

SAR TEST REPORT

Product Name: OPENDOTS ONE

Trade Mark: SHOKZ

Model No.: SHOKZ E310

Report Number: 25041017230SAR-1

Test Standards: FCC 47 CFR Part 2 §2.1093,

ANSI/IEEE C95.1-1992,

IEEE Std 1528-2013 FCC ID: 2BCD6-E310

Test Result: PASS

Date of Issue: April 17, 2025

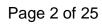
Prepared for:

SHOKZ (SINGAPORE) PTE. LTD.

11 NORTH BUONA VISTA DRIVE #16-09 THE METROPOLIS,

SINGAPORE 138589, Singapore

Prepared by:


Shenzhen UnionTrust Quality and Technology Co., Ltd.

16/F, Block A, Building 6th, Baoneng Science and Technology Park,
Longhua Street, Longhua District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	Cony due	Reviewed by:	Am m	
	Curry Xue		Henry Lu	
	Test Engineer		Team Leader	
Approved by:	2	Date:	April 17, 2025	
	Kevin Liang Assistant Manager			
	Assistant Manager			

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Version

Version No.	Date	Description
V1.0	April 17, 2025	Original Report

CONTENTS

1.	GENERAL INFORMATION	5
	1.1. STATEMENT OF COMPLIANCE	5
	1.2. CLIENT INFORMATION	5
	1.3. EUT INFORMATION	
	1.3.1. GENERAL DESCRIPTION OF EUT	5
	1.3.2. DESCRIPTION OF ACCESSORIES	5
	1.3.3. EUT Tx Frequency Bands	
	1.3.4. WIRELESS TECHNOLOGIES	
	1.4. MAXIMUM CONDUCTED POWER	
	1.5. OTHER INFORMATION	
	1.6. TEST LOCATION	
	1.7. TEST FACILITY	
	1.8. GUIDANCE STANDARD	
2.	SPECIFIC ABSORPTION RATE (SAR)	
	2.1. INTRODUCTION	7
	2.2. SAR DEFINITION	
	2.3. SAR LIMITS	
3.	SAR MEASUREMENT SYSTEM	
	3.1. SPEAG DASY SYSTEM	
	3.1.1. Rовот	8
	3.1.2. PROBE	
	3.1.3. DATA ACQUISITION ELECTRONICS (DAE)	
	3.1.4. PHANTOM	
	3.1.5. DEVICE HOLDER	
	3.1.6. SYSTEM VALIDATION DIPOLES	
	3.2. SAR SCAN PROCEDURE	
	3.2.1. SAR REFERENCE MEASUREMENT (DRIFT) 3.2.2. AREA SCAN	
	3.2.3. ZOOM SCAN	
	3.2.4. SAR DRIFT MEASUREMENT	
	3.2.4. SAK DRIFT MEASUREMENT	
	3.4. MEASUREMENT UNCERTAINTY	
	3.5. TISSUE DIELECTRIC PARAMETER MEASUREMENT & SYSTEM VERIFICATION	
	3.5.1. TISSUE SIMULATING LIQUIDS	
	3.5.2. System Check Description.	
	3.5.3. TISSUE VERIFICATION	
	3.5.4. SYSTEM VALIDATION	18
	3.5.5. SYSTEM VERIFICATION	18
4.	SAR MEASUREMENT EVALUATION	19
	4.1. EUT TESTING POSITION	
	4.1.1. RF Exposure Conditions	
	4.2. MEASURED CONDUCTED POWER RESULT	
	4.2.1. CONDUCTED POWER OF BT	
	4.3. SAR TESTING RESULTS	
	4.3.1. SAR TEST REDUCTION CONSIDERATIONS	
	4.3.2. SAR RESULTS FOR RF EXPOSURE CONDITION (0 MM SEPARATION DISTANCE)	
	4.4. SAR MEASUREMENT VARIABILITY	21 21
	## REPEALED WEASUREWEN!	71

Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement

Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup

Page 5 of 25 Report No.: 25041017230SAR-1

1. GENERAL INFORMATION

1.1. STATEMENT OF COMPLIANCE

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows:

Equipment Class	Mode	Highest Reported Head SAR₁g (W/kg)
DSS/ DTS	Bluetooth	0.90

1.2. CLIENT INFORMATION

Applicant:	SHOKZ (SINGAPORE) PTE. LTD.
Address of Applicant:	11 NORTH BUONA VISTA DRIVE #16-09 THE METROPOLIS, SINGAPORE 138589, Singapore
Manufacturer:	SHOKZ (SINGAPORE) PTE. LTD.
Address of Manufacturer:	11 NORTH BUONA VISTA DRIVE #16-09 THE METROPOLIS, SINGAPORE 138589, Singapore

1.3. EUT INFORMATION

1.3.1. General Description of EUT

Product Name:	OPENDOTS ONE
Trade Mark:	SHOKZ
Model No. / HVIN:	SHOKZ E310
DUT Stage: Production Unit	
Software Version: THK_EU_B_09 (Provided by the Client)	
Hardware Version:	THK604J (Provided by the Client)
Sample Received Date:	December 24, 2024
Sample Tested Date: January 20, 2025	

1.3.2. Description of Accessories

None.

1.3.3. EUT Tx Frequency Bands

	•	
RF Type	Band(s)	Tx Frequency Range (Unit: MHz)
Bluetooth	2.4 GHz:	2402 - 2480

1.3.4. Wireless Technologies

Bluetooth	BR+EDR LE/ 2LE
Antenna Type	Integral Antenna

1.4. MAXIMUM CONDUCTED POWER

The maximum conducted average power including tune-up tolerance is shown as below.

Bluetooth

Mode	Modulation	Maximum Conducted Power (dBm)
BR + EDR	GFSK	14.0
DN + EDN	8-DPSK	11.5
LE	GFSK	10.0
2LE	GFSK	10.0

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 6 of 25 Report No.: 25041017230SAR-1

1.5. OTHER INFORMATION

None.

1.6. TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6th, Baoneng Science and Technology Park, Longhua Street, Longhua District,

Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7. TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

Shenzhen UnionTrust Quality and Technology Co., Ltd.

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8. GUIDANCE STANDARD

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2 §2.1093, IEEE Std 1528-2013, ANSI/IEEE C95.1-1992, the following FCC Published RF exposure KDB procedures:

KDB 865664 D01 v01r04

KDB 865664 D02 v01r02

KDB 447498 D01 v06

KDB 447498 D04 v01

Page 7 of 25 Report No.: 25041017230SAR-1

2. SPECIFIC ABSORPTION RATE (SAR)

2.1. INTRODUCTION

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling, by appropriate techniques, to produce specific absorption rates (SARs) as averaged over the whole-body, any 1 g or any 10 g of tissue (defined as a tissue volume in the shape of a cube). All SAR values are to be averaged over any six-minute period. When portable device was used within 20 cm of the user's body, SAR evaluation of the device will be required. The SAR limit in chapter 2.3.

2.2. SAR DEFINITION

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big(\frac{dW}{dm} \Big) = \frac{d}{dt} \Big(\frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

2.3. SAR LIMITS

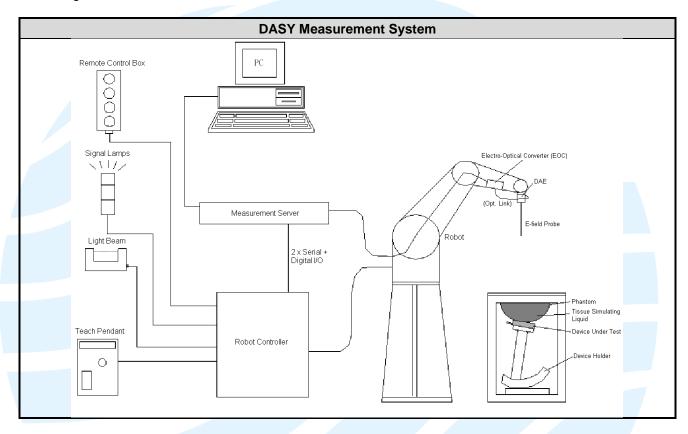
Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body		Partial-Body	Hands, Wrists, Feet and Ankles
	0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body		Partial-Body	Hands, Wrists, Feet and Ankles	
	0.08	1.6	4.0	

Note:


- 1) Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.
- 2) At frequencies above 6.0 GHz, SAR limits are not applicable and MPE limits for power density should be applied at 5 cm or more from the transmitting device.
- 3) The SAR limit is specified in FCC 47 CFR Part 2 §2.1093, ANSI/IEEE C95.1-1992.

3. SAR MEASUREMENT SYSTEM

3.1. SPEAG DASY SYSTEM

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

3.1.1. Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

3.1.2. Probe

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different

Report No.: 25041017230SAR-1

Model	EX3DV4	
Construction Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).		
Frequency 10 MHz to 6 GHz Linearity: ± 0.2 dB		
birectivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)		
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	ES3DV3	
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	D
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB	M
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	

3.1.3. Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detectors for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16-bit resolution and two range settings: 4mV, 400mV)	
Input Offset Voltage	< 5µV (with auto zero)	Till I
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

3.1.4. Phantom

Model	Twin SAM	
The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.		
Material	Vinylester, glass fiber reinforced (VE-GF)	100
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

Model	ELI		
Construction	Phantom for compliance testing of handheld and bodymounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.		
Material	Vinylester, glass fiber reinforced (VE-GF)		
Shell Thickness	2.0 ± 0.2 mm (bottom plate)		
Dimensions	Dimensions Major axis: 600 mm Minor axis: 400 mm		
Filling Volume	approx. 30 liters		

3.1.5. Device Holder

Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	P

3.1.6. System Validation Dipoles

Model	D-Serial D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	<u> </u>
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	

3.2. SAR SCAN PROCEDURE

3.2.1. SAR Reference Measurement (drift)

Prior to the SAR test, local SAR shall be measured at a stationary reference point where the SAR exceeds the lower detection limit of the measurement system.

Report No.: 25041017230SAR-1

3.2.2. Area Scan

Measurement procedures for evaluating the SAR of wireless device start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. All antennas and radiating structures that may contribute to the measured SAR or influence the SAR distribution must be included in the area scan. The area scan measurement resolution must enable the extrapolation algorithms of the SAR system to correctly identify the peak SAR location(s) for subsequent zoom scan measurements to correctly determine the 1-g SAR. Area scans are performed at a constant distance from the phantom surface, determined by the measurement frequencies. When a measured peak is closer than ½ the zoom scan volume dimension (x, y) from the edge of the area scan region, unless the entire peak and gram-averaging volume are both captured within the zoom scan volume, the area scan must be repeated by shifting and expanding the area scan region to ensure all peaks are away from the area scan boundary. The area scan resolutions specified in the table below must be applied to the SAR measurements.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point			
(geometric center of probe sensors) to phantom	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm } \pm 0.5 \text{ mm}$	
surface			
Maximum probe angle from probe axis to phantom	30° ± 1°	20° ± 1°	
surface normal at the measurement location	30 ± 1	20 ±1	
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm	
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
Maximum area agenc anotial resolution. A u	When the x or y dimension of the test device, in the		
Maximum area scans spatial resolution: Δx_{Area} ,	measurement plane orier	ntation, is smaller than the	
Δy_{Area}	above, the measurement	t resolution must be ≤ the	
	corresponding x or y dimension of the test device with		
	at least one measuremen	t point on the test device.	

3.2.3. Zoom Scan

To evaluate the peak spatial-average SAR values with respect to 1 g or 10 g cubes, fine resolution volume scans, called zoom scans, are performed at the peak SAR locations identified during the area scan. If the cube volume within the zoom scan chosen to calculate the peak spatial-average SAR touches any boundary of the zoom-scan volume, the zoom scan shall be repeated with the center of the zoom-scan volume shifted to the new maximum SAR location. For any secondary peaks found in the area scan that are within 2 dB of the maximum peak and are not within this zoom scan, the zoom scan shall be performed for such peaks, unless the peak spatial-average SAR at the location of the maximum peak is more than 2 dB below the applicable SAR limit (i.e., 1 W/kg for a 1.6 W/kg 1 g limit, or 1.26 W/kg for a 2 W/kg 10 g limit). The zoom scan resolutions specified in the table below must be applied to the SAR measurements.

Report No.: 25041017230SAR-1

beclined in the table below must be applied to the SAK measurements.					
		≤ 3 GHz	> 3 GHz		
Maximuma	an anatial manalesti	≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
				3 – 4 GHz: ≤ 4 mm	
	uniform grid: $\Delta Z_{Zoom}(n)$			4 – 5 GHz: ≤ 3 mm	
Maximum zoom				5 – 6 GHz: ≤ 2 mm	
Scan spatial	$\Delta Z_{Zoom}(1)$: between			3 – 4 GHz: ≤ 3 mm	
resolution, normal		1 ST two points closest	≤ 4 mm	4 – 5 GHz: ≤ 2.5 mm	
to phantom	graded	to phantom surface		5 – 6 GHz: ≤ 2 mm	
surface	grid	$\Delta Z_{Zoom}(n>1)$:			
		between subsequent	≤ 1.5·ΔZ _Z	_{oom} (n-1) mm	
		points			
Minimum 700m	Minimum			3 – 4 GHz: ≥ 28 mm	
Minimum zoom x, y, z		≥ 30 mm	4 – 5 GHz: ≥ 25 mm		
scan volume				5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

3.2.4. SAR Drift Measurement

The local SAR (or conducted power) shall be measured at exactly the same location as in 3.2.1 section. The absolute value of the measurement drift (the difference between the SAR measured in 3.2.1 and 3.2.4 section) shall be recorded. The SAR drift shall be kept within \pm 5%.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

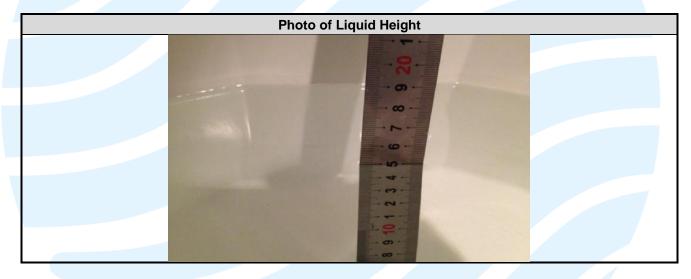
3.3. EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval
System Validation Dipole	SPEAG	D2450V2	883	Jan.02, 2024	3 Year
Data Acquisition Electronics	SPEAG	DAE4	662	Mar. 18,2024	1 Year
Dosimetric E-Field Probe	SPEAG	ES3DV3	3090	Mar. 26,2024	1 Year
ENA Series Network	Agilent	8753ES	US39170317	Oct. 25, 2024	1 Year
Analyzer				•	
Dielectric Assessment Kit	SPEAG	DAK-3.5	1056	N/A	N/A
Twin Phantom	SPEAG	SAM	TP-1376	N/A	N/A
Twin Phantom	SPEAG	SAM	TP-1378	N/A	N/A
Robot controller	STAUBLI	CS7MB	F05/511KA1/A/01	N/A	N/A
Robot	STAUBLI	RX90BL	F05/511KA1/A/01	N/A	N/A
Dielectric Assessment Kit	SPEAG	DAK-3.5	1070	N/A	N/A
USB/GPIB Interface	Agilent	82357B	N10149	N/A	N/A
Signal Generator	R&S	SMB100A	103718	Mar. 29, 2024	1 Year
POWER METER	R&S	NRP	101293	Oct. 25, 2024	1 Year
Thermometer	Shanghai Gao Zhi Precision Instrument Co., Ltd.	HB6801	18022507	Oct. 29, 2024	1 Year
Dual Directional Coupler	Agilent	778D	MY52180234	Oct. 25, 2024	1 Year
Amplifier	Mini-Circuit	ZHL42	QA1252001	Mar. 29, 2024	1 Year
DC Source	Agilent	66319B	MY43000795	Oct. 25, 2024	1 Year

3.4. MEASUREMENT UNCERTAINTY

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Report No.: 25041017230SAR-1


3.5. TISSUE DIELECTRIC PARAMETER MEASUREMENT & SYSTEM VERIFICATION

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

3.5.1. Tissue Simulating Liquids

The temperature of the tissue-equivalent medium used during measurement must also be within 18 $^{\circ}$ C to 25 $^{\circ}$ C and within \pm 2 $^{\circ}$ C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance.

The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm with \leq ± 0.5 cm variation for SAR measurements \leq 3 GHz and \geq 10.0 cm with \leq ± 0.5 cm variation for measurements > 3 GHz. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

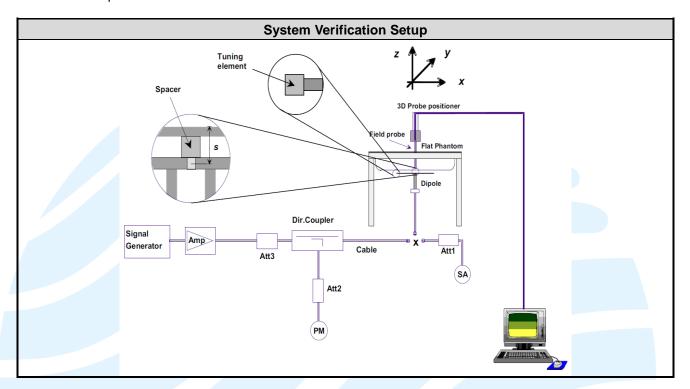
Tissue Dielectric Parameters for Head and Body					
Target Frequency	Head		Frequency Head Body		ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)	
750	41.9	0.89	55.5	0.96	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
1 <i>4</i> 50	40.5	1.20	54.0	1.30	
16 4 0	40.3	1.29	53.8	1.40	
<i>1750</i>	40.1	1.37	53.4	1.49	
1800	40.0	1.40	53.3	1.52	
1900	40.0	1.40	53.3	1.52	
2000	40.0	1.40	53.3	1.52	
2300	39.5	1.67	52.9	1.81	
2450	39.2	1.80	52.7	1.95	
2600	39.0	1.96	<i>52.5</i>	2.16	
3500	37.9	2.91	51.3	3.31	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5500	35.6	4.96	48.6	5.65	

Page 16 of 25

1					
5600	35.5	5.07	<i>48.5</i>	<i>5.7</i> 7	
5800	35.3	5.27	48.2	6.00	
(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m ³)					

Report No.: 25041017230SAR-1

The following table gives the recipes for tissue simulating liquids


i ne followin	The following table gives the recipes for tissue simulating liquids. Recipes of Tissue Simulating Liquid											
		Re	ecipes of Ti	ssue Simu	lating Liqui	d						
Tissue Type			HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether				
H750	0.2	-	0.2	1.4	57.0	-	41.1	-				
H835	0.1	-	1.0	1.4	57.0	-	40.5	-				
H900	0.1	-	1.0	1.5	56.5	-	40.9	-				
H1450	-	45.5	-	0.7	-	-	53.8	-				
H1640	-	45.8	-	0.5	-	-	53.7	-				
H1750	-	44.5	-	0.3	-	-	55.2	-				
H1800	-	44.9	-	0.2	-	-	54.9	-				
H1900	-	44.9	-	0.2	-	_	54.9	-				
H2000	-	50	-	-	-	-	50	-				
H2300	-	44.9	-	0.1	-	-	55.0	-				
H2450	-	45.0	-		-	-	54.9	-				
H2600	-	45.1	-	0.1	-	-	54.8	-				
H3500	-	8.0	-	0.2	-	20.0	71.8	-				
H5G	-	-	-	-	-	17.2	65.52	17.3				
B750	0.2	-	0.2	0.8	48.8	-	50.0	-				
B835	0.2	-	0.2	0.9	48.5	-	50.2	-				
B900	0.2	-	0.2	0.9	48.2	-	50.5	-				
B1450	-	34.0		0.3	-	-	65.7	-				
B1640		32.5	-	0.3	-	-	67.2	-				
B1750	-	29.4	-	0.4	-	-	70.2	-				
B1800	-	29.5		0.4	-	-	70.1	-				
B1900	-	29.5	-	0.3	-	-	70.2	-				
B2000	-	30.0	-	0.2	-	-	69.8	-				
B2300	-	31.0	-	0.1	-	-	68.9	-				
B2450		31.4	-	0.1	-	-	68.5	-				
B2600	-	31.8	-	0.1	-	-	68.1	-				
B3500	-	28.8	-	0.1	-		71.1					
B5G	-		1	-	-	10.7	78.6	10.7				

3.5.2. System Check Description

The system check procedure provides a simple, fast, and reliable test method that can be performed daily or before every SAR measurement. The objective here is to ascertain that the measurement system has acceptable accuracy and repeatability. This test requires a flat phantom and a radiating source. The system verification setup is shown as below.

Report No.: 25041017230SAR-1

3.5.3. Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

	Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (°C)	Measured Conductivity (σ)	Measured Permittivity (ϵ_r)	Target Conductivity (σ)		Conductivity Deviation (%)	Permittivity Deviation (%)
١	Jan. 20, 2025	Head	2450	20.7	1.827	37.969	1.80	39.20	1.50	-3.14

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within \pm 5% of the target values. The variation of the liquid temperature must be within \pm 2 °C during the test.

3.5.4. System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Total	Probe S/N			Measured	Measured	Vali	idation for	CW	Validatio	n for Modulat	tion	
Test Date		Calibration Po	ion Point	Conductivity	Permittivity	Sensitivity	Probe	Probe	Modulation	Duty Factor	PAR	
	i.e	0/14			(σ)	(ε _r)	Range	Linearity	Isotropy	Туре	Duty I actor	IAIX
Apr. 19	9, 2024	3090	Head	2450	1.745	38.390	Pass	Pass	Pass	OFDM	N/A	Pass

Report No.: 25041017230SAR-1

3.5.5. System Verification

The measuring result for system verification is tabulated as below.

Test Date	Tissue Type	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Jan. 20, 2025	Head	2450	53.70	12.90	51.60	-3.91	883	3090	662

Note:

Comparing to the reference SAR value, the validation data should be within its specification of 10%. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4. SAR MEASUREMENT EVALUATION

4.1. EUT TESTING POSITION

4.1.1. RF Exposure Conditions

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion		
	Front Touch				
	Rear Touch				
Head	Left Touch	0.00	N/A		
пеац	Right Touch	0 cm	IN/A		
	Top Touch				
	Bottom Touch				

4.2. MEASURED CONDUCTED POWER RESULT

4.2.1. Conducted Power of BT

Mode	Modulation	Channel	Frequency (MHz)	Average Power (dBm)
		0	2402	13.89
	GFSK	39	2441	13.85
BR + EDR		78	2480	13.46
DK + EDK		0	2402	11.21
	8-DPSK	39	2441	11.28
		78	2480	10.94

-					
	Mode	Modulation	Channel	Frequency (MHz)	Average Power (dBm)
			0	2402	9.71
	LE	GFSK	19	2440	9.30
			39	2480	9.18
			0	2402	9.71
	2LE	GFSK	19		9.33
			39	2480	9.22

4.3. SAR TESTING RESULTS

4.3.1. SAR Test Reduction Considerations

KDB 447498 D01 General RF Exposure Guidance

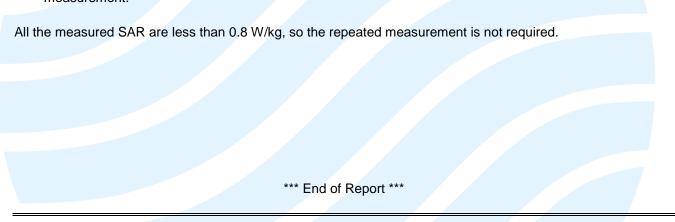
Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- a) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- b) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- c) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

4.3.2. SAR Results for RF Exposure Condition (0 mm Separation Distance)

Plot No.	Band	Mode	Test Position	Ch.	Duty Cycle	Max. Tune- up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Reported SAR-1g (W/kg)
	2.4GHz	BR_DH5	Inside	0	57.7%	14.0	13.9	-0.17	0.332	1.023	0.59
	2.4GHz	BR_DH5	Rear Face	0	57.7%	14.0	13.9	0.12	0.368	1.023	0.65
	2.4GHz	BR_DH5	Left Side	0	57.7%	14.0	13.9	0.01	0.267	1.023	0.47
1	2.4GHz	BR_DH5	Right Side	0	57.7%	14.0	13.9	-0.05	0.504	1.023	0.90
	2.4GHz	BR_DH5	Bottom Side	0	57.7%	14.0	13.9	0.09	0.204	1.023	0.36
	2.4GHz	BR_DH5	Right Side	39	57.7%	14.0	13.85	-0.13	0.464	1.035	0.83
	2.4GHz	BR_DH5	Right Side	78	57.7%	14.0	13.46	-0.15	0.379	1.132	0.74
	2.4GHz	BR_DH5	Right Side	0	57.7%	14.0	13.9	-0.07	0.413	1.023	0.73

Page 21 of 25 Report No.: 25041017230SAR-1


4.4. SAR MEASUREMENT VARIABILITY

4.4.1. Repeated Measurement

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. 2)
- If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

APPENDIX A. SAR PLOTS OF SYSTEM VERIFICATION

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

APPENDIX B. SAR PLOTS OF SAR MEASUREMENT

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

APPENDIX C. CALIBRATION CERTIFICATE FOR PROBE AND DIPOLE

The calibration certificates are shown as follows.

APPENDIX D. PHOTOGRAPHS OF EUT AND SETUP

The photographs of EUT and setup are shown as follows.

