## Application: M9H95V3L



## Prediction of MPE limit at given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG / 4\pi R^2$ 

where: S = Power density

- P = Power input to the antenna
- G = Antenna gain
- R = Distance to the center of radiation of the antenna

Solving this equation for G

 $G = S \left( 4\pi R^2 \right) / P$ 

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

| Frequency Range (MHz) | Power Density (mW/cm <sup>2</sup> ) | Averaging Time (minutes) |
|-----------------------|-------------------------------------|--------------------------|
| 300 -1500             | f/1500                              | 30                       |
| 1500 - 100000         | 1.0                                 | 30                       |

where f = Frequency (MHz)

Prediction:

| G           | Antenna gain:                                                                        | 7.11 dBi                                           |
|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------|
| G           | Antenna gain:                                                                        | 5.14 numerical                                     |
| P<br>R<br>S | Max power input to the antenna:<br>Distance:<br>MPE limit for uncontrolled exposure: | 29.9 dBm / 977 mW<br>20 cm<br>1 mW/cm <sup>2</sup> |

## This prediction demonstrates the following:

1) The antenna gain where 1 mW/cm<sup>2</sup> would be reached at 20 cm distance is 7.11 dBi

2) The power density levels at a distance of 20 cm with typical antennas of 0 – 7 dBi are below the maximum levels allowed by FCC regulations