBW (MHz)
		(MHz)		
NVNT	b	2412	Ant1	11.91405414
NVNT	b	2437	Ant1	11.86909009
NVNT	b	2462	Ant1	11.92870284
NVNT	g	2412	Ant1	16.45294167
NVNT	g	2437	Ant1	16.46776392
NVNT	g	2462	Ant1	16.47173755
NVNT	n20	2412	Ant1	17.53125947
NVNT	n20	2437	Ant1	17.48188602
NVNT	n20	2462	Ant1	17.51873452
NVNT	n40	2422	Ant1	35.82186724
NVNT	n40	2437	Ant1	35.74892617
NVNT	n40	2452	Ant1	35.78193891

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



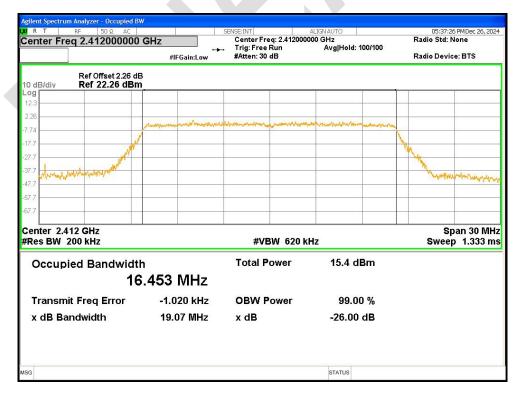
Page 63 of 109

OBW NVNT b 2412MHz Ant1

ALIGNAUTO Center Freq: 2.412000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 05:29:31 PMDec 26, 202 Radio Std: None Center Freq 2.412000000 GHz Radio Device: BTS #IFGain:Low Ref Offset 2.26 dB Ref 22.26 dBm 10 dB/div Span 30 MHz Sweep 1.333 ms Center 2.412 GHz #Res BW 200 kHz #VBW 620 kHz **Total Power** 13.2 dBm **Occupied Bandwidth** 11.914 MHz Transmit Freg Error -11.303 kHz **OBW Power** 99.00 % 14.78 MHz -26.00 dB x dB Bandwidth x dB STATUS

OBW NVNT b 2437MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Tel: +86-755-23059481



Page 64 of 109

OBW NVNT b 2462MHz Ant1

OBW NVNT g 2412MHz Ant1

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com