

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: R25S1019019-U203
Report Version: V01
Issue Date: 2025-04-22

DFS MEASUREMENT REPORT

FCC ID: 2BH7FRE405BE

Applicant: TP-Link Systems Inc.

Product: BE6500 Wi-Fi 7 Range Extender,

BE6300 Wi-Fi 7 Range Extender

Model No.: RE405BE, RE403BE

Brand Name: tp-link

FCC Classification: Unlicensed National Information Infrastructure (NII)

FCC Rule Part(s): Part 15 Subpart E (Section 15.407)

Type of Device: Master & Client Device with radar detection

Result: Complies

Received Date: 2025-02-28

Test Date: 2025-03-05 ~ 2025-03-24

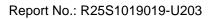
Approved By:

Reviewed By:

Kevin Guo

Robin Wu

Robin Wu


Robin Wu

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Template Version:1.5

Revision History

Report No.	Version	Description	Issue Date	Note
R25S1019019-U203	V01	Initial Report	2025-04-22	Valid

CONTENTS

Des	cription		Page
1.	Gener	al Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification under Test	7
	1.6.	Working Frequencies	8
	1.7.	Antenna Details	9
2.	Test C	onfiguration	10
	2.1.	Test Mode	10
	2.2.	Test Channel	10
	2.3.	Applied Standards	10
	2.4.	Test Environment Condition	10
3.	DFS D	etection Thresholds and Radar Test Waveforms	11
	3.1.	Applicability	11
	3.2.	DFS Devices Requirements	12
	3.3.	DFS Detection Threshold Values	14
	3.4.	Parameters of DFS Test Signals	15
	3.5.	Conducted Test Setup	18
4.	Meası	ıring Instrument	19
5.	Test R	esult	20
	5.1.	Summary	20
	5.2.	Radar Waveform Calibration Measurement	
	5.2.1.	Calibration Setup	21
	5.2.2.	Calibration Procedure	
	5.2.3.	Calibration & Channel Loading Result	21
	5.3.	NII Detection Bandwidth Measurement	22
	5.3.1.	Test Limit	22
	5.3.2.	Test Procedure	22
	5.3.3.	Test Result	23
	5.4.	Initial Channel Availability Check Time Measurement	24
	5.4.1.	Test Limit	24
	5.4.2.	Test Procedure	24
	5.4.3.	Test Result	24
	5.5.	Radar Burst at the Beginning of the Channel Availability Check Time Measurement	25

	5.5.1.	Test Limit	25
	5.5.2.	Test Procedure	25
	5.5.3.	Test Result	25
	5.6.	Radar Burst at the End of the Channel Availability Check Time Measurement	26
	5.6.1.	Test Limit	26
	5.6.2.	Test Procedure	26
	5.6.3.	Test Result	26
	5.7.	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and	
١	Ion-Occı	upancy Period Measurement	27
	5.7.1.	Test Limit	27
	5.7.2.	Test Procedure	27
	5.7.3.	Test Result	27
	5.8.	Statistical Performance Check Measurement	28
	5.8.1.	Test Limit	28
	5.8.2.	Test Procedure	28
	5.8.3.	Test Result	28
App	endix A	- Test Result	29
	A.1	Calibration Test Result	29
	A.2	Channel Loading Test Result	34
	A.3	NII Detection Bandwidth Test Result	39
	A.4	Initial Channel Availability Check Time Test Result	51
	A.5	Radar Burst at the Beginning of the Channel Availability Check Time Test Result	52
	A.6	Radar Burst at the End of the Channel Availability Check Time Test Result	53
	A.7	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and	
	Non-O	ccupancy Period Test Result	54
	A.8	Statistical Performance Check	60
App	endix B	– Test Setup Photograph	370
App	endix C	= EUT Photograph	371

1. General Information

1.1. Applicant

TP-Link Systems Inc.

10 Mauchly, Irvine, CA 92618

1.2. Manufacturer

TP-Link Systems Inc.

10 Mauchly, Irvine, CA 92618

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory								
	Laboratory Locat	tion (Suzhou - Wu	zhong)						
	D8 Building, No.2	Tian'edang Rd., W	uzhong Economic De	velopment Zone, Su	zhou, China				
	Laboratory Locat	tion (Suzhou - SIP)						
	4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China Laboratory Location (Suzhou - Wujiang) Building 1, No.1 Xingdong Road, Wujiang, Suzhou, Jiangsu, People's Republic of China								
	Laboratory Accre	editations							
	A2LA: 3628.01		CNAS	: L10551					
	FCC: CN1166		ISED:	CN0001					
	VCCI	□R-20025	□G-20034	□C-20020	□T-20020				
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104				
	Test Site - MRT S	Shenzhen Laborat	ory						
	Laboratory Locat	tion (Shenzhen)							
	1G, Building A, Ju	nxiangda Building,	Zhongshanyuan Roa	d West, Nanshan Dis	strict, Shenzhen, China				
	Laboratory Accre	editations							
	A2LA: 3628.02		CNAS	: L10551					
	FCC: CN1284		ISED:	CN0105					
	Test Site - MRT 1	Taiwan Laboratory	,						
	Laboratory Location (Taiwan)								
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)								
	Laboratory Accre	editations							
	TAF: 3261								
	FCC: 291082, TW	3261	ISED:	TW3261					

1.4. Product Information

Droduct Nove	BE6500 Wi-Fi 7 Range Extender,			
Product Name	BE6300 Wi-Fi 7 Range Extender			
Model No.	RE405BE, RE403BE			
EUT Identification No.	20250228Sample#01 (DFS Master)			
EOT Identification No.	20250228Sample#02 (DFS Slave)			
Wi-Fi Specification	802.11a/b/g/n/ac/ax/be			
Antenna Information	Refer to section 1.7			
Operating Temperature	0 ~ 40 °C			
Power Type	AC 100-240V~50/60Hz			

Notes:

- 1. The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.
- 2. The differences between the two product are the name and model No.

1.5. Radio Specification under Test

Frequency Range	802.11a/n-HT20/ac-VHT20/ax-HE20/be-EHT20:
	5260~5320MHz, 5500~5720MHz
	802.11n-HT40/ac-VHT40/ax-HE40/be-EHT40:
	5270~5310MHz, 5510~5710MHz
	802.11ac-VHT80/ax-HE80/be-EHT80:
	5290MHz, 5530MHz, 5610MHz, 5690MHz
	802.11ac-VHT160/ax-HE160/be-EHT160:
	5250MHz, 5570MHz
Type of Modulation	802.11a/n/ac: OFDM
	802.11ax/be: OFDMA
Data Rate	802.11a: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 600Mbps
	802.11ac: up to 3466.7Mbps
	802.11ax: up to 4804Mbps
	802.11be: up to 5764Mbps
Power-on cycle	Requires 63.2 seconds to complete its power-on cycle
Uniform Spreading (For	For the 5250-5350MHz, 5470-5725 MHz bands, the Master device provides,
DFS Frequency Band)	on aggregate, uniform loading of the spectrum across all devices by selecting
	an operating channel among the available channels using a random algorithm.

1.6. Working Frequencies

802.11a/n-HT20/ac-VHT20/ax-HE20/be-EHT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz
64	5320 MHz	100	5500 MHz	104	5520 MHz
108	5540 MHz	112	5560 MHz	116	5580 MHz
120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz
144	5720 MHz				

802.11n-HT40/ac-VHT40/ax-HE40/be-EHT40

	Channel	Frequency	Channel	Frequency	Channel	Frequency
	54	5270 MHz	62	5310 MHz	102	5510 MHz
	110	5550 MHz	118	5590 MHz	126	5630 MHz
I	134	5670 MHz	142	5710 MHz		

802.11ac-VHT80/ax-HE80/be-EHT80

Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290 MHz	106	5530 MHz	122	5610 MHz
138	5690 MHz				

802.11ac-VHT160/ax-HE160/be-EHT160

Channel	Frequency	Channel	Frequency	Channel	Frequency
50	5250 MHz	114	5570 MHz		

1.7. Antenna Details

Antenna	Frequency	Tx	Antenna Gain			Beamforming	CDD D	irectional	
Туре	Band	Paths	(dBi)			Directional	Gair	ı (dBi)	
	(MHz)		A 1 0 A 1 4 A 1 0 A 1 0		Gain	For	For		
			Ant 0	Ant 1	Ant 2	Ant 3	(dBi)	Power	PSD
	2400 ~ 2483.5	2	3.89	2.51			5.49	2.61	5.49
	5150 ~ 5250	4	5.43	4.20	2.71	1.48	8.41	2.55	8.41
Dipole	5250 ~ 5350	4	4.95	4.16	2.88	1.84	8.04	2.36	8.04
	5470 ~ 5725	4	5.11	5.41	3.22	2.90	8.52	2.77	8.52
	5725 ~ 5850	4	5.24	4.71	3.38	2.50	7.92	2.30	7.92

Note 1: The device supports CDD Mode and Beamforming Mode, details refer to the table as below.

Note 2: The device supports 2 N_{SS} for 2.4GHz Wi-Fi, supports 4 N_{SS} for 5GHz Wi-Fi and power level is the same of spatial multiplexing. The worst case is N_{SS} =1.

Note 3: For CDD Mode, directional gain is calculated as follows.

For Power measurements: the max directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10}) / N_{ANT}]$

For PSD measurements: the max directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}]$.

Note 4: For Beamforming Mode, the directional is calculated as follows.

the max directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N_{ANT}]$.

Note 5: The information as above is from the antenna report.

Test Mode	Tx Paths	CDD Mode	Beamforming Mode
802.11b/g (DTS)	2	√	×
802.11n/ax/be (DTS)	2	√	√
802.11a (NII)	4	√	×
802.11n/ac/ax/be (NII)	4	√	√

2. Test Configuration

2.1. Test Mode

		Mode 1: Operating under AP mode
Test Mod	de	Mode 2: Operating under Slave mode with Radar detection
		Mode 3: Operating under Slave mode without Radar detection

2.2. Test Channel

Test Mode	Test Channel	Test Frequency	
802.11be-EHT20	100	5500 MHz	
802.11be-EHT40	102	5510 MHz	
802.11be-EHT80	106	5530 MHz	
802.11be-EHT160	50	5250 MHz	
802.11be-EHT160	114	5570 MHz	

2.3. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.407 Section (h)(2)
- KDB 905462 D02v02
- KDB 905462 D04v01

2.4. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. DFS Detection Thresholds and Radar Test Waveforms

3.1. Applicability

The following table from FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 lists the applicable requirements for the DFS testing.

Requirement	Operational Mode		
	Master Client Without Client With Rad		
		Radar Detection	Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 3-1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode		
	Master Device or Client With	Client Without Radar	
	Radar Detection	Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with	Master Device or Client with	Client Without Radar	
multiple bandwidth modes	Radar Detection	Detection	
U-NII Detection Bandwidth and Statistical	All DW/ mades must be tested	Not required	
Performance Check	All BW modes must be tested		
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest BW	
Transmission Time	available	mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3-2: Applicability of DFS Requirements during normal operation

3.2. DFS Devices Requirements

Per FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 the following are the requirements for Master Devices:

- (a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 ~ 5350 MHz and 5470 ~ 5725 MHz bands. DFS is not required in the 5150 ~ 5250 MHz or 5725 ~ 5825 MHz bands.
- (b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
- (c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- (d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- (e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- (f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- (g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Maye Time	10 seconds
Channel Move Time	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds
Charmer Closing Transmission Time	over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power
O-IVII Detection bandwidth	bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 3-3: DFS Response Requirements

3.3. DFS Detection Threshold Values

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring.

These detection thresholds are listed in the following table.

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power	-64 dBm
spectral density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection

3.4. Parameters of DFS Test Signals

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 3-6 Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Type:	s 1-4)		80%	120

Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 3-5: Parameters for Short Pulse Radar Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval
Number	(Pulses Per Second)	(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 3-6: Pulse Repetition Intervals Values for Test A

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Table 3-7: Parameters for Long Pulse Radar Waveforms

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 3-8: Parameters for Frequency Hopping Radar Waveforms

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

3.5. Conducted Test Setup

The FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup.

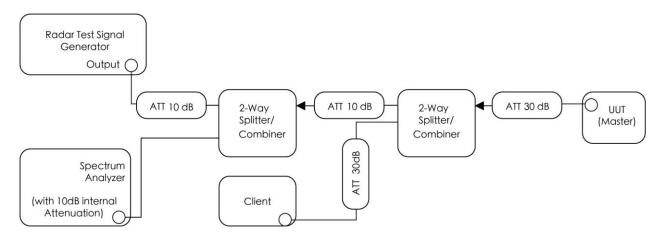


Figure 3-1: Conducted Test Setup where UUT is a Master and Radar Test Waveforms are injected into the Masters

4. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2026-01-20	WJ-SR7
Signal Generator	Keysight	N5186A	MRTSUE07259	1 year	2025-11-12	WJ-SR7
Directional Coupler	MVE	MVE4816-10	MRTSUE11119	1 year	2025-11-18	WJ-SR7
Power Divider	MVE	MVE8576-1	MRTSUE11126	1 year	2025-11-27	WJ-SR7
Attenuator	MVE	MVE2213	MRTSUE11089	1 year	2025-06-05	WJ-SR7
Thermohygrometer	testo	608-H1	MRTSUE11337	1 year	2025-06-24	WJ-SR7
Shielding Room	TDK	WJ-SR7	MRTSUE07129	N/A	N/A	WJ-SR7

Client Information

Instrument	Manufacturer	Type No.	Certification Number
Wi-Fi Module	Intel	BE200NGW	FCC ID: PD9BE200NG

Access Point Information

Instrument	Manufacturer	Type No.	FCC ID
Access Point	TP-Link	RE405BE	FCC ID: 2BH7FRE405BE

Software	Version	Manufacturer	Function
DFS Tool	V 6.9.2	Agilent	DFS Test Software
Signal Studio	V 2.4.0.0	Keysight	DFS Test Software

5. Test Result

5.1. Summary

Parameter	Verdict	Reference	
NII Detection Bandwidth Measurement	Pass	Section 5.3	
Initial Channel Availability Check Time	Pass	Section 5.4	
Radar Burst at the Beginning of the Channel	Pass	Section 5.5	
Availability Check Time	rass	Section 5.5	
Radar Burst at the End of the Channel Availability	Pass	Section 5.6	
Check Time	T 455		
In-Service Monitoring for Channel Move Time, Channel	Pass	Section 5.7	
Closing Transmission Time	rass	Section 5.7	
Non-Occupancy Period	Pass	Section 5.7	
Statistical Performance Check	Pass	Section 5.8	

5.2. Radar Waveform Calibration Measurement

5.2.1. Calibration Setup

The conducted test setup was used for this calibration testing. Figure 3-2 shows the typical test setup.

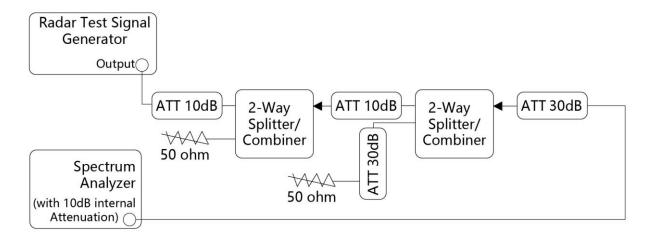


Figure 3-2: Conducted Test Setup

5.2.2. Calibration Procedure

The Interference Radar Detection Threshold Level is (-64dBm) + (0) [dBi] + 1 dB= -63 dBm that had been taken into account the output power range and antenna gain. The above equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3MHz. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-64dBm) + (0) [dBi] + 1 dB= -63dBm. Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform.

5.2.3. Calibration & Channel Loading Result

Refer to Appendix A.1&A.2.

5.3. NII Detection Bandwidth Measurement

5.3.1. Test Limit

Minimum 100% of the NII 99% transmission power bandwidth. During the U-NII Detection Bandwidth detection test, each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

5.3.2. Test Procedure

- Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0-4 in Table
 3-5 at the center frequency of the EUT Operating Channel at the specified DFS Detection Threshold level.
- 2. The generating equipment is configured as shown in the Conducted Test Setup above section 3.5.
- 3. The EUT is set up as a stand-alone device (no associated Client or Master, as appropriate) and no traffic.
 Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.
- 4. Generate a single radar Burst, and note the response of the EUT. Repeat for a minimum of 10 trials. The EUT must detect the Radar Waveform using the specified U-NII Detection Bandwidth criterion shown in Table 3-5. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.
- 5. Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 3-3. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as F_H) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above F_H is not required to demonstrate compliance.
- 6. Starting at the center frequency of the EUT operating Channel, decrease the radar frequency in 1 MHz steps, repeating the above item 4 test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion. Record the lowest frequency (denote as F_L) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below F_L is not required to demonstrate compliance.
- 7. The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = F_H F_L
- 8. The U-NII Detection Bandwidth must be at least 100% of the EUT transmitter 99% power, otherwise, the

EUT does not comply with DFS requirements.

5.3.3. Test Result

Refer to Appendix A.3.

5.4. Initial Channel Availability Check Time Measurement

5.4.1. Test Limit

The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel.

After power-up sequence, receive at least 1 minute on the intended operating frequency.

5.4.2. Test Procedure

- 1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the EUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- 2. The EUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.
- 3. Confirm that the EUT initiates transmission on the channel. Measurement system showing its nominal noise floor is marker1.

5.4.3. Test Result

Refer to Appendix A.4.

5.5. Radar Burst at the Beginning of the Channel Availability Check Time Measurement

5.5.1. Test Limit

In beginning of the Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

5.5.2. Test Procedure

- The steps below define the procedure to verify successful radar detection on the selected Channel during
 a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when
 a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the
 Channel Availability Check Time.
- 2. The EUT is in completion power-up cycle (from T0 to T1). T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1.
- Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported.
 Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

5.5.3. Test Result

Refer to Appendix A.5.

5.6. Radar Burst at the End of the Channel Availability Check Time Measurement

5.6.1. Test Limit

In the end of Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

5.6.2. Test Procedure

- The steps below define the procedure to verify successful radar detection on the selected Channel during
 a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when
 a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the
 Channel Availability Check Time.
- 2. The EUT is powered on at T0. T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner thanT1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1+ 54 seconds.
- Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported.
 Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

5.6.3. Test Result

Refer to Appendix A.6.

5.7. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Measurement

5.7.1. Test Limit

The EUT has In-Service Monitoring function to continuously monitor the radar signals. If the radar is detected, must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of Channel Closing Transmission Time is 260ms, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time. The Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel.

5.7.2. Test Procedure

- The test should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0.
- 2. When the radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. A U-NII device operating as a Master Device will associate with the Client Device at Channel. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
- 3. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time).
- 4. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (1.5ms) = S (12 sec) / B (8000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C = N X Dwell; where C is the Closing Time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and Dwell is the dwell time per bin.
- Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume any transmissions on this Channel.

5.7.3. Test Result

Refer to Appendix A.7.

5.8. Statistical Performance Check Measurement

5.8.1. Test Limit

The minimum percentage of successful detection requirements found in below table when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

Radar Type	Minimum Number of Trails	Detection Probability
0	30	Pd ≥ 60%
1	30(15 of test A and 15 of test B)	Pd ≥ 60%
2	30	Pd ≥ 60%
3	30	Pd ≥ 60%
4	30	Pd ≥ 60%
Aggregate (Radar Types 1-4)	120	Pd ≥ 80%
5	30	Pd ≥ 80%
6	30	Pd ≥ 70%

Note: The percentage of successful detection is calculated by:

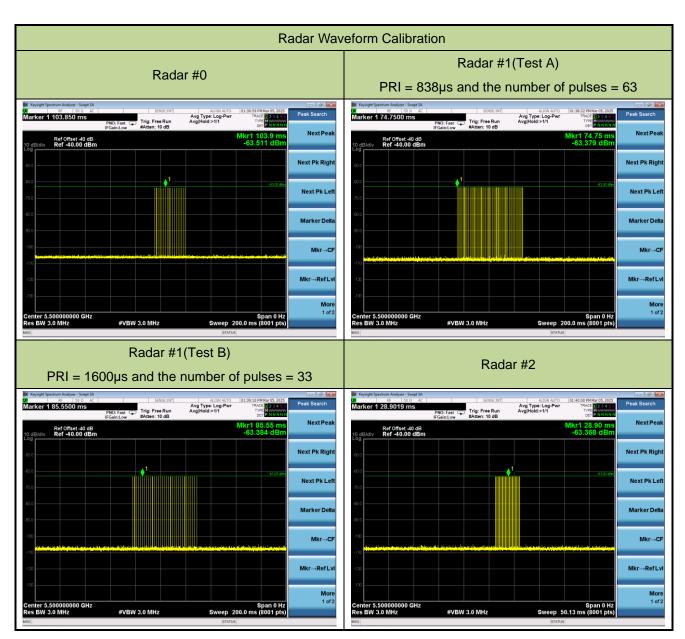
(Total Waveform Detections / Total Waveform Trails) * 100 = Probability of Detection Radar Waveform In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows: (Pd1 + Pd2 + Pd3 + Pd4) / 4.

5.8.2. Test Procedure

- Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- 2. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types

 1-6, at levels equal to the DFS Detection Threshold + 1dB, on the Operating Channel.
- 3. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 0 to ensure detection occurs.
- 4. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.
- 6. The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in below table

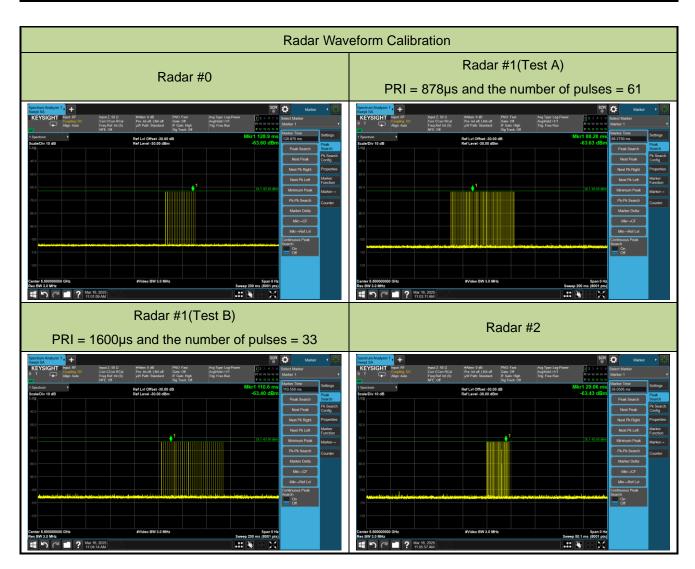
5.8.3. Test Result

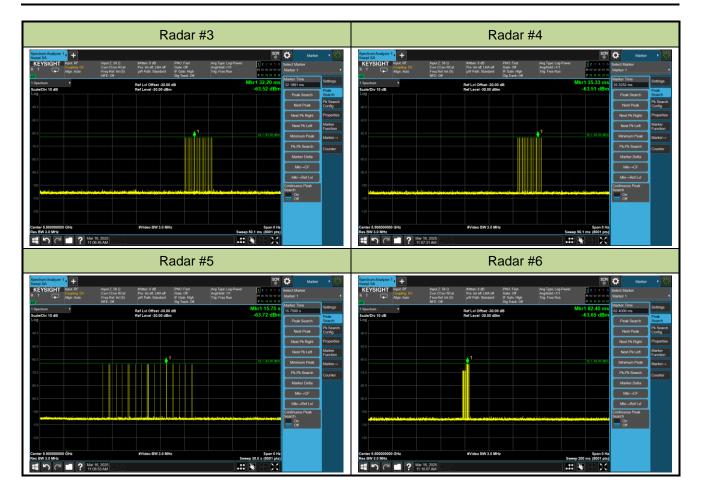

Refer to Appendix A.8.


Appendix A - Test Result

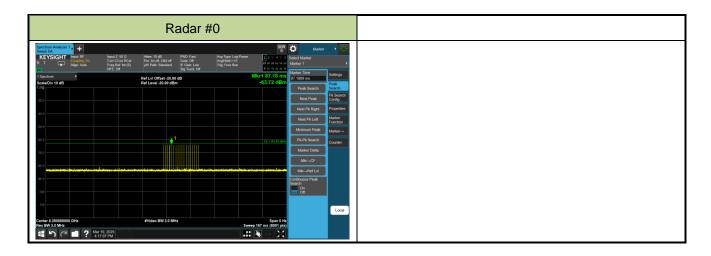
A.1 Calibration Test Result

Test Site	WJ-SR7	Test Engineer	Jake Lan		
Test Date	2025-03-05				
Test Item	Radar Waveform Calibration - Master				





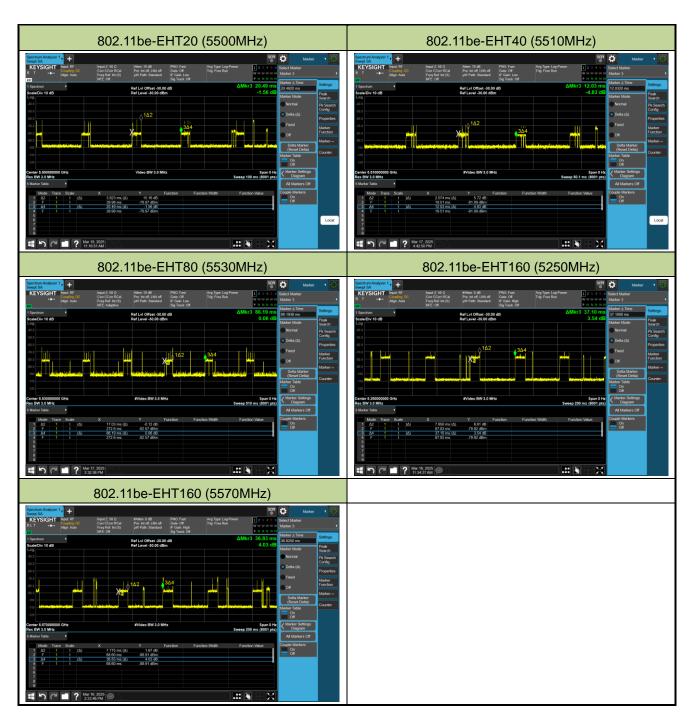
Test Site	WJ-SR7	Test Engineer	Jake Lan		
Test Date	2025-03-16				
Test Item	Radar Waveform Calibration - Slave with Radar Detection				

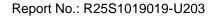


Test Site	WJ-SR7	Test Engineer	Jake Lan		
Test Date	2025-03-19				
Test Mode	Radar Waveform Calibration - Slave without Radar Detection				

A.2 Channel Loading Test Result

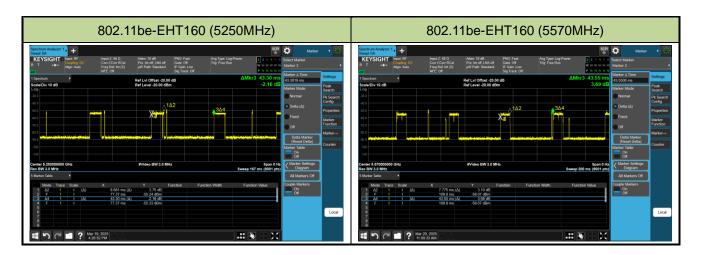
Test Site	WJ-SR7	Test Engineer	Jake Lan
Test Date	2025-03-05 ~ 2025-03-09		
Test Item	Channel Loading - Master		




Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11be-EHT20	5500 MHz	18.21%	≥ 17%	Pass
802.11be-EHT40	5510 MHz	18.52%	≥ 17%	Pass
802.11be-EHT80	5530 MHz	18.82%	≥ 17%	Pass
802.11be-EHT160	5250 MHz	20.21%	≥ 17%	Pass
802.11be-EHT160	5570 MHz	18.38%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time).

Test Site	WJ-SR7	Test Engineer	Jake Lan	
Test Date	2025-03-16 ~ 2025-03-18			
Test Item	Channel Loading - Slave with Radar Detection			



Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11be-EHT20	5500 MHz	18.66%	≥ 17%	Pass
802.11be-EHT40	5510 MHz	17.24%	≥ 17%	Pass
802.11be-EHT80	5530 MHz	19.76%	≥ 17%	Pass
802.11be-EHT160	5250 MHz	21.16%	≥ 17%	Pass
802.11be-EHT160	5570 MHz	21.11%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time).

Test Site	WJ-SR7	Test Engineer	Jake Lan				
Test Date	2025-03-19 ~ 2025-03-20						
Test Item	Channel Loading - Slave without Radar Detection						

Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11be-EHT160	5250 MHz	20.05%	≥ 17%	Pass
802.11be-EHT160	5570 MHz	17.85%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time).

A.3 NII Detection Bandwidth Test Result

Test Site	WJ-SR7 Test Engineer Jake Lan							
Test Date	2025-03-21							
Test Item	Detection Bandwidth (802.11be-EHT20 mode - 5500MHz) - Master							

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz. The 99% channel bandwidth is 19.054MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = $F_H - F_L = 5510MHz - 5490MHz = 20MHz$

Note 3: NII Detection Bandwidth Min. Limit (MHz): 19.054MHz x 100% = 19.054MHz.

Test Site	WJ-SR7	Test Engineer	Jake Lan						
Test Date	2025-03-21	2025-03-21							
Test Item	Detection Bandwidth (802.11be-EHT40 mode - 5510MHz) - Master								

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz. The 99% channel bandwidth is 38.022MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5530MHz - 5490MHz = 40MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 38.022MHz x 100% = 38.022MHz.

Test Site	WJ-SR7	Test Engineer	Jake Lan						
Test Date	2025-03-21	2025-03-21							
Test Item	Detection Bandwidth (802.11be-EHT80 mode - 5530MHz) - Master								

Radar Frequency			D	FS De	etection	n Trials	: (1=De	etectio	n, 0= N	lo Dete	ection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530	1	1	1	1	1	1	1	1	1	1	100%
5535	1	1	1	1	1	1	1	1	1	1	100%
5540	1	1	1	1	1	1	1	1	1	1	100%
5545	1	1	1	1	1	1	1	1	1	1	100%
5550	1	1	1	1	1	1	1	1	1	1	100%
5555	1	1	1	1	1	1	1	1	1	1	100%
5560	1	1	1	1	1	1	1	1	1	1	100%
5565	1	1	1	1	1	1	1	1	1	1	100%
5570 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. The 99% channel bandwidth is 77.927MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5570MHz - 5490MHz = 80MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): $77.927MHz \times 100\% = 77.927MHz$.

Test Site	WJ-SR7	Test Engineer	Jake Lan						
Test Date	2025-03-21	2025-03-21							
Test Item	Detection Bandwidth (802.	Detection Bandwidth (802.11be-EHT160 mode - 5250MHz) - Master							

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5250 FL	1	1	1	1	1	1	1	1	1	1	100%
5255	1	1	1	1	1	1	1	1	1	1	100%
5260	1	1	1	1	1	1	1	1	1	1	100%
5265	1	1	1	1	1	1	1	1	1	1	100%
5270	1	1	1	1	1	1	1	1	1	1	100%
5275	1	1	1	1	1	1	1	1	1	1	100%
5280	1	1	1	1	1	1	1	1	1	1	100%
5285	1	1	1	1	1	1	1	1	1	1	100%
5290	1	1	1	1	1	1	1	1	1	1	100%
5295	1	1	1	1	1	1	1	1	1	1	100%
5300	1	1	1	1	1	1	1	1	1	1	100%
5305	1	1	1	1	1	1	1	1	1	1	100%
5310	1	1	1	1	1	1	1	1	1	1	100%
5315	1	1	1	1	1	1	1	1	1	1	100%
5320	1	1	1	1	1	1	1	1	1	1	100%
5325	1	1	1	1	1	1	1	1	1	1	100%
5330 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5250MHz. The 99% channel bandwidth within U-NII Band-2A is 78.545MHz (99% BW / 2 = 157.09MHz / 2 = 78.545MHz). (See the 99% BW section of the RF report for further measurement details). Note 2: Detection Bandwidth = F_H - F_L = 5330MHz - 5250MHz = 80MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 78.545MHz x 100% = 78.545MHz.

Test Site	WJ-SR7	Test Engineer	Jake Lan						
Test Date	2025-03-21	2025-03-21							
Test Item	Detection Bandwidth (802.	Detection Bandwidth (802.11be-EHT160 mode - 5570MHz) - Master							

Radar Frequency				FS De	etection	n Trials	s (1=D	etectio	n, 0= 1	No Det	ection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	0	1	0	1	0	1	0	1	0	0	40%
5491	1	1	1	1	1	1	1	1	1	1	100%
5492	1	1	1	1	1	1	1	1	1	1	100%
5493	1	1	1	1	1	1	1	1	1	1	100%
5494	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530	1	1	1	1	1	1	1	1	1	1	100%
5535	1	1	1	1	1	1	1	1	1	1	100%
5540	1	1	1	1	1	1	1	1	1	1	100%
5545	1	1	1	1	1	1	1	1	1	1	100%
5550	1	1	1	1	1	1	1	1	1	1	100%
5555	1	1	1	1	1	1	1	1	1	1	100%
5560	1	1	1	1	1	1	1	1	1	1	100%
5565	1	1	1	1	1	1	1	1	1	1	100%
5570	1	1	1	1	1	1	1	1	1	1	100%
5575	1	1	1	1	1	1	1	1	1	1	100%
5580	1	1	1	1	1	1	1	1	1	1	100%
5585	1	1	1	1	1	1	1	1	1	1	100%
5590	1	1	1	1	1	1	1	1	1	1	100%
5595	1	1	1	1	1	1	1	1	1	1	100%
5600	1	1	1	1	1	1	1	1	1	1	100%
5605	1	1	1	1	1	1	1	1	1	1	100%
5610	1	1	1	1	1	1	1	1	1	1	100%
5615	1	1	1	1	1	1	1	1	1	1	100%
5620	1	1	1	1	1	1	1	1	1	1	100%
5625	1	1	1	1	1	1	1	1	1	1	100%
5630	1	1	1	1	1	1	1	1	1	1	100%

5635	1	1	1	1	1	1	1	1	1	1	100%
5640	1	1	1	1	1	1	1	1	1	1	100%
5645	1	1	1	1	1	1	1	1	1	1	100%
5650 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5570MHz. The 99% channel bandwidth is 157.13MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5650MHz - 5490MHz = 160MHz

Note 3: NII Detection Bandwidth Min. Limit (MHz): 157.13 MHz x 100% = 157.13MHz.

Test Site	WJ-SR7	Jake Lan	
Test Date	2025-03-21		
Test Item	Detection Bandwidth (802.	11be-EHT20 mode - 5500M	Hz) – Slave with Radar
TEST ITEM	Detection		

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz. The 99% channel bandwidth is 19.054MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = $F_H - F_L = 5510MHz - 5490MHz = 20MHz$

Note 3: NII Detection Bandwidth Min. Limit (MHz): 19.054MHz x 100% = 19.054MHz.

Test Site	WJ-SR7	Test Engineer	Jake Lan
Test Date	2025-03-21		
Test Item	Detection Bandwidth (802.	11be-EHT40 mode - 5510M	Hz) - Slave with Radar
rest item	Detection		

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz. The 99% channel bandwidth is 38.022MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5530MHz - 5490MHz = 40MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 38.022MHz x 100% = 38.022MHz.

Test Site	WJ-SR7	Test Engineer	Jake Lan									
Test Date	2025-03-21											
Test Item	Detection Bandwidth (802.	Detection Bandwidth (802.11be-EHT80 mode - 5530MHz) – Slave with Radar										
rest item	Detection											

Radar Frequency			D	FS De	etection	n Trials	(1=De	etectio	n, 0= N	lo Dete	ection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530	1	1	1	1	1	1	1	1	1	1	100%
5535	1	1	1	1	1	1	1	1	1	1	100%
5540	1	1	1	1	1	1	1	1	1	1	100%
5545	1	1	1	1	1	1	1	1	1	1	100%
5550	1	1	1	1	1	1	1	1	1	1	100%
5555	1	1	1	1	1	1	1	1	1	1	100%
5560	1	1	1	1	1	1	1	1	1	1	100%
5565	1	1	1	1	1	1	1	1	1	1	100%
5570 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. The 99% channel bandwidth is 77.927MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5570MHz - 5490MHz = 80MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 77.927MHz x 100% = 77.927MHz.

Test Site	WJ-SR7	WJ-SR7 Test Engineer Jake Lan									
Test Date	2025-03-21										
Test Item	Detection Bandwidth (802.	Detection Bandwidth (802.11be-EHT160 mode - 5250MHz) – Slave with Radar									
Test item	Detection										

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5250 FL	1	1	1	1	1	1	1	1	1	1	100%
5255	1	1	1	1	1	1	1	1	1	1	100%
5260	1	1	1	1	1	1	1	1	1	1	100%
5265	1	1	1	1	1	1	1	1	1	1	100%
5270	1	1	1	1	1	1	1	1	1	1	100%
5275	1	1	1	1	1	1	1	1	1	1	100%
5280	1	1	1	1	1	1	1	1	1	1	100%
5285	1	1	1	1	1	1	1	1	1	1	100%
5290	1	1	1	1	1	1	1	1	1	1	100%
5295	1	1	1	1	1	1	1	1	1	1	100%
5300	1	1	1	1	1	1	1	1	1	1	100%
5305	1	1	1	1	1	1	1	1	1	1	100%
5310	1	1	1	1	1	1	1	1	1	1	100%
5315	1	1	1	1	1	1	1	1	1	1	100%
5320	1	1	1	1	1	1	1	1	1	1	100%
5325	1	1	1	1	1	1	1	1	1	1	100%
5330 FH	1	1	1	1	1	1	1	1	1	1	100%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5250MHz. The 99% channel bandwidth within U-NII Band-2A is 78.545MHz (99% BW / 2 = 157.09MHz / 2 = 78.545MHz). (See the 99% BW section of the RF report for further measurement details). Note 2: Detection Bandwidth = F_H - F_L = 5330MHz - 5250MHz = 80MHz.

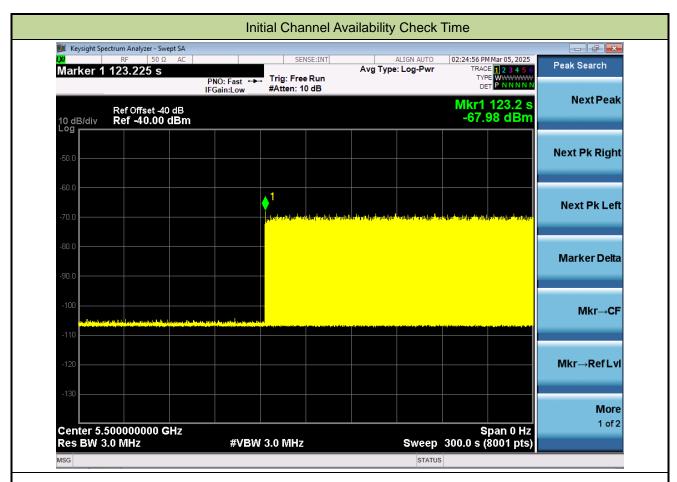
Note 3: NII Detection Bandwidth Min. Limit (MHz): 78.545MHz x 100% = 78.545MHz.

Test Site	WJ-SR7	Test Engineer	Jake Lan								
Test Date	2025-03-21										
Test Item	Detection Bandwidth (802.	Detection Bandwidth (802.11be-EHT160 mode - 5570MHz) – Slave with Radar									
Test item	Detection										

Radar Frequency			С	FS De	etection	n Trials	(1=De	etectio	n, 0= N	No Det	ection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 FL	0	0	0	0	0	0	0	0	0	0	0%
5491	1	1	1	1	1	1	1	1	1	1	100%
5492	1	1	1	1	1	1	1	1	1	1	100%
5493	1	1	1	1	1	1	1	1	1	1	100%
5494	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530	1	1	1	1	1	1	1	1	1	1	100%
5535	1	1	1	1	1	1	1	1	1	1	100%
5540	1	1	1	1	1	1	1	1	1	1	100%
5545	1	1	1	1	1	1	1	1	1	1	100%
5550	1	1	1	1	1	1	1	1	1	1	100%
5555	1	1	1	1	1	1	1	1	1	1	100%
5560	1	1	1	1	1	1	1	1	1	1	100%
5565	1	1	1	1	1	1	1	1	1	1	100%
5570	1	1	1	1	1	1	1	1	1	1	100%
5575	1	1	1	1	1	1	1	1	1	1	100%
5580	1	1	1	1	1	1	1	1	1	1	100%
5585	1	1	1	1	1	1	1	1	1	1	100%
5590	1	1	1	1	1	1	1	1	1	1	100%
5595	1	1	1	1	1	1	1	1	1	1	100%
5600	1	1	1	1	1	1	1	1	1	1	100%
5605	1	1	1	1	1	1	1	1	1	1	100%
5610	1	1	1	1	1	1	1	1	1	1	100%
5615	1	1	1	1	1	1	1	1	1	1	100%
5620	1	1	1	1	1	1	1	1	1	1	100%
5625	1	1	1	1	1	1	1	1	1	1	100%

5630	1	1	1	1	1	1	1	1	1	1	100%
5635	1	1	1	1	1	1	1	1	1	1	100%
5640	1	1	1	1	1	1	1	1	1	1	100%
5645	1	1	1	1	1	1	1	1	1	1	100%
5650 FH	1	1	1	1	1	1	1	1	1	1	100%

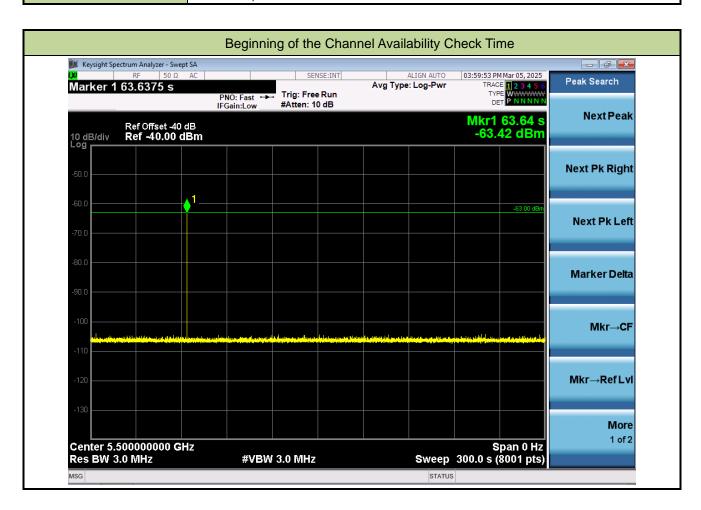
Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5570MHz. The 99% channel bandwidth is 157.13MHz. (See the 99% BW section of the RF report for further measurement details).


Note 2: Detection Bandwidth = F_H - F_L = 5650MHz - 5490MHz = 160MHz

Note 3: NII Detection Bandwidth Min. Limit (MHz): $157.13 \text{ MHz} \times 100\% = 157.13 \text{MHz}$.

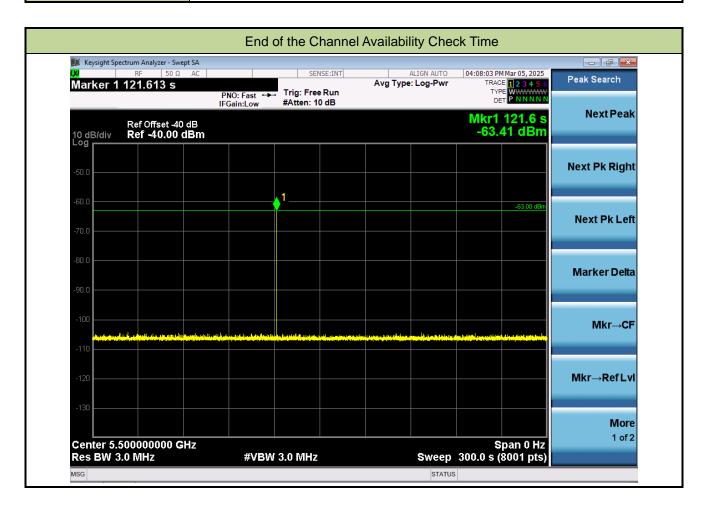
A.4 Initial Channel Availability Check Time Test Result

Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-05					
Test Item	Initial Channel Availability Check Time (802.11be-EHT20 mode - 5500MHz) -					
1620 IIGIII	Master					

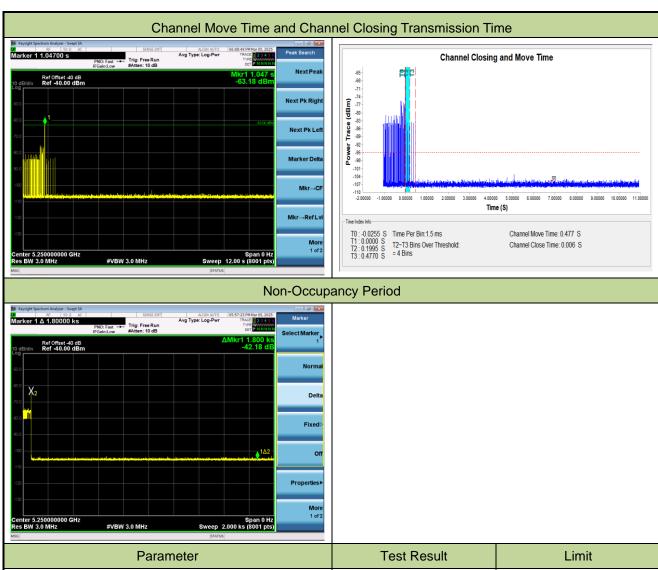


Note: The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (63.2 sec). Initial beacons/data transmissions are indicated by marker 1 (123.2 sec).

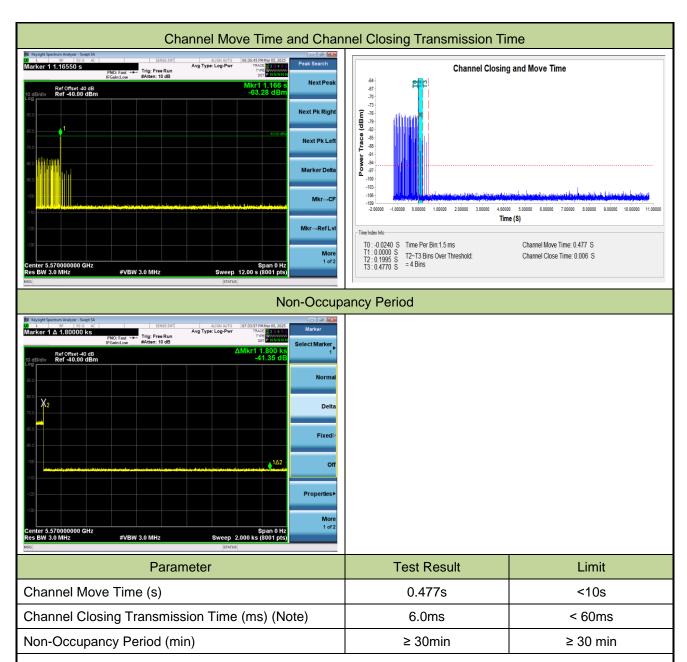
A.5 Radar Burst at the Beginning of the Channel Availability Check Time Test Result


Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-05					
Test Item	Beginning of the Channel Availability Check Time (802.11be-EHT20 mode -					
rest item	5500MHz) - Master					

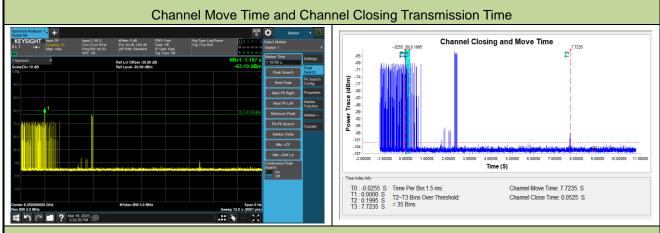
A.6 Radar Burst at the End of the Channel Availability Check Time Test Result


Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-05					
Test Item	End of the Channel Availability Check Time (802.11be-EHT20 mode - 5500l					
rest item	Master					

A.7 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Test Result


Test Site	WJ-SR7	Test Engineer	Jake Lan		
Test Date	2025-03-05 ~ 2025-03-24				
Test Item	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160				
rest item	mode - 5250MHz) - Master				

Parameter	Test Result	Limit
Channel Move Time (s)	0.477s	<10s
Channel Closing Transmission Time (ms) (Note)	6.0ms	< 60ms
Non-Occupancy Period (min)	≥ 30min	≥ 30 min



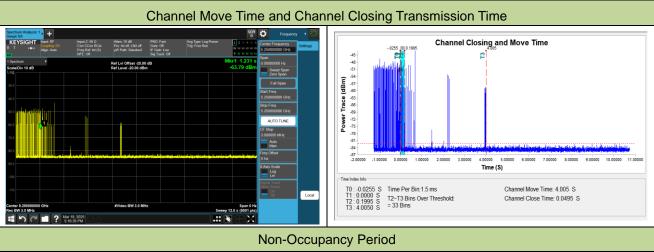
Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-05					
Test Item	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160					
iest iteili	mode - 5570MHz) - Master					

Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-16 ~ 2025-03-24					
Test Item	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160					
rest item	mode - 5250MHz) – Slave with Radar Detection					

Non-Occupancy Period

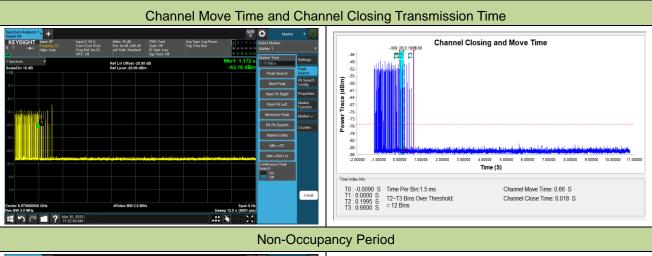
Parameter	Test Result	Limit
Channel Move Time (s)	7.7235s	<10s
Channel Closing Transmission Time (ms) (Note)	52.5ms	< 60ms
Non-Occupancy Period (min)	≥ 30min	≥ 30 min

Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-16 ~ 2025-03-24					
Tost Itom	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160					
Test Item mode - 5570MHz) – Slave with Radar Detection						


Non-Occupancy Period

Parameter	Test Result	Limit
Channel Move Time (s)	0.5595s	<10s
Channel Closing Transmission Time (ms) (Note)	22.5ms	< 60ms
Non-Occupancy Period (min)	≥ 30min	≥ 30 min

Test Site	WJ-SR7	Test Engineer	Jake Lan			
Test Date	2025-03-19 ~2025-03-24					
Test Item	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160					
Test Item	mode - 5250MHz) – Slave without Radar Detection					



The State of the S

Parameter	Test Result	Limit
Channel Move Time (s)	4.005s	<10s
Channel Closing Transmission Time (ms) (Note)	49.5ms	< 60ms
Non-Occupancy Period (min)	≥ 30min	≥ 30 min

Test Site	WJ-SR7	Test Engineer	Jake Lan						
Test Date	2025-03-20								
Test Item	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160								
Test item	mode - 5570MHz) – Slave without Radar Detection								

Parameter	Test Result	Limit	
Channel Move Time (s)	0.66s	<10s	
Channel Closing Transmission Time (ms) (Note)	18.0ms	< 60ms	
Non-Occupancy Period (min)	≥ 30min	≥ 30 min	

A.8 Statistical Performance Check

Test Site	WJ-SR7 Test Engineer Jake Lan								
Test Date	2025-03-09	2025-03-09							
Test Item	Radar Statistical Performance Check (802.11be-EHT20 – 5500MHz) - Master								

		ı	Radar Type 1-4	- Radar Statisti	cal Performanc	e		
Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
0	5508	1	5495	1	5495	1	5498	1
1	5507	1	5491	1	5501	0	5502	0
2	5509	1	5499	1	5510	1	5494	1
3	5500	1	5508	1	5506	1	5496	1
4	5497	1	5498	1	5493	1	5500	1
5	5498	1	5502	1	5504	1	5492	1
6	5505	1	5494	0	5499	1	5509	1
7	5491	1	5510	1	5497	1	5501	1
8	5501	1	5500	1	5508	1	5507	1
9	5503	1	5501	1	5507	1	5505	1
10	5496	1	5507	1	5491	0	5499	1
11	5506	1	5504	0	5503	1	5495	1
12	5504	1	5509	1	5492	1	5510	1
13	5510	1	5506	1	5505	1	5508	0
14	5493	1	5505	1	5502	1	5493	1
15	5492	1	5492	1	5500	1	5504	1
16	5499	1	5503	1	5498	1	5497	1
17	5502	1	5497	1	5509	1	5503	0
18	5495	1	5496	1	5496	1	5506	1
19	5494	1	5493	1	5494	1	5491	1
20	5500	1	5508	1	5490	1	5499	1
21	5505	1	5503	1	5508	1	5504	1
22	5498	1	5502	1	5498	1	5493	1
23	5504	1	5499	1	5492	0	5500	1
24	5493	1	5498	1	5506	1	5508	1
25	5491	1	5496	1	5496	1	5510	1
26	5506	1	5493	1	5506	1	5495	1
27	5492	1	5490	1	5501	1	5506	1

Trial	Radar Type 1		Radar	Radar Type 2		Type 3	Radar Type 4					
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect				
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect				
28	5502	1	5495	1	5494	1	5509	1				
29	5490	1	5490	1	5490	1	5490	1				
Probability:	100.0% 93.3%			.3%	90.	0%	90.0%					
Aggregate:		93.3% (>80%)										

	F	Radar Ty _l	pe 1 - Rad	dar Wavefo	orm			F	Radar Typ	oe 2 - Ra	dar Wavefo	orm	
	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Humber of Pulses	Taveform Length (us)		Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)
Download	0	Type 1	1.0	938.0	57	53466.0	Download	0	Type 2	1.5	205.0	23	4715.0
Download	1	Type 1	1.0	698.0	76	53048.0	Download	1	Type 2	4.9	222.0	29	6438.0
ownload	2	Type 1	1.0	818.0	65	53170.0	Download	2	Type 2	3.5	196.0	27	5292.0
ownload	3	Type 1	1.0	838.0	63	52794.0	Download	3	Type 2	4.1	169.0	28	4732.0
ownload	4	Type 1	1.0	3066.0	18	55188.0	Download	4	Type 2	1.2	191.0	23	4393.0
ownload	5	Type 1	1.0	778.0	68	52904.0	Download	5	Type 2	3.2	189.0	26	4914.0
ownload	6	Type 1	1.0	798.0	67	53466.0	Download	6	Type 2	4.6	150.0	29	4350.0
ownload	7	Type 1	1.0	678.0	78	52884.0	Download	7	Type 2	3.4	184.0	27	4968.0
ownload	8	Type 1	1.0	858.0	62	53196.0	Download	8	Type 2	3.1	199.0	26	5174.0
ownload	9	Type 1	1.0	598.0	89	53222.0	Download	9	Type 2	4.4	177.0	28	4956.0
ownload	10	Type 1	1.0	618.0	86	53148.0	Download	10	Type 2	3.4	215.0	27	5805.0
ownload	11	Type 1	1.0	558.0	95	53010.0	Download	11	Type 2	3.9	221.0	28	6188.0
ownload	12	Type 1	1.0	578.0	92	53176.0	Download	12	Type 2	4.0	180.0	28	5040.0
ownload	13	Type 1	1.0	518.0	102	52836.0	Download	13	Type 2	3.3	156.0	26	4056.0
ownload	14	Type 1	1.0	918.0	58	53244.0	Download	14	Type 2	3.8	179.0	27	4833.0
ownload	15	Type 1	1.0	2352.0	23	54096.0	Download	15	Type 2	2.1	152.0	24	3648.0
ownload	16	Type 1	1.0	672.0	79	53088.0	Download	16	Type 2	3. 7	203.0	27	5481.0
ownload	17	Type 1	1.0	1540.0	35	53900.0	Download	17	Type 2	4. 7	208.0	29	6032.0
ownload	18	Type 1	1.0	2765.0	20	55300.0	Download	18	Type 2	1.6	210.0	24	5040.0
ownload	19	Type 1	1.0	1993.0	27	53811.0	Download	19	Type 2	4.4	226.0	28	6328.0
ownload	20	Type 1	1.0	2576.0	21	54096.0	Download	20	Type 2	3.9	193.0	28	5404.0
ownload	21	Type 1	1.0	786. 0	68	53448.0	Download	21	Type 2	4.0	175.0	28	4900.0
ownload	22	Type 1	1.0	2705.0	20	54100.0	Download	22	Type 2	4.9	163.0	29	4727.0
ownload	23	Type 1	1.0	2671.0	20	53420.0	Download	23	Type 2	1.6	171.0	24	4104.0
ownload	24	Type 1	1.0	1707.0	31	52917.0	Download	24	Type 2	3.3	211.0	26	5486.0
ownload	25	Type 1	1.0	680.0	78	53040.0	Download	25	Type 2	3.4	190.0	27	5130.0
ownload	26	Type 1	1.0	2142.0	25	53550.0	Download	26	Type 2	4.1	167.0	28	4676.0
ownload	27	Type 1	1.0	1311.0	41	53751.0	Download	27	Type 2	4.9	187.0	29	5423.0
ownload	28	Type 1	1.0	955.0	56	53480.0	Download	28	Type 2	4.3	201.0	28	5628.0
ownload	29	Type 1	1.0	1332.0	40	53280.0	Download	29	Type 2	3.7	159.0	27	4293.0

	F	Radar Ty _l	oe 3 - Rad	dar Wavefo	orm			F	Radar Typ	oe 4 - Ra	dar Wavefo	orm	
	Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)		Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Type 3	6.5	274.0	16	4384.0	Download	0	Type 4	12.1	274.0	12	3288.0
Download	1	Type 3	9.9	446.0	18	8028.0	Download	1	Type 4	19. 7	446.0	16	7136.0
Download	2	Type 3	8.5	488.0	17	8296.0	Download	2	Type 4	16.6	488.0	15	7320.0
Download	3	Type 3	9.1	353.0	18	6354.0	Download	3	Type 4	18.0	353.0	15	5295.0
Download	4	Type 3	6.2	465.0	16	7440.0	Download	4	Type 4	11.5	465.0	12	5580.0
Download	5	Type 3	8.2	277.0	17	4709.0	Download	5	Type 4	16.0	277.0	14	3878.0
Download	6	Type 3	9.6	480.0	18	8640.0	Download	6	Type 4	19.1	480.0	16	7680.0
Download	7	Type 3	8.4	385.0	17	6545.0	Download	7	Type 4	16.3	385.0	14	5390.0
Download	8	Type 3	8.1	259.0	17	4403.0	Download	8	Type 4	15.6	259.0	14	3626.0
Download	9	Type 3	9.4	372.0	18	6696.0	Download	9	Type 4	18.6	372.0	16	5952.0
Download	10	Type 3	8.4	432.0	17	7344.0	Download	10	Type 4	16.4	432.0	14	6048.0
Download	11	Type 3	8.9	292.0	18	5256.0	Download	11	Type 4	17.5	292.0	15	4380.0
Download	12	Type 3	9.0	380.0	18	6840.0	Download	12	Type 4	17. 7	380.0	15	5700.0
Download	13	Type 3	8.3	308.0	17	5236.0	Download	13	Type 4	16.1	308.0	14	4312.0
Download	14	Type 3	8.8	291.0	18	5238.0	Download	14	Type 4	17.2	291.0	15	4365.0
Download	15	Type 3	7. 1	407.0	16	6512.0	Download	15	Type 4	13.5	407.0	13	5291.0
Download	16	Type 3	8. 7	223.0	18	4014.0	Download	16	Type 4	17.1	223.0	15	3345.0
Download	17	Type 3	9. 7	473.0	18	8514.0	Download	17	Type 4	19.2	473.0	16	7568.0
Download	18	Type 3	6.6	430.0	16	6880.0	Download	18	Type 4	12.5	430.0	12	5160.0
Download	19	Type 3	9.4	268.0	18	4824.0	Download	19	Type 4	18. 7	268.0	16	4288.0
Download	20	Type 3	8.9	241.0	18	4338.0	Download	20	Type 4	17.6	241.0	15	3615.0
Download	21	Type 3	9.0	352.0	18	6336.0	Download	21	Type 4	17.6	352.0	15	5280.0
Download	22	Type 3	9.9	244.0	18	4392.0	Download	22	Type 4	19. 7	244.0	16	3904.0
Download	23	Type 3	6.6	273.0	16	4368.0	Download	23	Type 4	12.4	273.0	12	3276.0
Download	24	Type 3	8.3	368.0	17	6256.0	Download	24	Type 4	16.1	368.0	14	5152.0
Download	25	Type 3	8.4	312.0	17	5304.0	Download	25	Type 4	16.4	312.0	15	4680.0
Download	26	Type 3	9.1	444.0	18	7992.0	Download	26	Type 4	17.8	444.0	15	6660.0
Download	27	Type 3	9.9	220.0	18	3960.0	Download	27	Type 4	19.6	220.0	16	3520.0
Download	28	Туре З	9.3	321.0	18	5778.0	Download	28	Type 4	18.4	321.0	16	5136.0
Download	29	Type 3	8. 7	335.0	17	5695.0	Download	29	Type 4	17.0	335.0	15	5025.0

		Radar Type 5 - Radar	Statistical Performance)	
Trail #	Test Freq. (MHz)	1=Detection 0=No Detection	Trail #	Test Freq. (MHz)	1=Detection 0=No Detection
0	5500	1	15	5493.6	1
1	5500	1	16	5496	1
2	5500	1	17	5497.6	1
3	5500	1	18	5492.8	1
4	5500	1	19	5497.2	1
5	5500	1	20	5503.6	1
6	5500	0	21	5503.6	1
7	5500	1	22	5502	1
8	5500	1	23	5507.2	1
9	5500	1	24	5504.4	1
10	5495.6	1	25	5504.4	1
11	5496.4	1	26	5503.2	1
12	5496.4	1	27	5502	1
13	5495.6	1	28	5502.8	1
14	5496	1	29	5504	1
	Detection Percentage (%)		96.7%	

			Type 5 Rada	r Waveform_	0		
Burst ID	Burst Offset (us)	Pulse Width (us)		Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	498411.0	56.6	7	1	1982.0	_	_
1	819864.0	98.3	7	3	1774.0	1430.0	1115.0
2	1143436.0	81.0	7	2	1167.0	1705.0	_
3	135508.0	89.0	7	3	1522.0	1241.0	1529.0
4	458641.0	52. 7	7	1	1972.0	-	-
5	780953.0	77.5	7	2	1080.0	1890.0	_
6	1101876.0	94. 7	7	3	1642.0	1498.0	1917.0
7	95898.0	79.6	7	2	1407.0	1581.0	_
8	418717.0	75. 7	7	2	1073.0	1378.0	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	332096.0	92.0	20	3	1048.0	1607.0	1280.0
1	477595.0	79.9	20	2	1286.0	1481.0	-
2	25131.0	85.9	20	3	1946.0	1296.0	1384.0
3	169390.0	86.9	20	3	1955.0	1936.0	1221.0
4	314456.0	78.4	20	2	1811.0	1808.0	-
5	458017.0	84.3	20	3	1959.0	1913.0	1150.0
6	7380.0	63.8	20	1	1795.0	-	-
7	151552.0	83.8	20	3	1865.0	1814.0	1690.0
8	295984.0	95.4	20	3	1866.0	1434.0	1636.0
9	443036.0	58.5	20	1	1246.0	-	-
10	584905.0	92.5	20	3	1489.0	1597.0	1568.0
11	134033.0	86.6	20	3	1022.0	1725.0	1535.0
12	278437.0	86.8	20	3	1726.0	1237.0	1482.0
13	423013.0	97.9	20	3	1681.0	1086.0	1488.0
14	569694.0	57.9	20	1	1951.0	-	-
15	116624.0	78.5	20	2	1171.0	1124.0	-
16	261104.0	80.1	20	2	1574.0	1822.0	-
17	405025.0	87.8	20	3	1560.0	1561.0	1414.0
18	548838.0	97.6	20	3	1527.0	1933.0	1731.0
19	98400.0	91.0	20	3	1601.0	1122.0	1797.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	304546.0	83. 1	14	2	1769.0	1385.0	_
1	484083.0	95.1	14	3	1767.0	1869.0	1973.0
2	666085.0	99.5	14	3	1034.0	1799.0	1137.0
3	101051.0	72.2	14	2	1631.0	1891.0	_
4	282351.0	70.9	14	2	1615.0	1230.0	_
5	463527.0	82. 7	14	2	1401.0	1497.0	_
6	646079.0	61.6	14	1	1326.0	-	_
7	78795.0	76.2	14	2	1278.0	1827.0	_
8	260604.0	64.8	14	1	1197.0	-	_
9	440046.0	94.3	14	3	1307.0	1916.0	1643.0
10	622226.0	79.9	14	2	1566.0	1545.0	_
11	56347.0	99.4	14	3	1614.0	1329.0	1940.0
12	237852.0	75.4	14	2	1328.0	1070.0	-
13	418655.0	76.2	14	2	1637.0	1678.0	_
14	598177.0	96.6	14	3	1676.0	1603.0	1993.0
15	34092.0	97.2	14	3	1210.0	1854.0	1717.0

Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	191325.0	78.8	17	2	1065.0	1921.0	_
1	352842.0	66.6	17	1	1944.0	_	_
2	512438.0	91.9	17	3	1235.0	1212.0	1592.0
3	10518.0	87.2	17	3	1159.0	1064.0	1842.0
4	171959.0	65.5	17	1	1201.0	-	-
5	333128.0	66.6	17	1	1655.0	-	-
6	494228.0	58.2	17	1	1906.0	-	-
7	652300.0	85.3	17	3	1404.0	1817.0	1883.0
8	151851.0	71.0	17	2	1126.0	1072.0	-
9	312755.0	68.2	17	2	1475.0	1255.0	-
10	473413.0	69.8	17	2	1897.0	1349.0	-
11	635768.0	50.3	17	1	1724.0	-	-
12	131779.0	73. 1	17	2	1320.0	1996.0	-
13	293590.0	60.5	17	1	1213.0	-	-
14	453711.0	72.6	17	2	1192.0	1882.0	-
15	612939.0	89. 7	17	3	1663.0	1540.0	1722.0
16	111670.0	97.2	17	3	1611.0	1466.0	1965.0
17	272533.0	88. 7	17	3	1618.0	1355.0	1101.0

Type 5 Radar Waveform_4

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	978026.0	92. 7	5	3	1331.0	1586.0	1275.0
1	1340156.0	97.0	5	3	1170.0	1876.0	1871.0
2	207942.0	80.5	5	2	1984.0	1025.0	_
3	571673.0	63.6	5	1	1272.0	-	_
4	934840.0	66.0	5	1	1788.0	-	_
5	1296737.0	95. 7	5	3	1363.0	1084.0	1033.0
6	163270.0	72. 7	5	2	1495.0	1063.0	_
7	525758.0	87.6	5	3	1473.0	1825.0	1220.0

Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	473614.0	69.0	13	2	1747.0	1052.0	_
1	668238.0	51.0	13	1	1273.0	_	_
2	63068.0	78. 7	13	2	1751.0	1526.0	_
3	256062.0	93. 1	13	3	1373.0	1442.0	1194.0
4	450558.0	61.1	13	1	1452.0	_	_
5	643965.0	60.6	13	1	1781.0	-	_
6	39341.0	51.3	13	1	1743.0	-	_
7	233120.0	60. 7	13	1	1142.0	_	_
8	425239.0	99. 7	13	3	1727.0	1451.0	1012.0
9	620383.0	63.5	13	1	1441.0	_	_
10	15444.0	96.0	13	3	1922.0	1094.0	1300.0
11	209106.0	60.3	13	1	1709.0	-	_
12	402036.0	75.5	13	2	1689.0	1369.0	-
13	596367.0	66.5	13	1	1656.0	_	-
14	786828.0	86.9	13	3	1492.0	1708.0	1651.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	146195.0	64.2	19	1	1610.0	_	_
1	299249.0	51.2	19	1	1049.0	-	_
2	451986.0	52.6	19	1	1309.0	-	_
3	604842.0	62.8	19	1	1313.0	-	-
4	127384.0	61.2	19	1	1565.0	-	-
5	280247.0	53.1	19	1	1421.0	-	_
6	433128.0	54.2	19	1	1350.0	-	_
7	584105.0	71.6	19	2	1532.0	1833.0	_
8	108001.0	90.2	19	3	1399.0	1589.0	1837. 0
9	261475.0	52.2	19	1	1292.0	-	-
10	412271.0	86.8	19	3	1606.0	1083.0	1748.0
11	564249.0	83.5	19	3	1733.0	1549.0	1293.0
12	89270.0	99. 7	19	3	1836.0	1353.0	1686.0
13	241918.0	66. 7	19	2	1476.0	1704.0	-
14	395429.0	65.1	19	1	1420.0	-	-
15	547929.0	50.5	19	1	1803.0	-	-
16	70593.0	96.2	19	3	1229.0	1831.0	1417.0
17	223721.0	64.5	19	1	1559.0	-	-
18	375959.0	78. 0	19	2	1125.0	1374.0	-

Type 5 Radar Waveform_7

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	668562.0	97.6	14	3	1219.0	1523.0	1507. 0
1	66014.0	57. 1	14	1	1718.0	-	-
2	259563.0	56.5	14	1	1903.0	-	_
3	452268.0	77.9	14	2	1650.0	1765.0	_
4	646957.0	57.0	14	1	1573.0	_	_
5	42151.0	59.2	14	1	1999.0	_	_
6	235195.0	99.0	14	3	1358.0	1314.0	1009.0
7	429378.0	62.3	14	1	1728.0	-	_
8	623009.0	60.9	14	1	1696.0	-	_
9	18329.0	59.1	14	1	1223.0	_	_
10	211248.0	93.8	14	3	1533.0	1684.0	1056.0
11	404316.0	86.8	14	3	1007.0	1129.0	1981.0
12	599653.0	63.1	14	1	1039.0	-	-
13	791235.0	76.1	14	2	1666.0	1579.0	_
14	188045.0	60.1	14	1	1860.0	_	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	409339.0	66.2	13	1	1028.0	-	_
1	616512.0	62.4	13	1	1668.0	-	_
2	824175.0	63.3	13	1	1478.0	_	_
3	175725.0	82.9	13	2	1359.0	1630.0	_
4	383742.0	61.4	13	1	1074.0	_	_
5	588878.0	84.4	13	3	1226.0	1832.0	1617.0
6	798373.0	64. 7	13	1	1735.0	-	_
7	150256.0	79.4	13	2	1422.0	1289.0	_
8	356466.0	88.5	13	3	1713.0	1468.0	1960.0
9	563820.0	90.8	13	3	1315.0	1632.0	1110.0
10	770828.0	74.3	13	2	1961.0	1976.0	_
11	124573.0	77. 1	13	2	1847.0	1945.0	-
12	332577.0	51.7	13	1	1116.0	-	-
13	538141.0	94.0	13	3	1734.0	1305.0	1324.0

Type 5	Radar	Wave	form_9
--------	-------	------	--------

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	577414.0	84.6	18	3	1792.0	1990.0	1907.0
1	77194.0	62.9	18	1	1810.0	-	_
2	237721.0	99.8	18	3	1133.0	1188.0	1502.0
3	398404.0	95.9	18	3	1383.0	1079.0	1490.0
4	558792.0	97.6	18	3	1364.0	1648.0	1345.0
5	57211.0	68.9	18	2	1794.0	1424.0	_
6	218082.0	79. 7	18	2	1919.0	1409.0	_
7	379975.0	57.6	18	1	1556.0	-	_
8	539855.0	73. 3	18	2	1901.0	1412.0	_
9	37308.0	95.6	18	3	1947.0	1106.0	1633.0
10	198836.0	53.6	18	1	1416.0	_	_
11	359938.0	62.3	18	1	1864.0	_	_
12	519207.0	90.8	18	3	1288.0	1402.0	1683.0
13	17535.0	93.4	18	3	1098.0	1499.0	1978.0
14	178923.0	62.5	18	1	1563.0	-	_
15	338778.0	96.5	18	3	1403.0	1182.0	1820.0
16	501453.0	65.5	18	1	1679.0	-	_
17	661168.0	73.6	18	2	1538.0	1712.0	-

Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	191050.0	57.3	14	1	1099.0	_	_
1	383023.0	89.6	14	3	1483.0	1550.0	1773.0
2	578151.0	50.5	14	1	1673.0	_	_
3	772122.0	52.6	14	1	1310.0	_	_
4	166700.0	87.2	14	3	1131.0	1059.0	1218.0
5	360583.0	63.3	14	1	1893.0	_	_
6	554105.0	53.1	14	1	1957.0	_	_
7	745719.0	93.6	14	3	1172.0	1757.0	1095.0
8	142842.0	82.9	14	2	1932.0	1809.0	-
9	336520.0	77. 7	14	2	1266.0	1149.0	_
10	529668.0	68.1	14	2	1622.0	1231.0	_
11	722195.0	87.2	14	3	1021.0	1591.0	1130.0
12	119169.0	82.8	14	2	1926.0	1050.0	-
13	312635.0	82.2	14	2	1119.0	1444.0	-
14	505006.0	97.3	14	3	1437.0	1410.0	1343.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	615810.0	68.4	16	2	1934.0	1861.0	_
1	84083.0	76.4	16	2	1400.0	1701.0	-
2	254007.0	96.3	16	3	1682.0	1646.0	1217.0
3	424228.0	94.0	16	3	1654.0	1542.0	1143.0
4	594248.0	91.0	16	3	1723.0	1621.0	1144.0
5	63263.0	65.6	16	1	1158.0	-	-
6	233917.0	57.2	16	1	1950.0	-	-
7	404164.0	80.4	16	2	1352.0	1431.0	_
8	576035.0	58.6	16	1	1135.0	-	_
9	42051.0	89.2	16	3	1128.0	1386.0	1290.0
10	212606.0	67. 7	16	2	1575.0	1308.0	-
11	382843.0	79.2	16	2	1878.0	1487.0	-
12	552732.0	99.2	16	3	1085.0	1186.0	1720.0
13	21088.0	93. 7	16	3	1002.0	1148.0	1267.0
14	191336.0	71.4	16	2	1875.0	1991.0	-
15	361944.0	66.9	16	2	1440.0	1753.0	-
16	531147.0	92.1	16	3	1583.0	1892.0	1330.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	103.0	75.3	16	2	1969.0	1088.0	-
1	170925.0	50.6	16	1	1554.0	-	-
2	340742.0	69. 7	16	2	1998.0	1627.0	_
3	512618.0	62.2	16	1	1486.0	_	-
4	680353.0	93.5	16	3	1419.0	1841.0	1425.0
5	149405.0	81.9	16	2	1824.0	1980.0	_
6	320212.0	75. 7	16	2	1534.0	1103.0	-
7	489880.0	86.5	16	3	1456.0	1102.0	1356.0
8	660472.0	92. 7	16	3	1190.0	1181.0	1179.0
9	128839.0	53.9	16	1	1570.0	-	-
10	298550.0	86.1	16	3	1193.0	1870.0	1109.0
11	470509.0	51.9	16	1	1520.0	-	-
12	639739.0	89.6	16	3	1164.0	1078.0	1035.0
13	107319.0	86.2	16	3	1411.0	1855.0	1436.0
14	278762.0	62.8	16	1	1202.0	-	_
15	448831.0	71.5	16	2	1371.0	1145.0	-
16	620359.0	65.0	16	1	1449.0	_	_

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	98252.0	72.4	14	2	1001.0	1367.0	_
1	291703.0	67.0	14	2	1053.0	1317.0	_
2	485554.0	66.2	14	1	1711.0		-
3	679617.0	52.4	14	1	1178.0		-
4	74417.0	74.6	14	2	1196.0	1244.0	-
5	268168.0	57.9	14	1	1494.0	-	_
6	461974.0	50.1	14	1	1247.0	-	_
7	655126.0	59.1	14	1	1942.0	-	-
8	50443.0	92.0	14	3	1365.0	1840.0	1557.0
9	244215.0	63.5	14	1	1816.0		-
10	436987.0	69.4	14	2	1707.0	1590.0	_
11	629694.0	84.1	14	3	1045.0	1447.0	1461.0
12	26810.0	54.0	14	1	1069.0	-	-
13	219700.0	100.0	14	3	1552.0	1455.0	1234.0
14	414205.0	61.4	14	1	1334.0	-	-

Type 5 Radar Waveform_14

Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	570026.0	60. 7	15	1	1100.0	-	-
1	2750.0	76. 0	15	2	1254.0	1970.0	-
2	184281.0	61.8	15	1	1543.0	-	-
3	365030.0	82.1	15	2	1291.0	1839.0	-
4	547152.0	62.4	15	1	1786.0	-	-
5	726008.0	85.0	15	3	1263.0	1994.0	1208.0
6	161637.0	74.9	15	2	1741.0	1114.0	-
7	342124.0	94.5	15	3	1338.0	1749.0	1336.0
8	523826.0	70.5	15	2	1925.0	1249.0	-
9	706605.0	57.5	15	1	1426.0	-	-
10	139009.0	98.3	15	3	1087.0	1877.0	1541.0
11	320986.0	61.7	15	1	1775.0	-	-
12	501613.0	71.1	15	2	1986.0	1042.0	-
13	682620.0	78. 4	15	2	1605.0	1595.0	-
14	116875.0	69.0	15	2	1785.0	1848.0	-
15	298639.0	52.9	15	1	1762.0	_	-

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	699269.0	54.9	9	1	1118.0	_	_
1	963091.0	57. 7	9	1	1669.0	-	_
2	137613.0	84.1	9	3	1988.0	1756.0	1180.0
3	401778.0	71.2	9	2	1582.0	1232.0	_
4	666237.0	54.3	9	1	1896.0	-	_
5	930434.0	50.6	9	1	1806.0	_	_
6	105293.0	89.6	9	3	1014.0	1406.0	1225.0
7	369632.0	50. 7	9	1	1752.0	_	_
8	631964.0	92.8	9	3	1585.0	1905.0	1395.0
9	896531.0	69.5	9	2	1952.0	1511.0	-
10	72980.0	53.1	9	1	1134.0	-	-

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	231655.0	51.5	15	1	1518.0	_	_
1	412528.0	68.3	15	2	1555.0	1154.0	_
2	594964.0	56.2	15	1	1206.0	_	_
3	27777.0	52.3	15	1	1163.0	_	_
4	208407.0	88. 7	15	3	1659.0	1588.0	1446.0
5	391049.0	54.0	15	1	1090.0	_	_
6	570786.0	74. 6	15	2	1714.0	1856.0	_
7	5383.0	91.2	15	3	1189.0	1479.0	1800.0
8	187000.0	63.5	15	1	1253.0	_	_
9	367787.0	74.3	15	2	1302.0	1593.0	_
10	549428.0	80.8	15	2	1057.0	1233.0	_
11	731059.0	59.0	15	1	1995.0	_	_
12	164190.0	80. 1	15	2	1377.0	1885.0	_
13	344805.0	97.5	15	3	1553.0	1346.0	1428.0
14	526804.0	72.5	15	2	1459.0	1238.0	-
15	705729.0	95.8	15	3	1408.0	1918.0	1819.0

Type 5 Radar Waveform_17

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	119028.0	95.0	19	3	1515.0	1868.0	1740.0
1	272017.0	76.3	19	2	1548.0	1140.0	_
2	423182.0	96.3	19	3	1382.0	1664.0	1657.0
3	576290.0	79.0	19	2	1821.0	1715.0	_
4	100564.0	80. 7	19	2	1584.0	1971.0	_
5	252964.0	72.9	19	2	1480.0	1867.0	_
6	406819.0	60.6	19	1	1038.0	-	_
7	559239.0	64.5	19	1	1608.0	-	_
8	81902.0	76.4	19	2	1467.0	1327.0	_
9	234329.0	70.0	19	2	1054.0	1935.0	_
10	386755.0	78. 7	19	2	1368.0	1665.0	_
11	540161.0	57. 1	19	1	1909.0	_	_
12	63293.0	60.1	19	1	1047.0	-	_
13	214932.0	86.5	19	3	1966.0	1815.0	1011.0
14	369060.0	61.1	19	1	1184.0	-	_
15	518610.0	89.4	19	3	1853.0	1587.0	1779.0
16	44175.0	92.9	19	3	1333.0	1920.0	1783.0
17	196639.0	81.9	19	2	1485.0	1929.0	_
18	349421.0	73.4	19	2	1503.0	1132.0	_

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	955539.0	76.2	7	2	1450.0	1282.0	_
1	48691.0	64.2	7	1	1619.0	_	_
2	339262.0	55. 1	7	1	1881.0	_	_
3	630199.0	59.6	7	1	1205.0	-	_
4	920336.0	57.6	7	1	1997.0	_	_
5	12852.0	96.6	7	3	1888.0	1332.0	1977.0
6	303060.0	87.2	7	3	1107.0	1183.0	1204.0
7	594095.0	55.5	7	1	1791.0	_	_
8	883335.0	78.6	7	2	1789.0	1850.0	_
9	1174191.0	74. 1	7	2	1685.0	1239.0	-

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	140129.0	98. 7	18	3	1465.0	1760.0	1136.0
1	293551.0	53.9	18	1	1567.0	_	_
2	445773.0	73.8	18	2	1339.0	1041.0	_
3	597498.0	81.9	18	2	1311.0	1989.0	_
4	121960.0	54.9	18	1	1423.0	_	_
5	273117.0	94.6	18	3	1766.0	1729.0	1771.0
6	426934.0	74. 4	18	2	1366.0	1075.0	_
7	578137.0	96.5	18	3	1242.0	1418.0	1283.0
8	102589.0	90.5	18	3	1612.0	1902.0	1240.0
9	255601.0	72.4	18	2	1306.0	1019.0	_
10	408389.0	78.6	18	2	1013.0	1043.0	_
11	561709.0	57.6	18	1	1337.0	_	_
12	83926.0	91.8	18	3	1277.0	1209.0	1804.0
13	236277.0	76.0	18	2	1949.0	1772.0	_
14	389191.0	68. 7	18	2	1175.0	1513.0	_
15	541297.0	75. 4	18	2	1348.0	1828.0	_
16	65253.0	67.5	18	2	2000.0	1640.0	-
17	217723.0	81.1	18	2	1558.0	1576.0	-
18	369974.0	77. 1	18	2	1469.0	1948.0	-

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	586092.0	63.2	16	1	1031.0	_	_
1	51905.0	91.5	16	3	1846.0	1755.0	1258.0
2	223118.0	66. 1	16	1	1092.0	_	-
3	391629.0	98.3	16	3	1703.0	1813.0	1910.0
4	563367.0	74. 1	16	2	1138.0	1974.0	_
5	30963.0	96.3	16	3	1297.0	1805.0	1759.0
6	201436.0	81.5	16	2	1677.0	1602.0	_
7	370931.0	89.9	16	3	1710.0	1964.0	1322.0
8	541998.0	66. 7	16	2	1992.0	1604.0	_
9	10017.0	88.6	16	3	1742.0	1635.0	1721.0
10	180599.0	82.5	16	2	1379.0	1303.0	_
11	350188.0	93.6	16	3	1873.0	1279.0	1453.0
12	521117.0	67.4	16	2	1496.0	1967.0	-
13	691601.0	82.0	16	2	1923.0	1413.0	-
14	159212.0	90.4	16	3	1268.0	1580.0	1506.0
15	330056.0	77. 7	16	2	1325.0	1537.0	-
16	501438.0	66.0	16	1	1629.0	_	_

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	672233.0	54.9	16	1	1638.0	-	-
1	138421.0	75.2	16	2	1838.0	1671.0	-
2	309859.0	55.1	16	1	1029.0	_	_
3	478372.0	91.9	16	3	1396.0	1843.0	1362.0
4	648760.0	86. 7	16	3	1389.0	1146.0	1736.0
5	117384.0	92.9	16	3	1222.0	1578.0	1036.0
6	288529.0	52.3	16	1	1695.0	-	-
7	459234.0	59.5	16	1	1823.0	-	-
8	626556.0	94.8	16	3	2000.0	1730.0	1931.0
9	96601.0	68.5	16	2	1433.0	1018.0	_
10	267097.0	72.5	16	2	1536.0	1198.0	-
11	437832.0	79.1	16	2	1151.0	1264.0	-
12	607118.0	90.9	16	3	1628.0	1071.0	1250.0
13	75481.0	82.3	16	2	1491.0	1941.0	-
14	246027.0	79.1	16	2	1460.0	1457.0	-
15	417441.0	56.0	16	1	1361.0	-	-
16	587076.0	78.5	16	2	1458.0	1380.0	-

Type 5 Radar Waveform_22

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	46450.0	65.4	20	1	1251.0	_	_
1	191391.0	82. 7	20	2	1111.0	1000.0	-
2	335919.0	82.5	20	2	1203.0	1758.0	_
3	481614.0	55. 7	20	1	1851.0	-	-
4	28405.0	99.8	20	3	1693.0	1347.0	1521.0
5	172971.0	85.6	20	3	1177.0	1501.0	1357.0
6	317906.0	73.4	20	2	1600.0	1694.0	-
7	464392.0	54. 7	20	1	1016.0	-	-
8	10671.0	57. 7	20	1	1512.0	-	-
9	155841.0	57.8	20	1	1445.0	_	_
10	301119.0	58.0	20	1	1227.0	_	_
11	444744.0	78.8	20	2	1649.0	1719.0	_
12	591399.0	61.2	20	1	1391.0	-	-
13	137629.0	75.6	20	2	1620.0	1257.0	-
14	283099.0	51.3	20	1	1505.0	-	-
15	425949.0	98.4	20	3	1316.0	1975.0	1435.0
16	573419.0	52.6	20	1	1493.0	-	-
17	119753.0	70.4	20	2	1928.0	1139.0	-
18	264205.0	92.3	20	3	1236.0	1298.0	1262.0
19	409363.0	75.9	20	2	1195.0	1784.0	_

Burst ID	Burst Offset (us)	Pulse Vidth (us)		Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	1109960.0	85.2	7	3	1252.0	1427.0	1510.0
1	204474.0	76.5	7	2	1228.0	1187.0	_
2	493881.0	98.6	7	3	1746.0	1653.0	1544.0
3	786289.0	63.8	7	1	1026.0	-	-
4	1074530.0	88.8	7	3	1185.0	1616.0	1061.0
5	168617.0	79.3	7	2	1200.0	1780.0	_
6	458743.0	77.8	7	2	1943.0	1530.0	_
7	750254.0	59.0	7	1	1372.0	-	_
8	1040467.0	60. 7	7	1	1939.0	-	_
9	132850.0	75.8	7	2	1166.0	1874.0	_

Type 5 R	adar V	Vavet	form	24
----------	--------	-------	------	----

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	282372.0	56.3	14	1	1259.0	-	_
1	475937.0	53.4	14	1	1519.0	_	_
2	666421.0	87.5	14	3	1702.0	1927.0	1674.0
3	64576.0	88.9	14	3	1340.0	1089.0	1472.0
4	258581.0	66.6	14	1	1040.0	-	_
5	452310.0	57.6	14	1	1117.0	-	_
6	642773.0	95.2	14	3	1564.0	1887. 0	1737.0
7	40902.0	60.3	14	1	1770.0	-	_
8	234677.0	55.1	14	1	1161.0	_	_
9	426748.0	89. 7	14	3	1387.0	1162.0	1732.0
10	620824.0	81.8	14	2	1845.0	1037.0	_
11	16987.0	87.2	14	3	1260.0	1857.0	1872.0
12	210129.0	79.0	14	2	1987.0	1763.0	_
13	403089.0	85.0	14	3	1863.0	1127.0	1068.0
14	595677.0	94.4	14	3	1667.0	1295.0	1700.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	789664.0	80. 7	14	2	1983.0	1577.0	_
1	186272.0	83.5	14	3	1082.0	1004.0	1962.0
2	379407.0	92.9	14	3	1269.0	1572.0	1015.0
3	573521.0	71.1	14	2	1176.0	1256.0	_
4	765692.0	80.8	14	2	1956.0	1790.0	-
5	162471.0	88.2	14	3	1105.0	1174.0	1879.0
6	356733.0	61.8	14	1	1370.0	-	_
7	548213.0	86.8	14	3	1539.0	1798.0	1243.0
8	743415.0	80.1	14	2	1006.0	1120.0	-
9	138716.0	93.3	14	3	1096.0	1376.0	1569.0
10	331358.0	88.9	14	3	1276.0	1764.0	1968.0
11	524683.0	84.1	14	3	1157.0	1500.0	1571.0
12	719550.0	68. 7	14	2	1017.0	1141.0	-
13	115174.0	67.0	14	2	1010.0	1392.0	-
14	308098.0	70.4	14	2	1914.0	1829.0	_

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	443209.0	57.8	17	1	1777.0	_	_
1	614215.0	64. 4	17	1	1504.0	_	_
2	80335.0	94.0	17	3	1688.0	1393.0	1351.0
3	250859.0	81.9	17	2	1660.0	1652.0	-
4	422600.0	51.5	17	1	1067.0	_	_
5	593429.0	54.6	17	1	1199.0	-	-
6	59315.0	91.4	17	3	1938.0	1639.0	1624.0
7	230148.0	72.4	17	2	1301.0	1160.0	-
8	401022.0	59.0	17	1	1985.0	-	-
9	569461.0	93. 7	17	3	1147.0	1898.0	1745.0
10	38560.0	53.1	17	1	1958.0	_	_
11	208506.0	92.4	17	3	1214.0	1448.0	1912.0
12	380458.0	65.3	17	1	1123.0	-	-
13	550980.0	52.5	17	1	1641.0	-	-
14	17452.0	94.2	17	3	1862.0	1344.0	1908.0
15	187538.0	98.0	17	3	1599.0	1271.0	1768.0
16	357411.0	97.6	17	3	1508.0	1680.0	1844.0

		-	Гуре 5 Rada	ar Waveform_2	27		
Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	450700.0	63.5	20	1	1062.0	-	-
1	593744.0	69.4	20	2	1776.0	1514.0	-
2	142225.0	58.0	20	1	1312.0	_	_
3	285868.0	95.9	20	3	1802.0	1394.0	1360.0
4	429568.0	84.9	20	3	1687.0	1963.0	1894.0
5	574820.0	87.9	20	3	1076.0	1645.0	1706.0
6	123978.0	80.0	20	2	1524.0	1531.0	-
7	267877.0	87. 6	20	3	1924.0	1930.0	1152.0
8	412762.0	94.5	20	3	1474.0	1634.0	1060.0
9	559913.0	66.6	20	1	1342.0	-	-
10	106386.0	57.3	20	1	1697.0	_	-
11	250339.0	95.6	20	3	1156.0	1596.0	1691.0
12	395523.0	77.8	20	2	1699.0	1623.0	-
13	540641.0	73.5	20	2	1852.0	1023.0	-
14	88311.0	76.4	20	2	1104.0	1954.0	-
15	232835.0	93.4	20	3	1281.0	1270.0	1155.0
16	377157.0	84.8	20	3	1793.0	1354.0	1030.0
17	522252.0	81.9	20	2	1812.0	1692.0	-
18	70420.0	67.3	20	2	1594.0	1953.0	-
19	214746.0	93.3	20	3	1782.0	1287.0	1398.0

Type 5 Radar Waveform_28

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	398932.0	97.1	18	3	1525.0	1915.0	1787.0
1	559817.0	83.5	18	3	1647.0	1093.0	1937.0
2	58511.0	89. 7	18	3	1058.0	1081.0	1055.0
3	219021.0	89.3	18	3	1675.0	1405.0	1335.0
4	381299.0	61.1	18	1	1517.0	_	_
5	540014.0	83.9	18	3	1818.0	1644.0	1248.0
6	38713.0	77.5	18	2	1598.0	1216.0	_
7	199537.0	77.6	18	2	1698.0	1716.0	_
8	360160.0	95.8	18	3	1739.0	1066.0	1046.0
9	520817.0	96.6	18	3	1215.0	1005.0	1754.0
10	18842.0	84.3	18	3	1304.0	1299.0	1551.0
11	179415.0	86.0	18	3	1979.0	1108.0	1464.0
12	339762.0	95.4	18	3	1429.0	1911.0	1672.0
13	500687.0	91.3	18	3	1432.0	1658.0	1323.0
14	663164.0	70.6	18	2	1112.0	1439.0	_
15	159757.0	99.4	18	3	1113.0	1904.0	1027.0
16	321579.0	58.9	18	1	1738.0	_	-
17	482351.0	74.6	18	2	1375.0	1044.0	-

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	722902.0	73. 0	15	2	1835.0	1899.0	_
1	157855.0	76.5	15	2	1003.0	1661.0	_
2	339664.0	63.9	15	1	1438.0	-	_
3	518954.0	94.3	15	3	1121.0	1662.0	1900.0
4	703127.0	57.1	15	1	1051.0	-	_
5	135203.0	88.1	15	3	1761.0	1454.0	1245.0
6	316198.0	84.1	15	3	1341.0	1191.0	1509.0
7	498026.0	76.8	15	2	1261.0	1415.0	_
8	679207.0	81.2	15	2	1477.0	1274.0	_
9	113094.0	70.1	15	2	1484.0	1895.0	_
10	294500.0	76.8	15	2	1265.0	1285.0	_
11	474319.0	99.1	15	3	1889.0	1880.0	1077.0
12	656991.0	80.5	15	2	1020.0	1609.0	-
13	90855.0	70. 7	15	2	1091.0	1750.0	-
14	272188.0	76.8	15	2	1470.0	1032.0	-
15	454196.0	54. 7	15	1	1321.0	_	_

	Radar Type 6 - Radar	Statistical Performance	
Trail #	1=Detection	Trail #	1=Detection
	0=No Detection		0=No Detection
0	1	15	1
1	1	16	1
2	1	17	1
3	1	18	1
4	1	19	1
5	1	20	1
6	1	21	1
7	1	22	1
8	1	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
Detection Pe	ercentage (%)	100	.0%

		Type 6 Rada	r Waveform_0		
Frequency List (MHz)	0	1	2	3	4
0	5293	5683	5388	5279	5660
5	5289	5357	5559	5540	5351
10	5594	5252	5523	5667	5600
15	5355	5669	5541	5694	5377
20	5402	5471	5520	5491	5325
25	5306	5612	5412	5654	5724
30	5253	5445	5641	5624	5620
35	5470	5490	5382	5407	5617
40	5662	5345	5300	5715	5455
45	5604	5304	5556	5643	5696
50	5461	5330	5368	5644	5413
55	5622	5679	5701	5499	5292
60	5638	5496	5336	5659	5705
65	5707	5301	5317	5510	5534
70	5425	5538	5432	5576	5358
75	5348	5331	5282	5709	5561
80	5506	5436	5457	5573	5640
85	5514	5365	5712	5371	5722
90	5529	5629	5324	5671	5665
95	5645	5527	5360	5583	5335

Type 6 Radar Waveform_1

Frequency List (MHz)	0	1	2	3	4
0	5548	5447	5324	5440	5502
5	5331	5282	5634	5703	5558
10	5525	5516	5564	5387	5621
15	5443	5321	5547	5264	5569
20	5313	5540	5461	5580	5298
25	5572	5464	5518	5283	5295
30	5334	5598	5364	5507	5609
35	5685	5286	5535	5456	5270
40	5661	5712	5384	5584	5614
45	5696	5583	5337	5506	5419
50	5258	5711	5566	5392	5655
55	5689	5489	5601	5670	5610
60	5441	5643	5605	5431	5656
65	5361	5608	5454	5498	5679
70	5617	5311	5702	5478	5491
75	5312	5534	5344	5342	5596
80	5390	5640	5356	5668	5557
85	5325	5398	5349	5319	5659
90	5704	5681	5305	5682	5700
95	5562	5463	5533	5429	5370

Type 6	Radar	Wave	form_2
--------	-------	------	--------

Frequency List (MHz)	0	1	2	3	4
0	5328	5686	5260	5504	5722
5	5373	5304	5709	5391	5290
10	5359	5305	5605	5582	5642
15	5531	5351	5650	5309	5286
20	5321	5706	5402	5572	5271
25	5460	5413	5721	5387	5317
30	5337	5698	5555	5579	5281
35	5638	5651	5398	5557	5310
40	5710	5295	5450	5599	5683
45	5691	5467	5470	5672	5274
50	5591	5682	5444	5534	5580
55	5609	5307	5308	5324	5300
60	5386	5551	5254	5440	5346
65	5301	5276	5603	5528	5711
70	5287	5494	5671	5598	5537
75	5293	5689	5357	5695	5659
80	5451	5585	5543	5253	5545
85	5376	5646	5547	5484	5665
90	5263	5466	5699	5280	5592
95	5631	5566	5256	5524	5365

Type 6 Radar Waveform_3

Frequency List (MHz)	0	1	2	3	4
0	5583	5450	5671	5665	5564
5	5512	5704	5309	5457	5594
10	5290	5569	5646	5680	5663
15	5522	5478	5278	5354	5329
20	5300	5343	5661	5719	5348
25	5265	5449	5491	5351	5476
30	5684	5697	5433	5458	5315
35	5489	5353	5463	5624	5706
40	5533	5537	5448	5328	5620
45	5447	5553	5633	5327	5260
50	5467	5383	5521	5357	5293
55	5563	5497	5602	5543	5453
60	5465	5428	5404	5674	5455
65	5554	5336	5650	5616	5579
70	5445	5589	5628	5560	5263
75	5718	5274	5466	5523	5722
80	5305	5446	5612	5691	5369
85	5413	5330	5419	5367	5649
90	5675	5426	5716	5335	5576
95	5529	5423	5669	5454	5280

Type 6 Radar Waveform_4					
Frequency List (MHz)	0	1	2	3	4
0	5266	5689	5607	5351	5309
5	5554	5251	5384	5620	5326
10	5599	5455	5687	5400	5684
15	5610	5605	5381	5302	5670
20	5715	5466	5653	5692	5614
25	5592	5652	5385	5518	5573
30	5469	5437	5682	5278	5454
35	5580	5721	5616	5635	5545
40	5475	5591	5325	5549	5427
45	5636	5691	5380	5525	5343
50	5559	5572	5622	5655	5679
55	5481	5517	5324	5514	5582
60	5630	5373	5711	5597	5540
65	5503	5372	5482	5508	5382
70	5575	5631	5312	5714	5412
75	5512	5352	5718	5577	5257
80	5590	5310	5445	5500	5446
85	5551	5276	5561	5378	5667
90	5565	5339	5677	5709	5705
95	5535	5258	5390	5657	5524

Type 6	Radar '	Wave	form_5
--------	---------	------	--------

Frequency List (MHz)	0	1	2	3	4
0	5521	5453	5543	5512	5626
5	5596	5651	5459	5308	5533
10	5530	5719	5253	5595	5705
15	5698	5257	5484	5347	5387
20	5723	5535	5322	5267	5665
25	5502	5541	5380	5321	5419
30	5560	5462	5426	5652	5359
35	5476	5593	5671	5517	5391
40	5549	5384	5699	5413	5356
45	5381	5407	5274	5336	5412
50	5597	5260	5623	5711	5669
55	5471	5402	5618	5388	5320
60	5318	5423	5486	5479	5452
65	5311	5692	5303	5660	5686
70	5658	5256	5636	5690	5371
75	5386	5394	5333	5495	5590
80	5513	5279	5470	5345	5317
85	5349	5393	5714	5656	5721
90	5335	5440	5288	5504	5305
95	5646	5490	5547	5372	5445

Type 6 Radar Waveform_6						
Frequency List (MHz)	0	1	2	3	4	
0	5301	5692	5479	5673	5371	
5	5260	5534	5471	5362	5461	
10	5508	5391	5315	5251	5311	
15	5384	5490	5392	5579	5256	
20	5701	5263	5259	5638	5293	
25	5393	5486	5425	5453	5602	
30	5448	5383	5608	5296	5635	
35	5287	5313	5544	5463	5698	
40	5404	5351	5596	5319	5310	
45	5387	5327	5710	5389	5677	
50	5473	5436	5674	5325	5679	
55	5470	5285	5592	5437	5359	
60	5365	5485	5472	5724	5432	
65	5302	5401	5347	5524	5573	
70	5366	5283	5644	5569	5330	
75	5353	5506	5440	5314	5272	
80	5700	5294	5443	5533	5342	
85	5512	5252	5373	5686	5386	
90	5688	5583	5669	5680	5372	
95	5656	5500	5625	5320	5503	

Type 6	Radar	Wavet	form_7
--------	-------	-------	--------

Frequency List (MHz)	0	1	2	3	4
0	5556	5456	5415	5359	5688
5	5302	5598	5609	5537	5569
10	5295	5297	5432	5510	5272
15	5399	5414	5593	5340	5393
20	5642	5392	5301	5348	5611
25	5656	5342	5689	5529	5390
30	5266	5337	5285	5494	5299
35	5378	5681	5697	5474	5634
40	5487	5289	5361	5316	5617
45	5367	5410	5293	5442	5564
50	5349	5612	5250	5511	5502
55	5473	5282	5307	5256	5330
60	5397	5650	5305	5304	5647
65	5475	5503	5350	5286	5259
70	5465	5644	5355	5630	5334
75	5545	5700	5626	5583	5427
80	5335	5550	5607	5596	5339
85	5707	5252	5649	5262	5565
90	5554	5461	5306	5317	5632
95	5668	5406	5555	5706	5693

Type 6 Radar Waveform_8					
Frequency List (MHz)	0	1	2	3	4
0	5336	5695	5351	5520	5433
5	5344	5620	5684	5700	5301
10	5701	5561	5473	5608	5293
15	5390	5541	5696	5385	5585
20	5650	5461	5717	5340	5584
25	5447	5669	5417	5255	5424
30	5308	5297	5250	5534	5314
35	5438	5566	5477	5375	5388
40	5570	5702	5504	5313	5546
45	5493	5495	5354	5600	5325
50	5261	5661	5711	5497	5453
55	5526	5611	5421	5326	5299
60	5322	5260	5524	5616	5362
65	5658	5521	5723	5271	5629
70	5276	5679	5348	5331	5674
75	5659	5427	5630	5491	5660
80	5519	5391	5612	5601	5323
85	5651	5514	5302	5423	5610
90	5690	5591	5599	5709	5688
95	5425	5335	5553	5529	5397

Type 6	Radar '	Wave	form_9
--------	---------	------	--------

Frequency List (MHz)	0	1	2	3	4
0	5494	5459	5287	5681	5275
5	5386	5545	5284	5388	5508
10	5632	5447	5514	5328	5314
15	5478	5668	5324	5430	5302
20	5658	5627	5429	5557	5335
25	5521	5620	5359	5458	5350
30	5687	5254	5465	5686	5512
35	5480	5657	5273	5625	5312
40	5653	5543	5269	5407	5475
45	5705	5576	5548	5716	5479
50	5489	5352	5689	5526	5680
55	5374	5665	5590	5272	5650
60	5655	5505	5670	5443	5396
65	5367	5527	5723	5358	5301
70	5250	5596	5699	5365	5410
75	5497	5682	5638	5294	5297
80	5257	5456	5587	5363	5344
85	5333	5622	5533	5285	5377
90	5387	5345	5385	5329	5685
95	5411	5537	5674	5481	5337

	Type 6 Radar Waveform_10					
Frequency List (MHz)	0	1	2	3	4	
0	5274	5698	5270	5495	5525	
5	5567	5359	5551	5337	5466	
10	5711	5555	5523	5335	5566	
15	5320	5427	5475	5494	5569	
20	5696	5421	5530	5470	5348	
25	5463	5492	5489	5576	5686	
30	5680	5460	5332	5619	5273	
35	5544	5303	5313	5626	5358	
40	5481	5509	5404	5307	5685	
45	5659	5370	5601	5506	5355	
50	5665	5403	5349	5527	5562	
55	5305	5621	5309	5670	5712	
60	5275	5697	5253	5672	5297	
65	5608	5422	5528	5290	5465	
70	5259	5473	5641	5510	5414	
75	5440	5713	5708	5568	5368	
80	5407	5439	5533	5272	5723	
85	5352	5299	5633	5379	5432	
90	5622	5656	5423	5554	5720	
95	5280	5484	5706	5518	5339	

Type 6	Radar	Wave	form_11
--------	-------	------	---------

Frequency List (MHz)	0	1	2	3	4
0	5529	5462	5634	5431	5337
5	5567	5492	5434	5617	5544
10	5397	5500	5596	5718	5356
15	5654	5447	5433	5423	5686
20	5577	5387	5637	5510	5503
25	5489	5322	5454	5526	5531
30	5562	5643	5323	5612	5627
35	5283	5364	5437	5456	5702
40	5465	5441	5419	5274	5401
45	5711	5665	5267	5428	5557
50	5393	5706	5366	5647	5471
55	5275	5573	5495	5288	5592
60	5438	5360	5657	5679	5523
65	5551	5621	5333	5343	5692
70	5709	5362	5671	5468	5583
75	5449	5600	5479	5534	5486
80	5694	5485	5581	5624	5691
85	5470	5705	5436	5589	5308
90	5664	5695	5350	5406	5342
95	5656	5538	5532	5571	5300

Type 6 Radar Waveform_12							
Frequency List (MHz)	0	1	2	3	4		
0	5309	5701	5570	5592	5557		
5	5609	5514	5509	5305	5276		
10	5706	5289	5637	5438	5377		
15	5645	5477	5536	5468	5403		
20	5585	5456	5578	5502	5476		
25	5271	5657	5293	5560	5573		
30	5451	5600	5538	5386	5350		
35	5422	5455	5708	5616	5401		
40	5524	5357	5417	5398	5543		
45	5389	5610	5658	5582	5542		
50	5505	5470	5318	5366	5527		
55	5685	5563	5525	5602	5511		
60	5446	5302	5277	5272	5650		
65	5584	5512	5531	5279	5568		
70	5432	5328	5559	5351	5654		
75	5629	5675	5262	5691	5405		
80	5283	5630	5702	5354	5339		
85	5528	5381	5304	5709	5444		
90	5593	5323	5641	5588	5355		
95	5723	5280	5321	5646	5627		

Type 6 Radar	Waveform_13
--------------	-------------

Frequency List (MHz)	0	1	2	3	4
0	5467	5465	5506	5278	5399
5	5651	5439	5584	5468	5580
10	5637	5553	5678	5536	5398
15	5258	5604	5639	5513	5595
20	5496	5622	5616	5591	5449
25	5643	5598	5385	5397	5594
30	5712	5340	5557	5538	5645
35	5464	5504	5384	5627	5715
40	5704	5295	5657	5395	5472
45	5625	5433	5447	5663	5545
50	5361	5718	5556	5667	5671
55	5262	5554	5481	5400	5401
60	5437	5599	5690	5547	5343
65	5272	5723	5575	5519	5308
70	5379	5315	5603	5265	5571
75	5659	5304	5518	5320	5677
80	5675	5417	5661	5693	5699
85	5549	5339	5370	5331	5476
90	5528	5355	5427	5360	5450
95	5680	5653	5605	5410	5329

Type 6 Radar Waveform_14						
Frequency List (MHz)	0	1	2	3	4	
0	5722	5704	5442	5439	5619	
5	5315	5461	5659	5631	5312	
10	5568	5342	5341	5256	5419	
15	5346	5267	5558	5504	5691	
20	5557	5583	5422	5531	5450	
25	5588	5501	5628	5279	5326	
30	5514	5493	5368	5603	5259	
35	5397	5537	5541	5554	5708	
40	5489	5401	5508	5516	5505	
45	5716	5335	5712	5607	5281	
50	5494	5584	5435	5590	5695	
55	5408	5253	5380	5589	5650	
60	5573	5291	5301	5468	5344	
65	5692	5271	5593	5297	5251	
70	5671	5280	5477	5667	5322	
75	5343	5669	5339	5611	5696	
80	5269	5717	5687	5294	5668	
85	5396	5309	5675	5655	5564	
90	5553	5465	5287	5719	5313	
95	5551	5657	5377	5645	5334	

Type 6 Radar Waveform_15

Frequency List (MHz)	0	1	2	3	4
0	5502	5565	5378	5600	5461
5	5357	5386	5259	5697	5519
10	5402	5703	5382	5451	5440
15	5434	5383	5370	5506	5601
20	5512	5498	5672	5395	5322
25	5399	5316	5605	5662	5321
30	5690	5471	5611	5464	5663
35	5267	5350	5668	5312	5455
40	5393	5646	5486	5708	5488
45	5599	5466	5294	5588	5595
50	5658	5467	5317	5528	5389
55	5305	5417	5379	5545	5534
60	5482	5496	5712	5283	5427
65	5541	5396	5369	5674	5256
70	5436	5636	5442	5715	5446
75	5449	5698	5300	5344	5596
80	5561	5717	5626	5354	5385
85	5361	5360	5351	5254	5559
90	5598	5347	5261	5520	5297
95	5480	5368	5421	5546	5394

		Type 6 Radar	Waveform_16		
Frequency List (MHz)	0	1	2	3	4
0	5282	5329	5314	5286	5681
5	5399	5408	5334	5385	5348
10	5333	5492	5423	5646	5461
15	5425	5510	5376	5551	5318
20	5520	5548	5536	5664	5368
25	5685	5251	5422	5709	5696
30	5460	5579	5428	5351	5713
35	5386	5309	5441	5464	5465
40	5466	5478	5487	5330	5483
45	5637	5468	5682	5524	5347
50	5674	5556	5615	5375	5643
55	5343	5398	5711	5350	5511
60	5710	5479	5411	5322	5658
65	5325	5366	5319	5259	5336
70	5320	5299	5707	5395	5605
75	5562	5532	5698	5462	5367
80	5504	5593	5281	5620	5317
85	5480	5704	5599	5673	5419
90	5565	5535	5278	5575	5378
95	5518	5583	5663	5516	5283

Type 6 Radar Waveform_17

Frequency List (MHz)	0	1	2	3	4
0	5537	5568	5250	5350	5523
5	5441	5333	5409	5548	5555
10	5264	5281	5464	5269	5482
15	5513	5540	5479	5596	5510
20	5431	5617	5477	5278	5341
25	5573	5675	5625	5435	5255
30	5502	5565	5385	5566	5390
35	5681	5448	5532	5357	5618
40	5380	5643	5658	5425	5570
45	5480	5469	5290	5582	5303
50	5374	5718	5375	5285	5645
55	5319	5356	5297	5588	5530
60	5699	5640	5400	5424	5720
65	5701	5526	5315	5355	5703
70	5610	5306	5302	5683	5354
75	5682	5677	5475	5572	5260
80	5531	5567	5590	5476	5310
85	5377	5672	5669	5365	5372
90	5396	5584	5571	5569	5489
95	5517	5295	5630	5362	5342

Type 6 Radar Waveform_18							
Frequency List (MHz)	0	1	2	3	4		
0	5695	5332	5661	5511	5268		
5	5580	5355	5484	5711	5287		
10	5573	5545	5505	5464	5503		
15	5601	5667	5582	5544	5702		
20	5439	5308	5418	5270	5314		
25	5364	5527	5353	5539	5289		
30	5454	5342	5306	5639	5404		
35	5587	5720	5628	5393	5294		
40	5482	5266	5363	5335	5477		
45	5398	5428	5373	5543	5356		
50	5594	5551	5336	5259	5641		
55	5251	5303	5252	5670	5672		
60	5565	5466	5550	5546	5647		
65	5349	5264	5301	5498	5658		
70	5682	5292	5305	5282	5562		
75	5313	5446	5705	5721	5630		
80	5516	5671	5523	5724	5340		
85	5537	5319	5620	5274	5577		
90	5603	5371	5529	5409	5685		
95	5346	5715	5379	5584	5609		

Frequency List (MHz)	0	1	2	3	4
0	5475	5571	5597	5672	5585
5	5622	5280	5559	5302	5591
10	5504	5334	5546	5659	5524
15	5689	5319	5685	5589	5419
20	5447	5377	5359	5287	5252
25	5379	5556	5643	5323	5586
30	5343	5299	5424	5413	5699
35	5251	5336	5305	5321	5349
40	5301	5478	5327	5408	5456
45	5601	5409	5526	5470	5387
50	5348	5462	5635	5583	5493
55	5641	5326	5255	5411	5382
60	5372	5593	5550	5688	5330
65	5511	5390	5461	5376	5278
70	5405	5606	5538	5272	5318
75	5350	5389	5639	5407	5695
80	5297	5384	5315	5584	5391
85	5426	5566	5303	5484	5502
90	5370	5393	5414	5439	5680
95	5540	5631	5638	5265	5427

Type 6 Radar Waveform_20						
Frequency List (MHz)	0	1	2	3	4	
0	5255	5335	5533	5358	5330	
5	5664	5302	5634	5465	5323	
10	5435	5695	5587	5379	5545	
15	5680	5446	5313	5611	5543	
20	5397	5351	5260	5518	5328	
25	5284	5272	5357	5250	5329	
30	5256	5639	5565	5519	5293	
35	5427	5699	5694	5635	5529	
40	5714	5718	5568	5388	5539	
45	5659	5462	5316	5724	5428	
50	5438	5534	5285	5432	5348	
55	5537	5683	5365	5612	5455	
60	5420	5356	5311	5295	5373	
65	5259	5269	5343	5660	5264	
70	5448	5361	5408	5514	5706	
75	5287	5470	5620	5553	5451	
80	5378	5484	5363	5676	5370	
85	5324	5641	5604	5686	5574	
90	5513	5443	5320	5411	5511	
95	5715	5520	5602	5656	5653	

Type 6 F	Radar W	/avefoi	rm_21
----------	---------	---------	-------

Frequency List (MHz)	0	1	2	3	4
0	5510	5574	5469	5519	5647
5	5706	5324	5709	5628	5530
10	5269	5484	5566	5293	5573
15	5319	5679	5328	5366	5612
20	5338	5440	5708	5406	5655
25	5390	5473	5391	5292	5693
30	5688	5379	5339	5717	5432
35	5518	5588	5474	5608	5571
40	5652	5483	5565	5563	5271
45	5622	5620	5515	5678	5600
50	5604	5489	5623	5486	5376
55	5536	5491	5398	5659	5584
60	5585	5301	5618	5596	5582
65	5683	5305	5553	5455	5542
70	5617	5347	5508	5304	5490
75	5665	5634	5590	5578	5601
80	5436	5334	5615	5441	5481
85	5403	5329	5326	5296	5335
90	5375	5414	5294	5692	5511
95	5395	5284	5460	5409	5694

Type 6 Radar Waveform_22							
Frequency List (IHz)	0	1	2	3	4		
0	5668	5338	5405	5680	5392		
5	5370	5724	5309	5316	5359		
10	5675	5273	5291	5672	5587		
15	5381	5603	5422	5627	5520		
20	5374	5303	5279	5432	5681		
25	5604	5593	5577	5425	5334		
30	5679	5645	5594	5491	5537		
35	5571	5609	5384	5619	5410		
40	5695	5590	5723	5562	5395		
45	5251	5705	5678	5568	5468		
50	5476	5305	5540	5712	5698		
55	5445	5588	5457	5713	5275		
60	5343	5450	5528	5397	5632		
65	5341	5385	5347	5689	5333		
70	5511	5531	5466	5624	5613		
75	5688	5453	5304	5504	5478		
80	5598	5707	5664	5386	5488		
85	5329	5662	5630	5459	5545		
90	5655	5393	5574	5430	5307		
95	5576	5629	5523	5417	5605		

Type 6 R	Radar W	avefo	rm_23
----------	---------	-------	-------

Frequency List (MHz)	0	1	2	3	4
0	5448	5577	5341	5366	5709
5	5412	5271	5384	5479	5566
10	5509	5537	5332	5392	5608
15	5469	5255	5525	5672	5334
20	5285	5372	5317	5521	5654
25	5560	5456	5321	5681	5459
30	5473	5568	5602	5712	5265
35	5260	5613	5700	5655	5305
40	5533	5724	5303	5528	5391
45	5559	5324	5706	5313	5261
50	5524	5355	5352	5481	5591
55	5326	5607	5642	5437	5399
60	5675	5428	5270	5440	5288
65	5282	5345	5474	5598	5581
70	5280	5595	5617	5526	5383
75	5319	5611	5380	5442	5583
80	5475	5258	5292	5660	5465
85	5563	5371	5468	5664	5318
90	5610	5603	5349	5643	5283
95	5338	5450	5624	5482	5502

Type 6	Radar	Wave	form_24
--------	-------	------	---------

Frequency List (MHz)	0	1	2	3	4
0	5703	5341	5277	5430	5454
5	5671	5459	5545	5298	5440
10	5326	5373	5587	5629	5460
15	5382	5628	5717	5526	5293
20	5538	5258	5513	5627	5448
25	5308	5524	5310	5493	5515
30	5457	5559	5452	5417	5555
35	5413	5548	5447	5563	5483
40	5369	5631	5653	5253	5686
45	5396	5697	5577	5620	5606
50	5657	5642	5512	5489	5625
55	5353	5494	5399	5605	5708
60	5589	5646	5517	5324	5530
65	5316	5427	5509	5329	5455
70	5402	5614	5704	5321	5542
75	5444	5378	5338	5641	5576
80	5535	5252	5472	5610	5445
85	5409	5300	5511	5334	5586
90	5648	5314	5332	5516	5322
95	5514	5608	5540	5675	5534

Type 6 Radar Waveform_25

Frequency List (MHz)	0	1	2	3	4
0	5483	5580	5688	5591	5296
5	5496	5693	5437	5708	5505
10	5371	5687	5414	5307	5650
15	5548	5509	5256	5287	5718
20	5301	5607	5674	5602	5600
25	5714	5257	5252	5511	5430
30	5557	5443	5516	5667	5666
35	5278	5416	5504	5344	5458
40	5499	5566	5396	5560	5479
45	5280	5630	5507	5482	5358
50	5601	5631	5433	5716	5586
55	5691	5273	5528	5295	5275
60	5518	5569	5463	5622	5255
65	5637	5304	5624	5388	5553
70	5297	5404	5413	5498	5481
75	5397	5686	5408	5699	5315
80	5469	5330	5513	5372	5492
85	5476	5288	5359	5468	5338
90	5453	5679	5623	5625	5595
95	5428	5573	5264	5605	5291

Type 6 Radar Waveform_26							
Frequency List (MHz)	0	1	2	3	4		
0	5263	5344	5624	5277	5516		
5	5635	5618	5512	5396	5334		
10	5680	5476	5455	5502	5671		
15	5636	5262	5710	5435	5687		
20	5298	5712	5691	5573	5602		
25	5584	5358	5615	5464	5696		
30	5332	5473	5407	5343	5555		
35	5595	5386	5372	5338	5649		
40	5720	5539	5647	5489	5646		
45	5562	5683	5297	5534	5269		
50	5690	5454	5280	5429	5261		
55	5301	5510	5719	5657	5460		
60	5695	5350	5395	5409	5348		
65	5428	5291	5469	5410	5374		
70	5717	5402	5273	5363	5285		
75	5603	5321	5664	5388	5378		
80	5369	5525	5416	5701	5432		
85	5587	5339	5607	5666	5644		
90	5487	5561	5257	5642	5650		
95	5509	5471	5566	5559	5700		

Type 6	Radar	Wave	form_27
--------	-------	------	---------

Frequency List (MHz)	0	1	2	3	4
0	5421	5583	5560	5438	5358
5	5677	5640	5587	5559	5541
10	5611	5265	5496	5600	5692
15	5724	5666	5365	5280	5627
20	5695	5464	5653	5683	5546
25	5393	5533	5561	5719	5498
30	5263	5696	5333	5525	5592
35	5597	5686	5411	5636	5286
40	5652	5257	5658	5304	5644
45	5321	5529	5645	5396	5261
50	5659	5709	5710	5320	5277
55	5699	5617	5690	5491	5329
60	5311	5625	5657	5355	5646
65	5377	5327	5679	5466	5591
70	5293	5457	5720	5629	5322
75	5254	5641	5670	5584	5426
80	5334	5445	5552	5538	5366
85	5416	5543	5395	5309	5380
90	5486	5350	5521	5346	5269
95	5281	5705	5493	5369	5669

Type 6 Radar Waveform_28						
Frequency List (MHz)	0	1	2	3	4	
0	5676	5347	5496	5599	5578	
5	5719	5565	5662	5625	5273	
10	5542	5529	5537	5320	5713	
15	5715	5318	5468	5325	5344	
20	5703	5533	5594	5297	5519	
25	5281	5385	5289	5348	5532	
30	5305	5682	5290	5265	5269	
35	5591	5261	5302	5304	5314	
40	5491	5437	5596	5544	5641	
45	5250	5509	5253	5357	5449	
50	5488	5411	5371	5490	5575	
55	5546	5330	5644	5681	5623	
60	5661	5440	5315	5585	5489	
65	5619	5398	5372	5326	5266	
70	5511	5394	5462	5443	5345	
75	5478	5700	5601	5286	5338	
80	5678	5444	5701	5363	5319	
85	5455	5399	5652	5628	5684	
90	5499	5453	5458	5378	5298	
95	5285	5477	5267	5256	5480	
		Type 6 Radar	Waveform_29			

Frequency List (MHz)	0	1	2	3	4
0	5456	5586	5432	5285	5420
5	5383	5587	5262	5313	5577
10	5376	5318	5578	5515	5259
15	5328	5445	5571	5273	5536
20	5614	5699	5632	5289	5589
25	5547	5712	5492	5549	5566
30	5444	5722	5480	5518	5411
35	5400	5490	5575	5467	5686
40	5330	5520	5534	5309	5260
45	5654	5489	5336	5415	5270
50	5364	5422	5579	5301	5598
55	5396	5345	5535	5472	5627
60	5321	5344	5670	5275	5302
65	5721	5628	5672	5429	5348
70	5327	5715	5570	5406	5384
75	5546	5358	5554	5482	5308
80	5664	5360	5257	5697	5324
85	5418	5591	5617	5298	5401
90	5504	5459	5488	5487	5315
95	5340	5558	5613	5300	5413

Test Site	WJ-SR7	Test Engineer	Jake Lan
Test Date	2025-03-21		
Test Item	Radar Statistical Performance Ch	neck (802.11be-EHT40 – 5510MHz	- Master

	Radar Type 1-4 - Radar Statistical Performance												
Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4					
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect					
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect					
0	5498	1	5491	1	5491	1	5512	1					
1	5490	1	5493	1	5495	1	5519	1					
2	5493	1	5529	1	5497	1	5522	1					
3	5495	1	5497	1	5522	1	5490	1					
4	5497	1	5495	0	5509	1	5491	1					
5	5501	1	5501	1	5514	1	5493	1					
6	5499	1	5504	1	5519	1	5527	1					
7	5518	1	5499	1	5516	1	5528	1					
8	5524	1	5490	1	5517	1	5501	1					
9	5529	1	5515	1	5511	1	5523	1					
10	5509	1	5518	1	5502	1	5505	1					
11	5504	1	5502	1	5501	1	5507	1					
12	5510	1	5521	1	5503	1	5492	1					
13	5517	1	5517	1	5490	1	5520	1					
14	5514	1	5530	1	5504	1	5509	1					
15	5515	1	5508	1	5492	0	5526	1					
16	5502	0	5522	1	5493	1	5508	1					
17	5496	1	5503	1	5530	0	5506	0					
18	5519	1	5520	1	5521	1	5498	1					
19	5528	1	5492	0	5513	1	5504	1					
20	5525	1	5500	1	5498	1	5510	1					
21	5523	1	5512	1	5496	1	5502	1					
22	5500	1	5519	1	5500	1	5499	1					
23	5492	1	5494	1	5510	1	5529	1					
24	5503	1	5505	1	5520	1	5511	1					
25	5527	1	5528	1	5518	1	5525	1					
26	5491	1	5507	1	5508	1	5530	1					
27	5494	1	5510	1	5515	1	5521	1					

Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4	
	Frequency	1=detect	Frequency 1=detect		Frequency	1=detect	Frequency	1=detect	
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	
28	5530	1	5498	1	5499	0	5494	1	
29	5511	1	5506	1	5505	1	5524	1	
Probability:	96	.7%	93.	.3%	90.	0%	96.	7%	
Aggregate:	94.2% (>80%)								

	R	tadar Typ	oe 1 - Rad	dar Wavefo	orm			۲	kadar iy	pe 2 - Ra	dar Wavefo	orm	
	Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Humber of Pulses	Taveform Length (us)		Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Humber of Pulses	Tavefore Length (us)
Download	0	Type 1	1.0	638.0	83	52954.0	Download	0	Type 2	3. 1	208.0	26	5408.0
Download	1	Type 1	1.0	778.0	68	52904.0	Download	1	Type 2	3.3	187.0	26	4862.0
Download	2	Type 1	1.0	798.0	67	53466.0	Download	2	Type 2	1.0	207.0	23	4761.0
Download	3	Type 1	1.0	538.0	99	53262.0	Download	3	Type 2	3.4	186.0	27	5022.0
ownload	4	Type 1	1.0	938.0	57	53466.0	Download	4	Type 2	3.0	227.0	26	5902.0
ownload	5	Type 1	1.0	3066.0	18	55188.0	Download	5	Type 2	4.3	210.0	28	5880.0
ownload	6	Type 1	1.0	918.0	58	53244.0	Download	6	Type 2	1.3	153.0	23	3519.0
Download	7	Type 1	1.0	738. 0	72	53136.0	Download	7	Type 2	3.8	226.0	27	6102.0
ownload	8	Type 1	1.0	758.0	70	53060.0	Download	8	Type 2	3.3	164.0	27	4428.0
ownload	9	Type 1	1.0	678.0	78	52884.0	Download	9	Type 2	4.2	191.0	28	5348.0
ownload	10	Type 1	1.0	818.0	65	53170.0	Download	10	Type 2	1.9	181.0	24	4344.0
ownload	11	Type 1	1.0	898.0	59	52982.0	Download	11	Type 2	4.5	223.0	28	6244.0
ownload	12	Type 1	1.0	698.0	76	53048.0	Download	12	Type 2	2.2	192.0	25	4800.0
ownload	13	Type 1	1.0	518.0	102	52836.0	Download	13	Type 2	2.6	196.0	25	4900.0
ownload	14	Type 1	1.0	578.0	92	53176.0	Download	14	Type 2	3.4	201.0	27	5427.0
ownload	15	Type 1	1.0	2320.0	23	53360.0	Download	15	Type 2	3.4	154.0	27	4158.0
ownload	16	Type 1	1.0	1582.0	34	53788.0	Download	16	Туре 2	1.7	168.0	24	4032.0
Download	17	Type 1	1.0	2877. 0	19	54663.0	Download	17	Type 2	4.8	202.0	29	5858.0
ownload	18	Type 1	1.0	2120.0	25	53000.0	Download	18	Type 2	4. 7	213.0	29	6177.0
ownload	19	Type 1	1.0	2446.0	22	53812.0	Download	19	Type 2	2.1	188.0	25	4700.0
ownload	20	Type 1	1.0	1708.0	31	52948.0	Download	20	Type 2	4.5	228.0	29	6612.0
ownload	21	Type 1	1.0	2373.0	23	54579.0	Download	21	Type 2	4.9	218.0	29	6322.0
ownload	22	Type 1	1.0	692.0	77	53284.0	Download	22	Type 2	4.2	215.0	28	6020.0
ownload	23	Type 1	1.0	1600.0	33	52800.0	Download	23	Type 2	1.3	174.0	23	4002.0
lownload	24	Type 1	1.0	2315.0	23	53245.0	Download	24	Type 2	2.5	182.0	25	4550.0
ownload	25	Type 1	1.0	3028.0	18	54504.0	Download	25	Type 2	4.0	222.0	28	6216.0
ownload	26	Type 1	1.0	2948.0	18	53064.0	Download	26	Type 2	2.1	177.0	24	4248.0
ownload	27	Type 1	1.0	2928.0	19	55632.0	Download	27	Type 2	3.0	209.0	26	5434.0
ownload	28	Type 1	1.0	955.0	56	53480.0	Download	28	Type 2	1.0	184.0	23	4232.0
lownload	29	Type 1	1.0	1387. 0	39	54093.0	Download	29	Type 2	1.6	171.0	24	4104.0

	R	adar Ty	pe 3 - Rad	dar Wavefo	orm			F	Radar Typ	e 4 - Rad	lar Wavefo	orm	
	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Number of Pulses	Taveform Length (us)		Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Type 3	8. 1	308.0	17	5236.0	Download	0	Type 4	15. 7	308.0	14	4312.0
Download	1	Туре З	8.3	267.0	17	4539.0	Download	1	Type 4	16.1	267.0	14	3738.0
Download	2	Туре 3	6.0	499.0	16	7984.0	Download	2	Type 4	11.0	499.0	12	5988.0
Download	3	Type 3	8.4	500.0	17	8500.0	Download	3	Type 4	16.5	500.0	15	7500.0
Download	4	Type 3	8.0	447.0	17	7599.0	Download	4	Type 4	15.6	447.0	14	6258.0
Download	5	Type 3	9.3	414.0	18	7452.0	Download	5	Type 4	18.4	414.0	16	6624.0
Download	6	Type 3	6.3	411.0	16	6576.0	Download	6	Type 4	11.7	411.0	12	4932.0
Download	7	Type 3	8.8	407.0	18	7326.0	Download	7	Type 4	17.2	407.0	15	6105.0
Download	8	Type 3	8.3	274.0	17	4658.0	Download	8	Type 4	16.2	274.0	14	3836.0
Download	9	Type 3	9.2	304.0	18	5472.0	Download	9	Type 4	18.3	304.0	16	4864.0
Download	10	Type 3	6.9	349.0	16	5584.0	Download	10	Type 4	13.0	349.0	13	4537.0
Download	11	Type 3	9.5	287. 0	18	5166.0	Download	11	Type 4	18. 7	287.0	16	4592.0
Download	12	Type 3	7.2	364.0	16	5824.0	Download	12	Type 4	13. 7	364.0	13	4732.0
Download	13	Type 3	7. 6	282.0	17	4794.0	Download	13	Type 4	14.6	282.0	13	3666.0
Download	14	Type 3	8.4	498.0	17	8466.0	Download	14	Type 4	16.3	498.0	14	6972.0
Download	15	Type 3	8.4	272.0	17	4624.0	Download	15	Type 4	16.5	272.0	15	4080.0
Download	16	Type 3	6. 7	254.0	16	4064.0	Download	16	Type 4	12.6	254.0	12	3048.0
Download	17	Type 3	9.8	297.0	18	5346.0	Download	17	Type 4	19.4	297.0	16	4752.0
Download	18	Type 3	9. 7	377.0	18	6786.0	Download	18	Type 4	19.3	377.0	16	6032.0
Download	19	Type 3	7. 1	258.0	16	4128.0	Download	19	Type 4	13.6	258.0	13	3354.0
Download	20	Type 3	9.5	409.0	18	7362.0	Download	20	Type 4	18.9	409.0	16	6544.0
Download	21	Type 3	9.9	212.0	18	3816.0	Download	21	Type 4	19. 7	212.0	16	3392.0
Download	22	Type 3	9.2	334.0	18	6012.0	Download	22	Type 4	18.2	334.0	15	5010.0
Download	23	Type 3	6.3	238.0	16	3808.0	Download	23	Type 4	11.8	238.0	12	2856.0
Download	24	Type 3	7. 5	366.0	17	6222.0	Download	24	Type 4	14.5	366.0	13	4758.0
Download	25	Type 3	9.0	486.0	18	8748.0	Download	25	Type 4	17. 7	486.0	15	7290.0
Download	26	Type 3	7. 1	432.0	16	6912.0	Download	26	Type 4	13.5	432.0	13	5616.0
Download	27	Туре З	8.0	500.0	17	8500.0	Download	27	Type 4	15.5	500.0	14	7000.0
Download	28	Туре З	6.0	200.0	16	3200.0	Download	28	Type 4	11.0	200.0	12	2400.0
Download	29	Type 3	6.6	401.0	16	6416.0	Download	29	Type 4	12.4	401.0	12	4812.0

		Radar Type 5 - Radar	Statistical Performance)	
Trail #	Test Freq. (MHz)	1=Detection 0=No Detection	Trail #	Test Freq. (MHz)	1=Detection 0=No Detection
0	5510	1	15	5495.6	1
1	5510	1	16	5492.8	1
2	5510	1	17	5497.6	1
3	5510	1	18	5497.6	1
4	5510	1	19	5493.6	0
5	5510	1	20	5522.8	1
6	5510	1	21	5522	1
7	5510	1	22	5523.2	1
8	5510	1	23	5527.6	1
9	5510	1	24	5525.6	1
10	5493.2	1	25	5523.6	1
11	5497.2	1	26	5526.4	0
12	5493.6	1	27	5525.2	1
13	5494.4	1	28	5528	1
14	5495.6	1	29	5527.2	1
	Detection Percentage (%)		93.3%	

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	652894.0	76. 1	13	2	1064.0	1853.0	-
1	5844.0	78.5	13	2	1993.0	1009.0	-
2	213494.0	50.2	13	1	1023.0	-	-
3	420155.0	80.3	13	2	1936.0	1069.0	-
4	627147.0	75.6	13	2	1355.0	1872.0	-
5	833325.0	91.0	13	3	1128.0	1623.0	1421.0
6	187892.0	53.9	13	1	1142.0	-	-
7	393954.0	84.6	13	3	1510.0	1436.0	1540.0
8	601791.0	79.0	13	2	1760.0	1249.0	-
9	807112.0	90.2	13	3	1661.0	1630.0	1653.0
10	162245.0	61.0	13	1	1531.0	-	-
11	368479.0	92.8	13	3	1506.0	1362.0	1624.0
12	577600.0	65.2	13	1	1044.0	-	_
13	784134.0	70.0	13	2	1150.0	1090.0	-

Type 5 Radar Waveform_1

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	127303.0	79.3	14	2	1270.0	1844.0	_
1	320394.0	80.4	14	2	1714.0	1845.0	-
2	514699.0	59.3	14	1	1787.0	_	-
3	706303.0	96.5	14	3	1063.0	1196.0	1768.0
4	103378.0	95.9	14	3	1002.0	1454.0	1572.0
5	297528.0	64.6	14	1	1070.0	-	-
6	489465.0	93. 7	14	3	1584.0	1059.0	1402.0
7	681997.0	98.1	14	3	1754.0	1786.0	1101.0
8	79472.0	89.9	14	3	1935.0	1697.0	1664.0
9	273556.0	54.5	14	1	1376.0	-	-
10	466423.0	69.3	14	2	1772.0	1012.0	-
11	658200.0	87.3	14	3	1297.0	1788.0	1600.0
12	55970.0	63.8	14	1	1884.0	-	-
13	249309.0	74.8	14	2	1387.0	1232.0	-
14	443550.0	50.1	14	1	1085.0	_	_

Burst ID		Pulse Tidth (us)		Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	1195763.0	57. 7	5	1	1028.0	_	_
1	60323.0	60.6	5	1	1416.0	_	_
2	423118.0	98.6	5	3	1031.0	1636.0	1079.0
3	786274.0	73.9	5	2	1567.0	1670.0	_
4	1150590.0	57.9	5	1	1538.0	_	_
5	15529.0	96.9	5	3	1559.0	1159.0	1089.0
6	378535.0	70.8	5	2	1813.0	1472.0	_
7	741890.0	67.3	5	2	1104.0	1465.0	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	588489.0	66. 7	14	2	1260.0	1302.0	_
1	779825.0	91.3	14	3	1410.0	1828.0	1433.0
2	177439.0	95.0	14	3	1591.0	1073.0	1775.0
3	370453.0	85.9	14	3	1373.0	1067.0	1860.0
4	565177.0	57.3	14	1	1840.0	_	_
5	755886.0	91.5	14	3	1752.0	1988.0	1119.0
6	153638.0	84.1	14	3	1371.0	1707.0	1536.0
7	347412.0	69.6	14	2	1265.0	1358.0	_
8	541754.0	54.8	14	1	1217.0	_	_
9	735056.0	62.4	14	1	1683.0	_	_
10	130173.0	76.4	14	2	1481.0	1316.0	_
11	323472.0	77.3	14	2	1496.0	1419.0	_
12	515127.0	94.5	14	3	1770.0	1974.0	1737.0
13	710627.0	79.6	14	2	1075.0	1259.0	-
14	106079.0	87.5	14	3	1850.0	1827. 0	1211.0

Type 5 Radar Waveform_4

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	321044.0	73. 2	13	2	1863.0	1313.0	_
1	529407.0	57.9	13	1	1157.0	-	_
2	736713.0	50. 7	13	1	1502.0	_	_
3	88446.0	78.1	13	2	1418.0	1492.0	_
4	294960.0	88.6	13	3	1301.0	1556.0	1975.0
5	502084.0	95.8	13	3	1319.0	1694.0	1118.0
6	711281.0	61.0	13	1	1346.0	_	_
7	62801.0	88.3	13	3	1555.0	1145.0	1922.0
8	270091.0	77. 1	13	2	1328.0	1627.0	-
9	477252.0	79.1	13	2	1392.0	1574.0	_
10	683203.0	84.4	13	3	1347.0	1178.0	1956.0
11	37417.0	71.3	13	2	1552.0	1139.0	_
12	244754.0	79.6	13	2	1304.0	1016.0	-
13	452379.0	62.5	13	1	1746.0	_	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	512270.0	68.9	18	2	1414.0	1161.0	_
1	9258.0	57.3	18	1	1394.0	_	_
2	170035.0	73. 1	18	2	1632.0	1996.0	-
3	331721.0	58.5	18	1	1868.0	-	-
4	492918.0	63.0	18	1	1918.0	-	-
5	651680.0	92.6	18	3	1380.0	1162.0	1877.0
6	150737.0	55. 1	18	1	1378.0	-	-
7	312115.0	50.9	18	1	1326.0	-	-
8	471832.0	78.8	18	2	1672.0	1971.0	_
9	631539.0	86.4	18	3	1932.0	1339.0	1522.0
10	130847.0	56.6	18	1	1453.0	_	-
11	292021.0	55. 7	18	1	1821.0	-	-
12	451682.0	84.9	18	3	1542.0	1026.0	1577.0
13	614843.0	64.4	18	1	1464.0	-	-
14	110656.0	74.8	18	2	1942.0	1415.0	-
15	271381.0	87.5	18	3	1252.0	1210.0	1258.0
16	431566.0	97.6	18	3	1959.0	1185.0	1497.0
17	595037.0	55.6	18	1	1389.0	_	_

T	- E	Daa	۱ - ۱	11.	-,,-6	orm	6
IVL	ט שו	Rau	ıaı ı	٧Vc	avei	OHH	U

Burst ID			Ţi dtĥ	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	182249.0	78.2	6	2	1382.0	1179.0	-
1	504771.0	73.2	6	2	1462.0	1711.0	-
2	827550.0	75.4	6	2	1093.0	1802.0	-
3	1151098.0	65.9	6	1	1883.0	_	_
4	142576.0	57.1	6	1	1789.0	_	_
5	465074.0	68.8	6	2	1722.0	1335.0	-
6	788042.0	82.2	6	2	1086.0	1407.0	-
7	1109656.0	71.6	6	2	1916.0	1963.0	-
8	102812.0	55. 7	6	1	1595.0	_	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	239170.0	52.9	16	1	1970.0	_	-
1	419905.0	67.8	16	2	1621.0	1569.0	_
2	602437.0	56. 7	16	1	1441.0	-	_
3	35352.0	72.9	16	2	1532.0	1503.0	-
4	216492.0	70.2	16	2	1524.0	1589.0	-
5	398431.0	54.5	16	1	1619.0	-	_
6	580307.0	57.1	16	1	1141.0	-	_
7	13000.0	86.0	16	3	1774.0	1511.0	1835.0
8	194519.0	55.1	16	1	1803.0	-	_
9	376177.0	53.3	16	1	1413.0	-	_
10	556218.0	68.8	16	2	1744.0	1702.0	_
11	736981.0	81.5	16	2	1903.0	1846.0	_
12	171486.0	87.0	16	3	1777.0	1583.0	1406.0
13	353007.0	82.3	16	2	1948.0	1170.0	-
14	534379.0	72.2	16	2	1124.0	1674.0	-
15	715284.0	79.2	16	2	1597.0	1529.0	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	159829.0	64.3	14	1	1795.0	-	-
1	352623.0	71.4	14	2	1943.0	1649.0	-
2	546359.0	82.8	14	2	1283.0	1461.0	-
3	740974.0	60.8	14	1	1390.0	-	-
4	135528.0	96.6	14	3	1571.0	1791.0	1106.0
5	329639.0	63.4	14	1	1634.0	_	_
6	521691.0	89. 7	14	3	1742.0	1015.0	1285.0
7	715831.0	81.6	14	2	1603.0	1219.0	-
8	112030.0	78. 7	14	2	1039.0	1521.0	-
9	304360.0	93.1	14	3	1720.0	1978.0	1666.0
10	499219.0	56.3	14	1	1951.0	-	-
11	689748.0	87.2	14	3	1557.0	1960.0	1917.0
12	88349.0	52.9	14	1	1275.0	-	-
13	282102.0	50.1	14	1	1172.0	-	-
14	475767.0	54.2	14	1	1298.0	_	_

Type 5	Rac	lar W	avet	form_9	9
--------	-----	-------	------	--------	---

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	556109.0	76.3	17	2	1498.0	1718.0	_
1	53572.0	91.4	17	3	1013.0	1113.0	1017.0
2	214226.0	86.9	17	3	1131.0	1112.0	1740.0
3	376411.0	52. 2	17	1	1396.0	-	_
4	536275.0	83. 2	17	2	1843.0	1391.0	_
5	33730.0	72.0	17	2	1841.0	1680.0	_
6	195067.0	63.5	17	1	1806.0	-	_
7	355201.0	86.5	17	3	1261.0	1350.0	1277.0
8	517649.0	51.1	17	1	1700.0	-	_
9	13923.0	77. 8	17	2	1906.0	1432.0	_
10	174878.0	78. 4	17	2	1171.0	1876.0	_
11	336063.0	69. 7	17	2	1084.0	1495.0	_
12	495891.0	84. 1	17	3	1425.0	1230.0	1573.0
13	657216.0	78.8	17	2	1685.0	1875.0	_
14	155100.0	74.2	17	2	1608.0	1238.0	_
15	315420.0	91.2	17	3	1523.0	1108.0	1637.0
16	475656.0	90.9	17	3	1543.0	1814.0	1490.0
17	639596.0	53.1	17	1	1281.0	-	-

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	243461.0	86.8	8	3	1747.0	1643.0	1838.0
1	533294.0	92.8	8	3	1885.0	1989.0	1213.0
2	823443.0	97.4	8	3	1491.0	1909.0	1187.0
3	1112794.0	99.4	8	3	1399.0	1874.0	1930.0
4	208381.0	60.8	8	1	1703.0	_	_
5	499017.0	59. 1	8	1	1676.0	_	_
6	788075.0	89.5	8	3	1184.0	1873.0	1007.0
7	1078652.0	78. 1	8	2	1592.0	1891.0	_
8	172396.0	75.2	8	2	1359.0	1639.0	_
9	461903.0	94.2	8	3	1805.0	1320.0	1952.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	395657.0	77. 1	18	2	1535.0	1105.0	-
1	546937.0	98.2	18	3	1077.0	1842.0	1164.0
2	71769.0	69.9	18	2	1800.0	1053.0	_
3	224089.0	83. 1	18	2	1888.0	1430.0	_
4	377629.0	54.9	18	1	1370.0	_	-
5	527818.0	99.2	18	3	1331.0	1580.0	1615.0
6	52826.0	92.5	18	3	1398.0	1797.0	1563.0
7	204612.0	90.2	18	3	1923.0	1831.0	1729.0
8	358926.0	50.1	18	1	1153.0	-	-
9	511014.0	80.1	18	2	1052.0	1098.0	_
10	34083.0	89.1	18	3	1856.0	1854.0	1357.0
11	186981.0	57.1	18	1	1869.0	-	_
12	339727.0	50.8	18	1	1829.0	-	-
13	489893.0	85.0	18	3	1792.0	1878.0	1443.0
14	15426.0	81.7	18	2	1605.0	1034.0	-
15	167925.0	83. 1	18	2	1673.0	1110.0	-
16	319910.0	68.1	18	2	1852.0	1947.0	-
17	471494.0	93.8	18	3	1778.0	1642.0	1273.0
18	627196.0	55.6	18	1	1011.0	_	-

Burst ID	Burst Offset (us)	Pulse Width (us)		Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	258405.0	52. 7	9	1	1437.0	_	_
1	522414.0	54.5	9	1	1900.0	-	_
2	787183.0	51.9	9	1	1001.0	-	_
3	1050759.0	65.5	9	1	1790.0	-	_
4	225260.0	84.1	9	3	1576.0	1518.0	1227.0
5	490168.0	66.2	9	1	1262.0	-	_
6	754153.0	57.4	9	1	1679.0	-	_
7	1018246.0	56.8	9	1	1764.0	-	_
8	193020.0	76.9	9	2	1824.0	1250.0	_
9	456787.0	80.6	9	2	1235.0	1999.0	_
10	721011.0	77.8	9	2	1176.0	1411.0	-

Type 5 Radar Waveform_13

Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	833739.0	62. 7	11	1	1848.0	_	_
1	136018.0	55.0	11	1	1296.0	-	-
2	358092.0	96.9	11	3	1801.0	1895.0	1412.0
3	582599.0	69.3	11	2	1091.0	1060.0	_
4	806780.0	59.3	11	1	1206.0	-	_
5	108418.0	52.9	11	1	1833.0	_	_
6	331854.0	57.8	11	1	1818.0	-	_
7	553431.0	95.4	11	3	1980.0	1799.0	1120.0
8	779340.0	64.7	11	1	1087.0	_	_
9	80656.0	84.9	11	3	1953.0	1018.0	1602.0
10	303240.0	86.3	11	3	1965.0	1781.0	1377.0
11	525783.0	84.0	11	3	1857.0	1455.0	1968.0
12	748429.0	91.1	11	3	1769.0	1817.0	1631.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	46277.0	60.8	14	1	1256.0	_	_
1	240004.0	64.1	14	1	1237.0	-	-
2	432804.0	79. 7	14	2	1933.0	1006.0	_
3	625594.0	92.0	14	3	1148.0	1257.0	1200.0
4	22422.0	62.4	14	1	1008.0	-	_
5	215720.0	67. 7	14	2	1309.0	1484.0	-
6	408795.0	77. 7	14	2	1460.0	1865.0	_
7	601088.0	91.0	14	3	1738.0	1057.0	1756.0
8	793609.0	95. 7	14	3	1449.0	1565.0	1938.0
9	191839.0	72.5	14	2	1593.0	1469.0	_
10	385304.0	72.4	14	2	1439.0	1245.0	_
11	577624.0	89. 7	14	3	1575.0	1177.0	1386.0
12	770978.0	75. 1	14	2	1961.0	1834.0	-
13	167980.0	82. 7	14	2	1622.0	1686.0	_
14	360629.0	85.9	14	3	1384.0	1793.0	1395.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	554391.0	66.8	14	2	1364.0	1994.0	_
1	746750.0	97.6	14	3	1719.0	1180.0	1367.0
2	143954.0	92.4	14	3	1519.0	1899.0	1134.0
3	338327.0	65.5	14	1	1123.0	_	_
4	531514.0	59.5	14	1	1973.0	-	_
5	724175.0	72.3	14	2	1138.0	1810.0	_
6	120334.0	67.3	14	2	1941.0	1659.0	_
7	312759.0	84.0	14	3	1972.0	1743.0	1733.0
8	508159.0	60.2	14	1	1209.0	-	_
9	700556.0	81.6	14	2	1074.0	1655.0	_
10	96552.0	75.6	14	2	1880.0	1635.0	_
11	289829.0	78. 7	14	2	1626.0	1604.0	_
12	483104.0	75.2	14	2	1435.0	1739.0	_
13	676441.0	72.8	14	2	1849.0	1229.0	_
14	72816.0	79.0	14	2	1409.0	1473.0	_

Type 5 Radar Waveform_16

Burst ID		Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	399612.0	70. 7	7	2	1822.0	1306.0	_
1	691007.0	66.4	7	1	1192.0	-	-
2	980446.0	70.5	7	2	1588.0	1203.0	-
3	73688.0	60.9	7	1	1325.0	_	-
4	364293.0	54.6	7	1	1690.0	-	-
5	653955.0	70.0	7	2	1731.0	1727.0	-
6	942848.0	86.5	7	3	1866.0	1910.0	1337.0
7	37873.0	65.4	7	1	1477.0	_	_
8	327692.0	94.5	7	3	1486.0	1374.0	1757.0
9	619396.0	59. 1	7	1	1160.0	_	_

Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	454588.0	52.8	19	1	1223.0	_	_
1	1028.0	86.9	19	3	1099.0	1820.0	1696.0
2	145676.0	67.0	19	2	1748.0	1847.0	-
3	290514.0	82.6	19	2	1504.0	1699.0	-
4	435227.0	74.5	19	2	1515.0	1728.0	-
5	580173.0	79. 7	19	2	1375.0	1648.0	-
6	127671.0	84.3	19	3	1708.0	1551.0	1215.0
7	272965.0	70.2	19	2	1385.0	1205.0	_
8	417543.0	71.9	19	2	1901.0	1137.0	-
9	562337.0	78.5	19	2	1424.0	1601.0	-
10	110286.0	67.2	19	2	1214.0	1058.0	-
11	254116.0	92.6	19	3	1985.0	1307.0	1645.0
12	399422.0	70.8	19	2	1476.0	1990.0	-
13	544861.0	74.5	19	2	1147.0	1485.0	-
14	92365.0	68. 7	19	2	1403.0	1282.0	-
15	236435.0	93.6	19	3	1127.0	1913.0	1654.0
16	381654.0	80.1	19	2	1457.0	1927.0	_
17	527381.0	69.4	19	2	1149.0	1068.0	-
18	74708.0	60.4	19	1	1190.0	-	-
19	218668.0	86.8	19	3	1314.0	1440.0	1892.0

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	382654.0	89. 1	19	3	1704.0	1129.0	1263.0
1	536825.0	52.5	19	1	1765.0	-	-
2	59719.0	68.2	19	2	1195.0	1005.0	_
3	212056.0	66. 7	19	2	1798.0	1312.0	-
4	365535.0	51.7	19	1	1290.0	-	-
5	518529.0	55.9	19	1	1133.0	-	-
6	40865.0	69.1	19	2	1000.0	1992.0	-
7	193724.0	64.1	19	1	1671.0	-	-
8	346120.0	78.1	19	2	1181.0	1174.0	-
9	499155.0	65.9	19	1	1815.0	-	-
10	22081.0	80.4	19	2	1500.0	1658.0	-
11	174609.0	82.1	19	2	1614.0	1126.0	-
12	326718.0	97.9	19	3	1132.0	1035.0	1349.0
13	480432.0	56.3	19	1	1695.0	_	_
14	3317.0	56. 7	19	1	1311.0	-	-
15	155504.0	85.5	19	3	1246.0	1526.0	1255.0
16	308955.0	50.2	19	1	1478.0	-	-
17	461860.0	51.3	19	1	1360.0	-	-
18	611950.0	85.8	19	3	1483.0	1274.0	1431.0

Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	237365.0	51.8	9	1	1678.0	-	_
1	500217.0	91.4	9	3	1773.0	1043.0	1730.0
2	765844.0	58.4	9	1	1488.0	-	_
3	1029655.0	53.3	9	1	1920.0	_	_
4	204370.0	94.3	9	3	1037.0	1585.0	1474.0
5	469066.0	61.8	9	1	1520.0	_	_
6	732663.0	78.1	9	2	1408.0	1025.0	_
7	994444.0	95. 7	9	3	1618.0	1404.0	1823.0
8	171933.0	96.1	9	3	1365.0	1114.0	1423.0
9	435272.0	92.3	9	3	1668.0	1076.0	1893.0
10	700959.0	61.0	9	1	1168.0	-	_

Type 5 Radar Waveform_20

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	556187.0	89.9	18	3	1071.0	1291.0	1300.0
1	80688.0	67.1	18	2	1158.0	1508.0	_
2	233646.0	55.0	18	1	1514.0	_	_
3	386330.0	57.6	18	1	1721.0	_	_
4	537791.0	70.1	18	2	1516.0	1723.0	-
5	62029.0	50.3	18	1	1352.0	-	-
6	214521.0	68. 7	18	2	1303.0	1096.0	-
7	367584.0	50.3	18	1	1599.0	-	-
8	519300.0	80.8	18	2	1048.0	1851.0	-
9	43047.0	68.6	18	2	1665.0	1929.0	-
10	195979.0	60.5	18	1	1582.0	_	_
11	348059.0	70.1	18	2	1279.0	1594.0	_
12	499169.0	92.2	18	3	1353.0	1561.0	1681.0
13	24374.0	56.0	18	1	1334.0	-	-
14	176368.0	98.2	18	3	1493.0	1663.0	1236.0
15	328045.0	85.2	18	3	1329.0	1950.0	1945.0
16	480627.0	94.8	18	3	1047.0	1826.0	1475.0
17	5543.0	64.4	18	1	1698.0	-	-
18	157903.0	67. 7	18	2	1451.0	1859.0	-

Type 5 Radar Waveform_21

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	294631.0	83.3	20	2	1578.0	1836.0	-
1	439283.0	93.4	20	3	1083.0	1167.0	1218.0
2	585220.0	78. 7	20	2	1038.0	1143.0	-
3	131850.0	83. 7	20	3	1445.0	1633.0	1545.0
4	277672.0	58.5	20	1	1553.0	-	_
5	420403.0	95.5	20	3	1356.0	1839.0	1771.0
6	566393.0	80. 7	20	2	1662.0	1539.0	-
7	114289.0	99.3	20	3	1021.0	1191.0	1234.0
8	259063.0	73.9	20	2	1907.0	1330.0	_
9	405000.0	54.8	20	1	1459.0	-	_
10	548862.0	73. 7	20	2	1761.0	1116.0	_
11	96794.0	60.2	20	1	1427.0	-	_
12	241397.0	73.0	20	2	1544.0	1293.0	_
13	386397.0	71.9	20	2	1194.0	1381.0	_
14	531076.0	67.0	20	2	1609.0	1208.0	_
15	78709.0	76. 1	20	2	1361.0	1607.0	_
16	224183.0	63.2	20	1	1165.0	-	-
17	367841.0	77.0	20	2	1726.0	1997. 0	-
18	511797.0	90.3	20	3	1264.0	1976.0	1251.0
19	60673.0	86.3	20	3	1898.0	1660.0	1369.0

Type	5 R	adar	Wave	form	22

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	229162.0	56.4	17	1	1447.0	-	_
1	389582.0	66.8	17	2	1268.0	1741.0	_
2	549757.0	99.9	17	3	1042.0	1040.0	1871.0
3	47855.0	70.5	17	2	1513.0	1289.0	_
4	208815.0	67.1	17	2	1675.0	1280.0	_
5	368723.0	91.3	17	3	1401.0	1530.0	1931.0
6	530640.0	71.2	17	2	1862.0	1239.0	_
7	28059.0	66.2	17	1	1926.0	-	-
8	188472.0	97.3	17	3	1855.0	1072.0	1837. 0
9	349074.0	96.1	17	3	1705.0	1221.0	1706.0
10	511167.0	76. 7	17	2	1241.0	1405.0	_
11	8164.0	83.4	17	3	1712.0	1713.0	1463.0
12	169144.0	81.3	17	2	1587.0	1426.0	-
13	330026.0	78.3	17	2	1858.0	1305.0	_
14	491873.0	58.9	17	1	1911.0	-	_
15	652592.0	67. 7	17	2	1286.0	1140.0	_
16	149666.0	61.1	17	1	1467.0	-	_
17	309833.0	83.5	17	3	1308.0	1054.0	1596.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)		Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	943902.0	96.6	6	3	1755.0	1189.0	1055.0
1	1269041.0	62.2	6	1	1130.0	-	_
2	259401.0	89.4	6	3	1144.0	1657.0	1082.0
3	583003.0	51.1	6	1	1212.0	-	_
4	903842.0	94.8	6	3	1809.0	1434.0	1266.0
5	1225423.0	95.6	6	3	1991.0	1363.0	1915.0
6	220055.0	57. 1	6	1	1640.0	_	-
7	543162.0	58.3	6	1	1322.0	-	_
8	864015.0	87.6	6	3	1745.0	1763.0	1201.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	819976.0	98.3	11	3	1647.0	1610.0	1428.0
1	124531.0	75. 1	11	2	1816.0	1332.0	_
2	347501.0	80.0	11	2	1612.0	1912.0	_
3	569963.0	85.0	11	3	1796.0	1080.0	1548.0
4	795692.0	58. 1	11	1	1032.0	-	_
5	97220.0	54.4	11	1	1528.0	-	_
6	320262.0	78. 1	11	2	1051.0	1804.0	_
7	544238.0	61.3	11	1	1512.0	-	_
8	768047.0	66.4	11	1	1152.0	-	_
9	69529.0	93.6	11	3	1030.0	1166.0	1450.0
10	293274.0	58.2	11	1	1276.0	-	_
11	516491.0	66.5	11	1	1897.0	-	_
12	739096.0	67.2	11	2	1724.0	1182.0	_

Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	32166.0	74. 2	16	2	1644.0	1111.0	_
1	203045.0	64.4	16	1	1549.0	-	_
2	374106.0	51.9	16	1	1100.0	-	_
3	543746.0	77.9	16	2	1020.0	1751.0	_
4	11155.0	78. 2	16	2	1908.0	1222.0	_
5	181289.0	90.4	16	3	1379.0	1354.0	1581.0
6	352442.0	79.0	16	2	1163.0	1154.0	_
7	521429.0	94. 7	16	3	1202.0	1598.0	1735.0
8	694200.0	62.9	16	1	1825.0	_	_
9	160390.0	99.4	16	3	1784.0	1019.0	1248.0
10	331709.0	64.9	16	1	1709.0	-	_
11	501716.0	79. 7	16	2	1310.0	1489.0	_
12	672215.0	80.5	16	2	1785.0	1036.0	_
13	139570.0	78. 0	16	2	1393.0	1919.0	-
14	309774.0	96.9	16	3	1243.0	1231.0	1271.0
15	481773.0	55. 2	16	1	1247.0	-	-
16	651452.0	72. 1	16	2	1228.0	1333.0	_

Type 5 Radar Waveform_26

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	183927.0	54.3	9	1	1175.0	_	_
1	448110.0	63.4	9	1	1448.0	-	_
2	712332.0	58.8	9	1	1458.0	-	-
3	976103.0	53. 7	9	1	1966.0	-	-
4	151104.0	73.0	9	2	1984.0	1122.0	-
5	414270.0	91.2	9	3	1693.0	1617.0	1527.0
6	678840.0	67.3	9	2	1944.0	1029.0	_
7	944237.0	61.0	9	1	1198.0	-	_
8	118619.0	68.6	9	2	1204.0	1782.0	-
9	382639.0	78.9	9	2	1102.0	1417.0	-
10	647226.0	53.1	9	1	1479.0	_	-

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	714181.0	67.0	12	2	1560.0	1940.0	_
1	67521.0	92.6	12	3	1272.0	1689.0	1199.0
2	274554.0	74. 1	12	2	1921.0	1749.0	_
3	482928.0	52.9	12	1	1224.0	-	_
4	688535.0	67.0	12	2	1808.0	1870.0	_
5	42092.0	79.3	12	2	1456.0	1628.0	_
6	248853.0	88.0	12	3	1045.0	1987.0	1336.0
7	456242.0	75.0	12	2	1946.0	1366.0	_
8	662778.0	99.3	12	3	1759.0	1193.0	1062.0
9	16567.0	66.8	12	2	2000.0	1590.0	-
10	223778.0	67.3	12	2	1197.0	1641.0	_
11	431020.0	66.8	12	2	1422.0	1324.0	_
12	638386.0	79.4	12	2	1078.0	1470.0	-
13	843424.0	92.9	12	3	1995.0	1117.0	1688.0

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	347012.0	85.3	5	3	1095.0	1867.0	1725.0
1	710593.0	75. 7	5	2	1667.0	1081.0	_
2	1074543.0	65.0	5	1	1606.0	_	_
3	1437616.0	55.2	5	1	1955.0	-	-
4	302555.0	77. 6	5	2	1928.0	1701.0	_
5	665869.0	76.5	5	2	1444.0	1294.0	_
6	1029281.0	81.3	5	2	1207.0	1125.0	_
7	1392882.0	56.1	5	1	1934.0	_	_

Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	206085.0	94.4	7	3	1468.0	1027.0	1547.0
1	495746.0	89.3	7	3	1812.0	1541.0	1646.0
2	785852.0	94.9	7	3	2000.0	1507.0	1066.0
3	1078441.0	57.6	7	1	1616.0	-	_
4	170778.0	63.5	7	1	1088.0	-	_
5	461310.0	51.2	7	1	1715.0	-	_
6	751085.0	73.3	7	2	1254.0	1811.0	_
7	1039256.0	84.6	7	3	1652.0	1896.0	1957. 0
8	134706.0	66.8	7	2	1537.0	1819.0	_
9	425451.0	59.6	7	1	1886.0	_	_

	Radar Type 6 - Radar	Statistical Performance	
Trail #	1=Detection	Trail #	1=Detection
	0=No Detection		0=No Detection
0	1	15	1
1	1	16	0
2	1	17	1
3	1	18	1
4	1	19	1
5	1	20	1
6	1	21	1
7	1	22	1
8	1	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
Detection Pe	ercentage (%)	96.	7%

Type 6 Radar Waveform_0							
Frequency List (MHz)	0	1	2	3	4		
0	5639	5591	5587	5364	5641		
5	5544	5671	5447	5488	5476		
10	5494	5478	5379	5498	5278		
15	5575	5366	5446	5643	5282		
20	5371	5468	5471	5429	5717		
25	5660	5626	5631	5540	5661		
30	5489	5283	5437	5318	5333		
35	5559	5374	5620	5700	5347		
40	5509	5610	5657	5312	5525		
45	5519	5651	5514	5552	5543		
50	5623	5297	5518	5467	5505		
55	5372	5328	5387	5632	5712		
60	5558	5291	5311	5512	5444		
65	5451	5568	5546	5595	5649		
70	5583	5539	5464	5442	5391		
75	5327	5521	5284	5465	5271		
80	5439	5691	5622	5637	5308		
85	5670	5479	5581	5458	5457		
90	5640	5293	5331	5722	5375		

Type 6 Radar Waveform_1

Frequency List (MHz)	0	1	2	3	4
0	5419	5355	5620	5525	5386
5	5586	5693	5522	5651	5683
10	5425	5267	5420	5299	5663
15	5493	5452	5591	5474	5282
20	5537	5412	5518	5690	5451
25	5575	5359	5266	5695	5628
30	5647	5394	5533	5485	5379
35	5513	5711	5496	5500	5423
40	5383	5595	5552	5619	5448
45	5606	5259	5327	5567	5342
50	5324	5348	5607	5668	5352
55	5560	5358	5681	5603	5402
60	5600	5598	5709	5458	5400
65	5507	5303	5438	5398	5721
70	5666	5639	5313	5418	5350
75	5694	5664	5475	5536	5320
80	5435	5436	5411	5498	5561
85	5489	5564	5602	5443	5271
90	5339	5274	5310	5706	5273
95	5449	5288	5376	5657	5389

, ·			
1	2	3	4
5594	5556	5686	5703
5618	5597	5717	5415
5531	5461	5413	5320

Frequency List (MHz)

Type 6 Radar Waveform_2

Type 6 Radar Waveform_3

Frequency List (MHz)	0	1	2	3	4
0	5357	5358	5492	5275	5448
5	5670	5640	5672	5405	5719
10	5665	5320	5599	5511	5341
15	5267	5272	5658	5681	5480
20	5298	5297	5391	5636	5605
25	5279	5668	5474	5288	5712
30	5522	5308	5488	5411	5397
35	5694	5515	5660	5428	5348
40	5536	5481	5374	5460	5613
45	5684	5566	5425	5443	5576
50	5494	5549	5676	5450	5407
55	5314	5618	5461	5568	5263
60	5697	5464	5257	5490	5359
65	5361	5447	5291	5482	5345
70	5600	5382	5487	5638	5389
75	5370	5268	5535	5590	5378
80	5437	5468	5698	5351	5333
85	5423	5304	5342	5512	5376
90	5338	5317	5601	5573	5369
95	5395	5344	5496	5296	5544

Type 6 Radar Waveform_4						
Frequency List (MHz)	0	1	2	3	4	
0	5612	5597	5428	5436	5290	
5	5334	5565	5272	5568	5451	
10	5596	5584	5640	5706	5362	
15	5355	5302	5286	5629	5672	
20	5684	5463	5332	5591	5609	
25	5493	5703	5396	5578	5322	
30	5376	5411	5265	5606	5660	
35	5595	5358	5456	5581	5262	
40	5375	5564	5312	5700	5610	
4 5	5613	5449	5508	5404	5381	
50	5425	5377	5501	5496	5562	
55	5649	5522	5356	5516	5419	
60	5422	5435	5666	5284	5393	
65	5492	5722	5518	5555	5395	
70	5656	5624	5270	5713	5346	
75	5702	5504	5710	5521	5418	
80	5720	5333	5414	5330	5618	
85	5304	5659	5475	5303	5318	
90	5712	5515	5291	5579	5403	
95	5266	5407	5458	5551	5280	

Type 6	Radar '	Wave	form_5
--------	---------	------	--------

Frequency List (MHz)	0	1	2	3	4
0	5392	5361	5364	5597	5510
5	5376	5587	5347	5256	5658
10	5430	5470	5681	5426	5383
15	5443	5429	5389	5674	5692
20	5532	5273	5680	5582	5381
25	5555	5599	5304	5356	5418
30	5300	5697	5346	5337	5415
35	5497	5252	5259	5651	5689
40	5647	5250	5465	5607	5445
45	5591	5462	5682	5646	5301
50	5553	5552	5585	5435	5409
55	5362	5476	5546	5713	5390
60	5625	5477	5498	5339	5693
65	5671	5554	5387	5287	5463
70	5253	5707	5370	5562	5700
75	5661	5473	5258	5567	5399
80	5394	5519	5574	5327	5338
85	5501	5438	5663	5272	5485
90	5335	5456	5340	5623	5516
95	5475	5606	5437	5315	5669

Type 6 Radar Waveform_6							
Frequency List (MHz)	0	1	2	3	4		
0	5647	5600	5300	5283	5352		
5	5418	5609	5422	5322	5487		
10	5361	5259	5722	5621	5404		
15	5434	5556	5395	5719	5581		
20	5700	5698	5311	5672	5555		
25	5504	5327	5408	5390	5460		
30	5286	5654	5561	5586	5613		
35	5539	5313	5523	5509	5662		
4 0	5625	5255	5663	5608	5701		
4 5	5374	5409	5674	5520	5260		
50	5533	5254	5603	5636	5353		
55	5453	5430	5261	5532	5264		
60	5279	5277	5330	5508	5382		
65	5516	5620	5493	5597	5557		
70	5266	5325	5693	5373	5314		
75	5676	5345	5378	5710	5477		
80	5274	5456	5650	5683	5637		
85	5324	5585	5440	5498	5380		
90	5611	5323	5258	5688	5505		
95	5492	5661	5335	5328	5610		

Type 6 Radar Waveform_7

Frequency List (MHz)	0	1	2	3	4
0	5330	5364	5711	5444	5572
5	5557	5534	5497	5485	5694
10	5292	5523	5288	5341	5425
15	5522	5683	5498	5289	5298
20	5611	5252	5286	5528	5535
25	5356	5530	5512	5424	5502
30	5650	5301	5263	5433	5678
35	5404	5416	5662	5576	5464
40	5435	5601	5373	5698	5681
45	5389	5282	5481	5313	5323
50	5431	5430	5654	5385	5459
55	5675	5641	5384	5451	5351
60	5710	5408	5442	5367	5259
65	5334	5328	5717	5666	5529
70	5429	5352	5544	5494	5679
75	5376	5638	5652	5579	5314
80	5281	5458	5526	5469	5372
85	5700	5321	5350	5585	5461
90	5479	5277	5409	5353	5311
95	5290	5637	5509	5716	5329

Type 6 Radar Waveform_8					
Frequency List (MHz)	0	1	2	3	4
0	5585	5603	5647	5605	5414
5	5599	5556	5572	5648	5426
10	5601	5312	5329	5439	5446
15	5610	5335	5712	5490	5619
20	5458	5668	5278	5501	5326
25	5683	5636	5616	5641	5539
30	5568	5419	5512	5253	5342
35	5592	5687	5340	5303	5518
40	5613	5695	5369	5365	5366
45	5685	5307	5606	5705	5474
50	5282	5354	5338	5645	5681
55	5537	5607	5566	5635	5274
60	5540	5615	5565	5639	5719
65	5250	5287	5476	5487	5628
70	5538	5661	5618	5424	5579
75	5288	5696	5545	5488	5521
80	5667	5444	5328	5657	5551
85	5700	5345	5271	5623	5296
90	5410	5486	5534	5531	5382
95	5548	5622	5277	5507	5348

Type 6	Radar	Wave	form_9
--------	-------	------	--------

Frequency List (MHz)	0	1	2	3	4
0	5365	5464	5583	5291	5634
5	5641	5481	5647	5336	5255
10	5532	5576	5370	5467	5698
15	5704	5282	5682	5627	5527
20	5609	5367	5474	5689	5632
25	5364	5342	5492	5683	5525
30	5664	5451	5483	5493	5501
35	5617	5601	5477	5378	5692
40	5539	5349	5448	5597	5322
45	5475	5658	5307	5281	5563
50	5580	5466	5542	5292	5356
55	5652	5569	5297	5354	5398
60	5558	5317	5266	5564	5504
65	5471	5514	5528	5260	5273
70	5479	5604	5497	5630	5263
75	5470	5420	5458	5468	5603
80	5693	5265	5391	5538	5484
85	5384	5312	5430	5371	5706
90	5432	5380	5640	5351	5394
95	5368	5637	5285	5496	5390