

TEST REPORT

Applicant Name: EWAY CAR TECHNOLOGY LIMITED

Address: FLAT/RM 1405B, 14/F, THE BELGIAN BANK BUILDING

NOS.721-725, NATHAN ROAD MONGKOK KL, Hong Kong

Report Number: 2401Y100564E-RF-00 FCC ID: 2BG4R-EWSM2679

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Wireless Monitor

Model No.: EW-SM2679

Multiple Model(s) No.: N/A Trade Mark: N/A

Date Received: 2024-10-21 Issue Date: 2025-01-09

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ekko. Wu

Ekko Wu RF Engineer **Approved By:**

Nancy Wang RF Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼"

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
REQUIREMENTS AND TEST PROCEDURES	11
AC LINE CONDUCTED EMISSIONS	
Spurious Emissions	
6 dB Emission Bandwidth	
MAXIMUM CONDUCTED OUTPUT POWER	
100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
POWER SPECTRAL DENSITY	
ANTENNA REQUIREMENT	22
TEST DATA AND RESULTS	23
Spurious Emissions	23
6DB EMISSION BANDWIDTH	
99% OCCUPIED BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE POWER SPECTRAL DENSITY	
DUTY CYCLE	
RF EXPOSURE EVALUATION	
EUT PHOTOGRAPHS	
TEST SETUD DUOTOCD ADUS	120

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401Y100564E-RF-00	Original Report	2025-01-09

Report No.: 2401Y100564E-RF-00

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	2412~2462MHz	
Maximum Conducted Output Peak Power	24.75 dBm	
Modulation Technique	DSSS, OFDM, OFDMA	
Antenna Specification#	2.47dBi (provided by the applicant)	
Voltage Range	DC 9-30V	
Sample serial number	2T9U-1 for Radiated Emissions Test 2T9U-6 for RF Conducted Test (Assigned by BACL, Shenzhen)	
Sample/EUT Status	Good condition	
Adapter Information	N/A	

Report No.: 2401Y100564E-RF-00

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty
Occupied Channel Bandwidth		andwidth	109.2kHz(k=2, 95% level of confidence)
RF output	power, co	onducted	0.86dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz~150 kHz	3.63dB(k=2, 95% level of confidence)
Emissions		150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)
	0.	009MHz~30MHz	3.60dB(k=2, 95% level of confidence)
	30MHz	~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical) 200MHz~1000MHz (Horizontal)		5.43dB(k=2, 95% level of confidence)
Radiated Emissions			5.77dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.73dB(k=2, 95% level of confidence)
		1GHz - 6GHz	5.34dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)
Temperature		e	±1°C
I	Humidity		±1%
Supply voltages		ges	$\pm 0.4\%$

Report No.: 2401Y100564E-RF-00

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz Wi-Fi mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

Report No.: 2401Y100564E-RF-00

802.11b, 802.11g, 802.11n-HT20 and 802.11ax20 mode was tested with Channel 1, 6 and 11

802.11n-HT40 and 802.11ax40 mode was tested with Channel 3, 6 and 9.

EUT Exercise Software

Exercise Software [#]		SecureCRT.exe		
Mode	Data rate	Power Level [#]		
Mode	Data Tate	Low Channel	Middle Channel	High Channel
802.11b	1Mbps	default	default	default
802.11g	6Mbps	default	default	default
802.11n20	MCS0	default	default	default
802.11n40	MCS0	default	default	default
802.11ax20	MCS0	default	default	default
802.11ax40	MCS0	default	default	default

Note: The worst-case data rates are determined to be as follows for each mode based upon inverstigation by measuring the power and PSD across all data rates bandwidths, and modulations. For 802.11 ax modes, the device not support partial RU mode.

Special Accessories

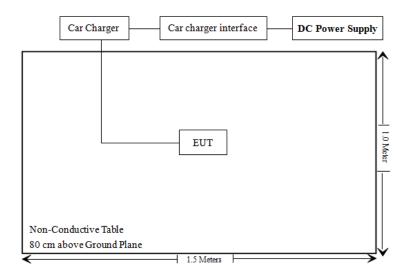
No special accessory.

Equipment Modifications

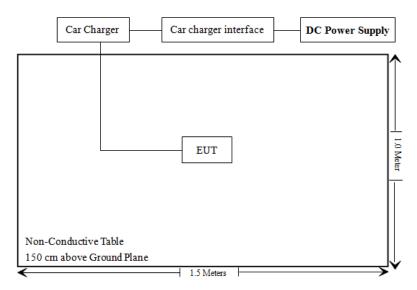
No modification was made to the EUT tested.

Support Equipment List and Details

11 11			
Manufacturer	Description	Model	Serial Number
instek	DC Power Supply	GPS-3030DD	EM832096
EWAY	Car Charger	N/A	N/A
EWAY	Car charger interface	N/A	N/A


External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded detachable DC cable	0.5	DC Power Supply	Car charger interface
Unshielded detachable DC cable	0.5	Car charger interface	Car charger
Unshielded detachable DC cable	1.5	Car charger	EUT


Report No.: 2401Y100564E-RF-00

Block Diagram of Test Setup

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant
C63.10 §11.6	Duty Cycle	/
§15.247 (i), §1.1307 (b) & §2.1091	Maximum Permissible Exposure (MPE)	Compliant

Report No.: 2401Y100564E-RF-00

Not Applicable: The EUT cannot connect directly to the public power network.

TEST EQUIPMENT LIST

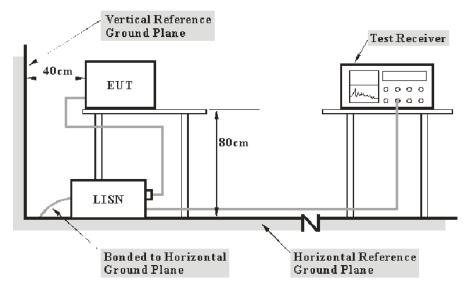
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test						
Audix	EMI Test software	E3	191218(V9)	NCR	NCR	
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03	
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20	
Sunol Sciences	Broadband Antenna	ЈВ1	A040904-1	2023/07/20	2026/07/19	
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17	
Unknown	Cable	Chamber Cable	F-03-EM236	2024/06/18	2025/06/17	
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13	
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03	
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03	
Audix	EMI Test software	Е3	19821b(V9)	NCR	NCR	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26	
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17	
Schwarzbeck	Horn Antenna	BBHA9120D(12 01)	1143	2023/07/26	2026/07/25	
Unknown	RF Cable	KMSE	0735	2024/12/04	2025/12/03	
Unknown	RF Cable	UFA147	219661	2024/12/04	2025/12/03	
Unknown	RF Cable	XH750A-N	J-10M	2024/12/04	2025/12/03	
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17	
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17	
Electro- Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17	
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17	

Report No.: 2401Y100564E-RF-00

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
Rohde&Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/01/16	2025/01/15
MARCONI	10dB Attenuator	6534/3	2942	2024/06/27	2025/06/26
ANRITSU	Microwave peak power sensor	MA24418A	12622	2024/05/21	2025/05/20

Report No.: 2401Y100564E-RF-00

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC§15.207

EUT Setup

Report No.: 2401Y100564E-RF-00

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

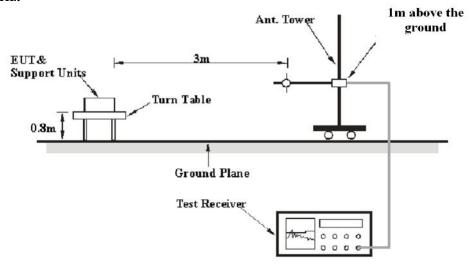
Report No.: 2401Y100564E-RF-00

```
Factor = LISN VDF + Cable Loss
```

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

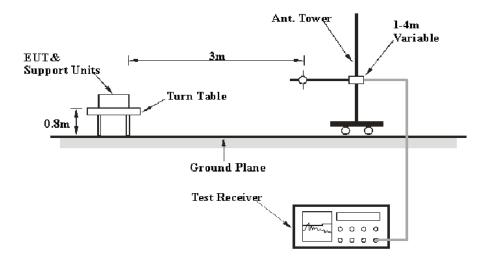
```
Over Limit = level – Limit
Level= reading level+ Factor
```

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

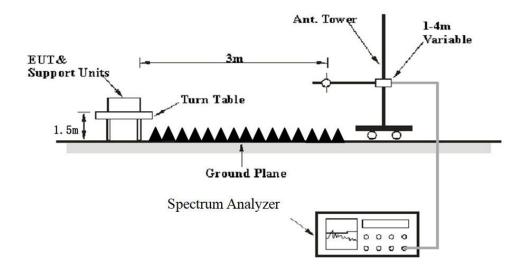

Spurious Emissions

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


EUT Setup

9 kHz-30MHz:



Report No.: 2401Y100564E-RF-00

30MHz-1GHz:

Above 1GHz:

Report No.: 2401Y100564E-RF-00

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
9 kHz – 150 kHz	/	/	200 Hz	QP
9 КПZ — 130 КПZ	300 Hz	1 kHz	/	PK
150 kHz – 30 MHz	/	/	9 kHz	QP
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	PK
30 MHz – 1000 MHz	/	/	120 kHz	QP
30 MILZ — 1000 MILZ	100 kHz	300 kHz	/	PK

1-25GHz: Pre-scan

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton, not less than 5 kHz

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W	
PK	Any	1MHz	3 MHz	
AV	>98%	1MHz	10 Hz	
AV	<98%	1MHz	≥1/Ton	

Report No.: 2401Y100564E-RF-00

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an OP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

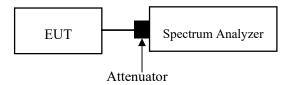
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

6 dB Emission Bandwidth

Applicable Standard

According to FCC §15.247(a) (2)


Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: 2401Y100564E-RF-00

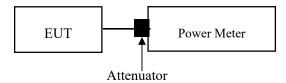
Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Detector = peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Maximum Conducted Output Power

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: 2401Y100564E-RF-00

Test Procedure

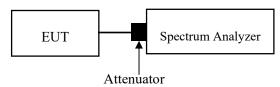
Test method: ANSI C63.10-2013 clause 11.9.1.3 for peak power method or clause 11.9.2.3.2 for average power method.

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

100 kHz Bandwidth of Frequency Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: 2401Y100564E-RF-00

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Power Spectral Density

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: 2401Y100564E-RF-00

Test Procedure

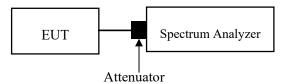
Test Method: ANSI C63.10-2013 Clause 11.10.2

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

- 1. Set the RBW to: 3kHz< RBW<100 kHz.
- 2. Set the VBW $\geq 3 \times RBW$.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = \max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Method: ANSI C63.10-2013 Clause 11.10.3 Method AVGPSD-1

The following procedure may be used when the maximum (average) conducted output power was used to determine compliance to the fundamental output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has a power averaging (rms) detector, then it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (D \geq 98%), or else sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter OFF time to be considered):


- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 4. Set the VBW $> 3 \times BW$.
- 5. Detector = power averaging (rms) or sample detector (when rms not available)
- 6. Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Test Method: ANSI C63.10-2013 Clause 11.10.5 Method AVGPSD-2

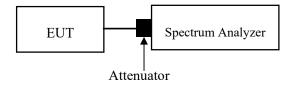
The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., D < 98%), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than $\pm 2\%$):

Report No.: 2401Y100564E-RF-00

- 1. Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. Set the RBW to: 3kHz < RBW < 100 kHz.
- 5. Set the VBW \geq 3×BW.
- 6. Detector = power averaging (rms) or sample detector (when rms not available)
- 7. Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- 8. Sweep time = auto couple.
- 9. Do not use sweep triggering; allow sweep to "free run."
- 10. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

Duty Cycle


Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

Report No.: 2401Y100564E-RF-00

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW \geq RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T $\le 16.7 \,\mu s$.)

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: 2401Y100564E-RF-00

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

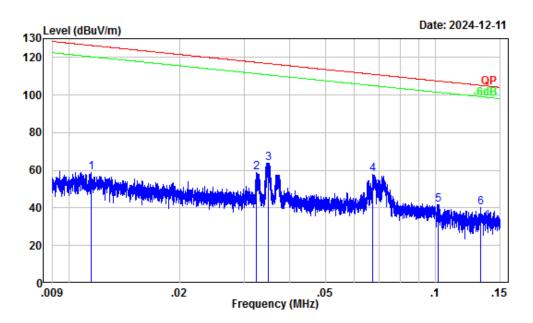
The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain[#] is 2.47dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

TEST DATA AND RESULTS

Spurious Emissions

Environmental Conditions


Temperature (°C)	24.2~24.8	Relative Humidity (%)	54~50.5					
ATM Pressure (kPa):	101.8~101.6	Test engineer:	Carl Zhu & Zenos Qiao					
Test date:	2024/12/11~2024/12/17							
EUT operation mode:	Below 1GHz: Transmitting (All modes were preswept, and the 802.11b Middle Channel had the worst results. The report shows only the worst test results) Above 1GHz: Transmitting							
Note:	recorded. 2. For the radiated spurious than the limit of QP. 3. After pre-scan in the X	1. For the radiated spurious emission below 30MHz, only the worst case (parallel) was						

Report No.: 2401Y100564E-RF-00

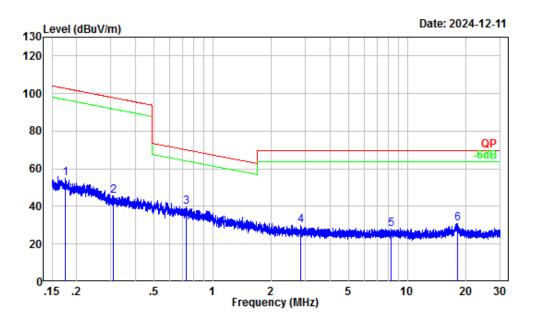
Below 1GHz:

9kHz-150kHz

Report No.: 2401Y100564E-RF-00

Site : Chamber A

Condition : 3m


Project Number : 2401Y100564E-RF Test Mode : Transmitting Detector QP RBW: 0.3KHz VBW:1KHz

Tester : Carl Zhu

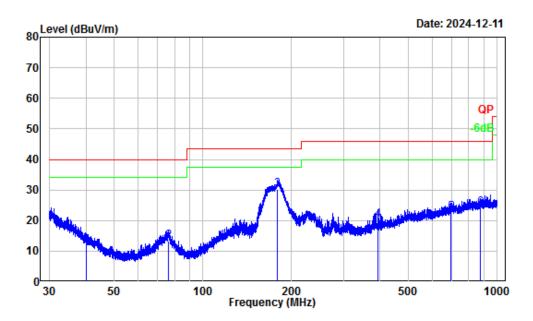
	Freq	Factor	Read Level		Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	32.02	26.98	59.00	126.41	-67.41	Peak
2	0.03	28.23	30.67	58.90	117.36	-58.46	Peak
3	0.04	27.97	35.96	63.93	116.71	-52.78	Peak
4	0.07	24.66	33.18	57.84	111.03	-53.19	Peak
5	0.10	21.92	19.89	41.81	107.49	-65.68	Peak
6	0.13	20.07	20.25	40.32	105.15	-64.83	Peak

150kHz-30MHz

Report No.: 2401Y100564E-RF-00

Site : Chamber A

Condition : 3m

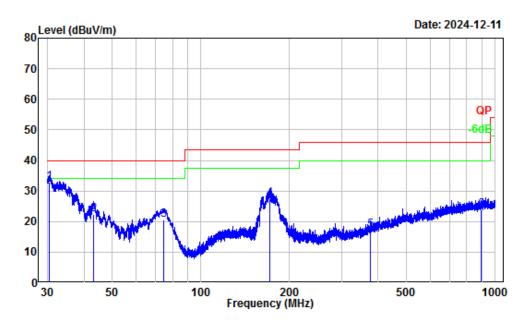

Project Number: 2401Y100564E-RF Test Mode: Transmitting Detector QP RBW: 10KHz VBW:30KHz

Tester : Carl Zhu

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.18	17.53	37.22	54.75	102.71	-47.96	Peak
2	0.31	10.05	35.44	45.49	97.84	-52.35	Peak
3	0.74	3.49	36.14	39.63	70.20	-30.57	Peak
4	2.84	-2.06	31.92	29.86	69.54	-39.68	Peak
5	8.24	-2.98	31.18	28.20	69.54	-41.34	Peak
6	18.04	-2.90	33.82	30.92	69.54	-38.62	Peak

30MHz-1GHz_Horizontal

Report No.: 2401Y100564E-RF-00


Site : Chamber A
Condition : 3m Horizontal
Project Number : 2401Y100564E-RF
Test Mode : Transmitting

Detector QP RBW: 120KHz Tester : Carl Zhu

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
				In	In 11/		
	MHZ	dB/m	aBuv	aBuv/m	aBuv/m	ав	
1	40.06	-12.42	24.05	11.63	40.00	-28.37	QP
2	76.18	-17.83	31.16	13.33	40.00	-26.67	QP
3	179.31	-13.65	43.80	30.15	43.50	-13.35	QP
4	392.10	-8.79	29.15	20.36	46.00	-25.64	QP
5	695.03	-3.54	26.22	22.68	46.00	-23.32	QP
6	877.94	-1.52	25.62	24.10	46.00	-21.90	QP

30MHz-1GHz_Vertical

Report No.: 2401Y100564E-RF-00

Site : Chamber A
Condition : 3m Vertical
Project Number : 2401Y100564E-RF
Test Mode : Transmitting

Detector QP RBW: 120KHz Tester : Carl Zhu

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	30.45	-6.19	39.09	32.90	40.00	-7.10	QP
2	43.13	-14.66	37.08	22.42	40.00	-17.58	QP
3	74.49	-17.84	38.48	20.64	40.00	-19.36	QP
4	171.69	-13.19	40.78	27.59	43.50	-15.91	QP
5	376.27	-9.25	26.33	17.08	46.00	-28.92	QP
6		-1.31	25.27	23.96	46.00	-22.04	QP

Above 1GHz:

	Reco	eiver			Corrected				
Frequency (MHz)	Reading (dBμV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
			802	.11b					
			Low C	Channel					
4824	54.54	PK	Н	-7.75	46.79	74	-27.21		
4824	47.38	AV	Н	-7.75	39.63	54	-14.37		
4824	55.36	PK	V	-7.75	47.61	74	-26.39		
4824	47.87	AV	V	-7.75	40.12	54	-13.88		
			Middle	Channel					
4874	55.39	PK	Н	-7.61	47.78	74	-26.22		
4874	47.96	AV	Н	-7.61	40.35	54	-13.65		
4874	56.17	PK	V	-7.61	48.56	74	-25.44		
4874	48.42	AV	V	-7.61	40.81	54	-13.19		
	High Channel								
4924	54.93	PK	Н	-7.57	47.36	74	-26.64		
4924	47.61	AV	Н	-7.57	40.04	54	-13.96		
4924	55.75	PK	V	-7.57	48.18	74	-25.82		
4924	48.14	AV	V	-7.57	40.57	54	-13.43		
			802	.11g					
			Low C	Channel					
4824	52.02	PK	Н	-7.75	44.27	74	-29.73		
4824	38.69	AV	Н	-7.75	30.94	54	-23.06		
4824	52.57	PK	V	-7.75	44.82	74	-29.18		
4824	38.94	AV	V	-7.75	31.19	54	-22.81		
			Middle	Channel					
4874	52.87	PK	Н	-7.61	45.26	74	-28.74		
4874	39.15	AV	Н	-7.61	31.54	54	-22.46		
4874	53.39	PK	V	-7.61	45.78	74	-28.22		
4874	39.41	AV	V	-7.61	31.8	54	-22.2		
		,	High C	Channel	.				
4924	52.44	PK	Н	-7.57	44.87	74	-29.13		
4924	38.9	AV	Н	-7.57	31.33	54	-22.67		
4924	52.98	PK	V	-7.57	45.41	74	-28.59		
4924	39.13	AV	V	-7.57	31.56	54	-22.44		

Report No.: 2401Y100564E-RF-00

	Rece	eiver			Corrected		
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			802.1	1n20			
			Low C	Channel			
4824	52.24	PK	Н	-7.75	44.49	74	-29.51
4824	38.95	AV	Н	-7.75	31.2	54	-22.8
4824	52.77	PK	V	-7.75	45.02	74	-28.98
4824	39.19	AV	V	-7.75	31.44	54	-22.56
			Middle	Channel	_		
4874	53.09	PK	Н	-7.61	45.48	74	-28.52
4874	39.41	AV	Н	-7.61	31.8	54	-22.2
4874	53.58	PK	V	-7.61	45.97	74	-28.03
4874	39.64	AV	V	-7.61	32.03	54	-21.97
			High C	Channel			
4924	52.67	PK	Н	-7.57	45.1	74	-28.9
4924	39.16	AV	Н	-7.57	31.59	54	-22.41
4924	53.19	PK	V	-7.57	45.62	74	-28.38
4924	39.38	AV	V	-7.57	31.81	54	-22.19
			802.1	1n40			
			Low C	Channel			
4844	52.36	PK	Н	-7.61	44.75	74	-29.25
4844	39.27	AV	Н	-7.61	31.66	54	-22.34
4844	52.79	PK	V	-7.61	45.18	74	-28.82
4844	39.54	AV	V	-7.61	31.93	54	-22.07
			Middle	Channel			
4874	53.04	PK	Н	-7.61	45.43	74	-28.57
4874	39.65	AV	Н	-7.61	32.04	54	-21.96
4874	53.56	PK	V	-7.61	45.95	74	-28.05
4874	39.87	AV	V	-7.61	32.26	54	-21.74
			High C	Channel			
4904	52.72	PK	Н	-7.53	45.19	74	-28.81
4904	39.45	AV	Н	-7.53	31.92	54	-22.08
4904	53.11	PK	V	-7.53	45.58	74	-28.42
4904	39.68	AV	V	-7.53	32.15	54	-21.85

Report No.: 2401Y100564E-RF-00

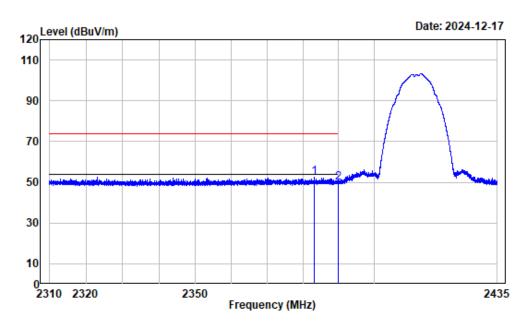
_	Reco	eiver		_	Corrected		
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)
			802.1	1ax20			
			Low C	Channel			
4824	52.28	PK	Н	-7.75	44.53	74	-29.47
4824	38.89	AV	Н	-7.75	31.14	54	-22.86
4824	52.76	PK	V	-7.75	45.01	74	-28.99
4824	39.11	AV	V	-7.75	31.36	54	-22.64
			Middle	Channel			
4874	53.25	PK	Н	-7.61	45.64	74	-28.36
4874	39.46	AV	Н	-7.61	31.85	54	-22.15
4874	53.82	PK	V	-7.61	46.21	74	-27.79
4874	39.79	AV	V	-7.61	32.18	54	-21.82
			High (Channel			
4924	52.71	PK	Н	-7.57	45.14	74	-28.86
4924	39.17	AV	Н	-7.57	31.6	54	-22.4
4924	53.24	PK	V	-7.57	45.67	74	-28.33
4924	39.4	AV	V	-7.57	31.83	54	-22.17
			802.1	1ax40			
			Low C	Channel			
4844	52.08	PK	Н	-7.61	44.47	74	-29.53
4844	39.12	AV	Н	-7.61	31.51	54	-22.49
4844	52.53	PK	V	-7.61	44.92	74	-29.08
4844	39.29	AV	V	-7.61	31.68	54	-22.32
			Middle	Channel			
4874	52.9	PK	Н	-7.61	45.29	74	-28.71
4874	39.57	AV	Н	-7.61	31.96	54	-22.04
4874	53.38	PK	V	-7.61	45.77	74	-28.23
4874	39.75	AV	V	-7.61	32.14	54	-21.86
<u> </u>			High (Channel			
4904	52.43	PK	Н	-7.53	44.9	74	-29.1
4904	39.35	AV	Н	-7.53	31.82	54	-22.18
4904	52.87	PK	V	-7.53	45.34	74	-28.66
4904	39.59	AV	V	-7.53	32.06	54	-21.94

Report No.: 2401Y100564E-RF-00

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading


Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

Test plots

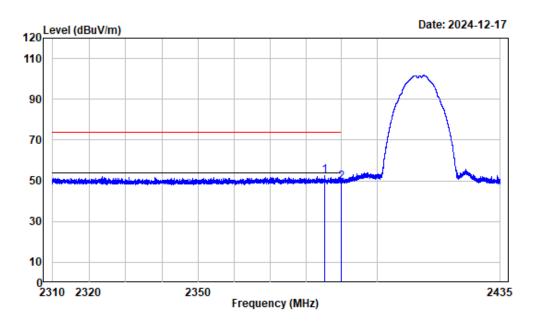
802.11b Left Band edge_Horizontal_Peak

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : 2.4GWiFi-b-2412

Read Limit Over
Level Level Line Limit Remark

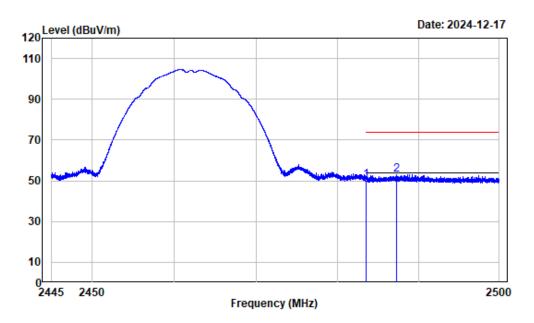
MHz dB/m dBuV dBuV/m dBuV/m dB

1 2383.056 -10.98 63.50 52.52 74.00 -21.48 Peak
2 2390.000 -10.98 60.84 49.86 74.00 -24.14 Peak

Left Band edge_Vertical_Peak

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

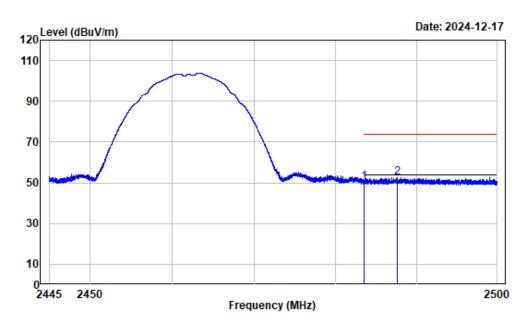
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-b-2412

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2385.244	-10.97	63.38	52.41	74.00	-21.59	Peak
2	2390.000	-10.98	60.56	49.58	74.00	-24.42	Peak

Right Band edge_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-b-2462

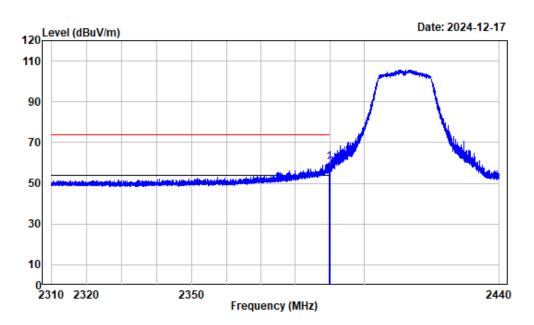
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	61.46	50.49	74.00	-23.51	Peak
2	2487.239	-10.97	64.12	53.15	74.00	-20.85	Peak

Right Band edge_Vertical_Peak

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-b-2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2483.500	-10.97	61.04	50.07	74.00	-23.93	Peak	
2	2487.658	-10.98	63.51	52.53	74.00	-21.47	Peak	

802.11g Left Band edge_Horizontal_Peak

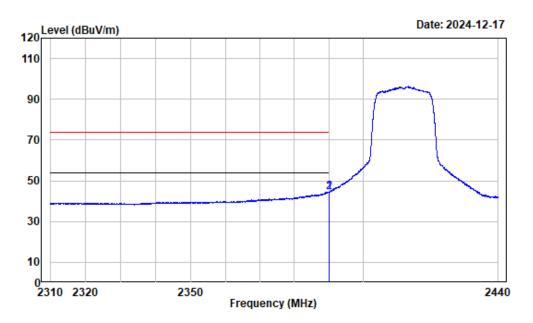
Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-g-2412


Read Limit Over Level Level Line Limit Remark

MHz dB/m dBuV/m dBuV/m dBuV/m dB

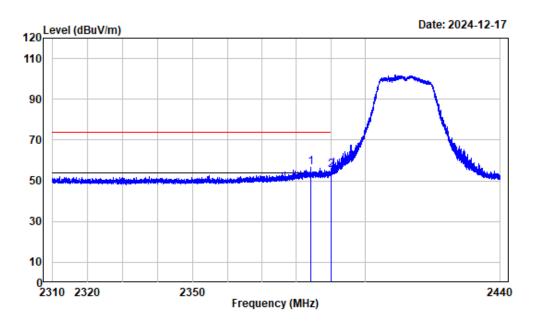
1 2389.846 -10.98 71.29 60.31 74.00 -13.69 Peak
2 2390.000 -10.98 68.48 57.50 74.00 -16.50 Peak

Left Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-g-2412

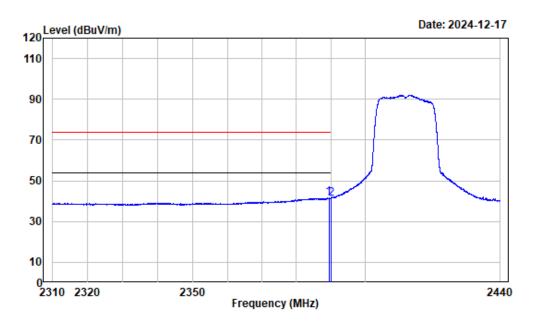
	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2389.976	-10.98	55.41	44.43	54.00	-9.57	Average	
2	2390.000	-10.98	55.37	44.39	54.00	-9.61	Average	

Left Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-g-2412

Left Band edge_Vertical_Average

Report No.: 2401Y100564E-RF-00

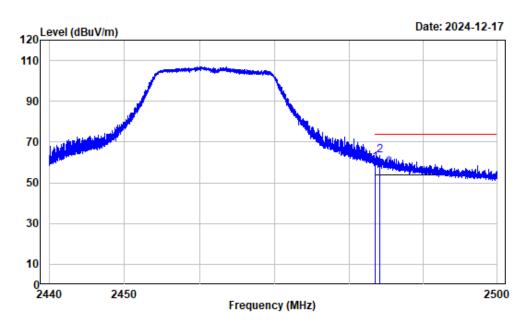
Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-g-2412


Read Limit Over
Line Limit Remark

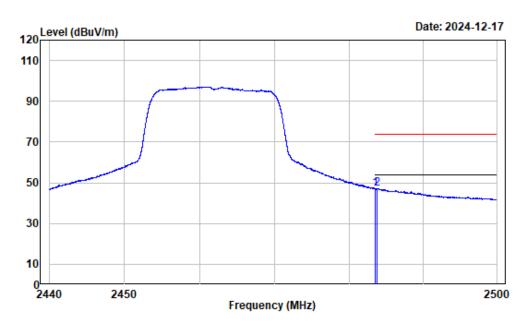
MHz dB/m dBuV dBuV/m dBuV/m dB dB

1 2389.424 -10.98 52.46 41.48 54.00 -12.52 Average
2 2390.000 -10.98 52.25 41.27 54.00 -12.73 Average

Right Band edge_Horizontal_Peak

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF

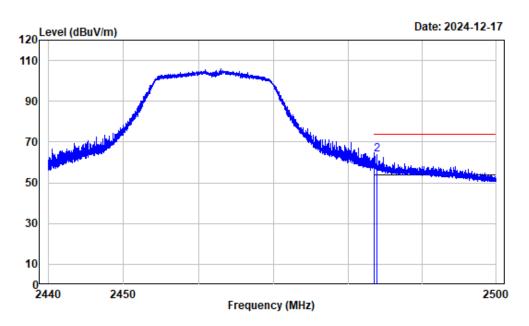

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	70.93	59.96	74.00	-14.04	Peak
2	2484.083	-10.97	74.54	63.57	74.00	-10.43	Peak

Right Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

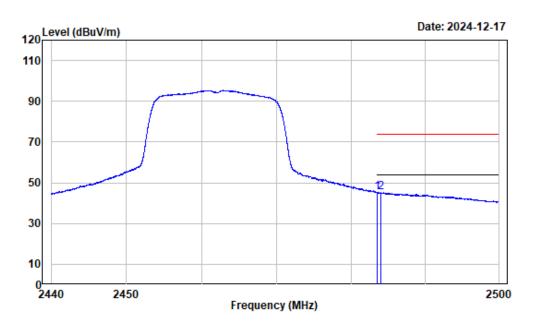
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2483.500	-10.97	57.93	46.96	54.00	-7.04	Average	
2	2483.775	-10.97	58.27	47.30	54.00	-6.70	Average	

Right Band edge_Vertical_Peak

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

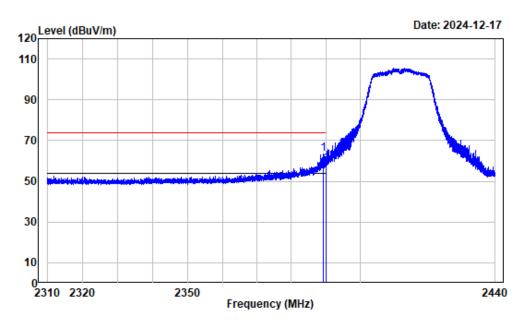
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	68.55	57.58	74.00	-16.42	Peak
2	2483.910	-10.97	74.66	63.69	74.00	-10.31	Peak

Right Band edge_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2483.500	-10.97	56.09	45.12	54.00	-8.88	Average	
2	2483.978	-10.97	56.34	45.37	54.00	-8.63	Average	

802.11n20 Left Band edge_Horizontal_Peak

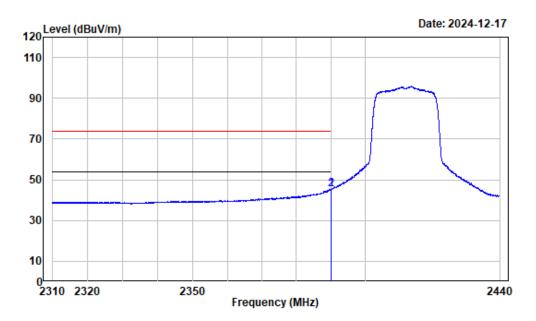
Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-n20-2412


Read Limit Over
Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 2389.212 -10.98 74.33 63.35 74.00 -10.65 Peak
2 2390.000 -10.98 68.79 57.81 74.00 -16.19 Peak

Left Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.976	-10.98	56.26	45.28	54.00	-8.72	Average
2	2390.000	-10.98	56.23	45.25	54.00	-8.75	Average

Left Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

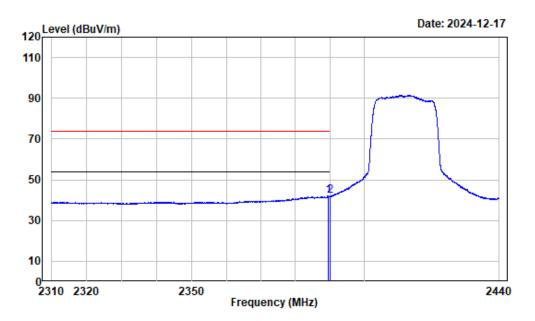
Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

Note : 2.4GWiFi-n20-2412


Read Limit Over
Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 2389.879 -10.98 69.08 58.10 74.00 -15.90 Peak
2 2390.000 -10.98 66.25 55.27 74.00 -18.73 Peak

Left Band edge_Vertical_Average

Report No.: 2401Y100564E-RF-00

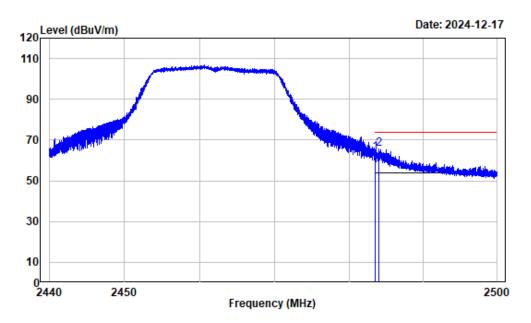
Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-n20-2412


Read Limit Over Line Limit Remark

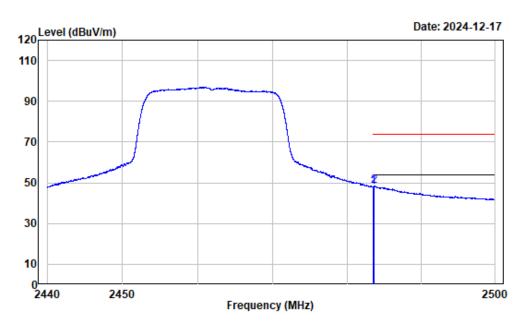
MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 2389.456 -10.98 53.16 42.18 54.00 -11.82 Average 2 2390.000 -10.98 52.99 42.01 54.00 -11.99 Average

Right Band edge_Horizontal_Peak

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

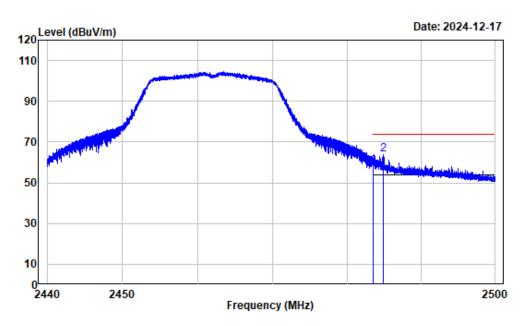
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	74.69	63.72	74.00	-10.28	Peak
2	2484.015	-10.97	76.84	65.87	74.00	-8.13	Peak

Right Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

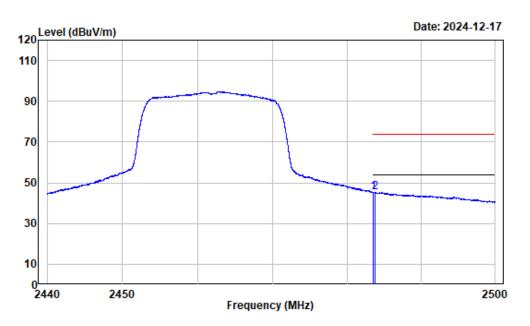
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	59.06	48.09	54.00	-5.91	Average
2	2483.618	-10.97	59.29	48.32	54.00	-5.68	Average

Right Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

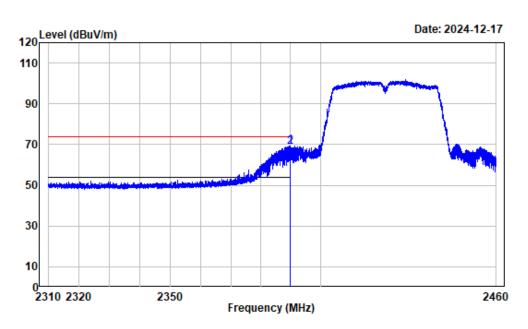
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	69.19	58.22	74.00	-15.78	Peak
2	2484.856	-10.97	74.88	63.91	74.00	-10.09	Peak

Right Band edge_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

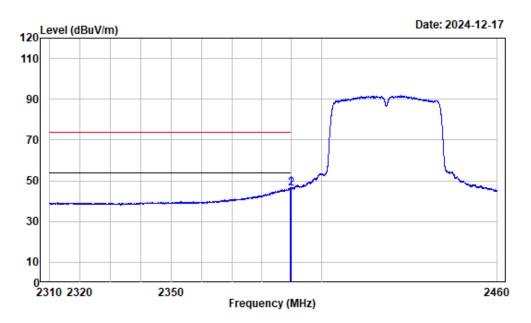
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	56.17	45.20	54.00	-8.80	Average
2	2483.723	-10.97	56.44	45.47	54.00	-8.53	Average

802.11n40 Left Band edge_Horizontal_Peak

Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

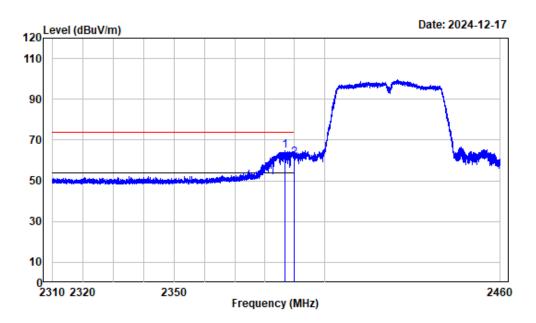

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2389.923	-10.98	80.24	69.26	74.00	-4.74	Peak	
2	2390.000	-10.98	79.89	68.91	74.00	-5.09	Peak	

Left Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

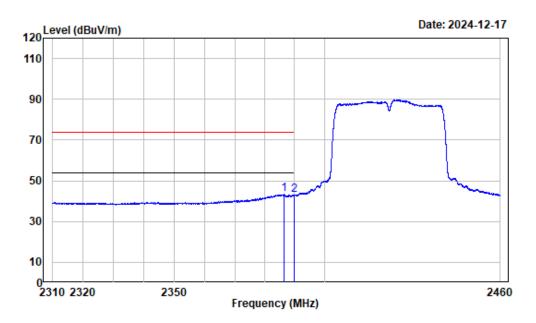
Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.679	-10.98	57.59	46.61	54.00	-7.39	Average
2	2390.000	-10.98	57.12	46.14	54.00	-7.86	Average

Left Band edge_Vertical_Peak

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

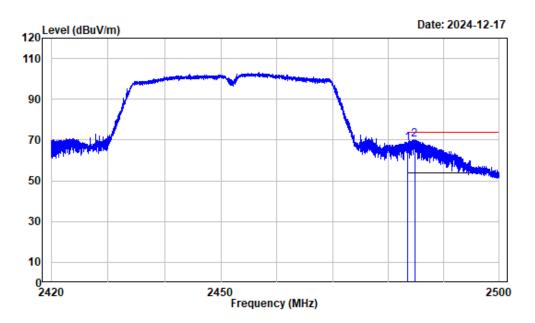
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2386.716	-10.97	75.69	64.72	74.00	-9.28	Peak
2	2390.000	-10.98	71.93	60.95	74.00	-13.05	Peak

Left Band edge_Vertical_Average

Report No.: 2401Y100564E-RF-00

Condition : Vertical


Project No. : 2401Y100564E-RF

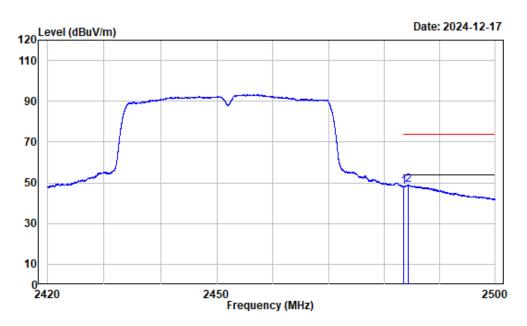
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2386.491	-10.97	54.28	43.31	54.00	-10.69	Average
2	2390.000	-10.98	53.78	42.80	54.00	-11.20	Average

Right Band edge_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF

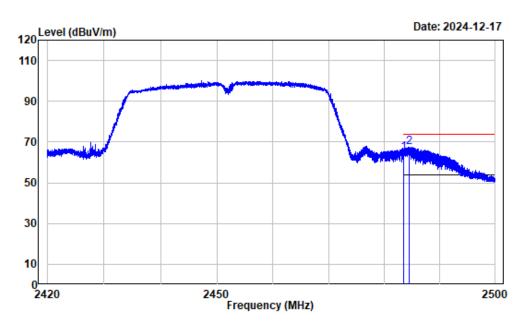

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	79.29	68.32	74.00	-5.68	Peak
2	2484.678	-10.97	81.04	70.07	74.00	-3.93	Peak

Right Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

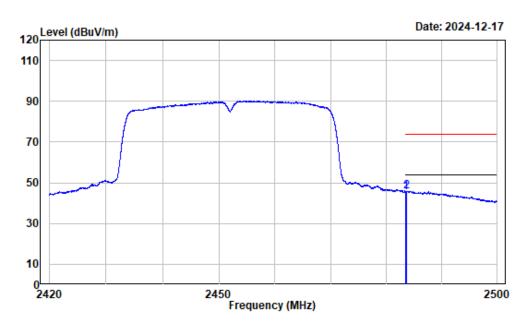
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	59.02	48.05	54.00	-5.95	Average
2	2484.288	-10.97	59.81	48.84	54.00	-5.16	Average

Right Band edge_Vertical_Peak

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

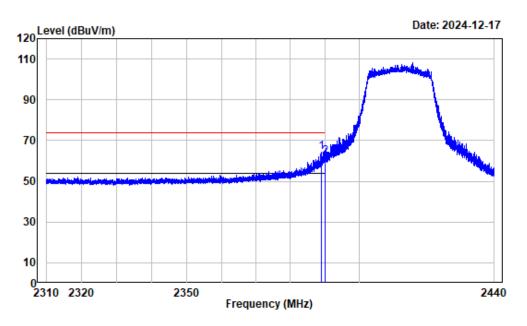
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2483.500	-10.97	75.70	64.73	74.00	-9.27	Peak	
2	2484.378	-10.97	78.52	67.55	74.00	-6.45	Peak	

Right Band edge_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	2483.500	-10.97	56.41	45.44	54.00	-8.56	Average	
2	2483.678	-10.97	56.83	45.86	54.00	-8.14	Average	

802.11ax20 Left Band edge_Horizontal_Peak

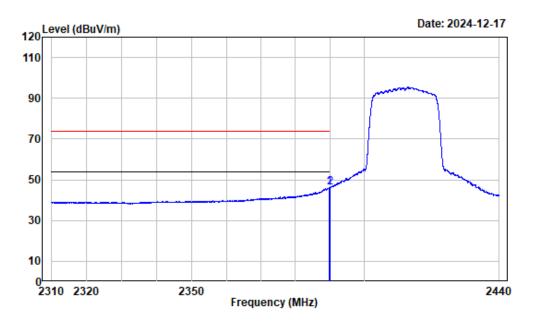
Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-ax20-2412


Read Limit Over
Level Level Line Limit Remark

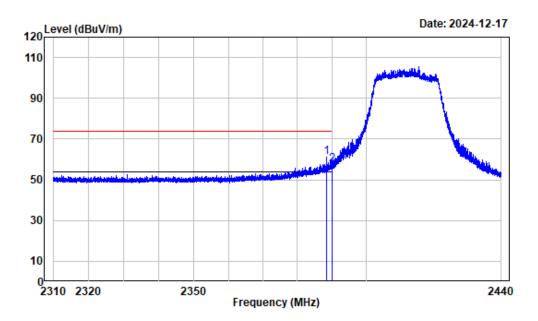
MHz dB/m dBuV dBuV/m dBuV/m dB

1 2389.017 -10.98 75.27 64.29 74.00 -9.71 Peak
2 2390.000 -10.98 73.00 62.02 74.00 -11.98 Peak

Left Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

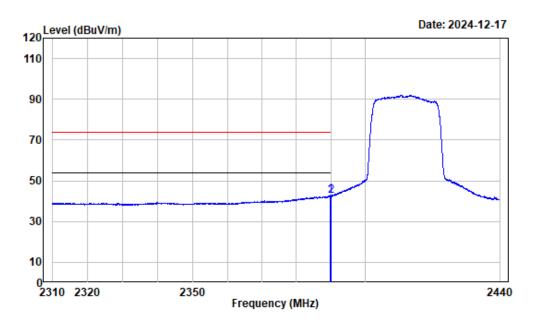
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.846	-10.98	57.26	46.28	54.00	-7.72	Average
2	2390.000	-10.98	56.95	45.97	54.00	-8.03	Average

Left Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical


Project No. : 2401Y100564E-RF

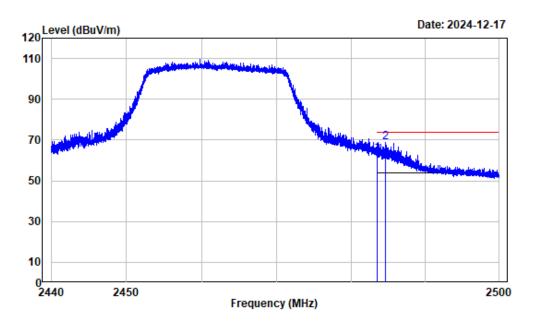
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2388.400	-10.98	72.12	61.14	74.00	-12.86	Peak
2	2390.000	-10.98	68.36	57.38	74.00	-16.62	Peak

Left Band edge_Vertical_Average

Condition : Vertical


Project No. : 2401Y100564E-RF

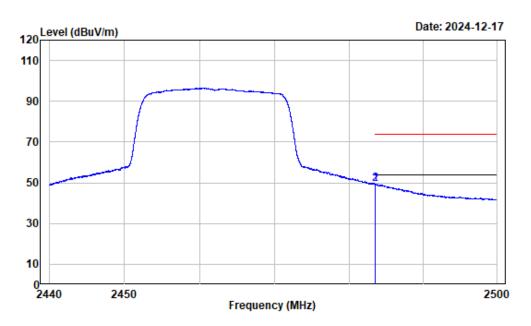
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2389.716	-10.98	53.81	42.83	54.00	-11.17	Average
2	2390.000	-10.98	53.33	42.35	54.00	-11.65	Average

Right Band edge_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

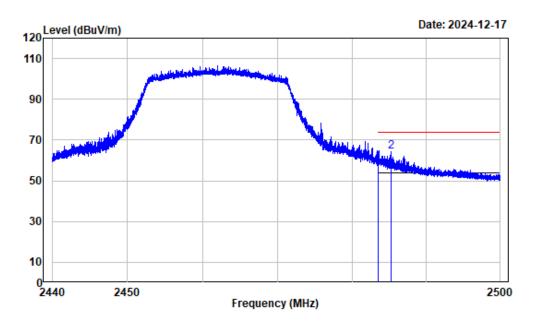
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	74.42	63.45	74.00	-10.55	Peak
2	2484.653	-10.97	79.77	68.80	74.00	-5.20	Peak

Right Band edge_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	60.25	49.28	54.00	-4.72	Average
2	2483.551	-10.97	60.27	49.30	54.00	-4.70	Average

Right Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

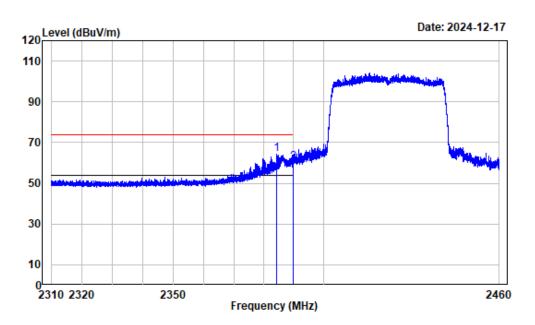
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	70.29	59.32	74.00	-14.68	Peak
2	2485.201	-10.97	75.40	64.43	74.00	-9.57	Peak

Right Band edge_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF

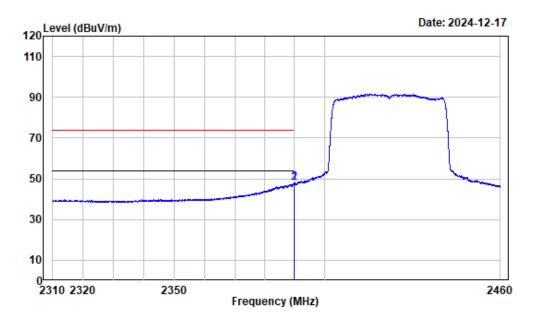

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	2483.500	-10.97	56.84	45.87	54.00	-8.13	Average	
2	2483.618	-10.97	57.01	46.04	54.00	-7.96	Average	

802.11ax40 Left Band edge_Horizontal_Peak

Report No.: 2401Y100564E-RF-00


Condition : Horizontal Project No. : 2401Y100564E-RF

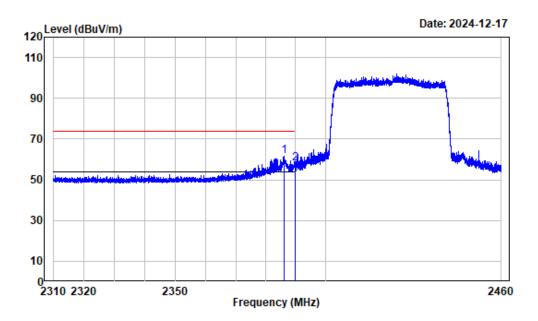
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2384.278	-10.97	75.50	64.53	74.00	-9.47	Peak
2	2390.000	-10.98	71.38	60.40	74.00	-13.60	Peak

Left Band edge_Horizontal_Average

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		-
1	2389.979	-10.98	59.00	48.02	54.00	-5.98	Average	
2	2390.000	-10.98	58.95	47.97	54.00	-6.03	Average	

Left Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2386.228	-10.97	72.36	61.39	74.00	-12.61	Peak
2	2390.000	-10.98	68.75	57.77	74.00	-16.23	Peak

Left Band edge_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF

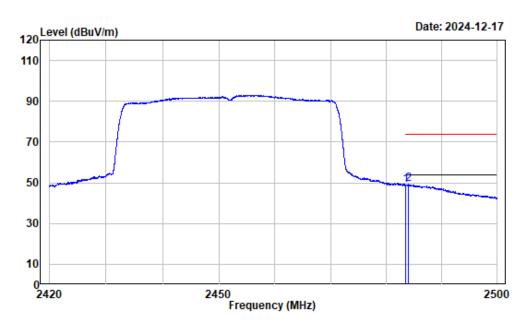
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2384.972	-10.97	54.17	43.20	54.00	-10.80	Average
2	2390.000	-10.98	54.17	43.19	54.00	-10.81	Average

Right Band edge_Horizontal_Peak

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

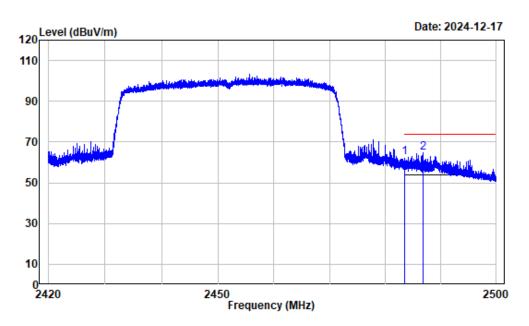
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	2483.500	-10.97	75.57	64.60	74.00	-9.40	Peak	
2	2485.658	-10.97	77.86	66.89	74.00	-7.11	Peak	

Right Band edge_Horizontal_Average

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

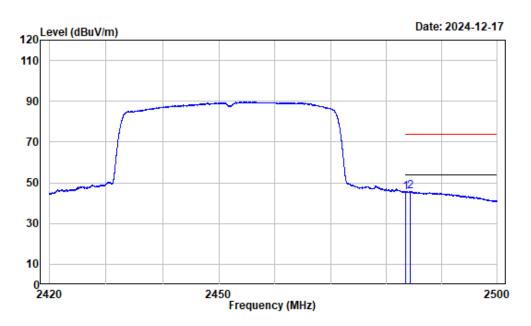
Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	59.84	48.87	54.00	-5.13	Average
2	2483.988	-10.97	60.13	49.16	54.00	-4.84	Average

Right Band edge_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

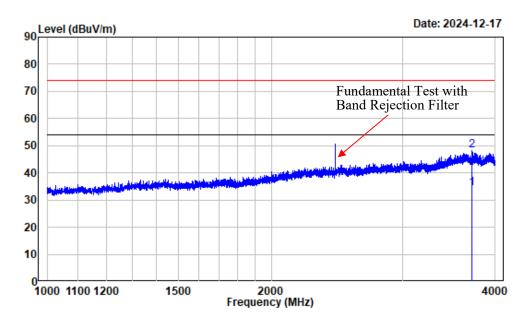
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	73.44	62.47	74.00	-11.53	Peak
2	2486.818	-10.97	75.65	64.68	74.00	-9.32	Peak

Right Band edge_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	56.32	45.35	54.00	-8.65	Average
2	2484.208	-10.97	56.68	45.71	54.00	-8.29	Average

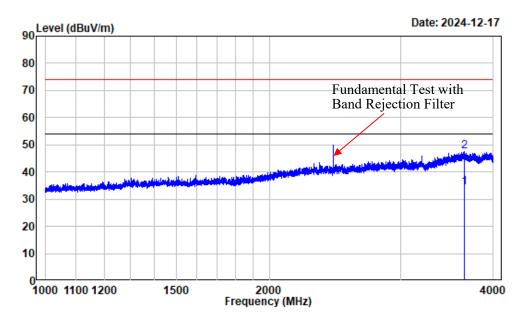
Listed with the worst harmonic margin test plot

802.11b 1-4GHz_Horizontal

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

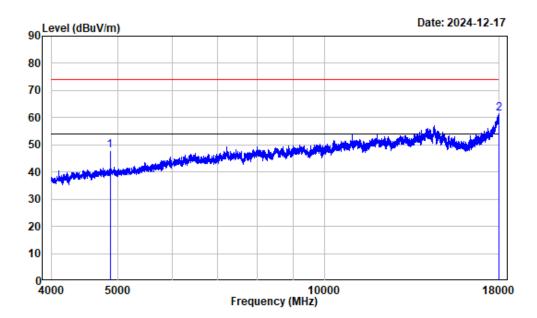
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3726.591	-9.54	43.69	34.15	54.00	-19.85	Average
2	3726.591	-9.54	57.71	48.17	74.00	-25.83	Peak

1-4GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

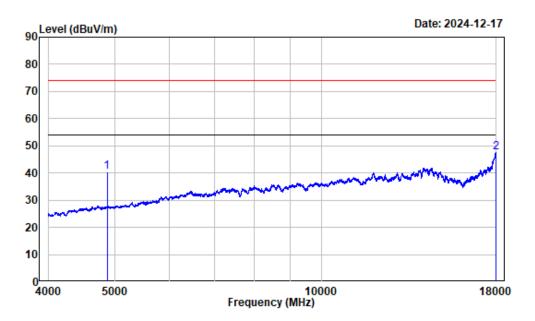
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3656.832	-9.73	43.93	34.20	54.00	-19.80	Average
2	3656.832	-9.73	57.33	47.60	74.00	-26.40	Peak

4-18GHz_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF

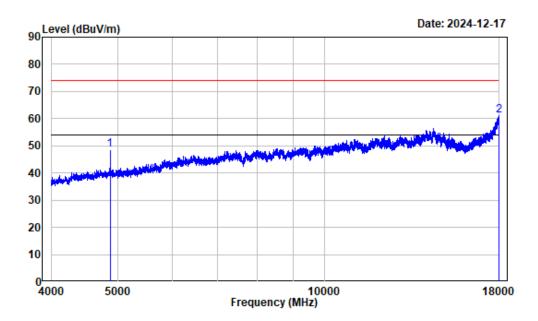

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	4874.000	-7.61	55.39	47.78	74.00	-26.22	Peak	
2	17996.500	13.19	48.18	61.37	74.00	-12.63	Peak	

4-18GHz_Horizontal_Average

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

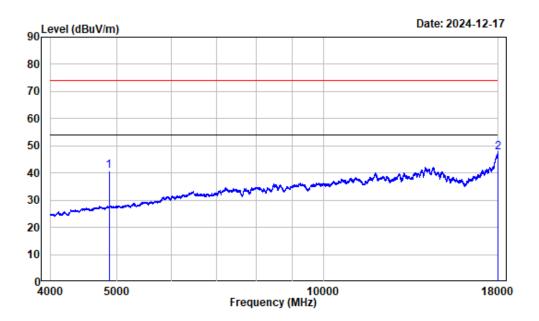
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	47.96	40.35	54.00	-13.65	Average
2	17997.750	13.20	34.40	47.60	54.00	-6.40	Average

4-18GHz_Vertical_Peak

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

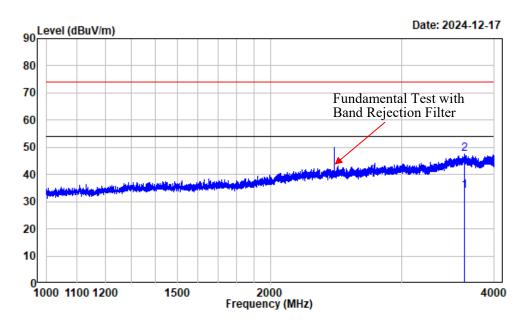
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4874.000	-7.61	56.17	48.56	74.00	-25.44	Peak	
2	17996.500	13.19	47.82	61.01	74.00	-12.99	Peak	

4-18GHz_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

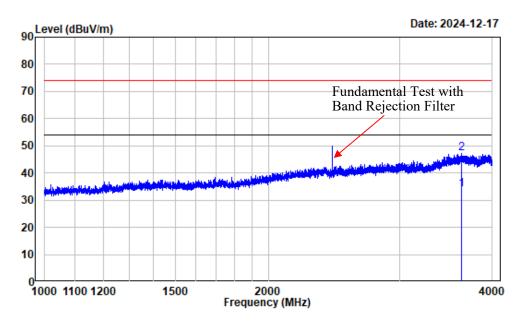
	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4874.000	-7.61	48.42	40.81	54.00	-13.19	Average	
2	17993.000	13.17	34.51	47.68	54.00	-6.32	Average	

802.11g 1-4GHz_Horizontal

Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3644.081	-9.83	43.69	33.86	54.00	-20.14	Average
2	3644.081	-9.83	57.44	47.61	74.00	-26.39	Peak

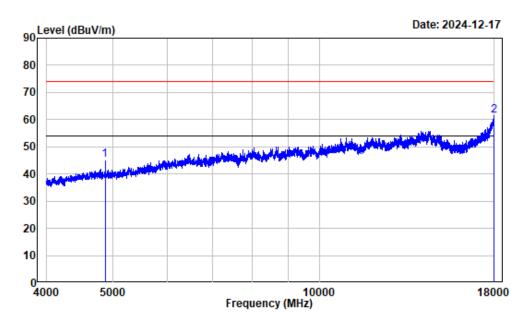
1-4GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

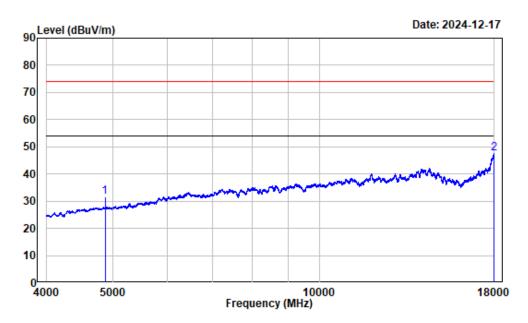

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3638.455	-9.87	43.81	33.94	54.00	-20.06	Average
2	3638.455	-9.87	57.17	47.30	74.00	-26.70	Peak

4-18GHz_Horizontal_Peak

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

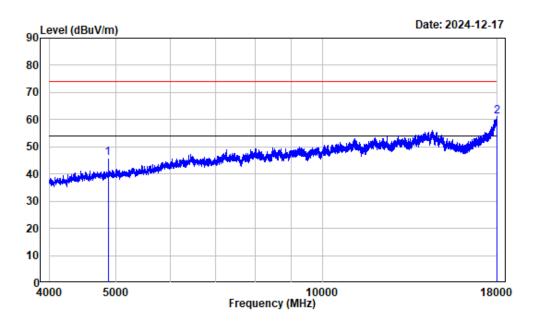
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	52.87	45.26	74.00	-28.74	Peak
2	17979.000	13.09	48.27	61.36	74.00	-12.64	Peak

4-18GHz_Horizontal_Average

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4874.000	-7.61	39.15	31.54	54.00	-22.46	Average	
2	17996.500	13.19	34.39	47.58	54.00	-6.42	Average	

4-18GHz_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

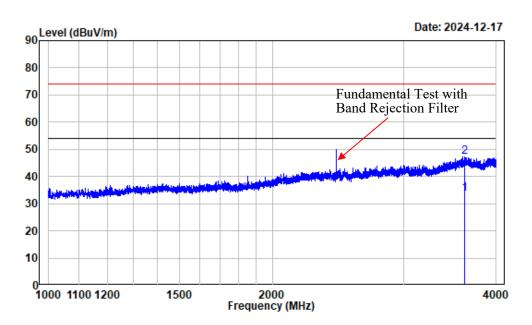
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.39	45.78	74.00	-28.22	Peak
2	17965.000	13.02	48.06	61.08	74.00	-12.92	Peak

4-18GHz_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

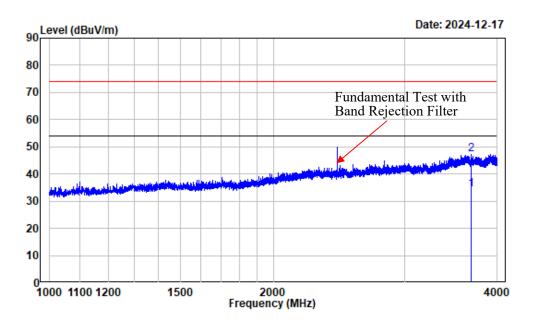
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	39.41	31.80	54.00	-22.20	Average
2	17989.500	13.16	34.60	47.76	54.00	-6.24	Average

802.11n20 1-4GHz_Horizontal

Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

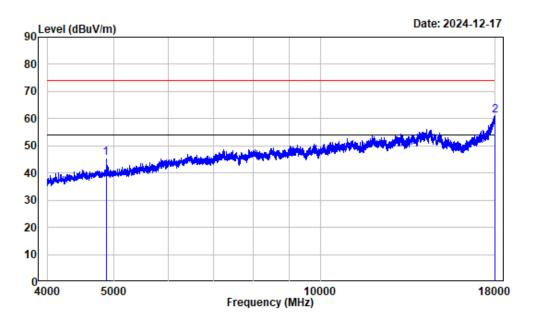
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3623.078	-9.99	43.72	33.73	54.00	-20.27	Average
2	3623.078	-9.99	57.10	47.11	74.00	-26.89	Peak

1-4GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

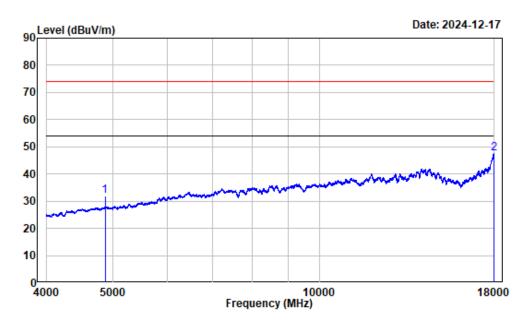
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3687.586	-9.55	43.87	34.32	54.00	-19.68	Average
2	3687.586	-9.55	56.79	47.24	74.00	-26.76	Peak

4-18GHz_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

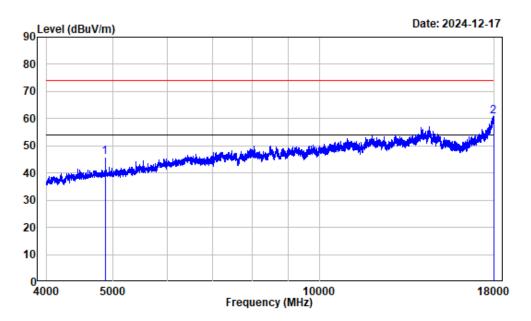
Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.09	45.48	74.00	-28.52	Peak
2	17987.750	13.13	47.99	61.12	74.00	-12.88	Peak

4-18GHz_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

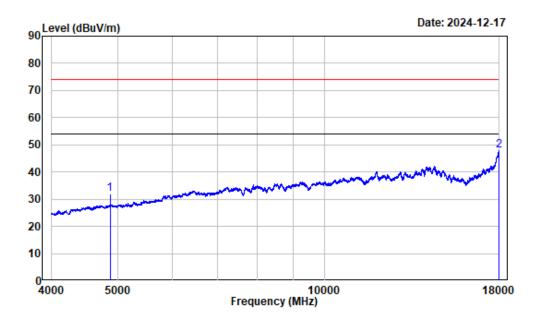
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	39.41	31.80	54.00	-22.20	Average
2	17996.940	13.20	34.32	47.52	54.00	-6.48	Average

4-18GHz_Vertical_Peak

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

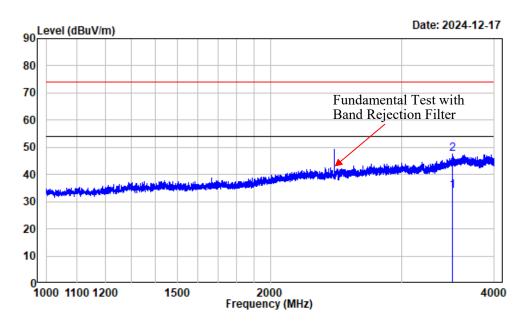
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.58	45.97	74.00	-28.03	Peak
2	17957.990	13.00	47.87	60.87	74.00	-13.13	Peak

4-18GHz_Vertical_Average

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

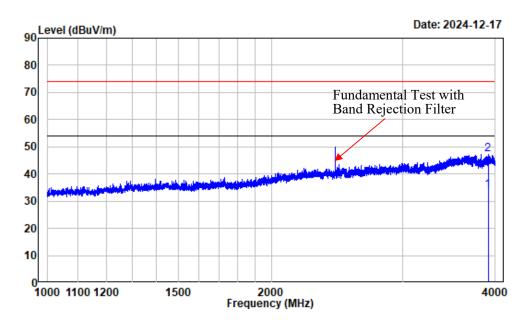
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	39.64	32.03	54.00	-21.97	Average
2	17994.750	13.17	34.57	47.74	54.00	-6.26	Average

802.11n40 1-4GHz_Horizontal

Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

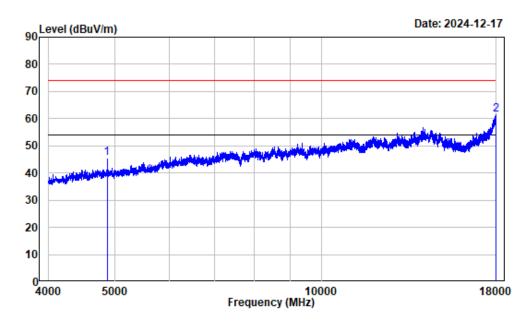
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3516.189	-9.81	43.66	33.85	54.00	-20.15	Average
2	3516.189	-9.81	57.43	47.62	74.00	-26.38	Peak

1-4GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

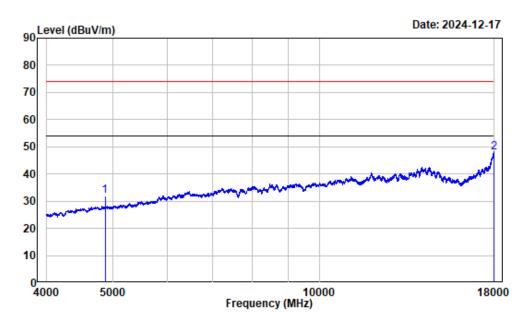
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
	3912.239						
2	3912.239	-9.71	56.84	47.13	74.00	-26.87	Peak

4-18GHz_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.04	45.43	74.00	-28.57	Peak
2	17980.750	13.11	48.32	61.43	74.00	-12.57	Peak

4-18GHz_Horizontal_Average

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF

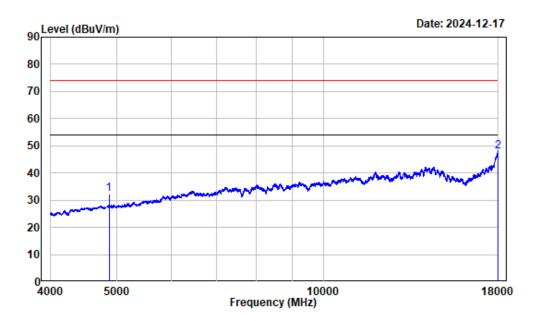
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4874.000	-7.61	39.65	32.04	54.00	-21.96	Average	
2	17986.000	13.13	34.64	47.77	54.00	-6.23	Average	

4-18GHz_Vertical_Peak

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

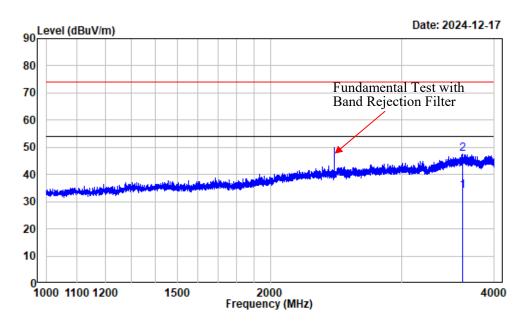
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4874.000	-7.61	53.56	45.95	74.00	-28.05	Peak	
2	17970.250	13.05	48.09	61.14	74.00	-12.86	Peak	

4-18GHz_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

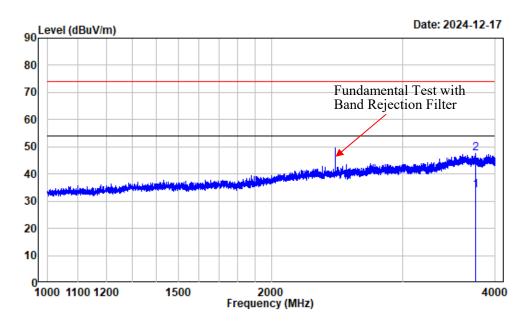
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	39.87	32.26	54.00	-21.74	Average
2	17993.000	13.17	34.77	47.94	54.00	-6.06	Average

802.11ax20 1-4GHz_Horizontal

Report No.: 2401Y100564E-RF-00

Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3629.454	-9.93	43.85	33.92	54.00	-20.08	Average
2	3629.454	-9.93	57.37	47.44	74.00	-26.56	Peak

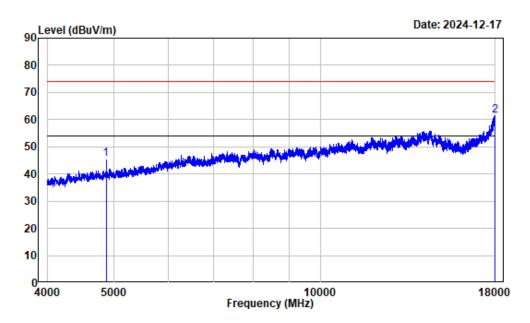
1-4GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

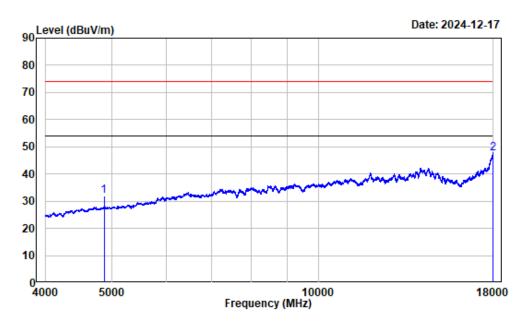
: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3768.596	-9.67	43.74	34.07	54.00	-19.93	Average
2	3768.596	-9.67	57.13	47.46	74.00	-26.54	Peak

4-18GHz_Horizontal_Peak

Report No.: 2401Y100564E-RF-00

Condition : Horizontal
Project No. : 2401Y100564E-RF

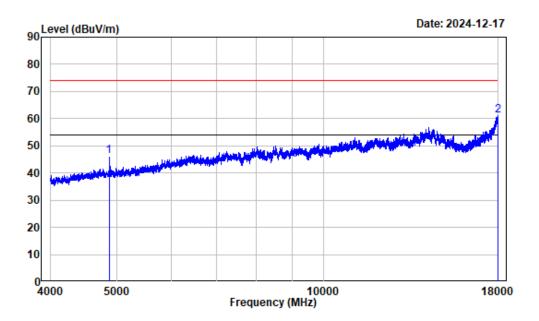

Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.25	45.64	74.00	-28.36	Peak
2	17996.500	13.19	48.13	61.32	74.00	-12.68	Peak

4-18GHz_Horizontal_Average

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

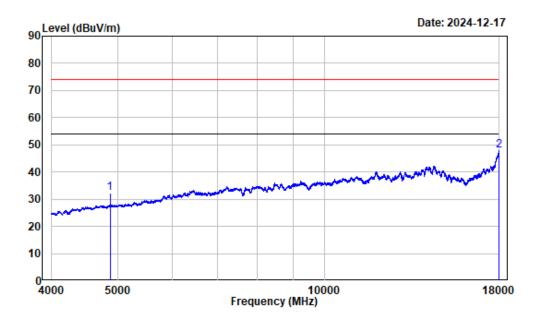
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4874.000	-7.61	39.46	31.85	54.00	-22.15	Average	
2	17993.000	13.17	34.45	47.62	54.00	-6.38	Average	

4-18GHz_Vertical_Peak

Condition : Vertical


Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

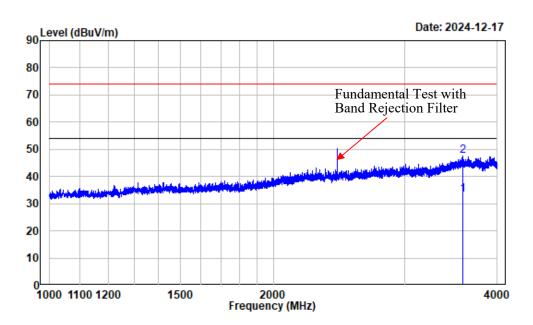
Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.82	46.21	74.00	-27.79	Peak
2	17975.500	13.08	48.22	61.30	74.00	-12.70	Peak

4-18GHz_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	39.79	32.18	54.00	-21.82	Average
2	17998.250	13.20	34.57	47.77	54.00	-6.23	Average

802.11ax40 1-4GHz_Horizontal

Report No.: 2401Y100564E-RF-00

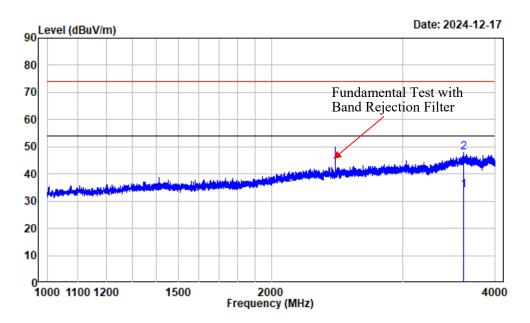
Condition : Horizontal Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

Note : 2.4GWiFi-ax40-2437


Read Limit Over Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

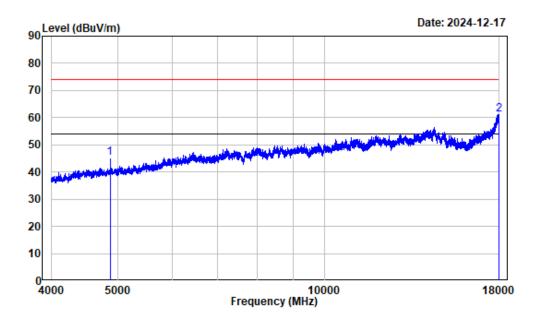
1 3600.200 -10.17 43.59 33.42 54.00 -20.58 Average
2 3600.200 -10.17 57.68 47.51 74.00 -26.49 Peak

1-4GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

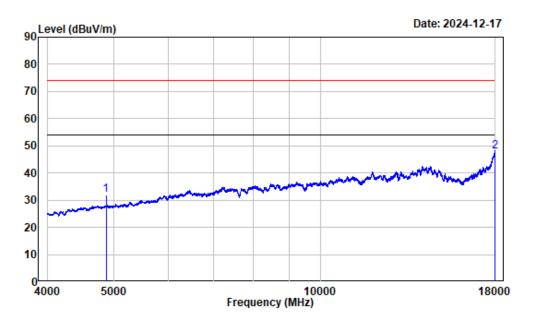
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3630.204	-9.94	43.87	33.93	54.00	-20.07	Average
2	3630.204	-9.94	57.69	47.75	74.00	-26.25	Peak

4-18GHz_Horizontal_Peak

Condition : Horizontal
Project No. : 2401Y100564E-RF

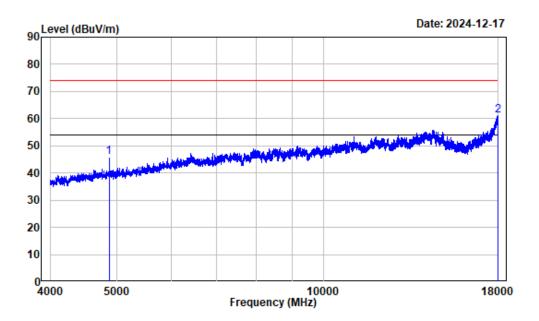

Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4874.000	-7.61	52.90	45.29	74.00	-28.71	Peak	
2	17996.500	13.19	48.06	61.25	74.00	-12.75	Peak	

4-18GHz_Horizontal_Average

Report No.: 2401Y100564E-RF-00


Condition : Horizontal
Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

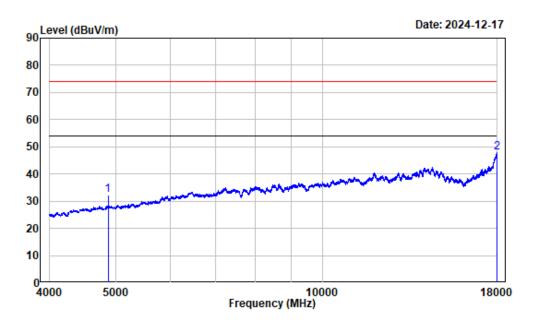
Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	4874.000	-7.61	39.57	31.96	54.00	-22.04	Average	
2	17986.000	13.13	34.70	47.83	54.00	-6.17	Average	

4-18GHz_Vertical_Peak

Condition : Vertical

Project No. : 2401Y100564E-RF


Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 2.4GWiFi-ax40-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	53.38	45.77	74.00	-28.23	Peak
2	17968.500	13.05	48.14	61.19	74.00	-12.81	Peak

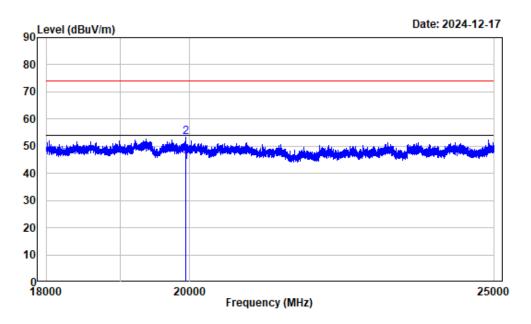
4-18GHz_Vertical_Average

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak


Note : 2.4GWiFi-ax40-2437

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4874.000	-7.61	39.75	32.14	54.00	-21.86	Average
2	17994.750	13.17	34.80	47.97	54.00	-6.03	Average

18-25GHz (Only with worst case margin mode plot):

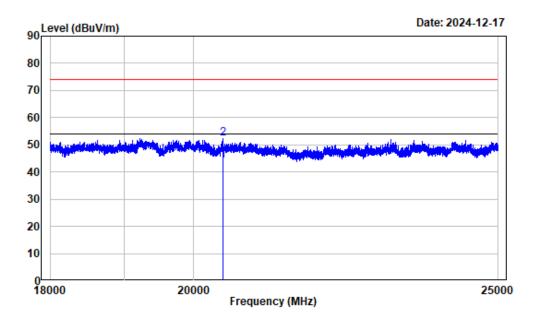
Report No.: 2401Y100564E-RF-00

18-25GHz_Horizontal

Condition : Horizontal
Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-b-2437

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	19933.990	15.43	28.89	44.32	54.00	-9.68	Average	
2	19933.990	15.43	37.80	53.23	74.00	-20.77	Peak	

18-25GHz_Vertical

Report No.: 2401Y100564E-RF-00

Condition : Vertical

Project No. : 2401Y100564E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : 2.4GWiFi-b-2437

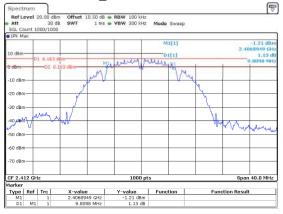
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	20429.300	15.60	28.49	44.09	54.00	-9.91	Average
2	20429.300	15.60	36.77	52.37	74.00	-21.63	Peak

6dB Emission Bandwidth

Test Information:

Sample No.:	2T9U-6	Test Date:	2024/11/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Y100564E-RF-00

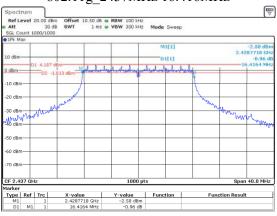

Temperature: (°C):	25	Relative Humidity: (%)	45	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

Mode	Antenna	Test Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
		2412	9.810	≥0.5	Pass
802.11b	Chain 0	2437	10.130	≥0.5	Pass
		2462	10.090	≥0.5	Pass
		2412	16.416	≥0.5	Pass
802.11g	Chain 0	2437	16.416	≥0.5	Pass
		2462	16.416	≥0.5	Pass
		2412	17.658	≥0.5	Pass
802.11n20	Chain 0	2437	17.698	≥0.5	Pass
		2462	17.658	≥0.5	Pass
		2422	35.475	≥0.5	Pass
802.11n40	Chain 0	2437	35.475	≥0.5	Pass
		2452	35.475	≥0.5	Pass
		2412	19.099	≥0.5	Pass
802.11ax20_RU_Full	Chain 0	2437	19.099	≥0.5	Pass
		2462	19.059	≥0.5	Pass
		2422	35.636	≥0.5	Pass
802.11ax40_RU_Full	Chain 0	2437	35.636	≥0.5	Pass
		2452	35.636	≥0.5	Pass

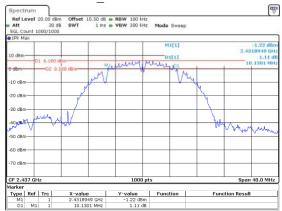
Report No.: 2401Y100564E-RF-00

2.4G

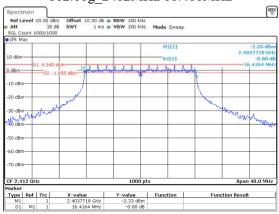
802.11b 2412MHz 9.810MHz



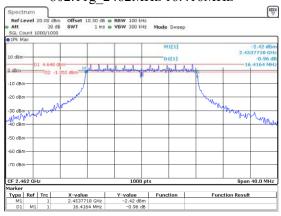
$802.11b_2462MHz\ 10.090MHz$


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

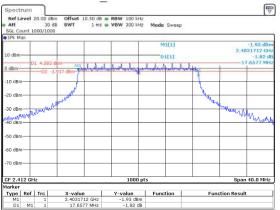
802.11g 2437MHz 16.416MHz


802.11b 2437MHz 10.130MHz

Report No.: 2401Y100564E-RF-00

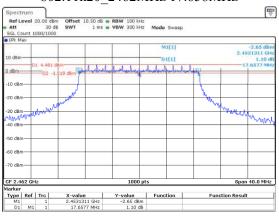

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:03:30

802.11g_2412MHz 16.416MHz

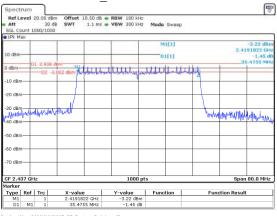


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11g 2462MHz 16.416MHz

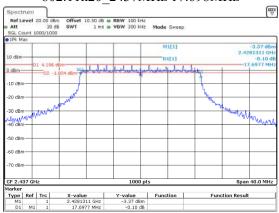


802.11n20 2412MHz 17.658MHz

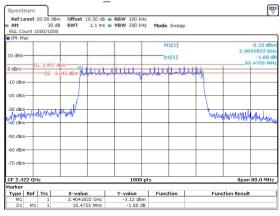

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11n20 2462MHz 17.658MHz

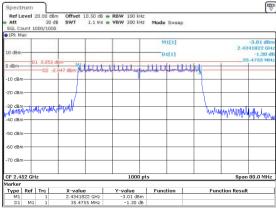
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu


802.11n40 2437MHz 35.475MHz

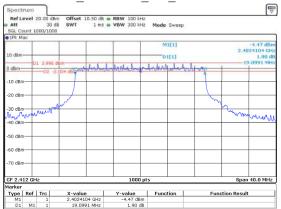
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:14:55


802.11n20 2437MHz 17.698MHz

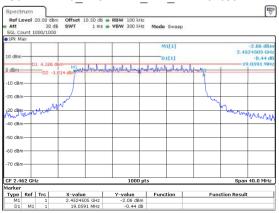
Report No.: 2401Y100564E-RF-00


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

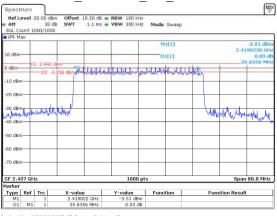
802.11n40 2422MHz 35.475MHz


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:14:24

802.11n40_2452MHz 35.475MHz

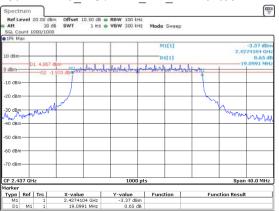

ProjectNo.:2401Y100564E-RF Tester:Rainb

802.11ax20_2412MHz_RU_Full 19.099MHz

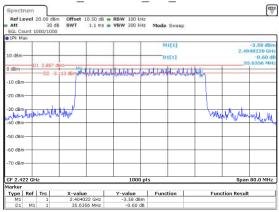

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax20 2462MHz RU Full 19.059MHz

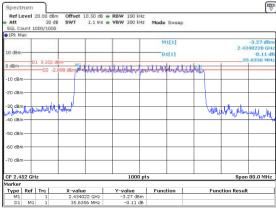
ProjectNo.:2401Y100564B-RF Tester:Rainbow Zhu


802.11ax40_2437MHz_RU_Full 35.636MHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:20:46


802.11ax20_2437MHz_RU_Full 19.099MHz

Report No.: 2401Y100564E-RF-00


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax40 2422MHz RU Full 35.636MHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax40_2452MHz_RU_Full 35.636MHz

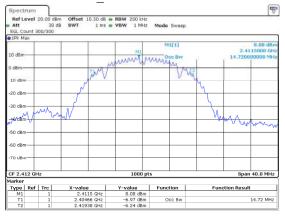
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zh

99% Occupied Bandwidth

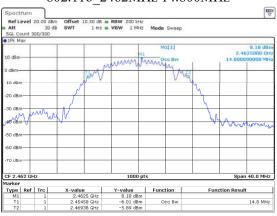
Test Information:

Sample No.:	2T9U-6	Test Date:	2024/11/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Y100564E-RF-00

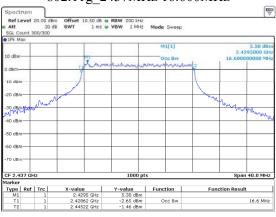

Temperature: (°C):	25	Relative Humidity: (%)	45	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

Mode	Antenna	Test Frequency (MHz)	99% OBW (MHz)
		2412	14.720
802.11b	Chain 0	2437	14.760
		2462	14.800
		2412	16.640
802.11g	Chain 0	2437	16.600
	Chain 0	2462	16.680
		2412	17.840
802.11n20	Chain 0	2437	17.840
		2462	17.880
		2422	36.320
802.11n40	Chain 0	2437	36.320
		2452	36.320
		2412	19
802.11ax20_RU_Full	Chain 0	2437	19.040
		2462	19.040
		2422	37.840
802.11ax40_RU_Full	Chain 0	2437	37.920
		2452	37.920


Report No.: 2401Y100564E-RF-00

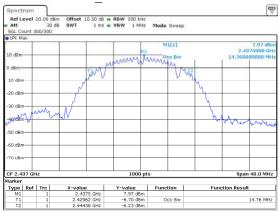
2.4G

802.11b_2412MHz 14.720MHz



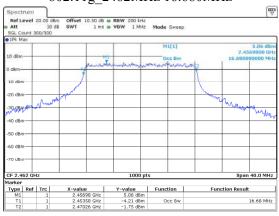
802.11b_2462MHz 14.800MHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

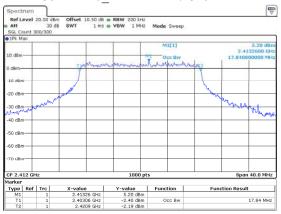

802.11g 2437MHz 16.600MHz

ProjectNo.:2401Y100564E-RF Tester:Raink Date: 5.NOV.2024 15:10:24

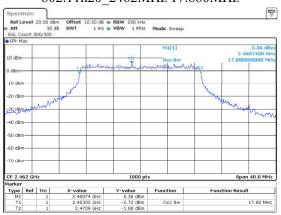
802.11b 2437MHz 14.760MHz


Report No.: 2401Y100564E-RF-00

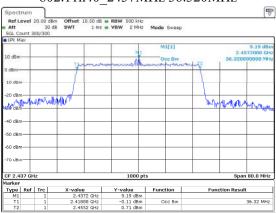
802.11g_2412MHz 16.640MHz



802.11g 2462MHz 16.680MHz


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zh Date: 5.NOV.2024 15:11:12

802.11n20 2412MHz 17.840MHz

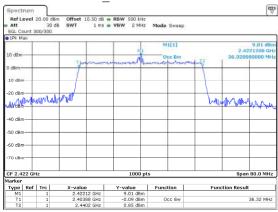

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11n20 2462MHz 17.880MHz

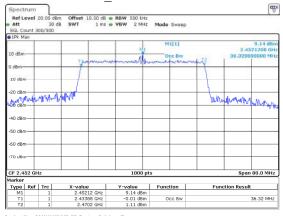
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11n40 2437MHz 36.320MHz

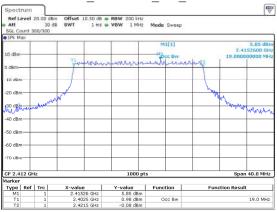
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 15:14:47


802.11n20 2437MHz 17.840MHz

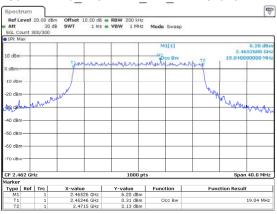
Report No.: 2401Y100564E-RF-00


ProjectNo.:2401Y100564E=RF Tester:Rainbow Zhu

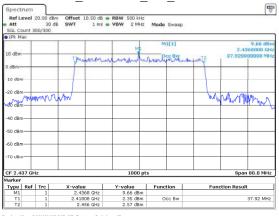
802.11n40 2422MHz 36.320MHz


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

$802.11n40_2452MHz\ 36.320MHz$

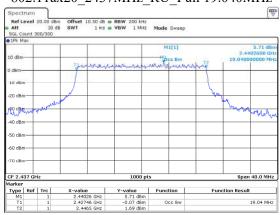

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 15:15:20

802.11ax20 2412MHz RU Full 19MHz

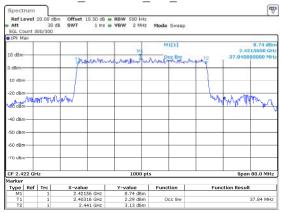

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax20 2462MHz RU Full 19.040MHz

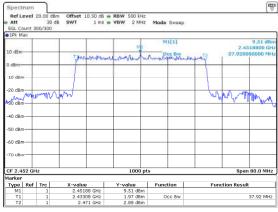
ProjectNo.:2401Y100564B-RF Tester:Rainbow Zhu


802.11ax40_2437MHz_RU_Full 37.920MHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu
Date: 5.NOV.2024 15:18:52


802.11ax20 2437MHz RU Full 19.040MHz

Report No.: 2401Y100564E-RF-00


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax40 2422MHz RU Full 37.840MHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax40 2452MHz RU Full 37.920MHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

Maximum Conducted Output Power

Test Information:

Sample No.:	2T9U-6	Test Date:	2024/11/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Y100564E-RF-00

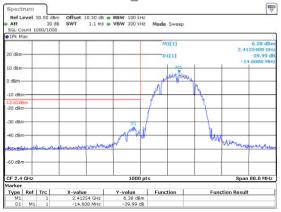
Temperature: (°C):	25	Relative Humidity: (%)	45	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

Mode	Antenna	Test Frequency (MHz)	Peak Output Power(dBm)	Average Output Power(dBm)	Limit (dBm)	Verdict
		2412	20.00	16.82	30	Pass
802.11b	Chain 0	2437	20.15	17.10	30	Pass
		2462	20.47	17.41	30	Pass
		2412	22.70	15.60	30	Pass
802.11g	Chain 0	2437	22.90	15.79	30	Pass
		2462	23.25	15.93	30	Pass
		2412	23.08	15.63	30	Pass
802.11n20	Chain 0	2437	23.10	15.64	30	Pass
		2462	23.59	15.92	30	Pass
		2422	23.08	15.70	30	Pass
802.11n40	Chain 0	2437	23.06	15.97	30	Pass
		2452	22.96	15.97	30	Pass
		2412	24.50	15.52	30	Pass
802.11ax20_RU_Full	Chain 0	2437	24.43	15.62	30	Pass
		2462	24.75	16.06	30	Pass
		2422	23.66	15.97	30	Pass
802.11ax40_RU_Full	Chain 0	2437	23.63	15.97	30	Pass
		2452	23.55	15.65	30	Pass

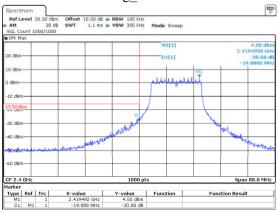
Report No.: 2401Y100564E-RF-00

100 kHz Bandwidth of Frequency Band Edge

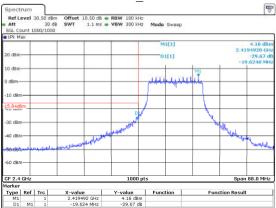
Test Information:


Sample No.:	2T9U-6	Test Date:	2024/11/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Y100564E-RF-00

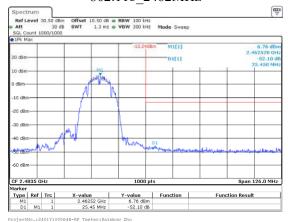

Temperature: (°C):	25	Relative Humidity: (%)	45	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

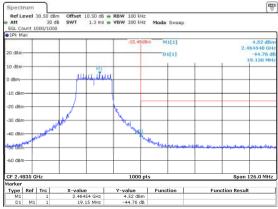
2.4G



802.11g_2412MHz

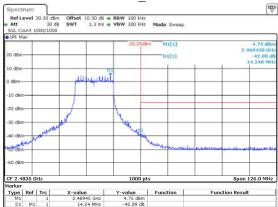
ProjectNo.:2401Y100564E-RF Tester:Rainb Date: 5.NOV.2024 15:23:32


802.11n20 2412MHz

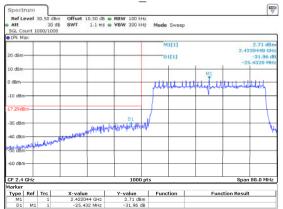

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 15:36:02

802.11b_2462MHz

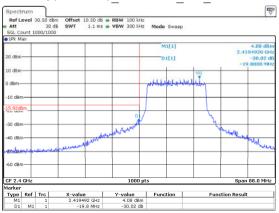
Report No.: 2401Y100564E-RF-00



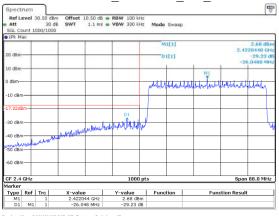
802.11g_2462MHz


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NoV.2024 15:35:02

802.11n20 2462MHz

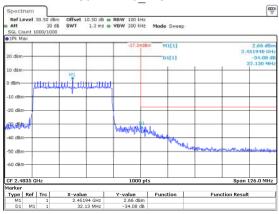

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11n40_2422MHz

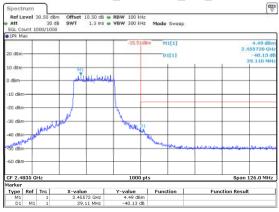

ProjectNo.:2401Y100564B-RF Tester:Rainbow Zhu

802.11ax20 2412MHz RU Full

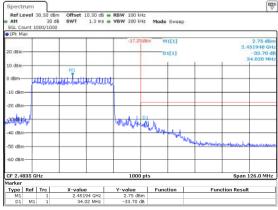
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu


802.11ax40 2422MHz RU Full

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 15:40:58


802.11n40 2452MHz

Report No.: 2401Y100564E-RF-00


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11ax20 2462MHz RU Full

ProjectNo.:2401Y100564B-RF Tester:Rainbow Zhu

802.11ax40_2452MHz RU Full

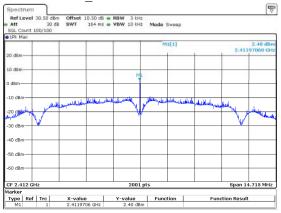
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zh

Power Spectral Density

Test Information:

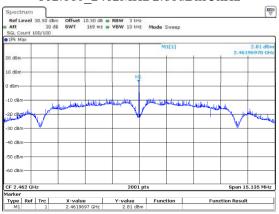
Sample No.:	2T9U-6	Test Date:	2024/11/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

Report No.: 2401Y100564E-RF-00

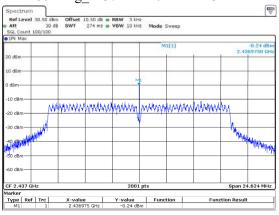

Temperature: (°C):	Relative Humidity:	45	ATM Pressure: (kPa)	101
--------------------	--------------------	----	---------------------	-----

Mode	Antenna	Test Frequency (MHz)	Result (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
		2412	2.40	8	Pass
802.11b	Chain 0	2437	2.74	8	Pass
		2462	2.81	8	Pass
		2412	-0.40	8	Pass
802.11g	Chain 0	2437	-0.24	8	Pass
		2462	-0.53	8	Pass
		2412	-0.35	8	Pass
802.11n20	Chain 0	2437	-0.38	8	Pass
		2462	-0.47	8	Pass
		2422	1.73	8	Pass
802.11n40	Chain 0	2437	1.85	8	Pass
		2452	2.08	8	Pass
		2412	-0.60	8	Pass
802.11ax20_RU_Full	Chain 0	2437	-0.49	8	Pass
		2462	-0.64	8	Pass
		2422	1.91	8	Pass
802.11ax40_RU_Full	Chain 0	2437	2.08	8	Pass
		2452	1.89	8	Pass

Report No.: 2401Y100564E-RF-00

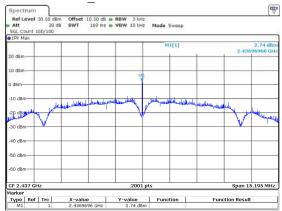

2.4G

802.11b 2412MHz 2.40dBm/3kHz

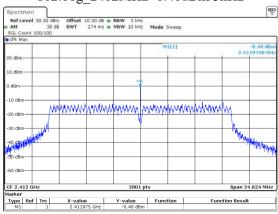

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11b 2462MHz 2.81dBm/3kHz

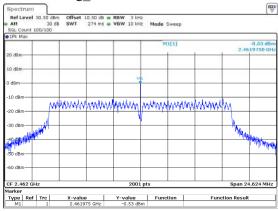
rojectNo.:2401Y100564E-RF Tester:Rainbow Zhu


802.11g 2437MHz -0.24dBm/3kHz

rojectNo.:2401Y100564E-RF Tester:Rainbow Zhu ate: 5.NOV.2024 15:48:17

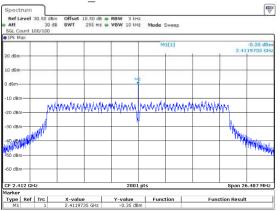

802.11b 2437MHz 2.74dBm/3kHz

Report No.: 2401Y100564E-RF-00

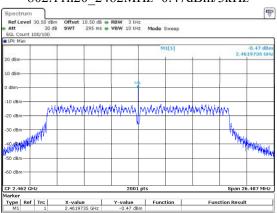

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 15:45:03

$802.11g_2412MHz - 0.40dBm/3kHz$

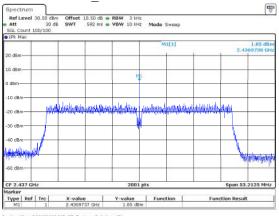
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu


802.11g 2462MHz -0.53dBm/3kHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

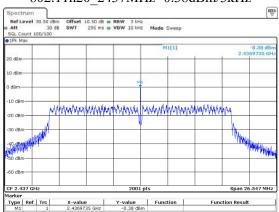

Date: 5.NOV.2024 15:49:37

802.11n20 2412MHz -0.35dBm/3kHz


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

802.11n20 2462MHz -0.47dBm/3kHz

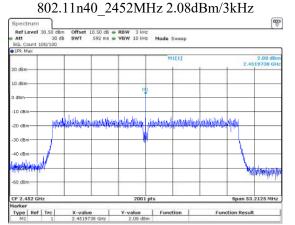
ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu


802.11n40_2437MHz 1.85dBm/3kHz

ProjectNo.12401Y100564E-RF Tester:Rainbow Zhu. Date: 5.NOV.2024 15:58:09

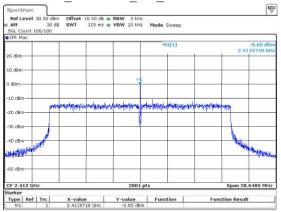
802.11n20 2437MHz -0.38dBm/3kHz

Report No.: 2401Y100564E-RF-00

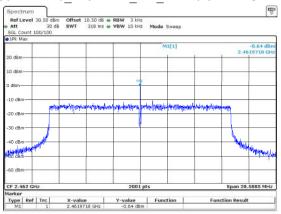


ProjectNo.:2401Y100564B-RF Tester:Rainbow Zhu

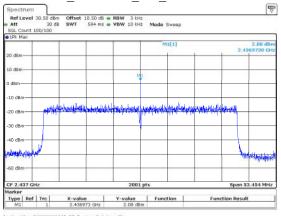
802.11n40 2422MHz 1.73dBm/3kHz



1 5,800,2024 15155143

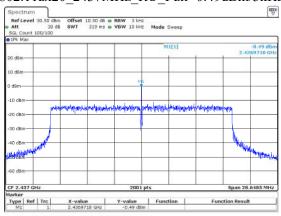

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zh

802.11ax20_2412MHz_RU_Full -0.60dBm/3kHz

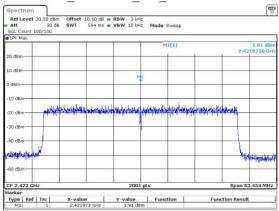

ProjectNo.12401Y100564E-RF Tester:Rainbow Zhu

802.11ax20 2462MHz RU Full -0.64dBm/3kHz

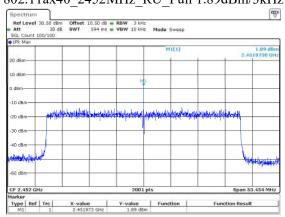
ProjectNo.:2401Y100564B-RF Tester:Rainbow Zhu


802.11ax40_2437MHz_RU_Full 2.08dBm/3kHz

ProjectNo.12401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 16:09:04


802.11ax20 2437MHz RU Full -0.49dBm/3kHz

Report No.: 2401Y100564E-RF-00


ProjectNo.12401Y100564E-RF Tester:Hainbow Zhu

802.11ax40 2422MHz RU Full 1.91dBm/3kHz

ProjectNo.s2401Y100564E-RF TestersRainbow Zhu

802.11ax40 2452MHz RU Full 1.89dBm/3kHz

ProjectNo.:2401Y100564E-RF Tester:Rainbow

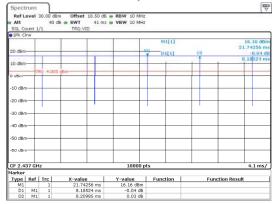
Duty Cycle

Test Information:

Sample No.:	2T9U-6	Test Date:	2024/11/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rainbow Zhu	Test Result:	Pass

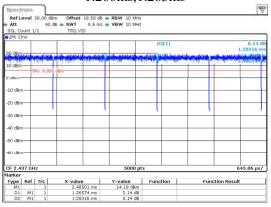
Report No.: 2401Y100564E-RF-00

Temperature: (°C):	25	Relative Humidity: (%)	45	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	---------------------	-----

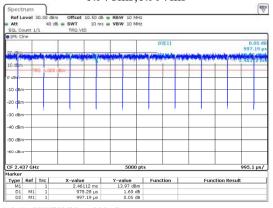

Mode	Antenna	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11b	Chain 0	2437	8.185	8.210	99.70	/	/	0.010
802.11g	Chain 0	2437	1.355	1.372	98.76	/	/	0.010
802.11n20	Chain 0	2437	1.266	1.283	98.67	/	/	0.010
802.11n40	Chain 0	2437	0.627	0.642	97.66	0.10	1595	1.595
802.11ax20_RU_Full	Chain 0	2437	0.978	0.997	98.09	/	/	0.010
802.11ax40_RU_Full	Chain 0	2437	0.520	0.536	97.01	0.13	1923	1.923

Report No.: 2401Y100564E-RF-00

Duty Cycle = Ton/(Ton+Toff)*100%

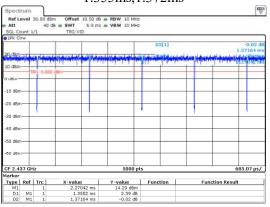

2.4G

802.11b_2437MHz 8.185ms,8.210ms

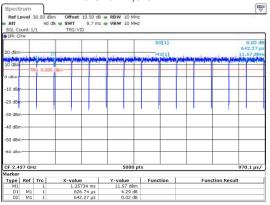


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

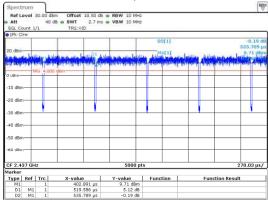
802.11n20_2437MHz 1.266ms,1.283ms


ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:30:03

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:35:07


802.11g_2437MHz 1.355ms,1.372ms

Report No.: 2401Y100564E-RF-00



ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu Date: 5.NOV.2024 14:27:43

802.11n40_2437MHz 0.627ms,0.642ms

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zhu

ProjectNo.:2401Y100564E-RF Tester:Rainbow Zho Date: 5.NOV.2024 14:37:49

RF EXPOSURE EVALUATION

MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Report No.: 2401Y100564E-RF-00

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of \S 1.1307(b)(3)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1.920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Ris the minimum separation distance in meters

f = frequency in MHz

Result

ľ	Mode	Frequency (MHz)	Tune up conducted power [#]	Antenna Gain ERF Distanc		Evaluation Distance	ERP Limit		
		(14112)	(dBm)	(dBi)	(dBd)	(dBm)	(W)	(m)	(W)
1	Wi-Fi	2412-2462	25	2.47	0.32	25.32	0.34	0.2	0.768

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

EUT PHOTOGRAPHS Please refer to the attachment 2401Y100564E-RF External photo and 2401Y100564E-RF Internal pho	Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401Y100564E-RF-00	
	EUT PHOTOGRAPHS		
Teace feet to the attachment 2401 Froodom and 2401 Froodo			
	lease feler to the attachment 2401 1 100304E-Ki Exter	nai piloto and 24011 100304E-KI internai piloto.	

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401Y100564E-RF Test Setup photo.

***** END OF REPORT *****

Report No.: 2401Y100564E-RF-00