Report No.: LCS200826042AEB

SAR TEST REPORT	
orm i loi nei oni	

For

LAVA International Limited

Tablet

Test Model: T81

Additional Model No.: T81n, Aura

: LAVA International Limited

Prepared for Address

: A-56, Sector 64, Noida U.P., 201301, India

Prepared by	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing
	Street, Baoan District, Shenzhen, China
Tel	: (86)755-82591330
Fax	: (86)755-82591332
Web	: www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
Date of receipt of test sample	: September 09, 2020
Number of tested samples	: 1
Serial number	: Prototype
Date of Test	: September 09, 2020~September 18, 2020
Date of Report	: September 21, 2020

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD

FCC ID: 2ARTX-T81

Report Reference No:	LCS200826042AEB		
Date Of Issue			
	1 '		
Testing Laboratory Name:			
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Stree Baoan District, Shenzhen, China		
Testing Location/ Procedure :			
	Partial application of Harmonised star	ndards 🗆	
	Other standard testing method \Box		
Applicant's Name:			
Address:	A-56, Sector 64, Noida U.P., 201301,	, India	
Test Specification:			
Standard:	IEEE Std C95.1, 2005& IEEE Std 15	28 ^{тм} -2013&FCC Part 2.109	
Test Report Form No:	LCSEMC-1.0		
TRE Originator	Shenzhen LCS Compliance Testing L	aboratory Ltd.	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r	Dated 2017-06 ing Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation	ercial purposes as long as the copyright owner and source of noresponsibility for and with the comparison of the compari	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context.	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation	ercial purposes as long as the copyright owner and source of noresponsibility for and with the comparison of the compari	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context.	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet	ercial purposes as long as the copyright owner and source of noresponsibility for and with the comparison of the compari	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description: Trade Mark	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet	ercial purposes as long as the copyright owner and source of noresponsibility for and with the comparison of the compari	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description:	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced materi	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description: Trade Mark	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced materi	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description: Trade Mark: Model/Type Reference	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced materi	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description: Trade Mark: Model/Type Reference	ing Laboratory Ltd. All rights reserve ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band LTE Band5/41; WLAN2.4G;	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced materi	
Master TRF	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band LTE Band5/41; WLAN2.4G; Bluetooth4.2.	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced material II/V;	
Master TRF	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band LTE Band5/41; WLAN2.4G; Bluetooth4.2. T81n, Aura	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced material II/V;	
Master TRF: Shenzhen LCS Compliance Testi This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages redue to its placement and context. Test Item Description: Trade Mark: Model/Type Reference: Operation Frequency:	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band LTE Band5/41; WLAN2.4G; Bluetooth4.2. T81n, Aura DC 3.8V by Rechargeable Li-ion Bat	ercial purposes as long as the copyright owner and source of noresponsibility for and without of the reproduced material II/V;	
Master TRF	ng Laboratory Ltd. All rights reserv ed in whole or in part for non-comme g Laboratory Ltd. is acknowledged as c pliance Testing Laboratory Ltd. takes resulting from the reader's interpretation Tablet LAVA & XOLO T81 GSM 850/PCS1900, WCDMA Band LTE Band5/41; WLAN2.4G; Bluetooth4.2. T81n, Aura DC 3.8V by Rechargeable Li-ion Bat Positive	ercial purposes as long as the copyright owner and source of noresponsibility for and with on of the reproduced materi II/V; tery(5000mAh)	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 121 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD

FCC ID: 2ARTX-T81

Т

Report No.: LCS200826042AEB

SAR -- TEST REPORT

Test Report No. :	LCS200826042AEB	September 21, 2020 Date of issue

Test Model	: T81
EUT	: Tablet
	: LAVA International Limited
Address	: A-56, Sector 64, Noida U.P., 201301, India
Telephone	: /
Fax	: /
Manufacturer	: LAVA International Limited
Address	: A-56, Sector 64, Noida U. P., 201301, India
Telephone	: /
Fax.	
Factory	: LAVA International Limited
Address	: A-154D, A Block, Sector 63, Dist. Gautam Budh Nagar, Uttar
	Pradesh, Noida, 201301, India
Telephone	
Fax	: /

Test Result	
--------------------	--

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD F

FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

Revison History

Revision	Issue Date	Revisions	Revised By
000	September 21, 2020	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 121

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST DESCRIPTION	6		
1.1. Test Standards	6		
1.2. Test Description			
1.3. GENERAL REMARKS			
1.4. PRODUCT DESCRIPTION			
2. TEST ENVIRONMENT			
2.1. TEST FACILITY			
2.2. Environmental conditions			
2.3. SAR LIMITS 2.4. Equipments Used during the Test			
3. SAR MEASUREMENTS SYSTEM CONFIGURATION			
3.1. SAR MEASUREMENT SET-UP			
3.2. OPENSAR E-FIELD PROBE SYSTEM			
3.3. PHANTOMS 3.4. DEVICE HOLDER			
3.5. SCANNING PROCEDURE			
3.6. DATA STORAGE AND EVALUATION.			
3.7. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM			
3.8. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS			
3.9. TISSUE EQUIVALENT LIQUID PROPERTIES			
3.10. SYSTEM CHECK			
3.11. SAR MEASUREMENT PROCEDURE			
3.13. POWER REDUCTION			
4. TEST CONDITIONS AND RESULTS			
 4.1 CONDUCTED POWER RESULTS			
4.2 TRANSMIT ANTENNAS AND SAK MEASUREMENT POSITION			
4.4 SIMULTANEOUS TX SAR CONSIDERATIONS			
4.5 SAR MEASUREMENT VARIABILITY			
4.6 GENERAL DESCRIPTION OF TEST PROCEDURES			
4.7 MEASUREMENT UNCERTAINTY (450MHz-6GHz)			
4.8 SYSTEM CHECK RESULTS			
5. ALIBRATION CERTIFICATES			
5.1 PROBE-EPGO324 CALIBRATION CERTIFICATE			
5.2 SID835Dipole Calibration Ceriticate			
 5.4 SID1900 Dipole Calibration Certificate 5.5 SID2450 Dipole Calibration Certificate 			
5.5 SID2450 DIPOLE CALIBRATION CERTICATE			
6. SAR SYSTEM PHOTOGRAPHS			
7. SETUP PHOTOGRAPHS			
8. EUT PHOTOGRAPHS			
5. EUT PHOTOGRAPHS			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 121

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEEE Std 1528TM-2013; IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093: Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance : Mobile and Portable Device RF Exposure Procedures and **Equipment Authorization Policies**

KDB648474 D04: Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets KDB865664 D01 SAR Measurement 100 MHz to 6 GHz : SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting: RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR: SAR Guidance For leee 802.11 (Wi-Fi) Transmitters

KDB941225 D01 3G SAR Procedures: 3G SAR Meaurement Procedures

KDB 941225 D06 Hotspot Mode: SAR Evaluation Procedures For Portable Devices With Wireless Router Capabilities

KDB 941225 D05 SAR for LTE Devices: SAR Evaluation Considerations For LTE Devices KDB616217 D04 SAR for laptop and tablets v01r02: SAR EVALUATION CONSIDERATIONS FOR LAPTOP, NOTEBOOK, NETBOOK AND TABLET COMPUTERS.

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power. And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	September 09, 2020
Testing commenced on	:	September 09, 2020
Testing concluded on	:	September 18, 2020

1.4. Product Description

The LAVA International Limited. Model: T81 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Product Name:	Tablet	
Test Model:	T81	
Additional Model No.:	T81n, Aura	
Model declaration:	PCB board, structure and internal of these models are the same, So no additional models were tested.	
Modulation Type:	GMSK for GSM/GPRS; 8-PSK for EDGE; QPSK for UMTS; QPSK, 16QAM for LTE	
Hardware Version:	X802_MB_V1.0	
Software Version:	T81N	
Power supply:	DC 3.8V by Rechargeable Li-ion Battery(5000mAh)	
Device category:	Portable Device	
Exposure category:	General population/uncontrolled environment	
EUT Type:	Prototype	
Hotspot:	Supported, power not reduced when Hotspot open	
VolP	Supported	
The EUT is GSM,WCDMA,LTE, Tablet. the Tablet is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850, PCS1900, WCDMA Band II, Band V, LTE Band 5, Band41 and Bluetooth, WiFi2.4G camera functions. For more information see the following datasheet		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 121

SHENZHEN LCS COMPLIANCE TEST	TING LABORATORY LTD FCC ID: 2ARTX-T81 Report No.: LCS200826042AEB				
Technical Characteristics					
GSM					
Support Band: GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900					
Frequency:	GSM850: 824.2~848.8MHz				
	GSM1900: 1850.2~1909.8MHz				
Power Class:	GSM850:Power Class 5/ PCS1900:Power Class 0				
GSM/EDGE/GPRS:	Supported GSM/GPRS/EDGE				
Modulation Type:	GMSK for GSM/GPRS, 8-PSK for EDGE				
GSM Release Version:	R99				
GPRS Multislot Class:	12				
EGPRS Multislot Class:	12				
GPRS operation mode:	Class B				
DTM Mode:	Not Supported				
	PIFA Antenna;				
Antenna Description:	0dBi (max.) For GSM 850;				
	0dBi (max.) For PCS 1900.				
UMTS					
Support Networks:	WCDMA RMC12.2K,HSDPA,HSUPA				
Operation Band:	UMTS FDD Band II/V				
Modulation Type:	QPSK for UMTS				
Power Class:	Class 3				
WCDMA Release Version:	R8				
DC-HSUPA Release Version:	Not Supported				
	PIFA Antenna;				
Antenna Description:	0dBi (max.) For WCDMA Band II;				
	0dBi (max.) For WCDMA Band V.				
LTE					
Support Band:	LTE FDD band 5, 41				
Power Class:	Class 3				
Modulation Type:	QPSK/16QAM				
LTE Release Version:	Release 9				
VoLTE	Not Support				
	PIFA Antenna;				
Antenna Description:	0dBi (max.) For E-UTRA Band 5;				
	0dBi (max.) For E-UTRA Band 41				
WIFI 2.4G	2412MHz 2462MHz				
Frequency Range:	2412MHz ~ 2462MHz 11 Channels for 20MHz bandwidth (2412~2462MHz)				
Channel Number:	7 Channels for 40MHz bandwidth (2422~2452MHz)				
Type of Modulation:	802.11b: DSSS; 802.11g/n: OFDM				
Channel separation:	5MHz				
Antenna Description:	PIFA Antenna, 0dBi(Max.)				
Bluetooth					
Bluetooth Version:	V4.2				
Modulation:	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.2 (BT Classics)				
	GFSK for Bluetooth V4.2 (BT LE)				
Operation frequency:	2402MHz~2480MHz				
Channel number:	79 channels for Bluetooth V4.2 (BT Classics)				
	40 channels for Bluetooth V4.2 (BT LE)				
Channel separation:	1MHz for Bluetooth V4.2 (BT Classics)				
	2MHz for Bluetooth V4.2 (BT LE)				
Antenna Description:	PIFA Antenna, 0dBi(Max.)				
FM					
Frequency Range	87.5MHz ~ 108MHz				
Modulation Type:	FM				
Antenna Description:	External Antenna (Earphone)				

1.5. Statement of Compliance

The maximum of results of SAR found during testing for **T81** are follows:

<highest reported="" sar="" standalone="" summary=""></highest>

Classment	Frequency	Head	Hotspot (Report SAR _{1-g} (W/kg)	Body-worn (Report SAR _{1-g} (W/kg)
Class	Band	(Report SAR1-g (W/kg)	(Separation D	istance 0mm)
	GSM 850	0.002	0.003	0.003
	GSM1900	0.069	0.090	0.090
PCE	WCDMA Band V	0.027	0.046	0.046
FUE	WCDMA Band II	0.105	0.273	0.273
	LTE Band 5	0.029	0.054	0.054
	LTE Band 41	0.006	0.008	0.008
DTS	WIFI2.4G	0.044	0.077	0.077

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Reported SAR1-g (W/kg)	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn	GSM1900	0.273	PCE	0.350
(hotspot open)	WIFI2.4G	0.077	DTS	0.000

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 121

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- Site Description EMC Lab.
- : NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)							
	SAR (W/k	(g)					
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)					
Spatial Average(averaged over the whole body)	0.08	0.4					
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0					
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0					

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD

FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2020-06-11	2021-06-10
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2019-11-15	2020-11-14
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2019-11-15	2020-11-14
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2019-11-22	2020-11-21
7	E-Field PROBE	MVG	SSE2	SN 31/17 EPGO324	2019-10-08	2020-10-07
8	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2018-10-01	2021-09-30
9	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2018-09-24	2021-09-23
10	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2018-10-01	2021-09-30
11	DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2018-09-24	2021-09-23
12	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2019-11-15	2020-11-14
13	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2019-11-15	2020-11-14
14	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2019-11-15	2020-11-14
15	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
16	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
17	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
18	Liquid measurement Kit	HP	85033D	3423A03482	2019-11-15	2020-11-14
19	Power meter	Agilent	E4419B	MY45104493	2020-06-11	2021-06-10
20	Power meter	Agilent	E4419B	MY45100308	2019-11-22	2020-11-21
21	Power sensor	Agilent	E9301H	MY41495616	2019-11-22	2020-11-21
22	Power sensor	Agilent	E9301H	MY41495234	2020-06-11	2021-06-10
22	Directional Coupler	MCLI/USA	4426-20	03746	2020-06-11	2021-06-10

Note:

- Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

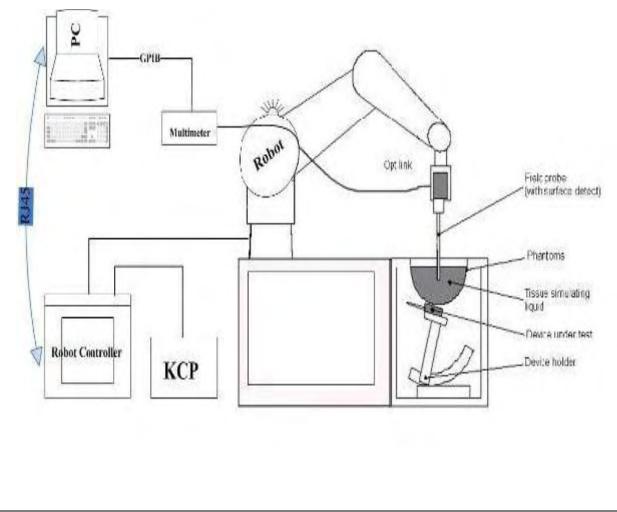
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

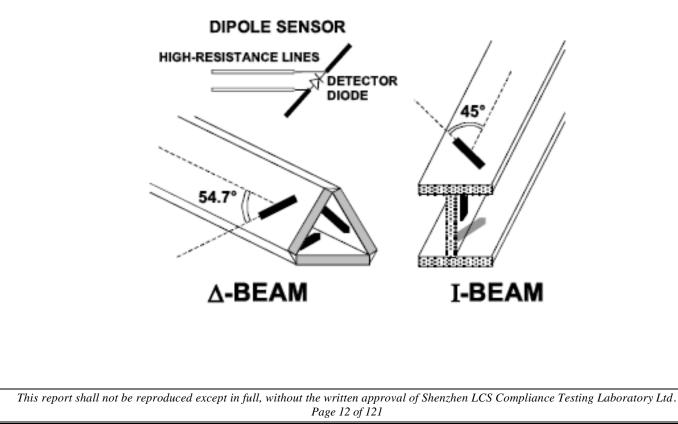
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

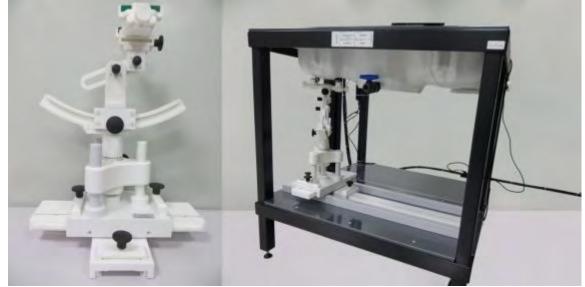
The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



Report No.: LCS200826042AEB

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 121

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ} \qquad \qquad 20^{\circ} \pm 1^{\circ}$			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
1 - 1	uniform	grid: Δz _{zoom} (n)	\leq 5 mm	$\begin{array}{c} 3-4 \text{ GHz:} \leq 4 \text{ mm} \\ 4-5 \text{ GHz:} \leq 3 \text{ mm} \\ 5-6 \text{ GHz:} \leq 2 \text{ mm} \end{array}$	
1	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm	
	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 121

Report No.: LCS200826042AEB

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure. and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/q], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - S	ensitivity	Normi, ai0, ai1, ai2
- C	Conversion factor	ConvFi
- D	Diode compression poin	t Dcpi
Device parameters: - F	requency	f
- C	Crest factor	cf
Media parameters: - Co	onductivity	σ
- C	Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm + ConvF}}$$

H – fieldprobes : With Vi = compensated signal of channel i = sensor sensitivity of channel i Normi [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes aij

$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

$$(i = x, y, z)$$

$$(i = x, y, z)$$

 V_i

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 121

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: 2ARTX-T81	Report No.: LCS200826042AEB
--	--	-------------------	-----------------------------

- f = carrier frequency [GHz] Ei
 - = electric field strength of channel i in V/m
- Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\alpha \cdot 1'000}$$

with SAR

= local specific absorption rate in mW/g = total field strength in V/m Etot

= conductivity in [mho/m] or [Siemens/m] σ

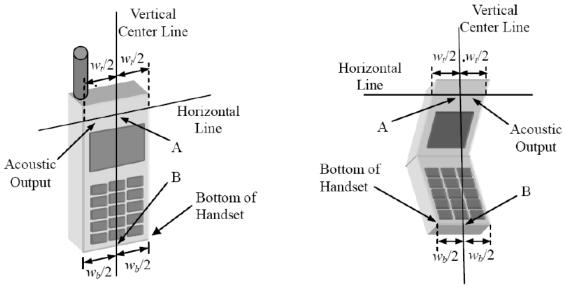
= equivalent tissue density in g/cm3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom - the "cheek" position and the "tilt" position.

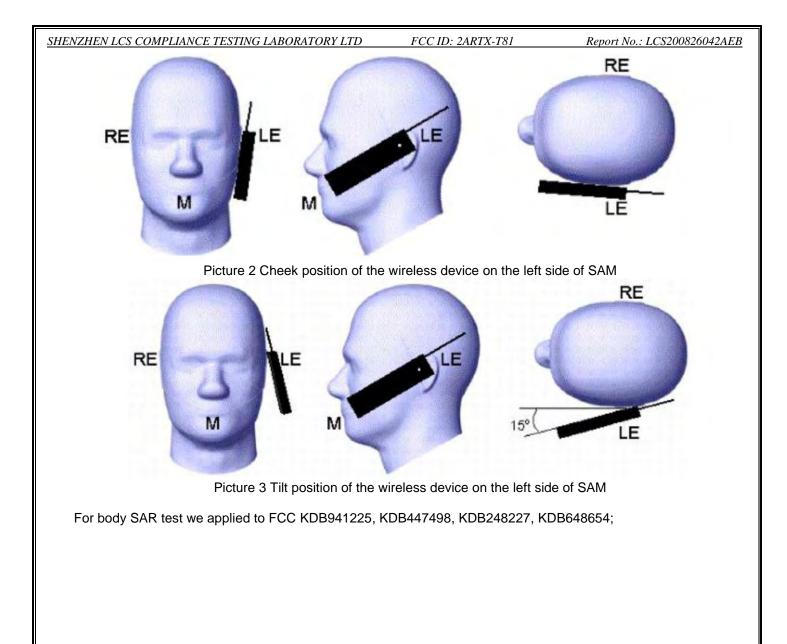

The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770}$$
 or $P_{(\text{pwe})} = H^2_{\text{tot}}.37.7$

Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

Etot=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m



Wt Width of the handset at the level of the acoustic

- W_bWidth of the bottom of the handset
- A Midpoint of the widthwtof the handset at the level of the acoustic output
- B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 121

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

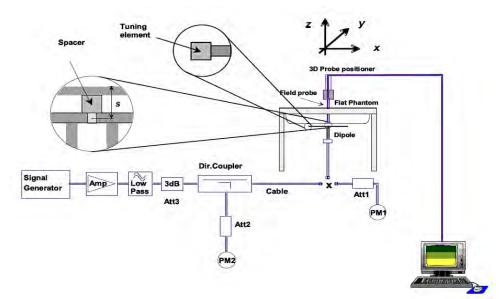
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

	The composition of the tissue simulating liquid													
Ingredient	750	ИНz	8351	ИНz	1800	MHz	1900	MHz	2450	MHz	2600	MHz	5000	MHz
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X- 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

Target Frequency	He	Head E			
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

3.9. Tissue equivalent liquid properties

Dielectric Performance of Head and Body Tissue Simulating Liquid


Test Eng	Test Engineer: Haylie Cao											
Tissue	Measured	Target	t Tissue		Measure	d Tissue		Liquid				
Type	Frequency (MHz)	σ	ε _r	σ	Dev.	ε _r	Dev.	Temp.	Test Data			
835H	835	0.90	41.50	0.92	2.22%	42.82	1.81%	21.5	09/15/2020			
1900H	1900	1.40	40.00	1.37	-2.14%	38.56	-3.60%	22.3	09/16/2020			
2450H	2450	1.80	39.20	1.84	2.22%	39.70	1.28%	23.4	09/17/2020			
2600H	2600	1.96	39.00	1.92	-2.04%	38.43	-1.46%	21.8	09/18/2020			

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

FCC ID: 2ARTX-T81

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 121 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD

FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations											
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)					
2018-10-01	-24.49		54.9		2.8						
2019-10-01	-24.17	-1.31	54.5	-0.4	2.6	-0.2					

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-01	-26.43		50.5		4.7	
2019-09-01	-26.33	-0.38	50.2	-0.3	4.5	-0.2

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-25.59		44.7		-1.1	
2019-10-01	-25.68	0.35	44.8	0.1	-1.0	0.1

SID2600 SN 38/18 DIP 2G600-468 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-29.14		49.2		3.4	
2019-09-24	-29.12	-0.07	49.1	-0.1	3.2	-0.1

Mixture	Fraguanay		SAR _{1g}	CAD	Drift	1W T	arget	Difference	percentage	امينام	
Туре	Frequency (MHz)	Power	(W/kg)	SAR _{10g} (W/kg)	(%)	SAD, SAD,		1g	10g	Liquid Temp	Date
		100 mW	0.923	0.639							
Head	835	Normalize to 1 Watt	9.23	6.39	2.03	9.60	6.20	-3.85%	3.06%	21.5	09/15/2020
		100 mW	3.911	2.096		40.03	20.55	-2.30%	2.00%	22.3	09/16/2020
Head	1900	Normalize to 1 Watt	39.11	20.96	-1.20						
		100 mW	5.487	2.521							
Head	2450	Normalize to 1 Watt	54.87	25.21	-0.08	53.89	24.15	1.82%	4.39%	23.4	09/17/2020
	100 mW	5.747	2.246								
Head	Head 2600	Normalize to 1 Watt	57.47	22.46	3.14	56.91	24.69	0.98%	-9.03%	21.8	09/18/2020

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 121

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 121

Report No.: LCS200826042AEB

configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set

Sub-set	β _c	β_{d}	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table 2: Subtests for UMTS Release 5 HSDPA

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI}= 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15*\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD

FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

T	Table 3: Sub-Test 5 Setup for Release 6 HSUPA													
Sub- set	βc	β_{d}	β _d (SF)	β _c /β _d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI	
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75	
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67	
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92	
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71	
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81	

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

3.11.4 LTE Test Configuration

QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.8 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.9

QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

3.11.5 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 121

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .

a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: 2ARTX-T81	Report No.: LCS200826042AEB
		•

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 121

Report No.: LCS200826042AEB

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4. TEST CONDITIONS AND RESULTS

4.1 Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (3Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.

3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (3 Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

	Tune	Burst C	Conducted (dBm)	power		Tune-	Averag	e power (dł	3m)
1 850	-up	Channel	/Frequence	cy(MHz)	Division	up	Channel/Frequency(MHz)		
	Max	128/ 824.2			Factors	Max	128/ 824.2	190/ 836.6	251/8 48.8
SM	33.00	32.85	32.80	32.82	-9.03dB	23.97	23.82	23.77	23.79
1TX slot	33.00	32.80	32.78	32.79	-9.03dB	23.97	23.77	23.75	23.76
2TX slot	32.00	31.71	31.68	31.67	-6.02dB	25.98	25.69	25.66	25.65
3TX slot	30.50	30.23	30.21	30.12	-4.26dB	26.24	25.97	25.95	25.86
4TX slot	29.00	29.00	28.97	28.94	-3.01dB	25.99	25.99	25.96	25.93
1TX slot	28.00	27.92	27.91	27.95	-9.03dB	18.97	18.89	18.88	18.92
2TX slot	26.50	26.15	26.15	26.17	-6.02dB	20.48	20.13	20.13	20.15
3TX slot	25.00	24.69	24.64	24.71	-4.26dB	20.74	20.43	20.38	20.45
4TX slot	24.00	23.86	23.89	23.80	-3.01dB	20.99	20.85	20.88	20.79
	Tune	Burst Conducted power (dBm)				Tune-	Averag	e power (dł	3m)
1 1 9 0 0	-up	Channel/Frequency(MHz)			Division	up	Channel/	Frequency(MHz)
	Мах	512/ 1850.2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909. 8
SM	30.00	29.82	29.89	29.80	-9.03dB	20.97	20.79	20.86	20.77
	30.00	29.79	29.87	29.78	-9.03dB	20.97	20.76	20.84	20.75
		28.36	28.41	28.37	-6.02dB	22.48	22.34	22.39	22.35
3TX slot	27.00	26.91	26.97	26.86	-4.26dB	22.74	22.65	22.71	22.60
4TX slot	26.00	25.79	25.84	25.72	-3.01dB	22.99	22.78	22.83	22.71
		26.02	26.09	26.04	-9.03dB	17.47	16.99	17.06	17.01
	24.50	24.33	24.41	24.34	-6.02dB	18.48	18.31	18.39	18.32
3TX slot	23.50	23.16	23.19	23.17	-4.26dB	19.24	18.90	18.93	18.91
4TX slot	22.00	21.91	21.89	21.86	-3.01dB	18.99	18.90	18.88	18.85
	1TX slot 2TX slot 3TX slot 4TX slot 1TX slot 2TX slot 3TX slot 4TX slot 1900 SM 1TX slot 2TX slot 2TX slot 3TX slot 4TX slot 2TX slot 3TX slot 3TX slot	-up Max SM 33.00 1TX slot 33.00 2TX slot 32.00 3TX slot 30.50 4TX slot 29.00 1TX slot 28.00 2TX slot 26.50 3TX slot 25.00 4TX slot 24.00 4TX slot 24.00 4TX slot 24.00 4TX slot 24.00 Max Max Max Max Max SM 30.00 1TX slot 28.50 3TX slot 3TX slot 27.00 4TX slot 26.50 3TX slot 26.50 3TX slot 26.50 2TX slot 24.50 3TX slot 24.50 3TX slot 26.50 2TX slot 24.50	I une -up Channel Rax 128/ 824.2 SM 33.00 32.85 1TX slot 33.00 32.85 1TX slot 33.00 32.80 2TX slot 32.00 31.71 3TX slot 30.50 30.23 4TX slot 29.00 29.00 1TX slot 28.00 27.92 2TX slot 26.50 26.15 3TX slot 25.00 24.69 4TX slot 24.00 23.86 Tune -up Burst O 0 11900 Max 512/ 1850.2 SM 30.00 29.82 1TX slot 30.00 29.79 2TX slot 26.50 26.91 Max 512/ 1850.2 1850.2 SM 30.00 29.79 2TX slot 28.50 28.36 3TX slot 27.00 26.91 4TX slot 26.50 26.02 2TX slot 24.50 24.33 3TX slot	$\begin{array}{c c c c c c } & (dBm) \\ \hline & (dBm) \\ \hline & (dBm) \\ \hline & Channel/Frequence \\ \hline & Max \\ & 128/ \\ 836.6 \\ \hline & Max \\ & 33.00 \\ 32.85 \\ 32.42 \\ 836.6 \\ \hline & 836.6 \\ \hline &$	$\begin{array}{ c c c c c } & -up & \hline & Channel/Frequency(MHz) \\ \hline & Max & 128/ & 190/ & 251/ \\ \hline & 824.2 & 836.6 & 848.8 \\ \hline SM & 33.00 & 32.85 & 32.80 & 32.82 \\ \hline & TX slot & 33.00 & 32.80 & 32.78 & 32.79 \\ \hline & 2TX slot & 32.00 & 31.71 & 31.68 & 31.67 \\ \hline & 3TX slot & 30.50 & 30.23 & 30.21 & 30.12 \\ \hline & 4TX slot & 29.00 & 29.00 & 28.97 & 28.94 \\ \hline & TX slot & 28.00 & 27.92 & 27.91 & 27.95 \\ \hline & 2TX slot & 26.50 & 26.15 & 26.15 & 26.17 \\ \hline & 3TX slot & 25.00 & 24.69 & 24.64 & 24.71 \\ \hline & 4TX slot & 24.00 & 23.86 & 23.89 & 23.80 \\ \hline & Tune \\ -up & \hline & Channel/Frequency(MHz) \\ \hline & Max & \begin{array}{c} 512/ & 661/ & 810/ \\ 1850.2 & 1880 & 1909.8 \\ \hline & SM & 30.00 & 29.82 & 29.89 & 29.80 \\ \hline & TX slot & 30.00 & 29.79 & 29.87 & 29.78 \\ \hline & 2TX slot & 28.50 & 28.36 & 28.41 & 28.37 \\ \hline & 3TX slot & 27.00 & 26.91 & 26.97 & 26.86 \\ \hline & 4TX slot & 26.50 & 26.02 & 26.09 & 26.04 \\ \hline & 2TX slot & 24.50 & 24.33 & 24.41 & 24.34 \\ \hline & 3TX slot & 23.50 & 23.16 & 23.19 & 23.17 \\ \hline \end{array}$	$\begin{array}{ c c c c c } & (dBm) & Division \\ \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c } & (dBm) & ($	$\begin{array}{ c c c c c } \hline (dBm) & (dB$	$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Conducted power measurement results for GSM850/PCS1900

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) = -9.00 dB

- 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB
- 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: 2ARTX-T81

2. According to the conducted power as above, the GPRS measurements are performed with 4Txslot for GPRS850 and 4Txslot GPRS1900.

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

c.

- a. The EUT was connected to Base Station E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
 - A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and $\beta_d)$ and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βd (SF)	βc/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)			
1	2/15	15/15	64	2/15	4/15	0.0	0.0			
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0			
3	15/15	8/15	64	15/8	30/15	1.5	0.5			
4	15/15	4/15	64	15/4	30/15	1.5	0.5			
Note 2:	Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and $\Delta_{NACK} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$, and $\Delta_{CQI} = 24/15$ with $\beta_{hs} = 24/15 * \beta_c$.									
Note 3:	3: CM = 1 for β _o /β _d =12/15, β _{hs} /β _c =24/15. For all other combinations of DPDCH, DPCCH and HS- DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.									
Note 4:				for the TFC during a factors for the ref						

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station R&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 121 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βc	βa	β₫ (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1	: Даск, 4	ANACK and	Δ _{CQI} =	= 30/15 w	/ith $eta_{\scriptscriptstyle hs}$	= 30/15 *	β_c .						
Note 2							her combinatio CM difference		DPDCH, [OPCCH,	HS- DPC	CH, E-E	PDCH
Note 3	Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.												
Note 4	Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.												
Note 5													
	te 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.												

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

	Conducted	Power we	asuremer	it Results		Band II/V)	
	hand	WCDMA Band II result (dBm)			WCDMA Band V result (dBm)		
Item	band	Channel/Frequency(MHz)			Channel/Frequency(MHz)		
nem	sub-test	9262/	9400/	9538/	4132/	4182/	4233/
	Sub-lesi	1852.4	1880	1907.6	826.4	836.4	846.6
	12.2kbps	23.48	23.58	23.34	22.59	22.35	22.02
RMC	64kbps	23.04	23.15	23.01	21.61	21.68	21.52
	144kbps	22.85	22.75	22.85	20.61	20.27	20.68
	384kbps	22.89	22.81	22.85	21.26	21.03	21.12
	Sub –Test 1	22.81	22.80	22.80	22.28	22.03	22.61
HSDPA	Sub –Test 2	22.88	22.79	22.87	21.44	21.01	21.35
	Sub –Test 3	22.78	22.82	22.88	22.20	21.75	21.74
	Sub –Test 4	22.85	22.83	22.82	20.75	20.95	20.92
	Sub –Test 1	22.86	22.88	22.87	21.16	21.36	20.75
	Sub –Test 2	22.73	22.85	22.72	21.59	21.35	21.02
HSUPA	Sub –Test 3	23.48	23.58	23.34	22.59	22.35	22.02
	Sub –Test 4	23.04	23.15	23.01	21.61	21.68	21.52
	Sub –Test 5	22.85	22.75	22.85	20.61	20.27	20.68

Conducted Power Measurement Results (WCDMA Band II//)

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤1/2dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 121

Report No.: LCS200826042AEB

BW	Frequency	RB Conf	iguration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	20.54	19.89
		1	3	20.66	19.88
		1	5	20.50	19.83
	824.7	3	0	20.63	19.72
	02	3	2	20.63	19.71
		3	3	20.60	19.69
		6	0	19.52	18.71
		1	0	21.36	20.66
	-	1	3	21.53	20.88
	-	1	5	21.33	20.88
1.4	836.5	3	0	21.45	20.73
1.4	030.5	3	2		
	_	3		21.55	20.69
			3	21.51	20.63
		6	0	20.44	19.48
	_	1	0	21.42	20.75
	_	1	3	21.45	20.94
		1	5	21.35	20.66
	848.3	3	0	21.54	20.72
		3	2	21.53	20.68
		3	3	21.50	20.66
		6	0	20.42	19.49
		1	0	20.57	19.91
		1	7	20.84	20.11
		1	14	20.59	19.91
	825.5	8	0	19.52	18.66
		8	4	19.55	18.71
		8	7	19.52	18.61
		15	0	19.51	18.53
		1	0	21.28	20.70
		1	7	21.66	21.11
		1	14	21.50	20.94
3	836.5	8	0	20.33	19.41
		8	4	20.44	19.51
		8	7	20.43	19.51
		15	0	20.36	19.41
		1	0	21.62	20.97
		1	7	21.86	21.08
		1	14	21.38	20.69
	847.5	8	0	20.54	19.67
		8	4	20.51	19.69
		8	7	20.41	19.57
		15	0	20.48	19.57
		1	0	20.53	19.84
		1	12	20.87	20.27
		1	24	20.64	19.93
	826.5	12	0	19.53	18.64
		12	6	19.58	18.69
		12	13	19.54	18.69
		25	0	19.54	18.63
_		1	0	21.12	20.47
5		1	12	21.70	20.83
		1	24	21.48	20.86
	836.5	12	0	20.27	19.46
		12	6	20.27	19.40
	-	12	13	20.44	19.64
	-	25	0	20.43	19.04
		1	0	21.76	21.05
	846.5	1	12	21.96	21.03

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 121

SHENZHEN LCS COMP.	LIANCE TESTING LAB	ORATORY LTD	FCC ID: 2ARTX-T81	l Report	t No.: LCS200826042AEB
		1	24	21.37	20.68
		12	0	20.74	19.81
		12	6	20.66	19.79
		12	13	20.46	19.62
		25	0	20.61	19.72
		1	0	20.54	19.88
		1	24	20.87	20.20
		1	49	21.45	20.51
	829.0	25	0	19.71	18.79
		25	12	19.72	18.82
		25	25	20.47	19.10
		50	0	19.78	18.85
		1	0	20.93	20.41
		1	24	21.46	21.02
		1	49	21.38	21.21
10	836.5	25	0	20.23	19.32
		25	12	20.41	19.51
		25	25	20.42	19.72
		50	0	20.34	19.47
		1	0	21.77	21.15
		1	24	21.33	21.28
		1	49	21.42	20.81
	844.0	25	0	21.01	20.12
		25	12	20.85	19.93
		25	25	20.63	19.77
		50	0	20.81	19.85

LTE Band41

BW	Frequency		figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
()		1	0	22.63	22.13
		1	12	22.73	22.22
		1	24	22.83	22.31
	2498.5	12	0	22.79	21.96
		12	6	22.88	21.98
		12	13	22.83	21.96
		25	0	21.91	21.02
		1	0	22.66	22.15
	Γ	1	12	22.78	22.19
		1	24	22.81	22.28
5	2593.0	12	0	22.86	21.92
		12	6	22.86	21.99
		12	13	22.80	21.98
		25	0	21.92	21.03
		1	0	22.67	22.15
		1	12	22.75	22.19
		1	24	22.81	22.31
	2687.5	12	0	22.83	21.92
		12	6	22.87	21.99
		12	13	22.80	21.95
		25	0	21.89	21.04
		1	0	22.64	22.10
	Γ	1	24	22.83	22.30
	Γ	1	49	22.29	21.81
10	2501.0	25	0	21.91	21.02
10	Γ	25	12	21.74	20.84
	Γ	25	25	21.51	20.66
		50	0	21.70	20.79
	2593.0	1	0	22.65	22.11

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 121

	PLIANCE TESTING LAB		04	00.00	No.: LCS20082604
		1	24	22.82	22.27
		1	49	22.31	21.81
		25	0	21.91	21.05
	-	25	12	21.74	20.82
	-	25	25	21.54	20.66
		50	0	21.63	20.80
		1	0	22.61	22.15
		1	24	22.76	22.29
		1	49	22.34	21.84
	2685.0	25	0	21.89	21.02
		25	12	21.75	20.81
		25	25	21.53	20.66
		50	0	21.67	20.80
		1	0	22.70	22.12
		1	37	22.48	21.94
		1	74	22.51	22.00
	2503.5	37	0	21.91	20.90
		37	18	21.88	20.92
		37	38	21.90	20.88
		75	0	20.93	20.93
		1	0	22.69	22.11
		1	37	22.52	22.00
		1	74	22.51	22.00
15	2593.0	37	0	21.87	20.90
10	2000.0	37	18	21.85	20.90
	-	37	38	21.84	20.89
		75	0	20.87	20.03
		1	0	22.62	22.10
	-	1	37		
	-	1	74	22.46	22.01
	2002 5			22.53	21.96
	2682.5	37	0	21.88	20.91
		37	18	21.89	20.88
		37	38	21.87	20.90
		75	0	20.93	20.90
	-	1	0	22.65	22.10
	-	1	49	22.29	21.79
		1	99	22.27	21.81
	2506.0	50	0	21.73	20.76
		50	25	21.69	20.82
		50	50	21.69	20.77
		100	0	20.80	20.80
		1	0	22.66	22.13
		1	49	22.32	21.82
20		1	99	22.31	21.85
20	2593.0	50	0	21.66	20.79
		50	25	21.67	20.79
		50	50	21.68	20.85
		100	0	20.83	20.83
		1	0	22.88	22.10
		1	49	22.34	21.82
		1	99	22.34	21.82
	2680.0	50	0	21.79	20.80
	2000.0	50	25	21.79	20.80
		<u> </u>	50		
				21.69	20.82
		100	0	20.82	20.80

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
IEEE 802.11b	1	2412	1	11.04
	I	2412	2	10.25

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 121

	CE TESTING LABORATOR		<u>2ARTX-T81</u> 5.5	Report No.: LCS200826
				10.41
			11	
			1	11.84
	6	2437	2	11.24
			5.5	11.39
			11	11.54
			1	11.33
		2462	2	11.14
		2402	5.5	11.23
			11	11.10
			6	13.11
			9	13.01
			12	13.08
	4	0.44.0	18	13.06
	1	2412	24	13.10
			36	13.01
			48	13.03
			54	13.04
			6	13.61
			9	13.37
			12	13.26
			12	13.14
IEEE 802.11g	6	2437		
			24	13.28
			36	13.20
			48	13.18
			54	13.23
			6	12.99
			9	12.23
		2462	12	12.11
	11		18	12.19
		2402	24	12.26
			36	12.45
			48	12.23
			54	12.57
			MCS0	13.35
			MCS1	13.10
			MCS2	13.07
			MCS3	13.15
	1	2412	MCS4	13.17
			MCS5	13.18
			MCS6	13.13
			MCS7	13.13
			MCS0	14.20
			MCS1	13.15
			MCS2	13.07
IEEE 802.11n	6	2437	MCS3	13.64
HT20	Ŭ		MCS4	13.69
			MCS5	13.56
			MCS6	13.38
			MCS7	13.01
			MCS0	13.26
			MCS1	13.12
			MCS2	13.13
		0.400	MCS3	13.14
	11	2462	MCS4	13.19
			MCS5	13.21
			MCS6	13.23
			MCS7	13.18
			MCS7 MCS0	13.18
IEEE 802.11n	3	2422		
HT40	3	2422	MCS1 MCS2	13.02
		1		13.23

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 121

SHENZHEN LCS COMPLIANCE TES	TING LABORATOR	YLTD FCC ID: 2.	ARTX-T81	Report No.: LCS200826042AEB
			MCS3	12.27
			MCS4	12.68
			MCS5	12.08
			MCS6	12.22
			MCS7	12.14
			MCS0	13.74
			MCS1	13.01
	6		MCS2	13.12
		2437	MCS3	13.17
		2437	MCS4	13.24
			MCS5	13.31
			MCS6	13.57
			MCS7	13.47
			MCS0	13.44
			MCS1	13.21
			MCS2	13.14
	9	2452	MCS3	13.08
		2402	MCS4	13.23
			MCS5	13.40
			MCS6	13.38
			MCS7	13.15

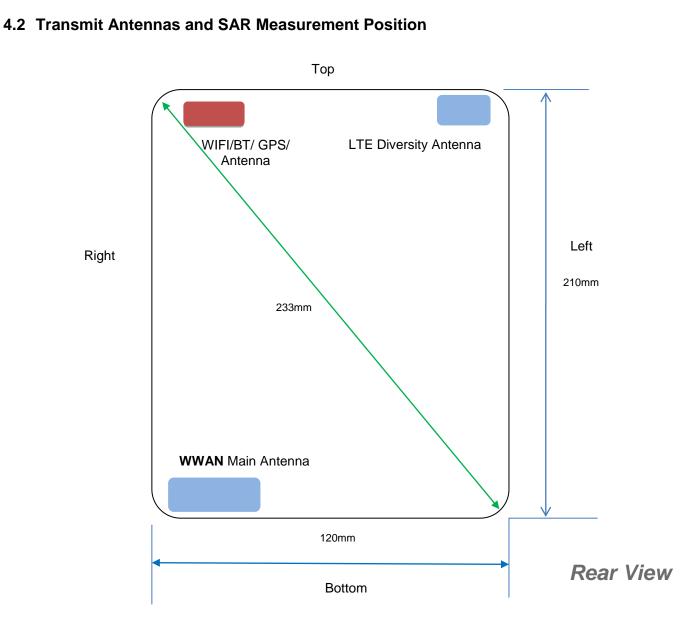
Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)			
	0	2402	1.188			
GFSK-BLE	19	2440	2.247			
	39	2480	1.073			
	0	2402	2.315			
GFSK	39	2441	3.399			
	78	2480	2.242			
	0	2402	1.583			
π/4-DQPSK	39	2441	2.653			
	78	2480	1.503			
	0	2402	1.690			
8DPSK	39	2441	2.770			
	78	2480	1.694			

<BT Conducted Power>

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR


- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
4.0	5	2.45	0.8

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.8< 3.0, SAR testing is not required.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 121

Report No.: LCS200826042AEB

Antenna information:

WWAN Main Antenna	GSM/UMTS/LTE TX/RX
LTE Diversity antenna	Only RX
WLAN/ BT Antenna	WLAN/BT TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 290mm >160mm, it is considered as "Phablet" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

Distance of The Antenna to the EUT surface and edge (mm)											
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side										
WWAN	<5	<5	202	<5	112	<5					
BT/WLAN	<5	<5	<5	204	113	<5					

Positions for SAR tests; Hotspot mode								
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: 2ARTX-T81 Report No.: LCS							
	WWAN	N Yes Yes		No	Yes	No Yes	
	BT/WLAN	Yes	Yes	Yes	No	No	Yes

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are ≥9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

4.3 SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	1:8
GPRS850	1:2.67
GPRS1900	1:2.67
UMTS	1:1
LTE	1:1
WLAN2450	1:1

4.4.1 SAR Results

SAR Values [GSM 850]

Ch.	Freq. (MHz)	Time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
measured / reported SAR numbers – Head <sim1></sim1>										
128	824.2	Voice	Left Cheek	32.85	33.00	-1.58	1.035	0.002	0.002	Plot 1
128	824.2	Voice	Left Tilt	32.85	33.00	-3.41	1.035	0.001	0.001	
128	824.2	Voice	Right Cheek	32.85	33.00	0.60	1.035	0.001	0.001	
128	824.2	Voice	Right Tilt	32.85	33.00	1.20	1.035	0.001	0.001	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1></sim1>										
190	836.6	4Txslots	Front	29.00	29.00	-1.20	1.000	0.002	0.002	
190	836.6	4Txslots	Rear	29.00	29.00	0.11	1.000	0.003	0.003	Plot 2
190	836.6	4Txslots	Right	29.00	29.00	-1.41	1.000	0.001	0.001	
190	836.6	4Txslots	Bottom	29.00	29.00	-0.40	1.000	0.001	0.001	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (Voice) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [GSM 1900]										
				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)		
Ch.	Freq.	time slots	Test	Power	Allowed	Drift	Scaling			Graph	
(MHz)	(MHZ)		Position	(dBm)	Power (dBm)	(%)	Factor	Measured	Reported	Results	
measured / reported SAR numbers – Head <sim1></sim1>											
661	1880.0	Voice	Left Cheek	29.89	30.00	-4.91	1.026	0.067	0.069	Plot 3	
661	1880.0	Voice	Left Tilt	29.89	30.00	2.12	1.026	0.032	0.033		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 121

5	SHENZ	THEN LCS C	OMPLIANCE	TESTING LABOR	ATORY LTD	FCC ID: 2ARTX-T81 Report No.: LCS2008				lo.: LCS20082	6042AEB
	661	1880.0	Voice	Right Cheek	29.89	30.00	0.61	1.026	0.020	0.021	
	661	1880.0	Voice	Right Tilt	29.89	30.00	1.41	1.026	0.014	0.014	
	measured / reported SAR numbers – Body (hotspot open, distance 10mm) <sim1></sim1>										
	661	1880.0	4Txslots	Front	25.84	26.00	0.44	1.038	0.054	0.056	
	661	1880.0	4Txslots	Rear	25.84	26.00	1.39	1.038	0.087	0.090	Plot 4
(661	1880.0	4Txslots	Right	25.84	26.00	-1.03	1.038	0.011	0.011	
(661	1880.0	4Txslots	Bottom	25.84	26.00	-0.30	1.038	0.020	0.021	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (Voice) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [WCDMA Band V]

Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results	
	measured / reported SAR numbers – Head <sim1></sim1>										
4132	826.4	RMC*	Left Cheek	22.59	23.00	-0.87	1.099	0.025	0.027	Plot 5	
4132	826.4	RMC*	Left Tilt	22.59	23.00	2.11	1.099	0.013	0.014		
4132	826.4	RMC*	Right Chee	k 22.59	23.00	-0.01	1.099	0.015	0.016		
4132	826.4	RMC*	Right Tilt	22.59	23.00	3.30	1.099	0.008	0.009		
		meas	ured / reported	SAR numbers -	Body (hotspot	open, dis	tance 10m	m) <sim1></sim1>			
4132	826.4	RMC*	Front	22.59	23.00	2.30	1.099	0.020	0.022		
4132	826.4	RMC*	Rear	22.59	23.00	0.18	1.099	0.042	0.046	Plot 6	
4132	826.4	RMC*	Right	22.59	23.00	4.11	1.099	0.031	0.034		
4132	826.4	RMC*	Bottom	22.59	23.00	-0.22	1.099	0.019	0.021		
	0-0		20110111		20.00	•		0.0.0	0.02.		

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

CAD Values INCOMA Dend III

3. RMC* - RMC 12.2kbps mode;

	SAR Values [WCDMA Band II]										
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} rest Measured	ults(W/kg) Reporte d	Graph Results	
			mea	sured / reported	d SAR numbers	s – Head <	SIM1>				
9400	1880.0	RMC*	Left Cheek	23.58	24.00	-2.93	1.102	0.095	0.105	Plot 7	
9400	1880.0	RMC*	Left Tilt	23.58	24.00	0.84	1.102	0.074	0.082		
9400	1880.0	RMC*	Right Cheek	23.58	24.00	0.33	1.102	0.080	0.088		
9400	1880.0	RMC*	Right Tilt	23.58	24.00	3.61	1.102	0.063	0.069		
		meas	ured / reported	SAR numbers	- Body (hotspo	ot open, dis	tance 10m	m) <sim1></sim1>			
9400	1880.0	RMC*	Front	23.58	24.00	0.11	1.102	0.248	0.273	Plot 8	
9400	1880.0	RMC*	Rear	23.58	24.00	3.60	1.102	0.127	0.140		
9400	1880.0	RMC*	Right	23.58	24.00	-1.01	1.102	0.120	0.132		
9400	1880.0	RMC*	Bottom	23.58	24.00	-0.01	1.102	0.081	0.089		

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

J. NI	S. RIVIC - RIVIC IZ.ZROPS ITIOUE,										
	SAR Values [LTE Band 5]										
Ch.	Freq.	Channel	Test	Conducted	Maximum	Power	Scaling	SAR1-g results(W/kg)	Graph		
TΪ	This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.										
	Page 37 of 121										

Image: Construct of the second seco	SHENZ	HENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: 2ARTX-T81 Report No.: LCS200826042AEB										
20450 829.0 1RB Left Tilt 21.45 21.50 -0.50 1.012 0.029 0.029 Piot 9 20450 829.0 1RB Right Tilt 21.45 21.50 0.15 1.012 0.008 0.008 20450 829.0 1RB Right Tilt 21.45 21.50 0.14 1.012 0.006 0.008 20450 829.0 50%RB Left Tilt 21.47 21.50 0.07 1.007 0.004 0.004 20450 829.0 50%RB Right Tilt 21.47 21.50 1.31 1.007 0.003 0.003 20450 829.0 50%RB Right Tilt 21.47 21.50 4.11 1.007 0.002 0.002 20450 829.0 1RB Front 21.45 21.50 2.85 1.012 0.023 0.024 20450 829.0 1RB Right 21.45 21.50 1.21 1.012 0.022 0.022 0.022		(MHz)			(d	'Bm)	Power (dBm)	(%)		Measured	Reported	Results
20450 829.0 1RB Left Tilt 21.45 21.50 0.15 1.012 0.005 0.005 20450 829.0 1RB Right Cheek 21.45 21.50 0.14 1.012 0.008 0.006 20450 829.0 50%RB Left Tilt 21.45 21.50 0.07 1.007 0.004 0.004 20450 829.0 50%RB Left Tilt 21.47 21.50 -1.32 1.007 0.003 0.003 20450 829.0 50%RB Right Cheek 21.47 21.50 -1.32 1.007 0.002 0.002 20450 829.0 1RB Front 21.47 21.50 -4.11 1.012 0.023 0.023 20450 829.0 1RB Right 21.45 21.50 -1.47 1.012 0.022 0.022 20450 829.0 1RB Right 21.45 21.50 1.21 1.012 0.022 0.022 20450 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
20450 829.0 1RB Right Cheek 21.45 21.50 0.15 1.012 0.008 0.008 20450 829.0 50%RB Left Tilt 21.47 21.50 0.07 1.007 0.004 0.004 20450 829.0 50%RB Left Tilt 21.47 21.50 -1.32 1.007 0.004 0.004 20450 829.0 50%RB Right Tilt 21.47 21.50 -1.32 1.007 0.002 0.002 20450 829.0 50%RB Right Tilt 21.47 21.50 -1.11 1.007 0.002 0.002 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20450 829.0 1.RB Right 21.45 21.50 -0.09 1.012 0.023 0.023 20450 829.0 1.RB Right 21.45 21.50 -1.47 1.012 0.022 0.022 20450 829.0 50%RB Rear 21.47 21.50 1.21 1.012 0.024 <t< td=""><td>20450</td><td>) 829.0</td><td>) 1RB</td><td>Left Ch</td><td>neek</td><td>21.45</td><td>21.50</td><td>-0.50</td><td></td><td>0.029</td><td>0.029</td><td>Plot 9</td></t<></sim1>	20450) 829.0) 1RB	Left Ch	neek	21.45	21.50	-0.50		0.029	0.029	Plot 9
20450 829.0 1RB Right Tilt 21.45 21.50 0.14 1.012 0.005 0.005 20450 829.0 50%RB Left Cheek 21.47 21.50 0.132 1.007 0.004 0.004 20450 829.0 50%RB Right Tilt 21.47 21.50 1.31 1.007 0.003 0.003 20450 829.0 50%RB Right Tilt 21.47 21.50 -1.31 1.007 0.003 0.003 20450 829.0 1RB Right 21.45 21.50 -4.11 1.012 0.023 0.023 20450 829.0 1RB Right 21.45 21.50 -1.47 1.012 0.022 0.025 20450 829.0 1RB Right 21.45 21.50 1.17 1.007 0.034 0.034 20450 829.0 50%RB Front 21.47 21.50 1.01 1.007 0.021 0.012 0.021	20450) 829.0		Left	Γilt	21.45	21.50	0.15	1.012	0.015	0.015	
20450 829.0 50%RB Left Tilt 21.47 21.50 0.07 1.007 0.004 0.004 20450 829.0 50%RB Left Tilt 21.47 21.50 -1.32 1.007 0.005 0.005 20450 829.0 50%RB Right Cheek 21.47 21.50 -1.31 1.007 0.002 0.002 measured/ reported SAR numbers - Body (hotspot open, distance 10mm) cSIM1> 20450 829.0 1RB Front 21.45 21.50 -0.09 1.012 0.023 0.024 20450 829.0 1RB Rear 21.45 21.50 -0.09 1.012 0.025 0.025 20450 829.0 1RB Bottom 21.45 21.50 1.21 1.012 0.022 0.022 20450 829.0 50%RB Right 21.47 21.50 1.21 1.012 0.024 0.024 20450 829.0 50%RB Right 21.47 21.50 0.80	20450) 829.0) 1RB	Right C	heek	21.45	21.50	0.15	1.012	0.008	0.008	
20450 829.0 50%RB Left Tilt 21.47 21.50 -1.32 1.007 0.005 0.005 20450 829.0 50%RB Right Tilt 21.47 21.50 -4.11 1.007 0.003 0.003 20450 829.0 50%RB Right Tilt 21.47 21.50 -4.11 1.007 0.002 0.002 20450 829.0 1RB Front 21.45 21.50 -0.09 1.012 0.023 0.023 20450 829.0 1RB Rear 21.45 21.50 -1.47 1.012 0.025 0.025 20450 829.0 1RB Bottom 21.45 21.50 -1.47 1.012 0.022 0.022 20450 829.0 50%RB Right 21.47 21.50 1.21 1.007 0.012 0.012 20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.024 0.024 20450 82	20450) 829.0) 1RB	Right	Tilt	21.45	21.50	0.14	1.012	0.005	0.005	
20450 829.0 50% RB Right Cheek 21.47 21.50 1.31 1.007 0.003 0.003 20450 829.0 50% RB Right Tilt 21.47 21.50 -4.11 1.007 0.002 0.002 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <simt> 20450 829.0 1RB Rear 21.45 21.50 -0.09 1.012 0.023 0.023 20450 829.0 1RB Rear 21.45 21.50 -1.47 1.012 0.022 0.022 20450 829.0 1RB Bottom 21.45 21.50 1.17 1.007 0.034 0.034 20450 829.0 50% RB Rear 21.47 21.50 1.17 1.007 0.021 0.021 20450 829.0 50% RB Rear 21.47 21.50 0.80 1.007 0.024 0.024 20450 829.0 50% RB Bottom 21.47 21.50 0.80 1.00</simt>	20450) 829.0) 50%RB	Left Ch	neek	21.47	21.50	0.07	1.007	0.004	0.004	
20450 829.0 50%RB Right Tilt 21.47 21.50 -4.11 1.007 0.002 0.002 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20450 829.0 1RB Front 21.45 21.50 -0.09 1.012 0.023 0.023 20450 829.0 1RB Rear 21.45 21.50 -0.09 1.012 0.025 0.025 20450 829.0 1RB Right 21.45 21.50 1.21 1.012 0.022 0.022 20450 829.0 1RB Bottom 21.47 21.50 1.17 1.007 0.034 0.034 20450 829.0 50%RB Rear 21.47 21.50 1.01 1.007 0.021 0.021 20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.024 0.021 20450 829.0 50%RB Right 21.47 21.50 1.01 1.00</sim1>	20450) 829.0		Left -	Γilt	21.47	21.50	-1.32	1.007	0.005	0.005	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20450 829.0 1RB Front 21.45 21.50 2.68 1.012 0.023 0.023 20450 829.0 1RB Rear 21.45 21.50 -0.09 1.012 0.025 0.025 20450 829.0 1RB Right 21.45 21.50 -1.47 1.012 0.022 0.022 20450 829.0 50%RB Front 21.45 21.50 1.17 1.007 0.034 0.034 20450 829.0 50%RB Rear 21.47 21.50 1.01 1.007 0.021 0.021 20450 829.0 50%RB Bottom 21.47 21.50 1.01 1.007 0.024 0.024 Conducted Power (MBm) Maximum Allowed Power (dBm) Scaling Scaling Reported Reported Results Results (W/kg) Fest Conducted Power (dBm) Numbers - Head Maximum</sim1>	20450) 829.0) 50%RB	Right C	heek	21.47	21.50	1.31	1.007	0.003	0.003	
20450 829.0 1RB Front 21.45 21.50 2.85 1.012 0.023 0.023 20450 829.0 1RB Rear 21.45 21.50 -0.09 1.012 0.023 0.023 20450 829.0 1RB Right 21.45 21.50 -1.47 1.012 0.025 0.022 20450 829.0 50%RB Front 21.45 21.50 1.17 1.007 0.034 0.034 20450 829.0 50%RB Rear 21.47 21.50 1.11 1.007 0.021 0.021 20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.024 0.024 20450 829.0 50%RB Bottom 21.47 21.50 0.00 1.007 0.024 0.024 20450 829.0 50%RB Right 21.47 21.50 0.80 1.007 0.024 0.024 20450 829.0 <t< td=""><td>20450</td><td>) 829.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.002</td><td></td></t<>	20450) 829.0									0.002	
20450 829.0 1RB Rear 21.45 21.50 -0.09 1.012 0.053 0.054 Plot 10 20450 829.0 1RB Right 21.45 21.50 -1.47 1.012 0.025 0.025 20450 829.0 10RB Bottom 21.45 21.50 1.47 1.012 0.022 0.022 20450 829.0 50%RB Front 21.47 21.50 1.17 1.007 0.012 0.012 20450 829.0 50%RB Rear 21.47 21.50 2.11 1.007 0.021 0.024 20450 829.0 50%RB Bottom 21.47 21.50 0.80 1.007 0.024 0.024 SAR Values [LTE Band 41] Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Power (dBm) Scaling Factor Measured Reported Reported Results 41490 2680.0 1RB Left Cheek 22.88 <td< td=""><td></td><td></td><td>meas</td><td>ured / report</td><td>ed SAF</td><td>R numbers</td><td>- Body (hotspo</td><td>t open, dis</td><td>stance 10m</td><td>nm) <sim1></sim1></td><td></td><td></td></td<>			meas	ured / report	ed SAF	R numbers	- Body (hotspo	t open, dis	stance 10m	nm) <sim1></sim1>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Fro	ont			2.85	1.012		0.023	
20450 829.0 1RB Bottom 21.45 21.50 1.21 1.012 0.022 0.022 20450 829.0 50%RB Front 21.47 21.50 1.17 1.007 0.034 0.034 20450 829.0 50%RB Rear 21.47 21.50 1.01 1.007 0.021 0.021 20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.024 0.024 20450 829.0 50%RB Bottom 21.47 21.50 1.01 1.007 0.024 0.024 SAR Values [LTE Band 41] Ch. Freq. Channel Test Power Power Boitom Scaling	20450) 829.0) 1RB	Re	ar	21.45		-0.09	1.012	0.053	0.054	Plot 10
20450 829.0 50%RB Front 21.47 21.50 1.17 1.007 0.034 0.034 20450 829.0 50%RB Rear 21.47 21.50 2.11 1.007 0.012 0.012 20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.021 0.021 20450 829.0 50%RB Bottom 21.47 21.50 0.80 1.007 0.024 0.024 SAR Values [LTE Band 41] <i>Test Conducted Power Power Power Scaling Scaling Reported Results</i> 41490 2680.0 1RB Left Cheek 22.88 23.00 0.181 1.028 0.006 0.006 1004 41490 2680.0 1RB Right Cheek 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 21.79 22.00 0.11	20450) 829.0		Rig	ht	21.45		-1.47		0.025		
20450 829.0 50%RB Rear 21.47 21.50 2.11 1.007 0.012 0.012 20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.021 0.021 20450 829.0 50%RB Bottom 21.47 21.50 0.80 1.007 0.024 0.024 SAR Values [LTE Band 41] Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Maximum Allowed Power (dBm) Scaling Power (dBm) Scaling Factor SAR1-g results(W/kg) Graph Results 41490 2680.0 1RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plott 11 41490 2680.0 1RB Right Cheek 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.004 0.004 41490 2680.0 50%RB	20450) 829.0) 1RB	Bott	om	21.45	21.50	1.21	1.012	0.022	0.022	
20450 829.0 50%RB Right 21.47 21.50 1.01 1.007 0.021 0.021 20450 829.0 50%RB Bottom 21.47 21.50 0.80 1.007 0.024 0.024 SAR Values [LTE Band 41] Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Maximum Allowed Power (dBm) Power C(%) Scaling Factor SAR1-g results(W/kg) Graph Results 41490 2680.0 1RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plott 11 41490 2680.0 1RB Left Tilt 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Cheek 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB <td< td=""><td>20450</td><td>) 829.0</td><td>) 50%RE</td><td>B Fro</td><td>ont</td><td>21.47</td><td>21.50</td><td>1.17</td><td>1.007</td><td>0.034</td><td>0.034</td><td></td></td<>	20450) 829.0) 50%RE	B Fro	ont	21.47	21.50	1.17	1.007	0.034	0.034	
20450 829.0 50%RB Bottom 21.47 21.50 0.80 1.007 0.024 0.024 SAR Values [LTE Band 41] Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Maximum Allowed Power (dBm) Power Point (%) Scaling Factor SAR1-g results(W/kg) Graph Results 41490 2680.0 1 RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plot 11 41490 2680.0 1 RB Left Tilt 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1 RB Right Cheek 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1 RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Tilt 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB	20450) 829.0) 50%RE	B Re			21.50	2.11	1.007	0.012	0.012	
SAR Values [LTE Band 41] Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Maximum Allowed Power (dBm) Power Drift (%) Scaling Factor SAR1-g results(W/kg) Graph Reported 41490 2680.0 1 RB Left Tilt 22.88 23.00 1.81 1.028 0.006 0.006 Plot 11 41490 2680.0 1 RB Left Tilt 22.88 23.00 0.14 1.028 0.005 0.005 41490 2680.0 1 RB Right Cheek 22.88 23.00 0.14 1.028 0.006 0.006 41490 2680.0 1 RB Right Cheek 22.88 23.00 0.11 1.028 0.004 0.004 41490 2680.0 50% RB Left Tilt 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50% RB Right Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0	20450) 829.0) 50%RE	B Rig			21.50	1.01	1.007	0.021	0.021	
Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Maximum Allowed Power (dBm) Power Power (dBm) Scaling Power (dBm) Scaling Factor Scaling Measured Reported Graph Results 41490 2680.0 1RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plott 11 41490 2680.0 1RB Left Tilt 22.88 23.00 0.14 1.028 0.005 0.005 41490 2680.0 1RB Right Cheek 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.11 1.028 0.004 0.004 41490 2680.0 50% RB Left Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50% RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 41490 2680.0 50% RB	20450) 829.0) 50%RE	B Bott	om	21.47	21.50	0.80	1.007	0.024	0.024	
Ch. Freq. (MHz) Channel Type (10M) Test Position Conducted Power (dBm) Maximum Allowed Power (dBm) Power Power (dBm) Scaling Power (dBm) Scaling Factor Scaling Measured Reported Graph Results 41490 2680.0 1RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plott 11 41490 2680.0 1RB Left Tilt 22.88 23.00 0.14 1.028 0.005 0.005 41490 2680.0 1RB Right Cheek 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.11 1.028 0.004 0.004 41490 2680.0 50% RB Left Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50% RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 41490 2680.0 50% RB								od 411				
Ch. Freq. (MHz) Chrainer Type (10M) Test Position Conducted Power (dBm) Allowed Power (dBm) Power (dBm) Dift (%) Scaling Factor Measured Reported Graph Results 41490 2680.0 1RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plot 11 41490 2680.0 1RB Left Tilt 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1RB Right Cheek 22.88 23.00 0.14 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 -1.10 1.050 0.001 0.001 41490 2680.0 50%RB Right Tilt <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>SAR1-a res</td><td>sults(W/ka)</td><td></td></t<>							-	-		SAR1-a res	sults(W/ka)	
41490 2680.0 1RB Left Cheek 22.88 23.00 1.81 1.028 0.006 0.006 Plot 11 41490 2680.0 1RB Left Tilt 22.88 23.00 0.14 1.028 0.005 0.005 41490 2680.0 1RB Right Cheek 22.88 23.00 0.10 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Cheek 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB Left Tilt 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.004 0.004	Ch.		Туре		Po	ower	Allowed Power	Drift				Graph Results
41490 2680.0 1RB Left Tilt 22.88 23.00 0.14 1.028 0.005 0.005 41490 2680.0 1RB Right Cheek 22.88 23.00 0.10 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Cheek 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB Left Tilt 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Rear 22.88 23.00</sim1>		I		m	easure	d / reported	SAR númbers	s - Head<	SIM1>			
41490 2680.0 1RB Right Cheek 22.88 23.00 0.10 1.028 0.004 0.004 41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Cheek 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB Left Tilt 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Rear 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0<</sim1>	41490	2680.	0 1RB	Left Ch	neek	22.88	23.00	1.81	1.028	0.006	0.006	Plot 11
41490 2680.0 1RB Right Tilt 22.88 23.00 0.12 1.028 0.003 0.003 41490 2680.0 50%RB Left Cheek 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB Left Tilt 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 1.31 1.050 0.003 0.003 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 14490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB</sim1>	41490	2680.	0 1RB	Left	Гilt	22 88	22.00					
41490 2680.0 50%RB Left Cheek 21.79 22.00 0.11 1.050 0.004 0.004 41490 2680.0 50%RB Left Tilt 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 -4.11 1.050 0.003 0.003 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Bottom 22.88 23.00</sim1>	41490	2680.	0 1RB	Pight C		22.00	23.00	0.14	1.028	0.005	0.005	
41490 2680.0 50%RB Left Tilt 21.79 22.00 -1.10 1.050 0.002 0.002 41490 2680.0 50%RB Right Cheek 21.79 22.00 1.31 1.050 0.003 0.003 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Rear 22.88 23.00 -1.14 1.028 0.004 0.004 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.004 0.004 41490 2680.0 50%RB Front 21.79 22.00 1.11<!--</td--><td></td><td></td><td></td><td>Right C</td><td>heek</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sim1>				Right C	heek							
41490 2680.0 50%RB Right Cheek 21.79 22.00 1.31 1.050 0.003 0.003 41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Rear 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Rear 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Bottom 22.88 23.00 1.23 1.028 0.004 0.004 41490 2680.0 50%RB Front 21.79 22.00 1.11</sim1>	41490	2680.				22.88	23.00	0.10	1.028	0.004	0.004	
41490 2680.0 50%RB Right Tilt 21.79 22.00 -4.11 1.050 0.001 0.001 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Rear 22.88 23.00 0.00 1.028 0.008 0.008 Plot 12 41490 2680.0 1RB Rear 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Bottom 22.88 23.00 1.23 1.028 0.004 0.004 41490 2680.0 50%RB Front 21.79 22.00 1.11 1.050 0.005 0.005 41490 2680.0 50%RB Rear 21.79 22.00</sim1>				Right	Tilt	22.88 22.88	23.00 23.00	0.10 0.12	1.028 1.028	0.004 0.003	0.004 0.003	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 41490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Rear 22.88 23.00 0.00 1.028 0.008 0.008 Plot 12 41490 2680.0 1RB Rear 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Bottom 22.88 23.00 1.23 1.028 0.004 0.004 41490 2680.0 50%RB Front 21.79 22.00 1.11 1.050 0.005 0.005 41490 2680.0 50%RB Rear 21.79 22.00 2.14 1.050 0.002 0.002</sim1>	41490	2680.	0 50%RB	Right Left Ch	Tilt neek	22.88 22.88 21.79	23.00 23.00 22.00	0.10 0.12 0.11 -1.10	1.028 1.028 1.050	0.004 0.003 0.004	0.004 0.003 0.004	
41490 2680.0 1RB Front 22.88 23.00 2.85 1.028 0.004 0.004 41490 2680.0 1RB Rear 22.88 23.00 0.00 1.028 0.008 0.008 Plot 12 41490 2680.0 1RB Right 22.88 23.00 -1.14 1.028 0.005 0.005 41490 2680.0 1RB Bottom 22.88 23.00 -1.14 1.028 0.004 0.004 41490 2680.0 1RB Bottom 22.88 23.00 1.23 1.028 0.004 0.004 41490 2680.0 50%RB Front 21.79 22.00 1.11 1.050 0.005 0.005 41490 2680.0 50%RB Rear 21.79 22.00 2.14 1.050 0.002 0.002	41490 41490) 2680.) 2680.	0 50%RB 0 50%RB	Right Left Ch Left	Tilt neek Filt	22.88 22.88 21.79 21.79	23.00 23.00 22.00 22.00	0.10 0.12 0.11 -1.10	1.028 1.028 1.050 1.050	0.004 0.003 0.004 0.002	0.004 0.003 0.004 0.002	
414902680.01RBRear22.8823.000.001.0280.0080.008Plot 12414902680.01RBRight22.8823.00-1.141.0280.0050.005414902680.01RBBottom22.8823.001.231.0280.0040.004414902680.050%RBFront21.7922.001.111.0500.0050.005414902680.050%RBRear21.7922.002.141.0500.0020.002	41490 41490 41490	 2680. 2680. 2680. 2680. 	0 50%RB 0 50%RB 0 50%RB 0 50%RB	Right Left Cr Left Right C Right C	Tilt neek Filt heek Tilt	22.88 22.88 21.79 21.79 21.79 21.79 21.79	23.00 23.00 22.00 22.00 22.00 22.00	0.10 0.12 0.11 -1.10 1.31 -4.11	1.028 1.028 1.050 1.050 1.050 1.050	0.004 0.003 0.004 0.002 0.003 0.001	0.004 0.003 0.004 0.002 0.003	
414902680.01RBRight22.8823.00-1.141.0280.0050.005414902680.01RBBottom22.8823.001.231.0280.0040.004414902680.050%RBFront21.7922.001.111.0500.0050.005414902680.050%RBRear21.7922.002.141.0500.0020.002	41490 41490 41490 41490	2680. 2680. 2680. 2680. 2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB <i>meas</i>	Right Left Cr Left Right C Right C	Tilt neek Filt heek Tilt	22.88 22.88 21.79 21.79 21.79 21.79 21.79 21.79	23.00 23.00 22.00 22.00 22.00 22.00	0.10 0.12 0.11 -1.10 1.31 -4.11	1.028 1.028 1.050 1.050 1.050 1.050	0.004 0.003 0.004 0.002 0.003 0.001	0.004 0.003 0.004 0.002 0.003 0.001	
414902680.01RBBottom22.8823.001.231.0280.0040.004414902680.050%RBFront21.7922.001.111.0500.0050.005414902680.050%RBRear21.7922.002.141.0500.0020.002	41490 41490 41490 41490 41490 41490	 2680. 2680. 2680. 2680. 2680. 2680. 	0 50%RB 0 50%RB 0 50%RB 0 50%RB <i>meas</i> 0 1RB	Right Left Cr Left C Right C Right C Right ured / report Fro	Tilt neek Filt heek Tilt <i>ed SAF</i> ont	22.88 22.88 21.79 21.79 21.79 21.79 21.79 21.79 21.8 22.88	23.00 23.00 22.00 22.00 22.00 - Body (hotspo 23.00	0.10 0.12 0.11 -1.10 1.31 -4.11 t open, dis 2.85	1.028 1.028 1.050 1.050 1.050 1.050 stance 10n 1.028	0.004 0.003 0.004 0.002 0.003 0.001 mm) <sim1> 0.004</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004	
41490 2680.0 50%RB Front 21.79 22.00 1.11 1.050 0.005 0.005 41490 2680.0 50%RB Rear 21.79 22.00 2.14 1.050 0.002 0.002	41490 41490 41490 41490 41490 41490 41490	2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB <i>meas</i> 0 1RB 0 1RB	Right Left Cr Right C Right C Right ured / report Frc Re	Tilt neek Filt heek Tilt red SAF ont ar	22.88 22.88 21.79 21.79 21.79 21.79 21.79 21.79 21.88 22.88 22.88	23.00 23.00 22.00 22.00 22.00 22.00 - Body (hotspo 23.00 23.00	0.10 0.12 0.11 -1.10 1.31 -4.11 t open, dis 2.85 0.00	1.028 1.028 1.050 1.050 1.050 1.050 5tance 10m 1.028 1.028	0.004 0.003 0.004 0.002 0.003 0.001 m) <sim1> 0.004 0.008</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004 0.008	Plot 12
41490 2680.0 50%RB Rear 21.79 22.00 2.14 1.050 0.002 0.002	41490 41490 41490 41490 41490 41490 41490	2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB <i>meas</i> 0 1RB 0 1RB 0 1RB	Right Left Cr Right C Right C Right ured / report Fro Re Rig	Tilt neek Filt heek Tilt red SAF ont ar ht	22.88 22.88 21.79 21.79 21.79 21.79 21.79 21.79 22.88 22.88 22.88 22.88	23.00 23.00 22.00 22.00 22.00 22.00 - Body (hotspo 23.00 23.00 23.00	0.10 0.12 0.11 -1.10 1.31 -4.11 <i>t open, dis</i> 2.85 0.00 -1.14	1.028 1.028 1.050 1.050 1.050 1.050 5tance 10n 1.028 1.028 1.028	0.004 0.003 0.004 0.002 0.003 0.001 m) <sim1> 0.004 0.008 0.005</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004 0.004 0.008 0.005	Plot 12
	41490 41490 41490 41490 41490 41490 41490 41490	2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB <i>meas</i> 0 1RB 0 1RB 0 1RB 0 1RB	Right Left Cr Right C Right C Right ured / report Fro Re Rig Bott	Tilt neek Filt heek Tilt red SAF ont ar ht	22.88 22.88 21.79 21.79 21.79 21.79 21.79 7 numbers 22.88 22.88 22.88 22.88 22.88	23.00 23.00 22.00 22.00 22.00 22.00 - Body (hotspo 23.00 23.00 23.00 23.00 23.00	0.10 0.12 0.11 -1.10 1.31 -4.11 <i>t open, dis</i> 2.85 0.00 -1.14 1.23	1.028 1.028 1.050 1.050 1.050 1.050 1.050 1.050 1.028 1.028 1.028 1.028 1.028	0.004 0.003 0.004 0.002 0.003 0.001 m) <sim1> 0.004 0.008 0.005 0.004</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004 0.008 0.005 0.004	Plot 12
141400 2680 0 50% PR Dight 2170 2200 420 4050 0.002 0.002	41490 41490 41490 41490 41490 41490 41490 41490 41490	2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB <i>meas</i> 0 1RB 0 1RB 0 1RB 0 1RB 0 1RB	Right Left Cr Right C Right C Right C Right Fro Right Right Right Right Right Right Right Right Right Right Right	Tilt heek Filt heek Tilt ed SAF nt ar ht om	22.88 22.88 21.79 21.79 21.79 21.79 21.79 21.79 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88	23.00 23.00 22.00 22.00 22.00 22.00 - Body (hotspo 23.00 23.00 23.00 23.00 23.00 23.00	0.10 0.12 0.11 -1.10 1.31 -4.11 t open, dis 2.85 0.00 -1.14 1.23 1.11	1.028 1.050 1.050 1.050 1.050 1.050 1.050 1.028 1.028 1.028 1.028 1.028 1.028 1.028	0.004 0.003 0.004 0.002 0.003 0.001 mm) <sim1> 0.004 0.004 0.005 0.004 0.005</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004 0.005 0.004 0.005	Plot 12
	41490 41490 41490 41490 41490 41490 41490 41490 41490 41490	2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB 0 50%RB 0 1RB 0 1RB 0 1RB 0 1RB 0 1RB 0 50%RE 0 50%RE	Right Left Cr Right C Right C Right Fro Right Fro Bott Bott Bott Right R	Tilt neek Filt heek Tilt ed SAF ont ar ht om om nt ar	22.88 22.88 21.79 21.79 21.79 21.79 21.79 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88	23.00 23.00 22.00 22.00 22.00 22.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 22.00	0.10 0.12 0.11 -1.10 1.31 -4.11 t open, dis 2.85 0.00 -1.14 1.23 1.11 2.14	1.028 1.028 1.050 1.050 1.050 1.050 1.050 1.028 1.028 1.028 1.028 1.028 1.050 1.050	0.004 0.003 0.004 0.002 0.003 0.001 m) <sim1> 0.004 0.004 0.005 0.004 0.005 0.002</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004 0.005 0.004 0.005 0.002	Plot 12
41490 2680.0 50%RB Bottom 21.79 22.00 0.22 1.050 0.001 0.001	41490 41490 41490 41490 41490 41490 41490 41490 41490 41490 41490	2680. 2680.	0 50%RB 0 50%RB 0 50%RB 0 50%RB 0 50%RB 0 1RB 0 1RB 0 1RB 0 1RB 0 1RB 0 50%RE 0 50%RE 0 50%RE	Right Left Cr Right C Right C Right Fro Re Re Bott Bott Bott B Rig B Rig B Rig B Rig	Tilt neek Filt heek Tilt <i>ed SAF</i> nt ar ht om om nt ar ht	22.88 22.88 21.79 21.79 21.79 21.79 21.79 21.79 22.88 22.88 22.88 22.88 22.88 21.79 21.79 21.79	23.00 23.00 22.00 22.00 22.00 22.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 22.00 22.00	0.10 0.12 0.11 -1.10 1.31 -4.11 t open, dis 2.85 0.00 -1.14 1.23 1.11 2.14 4.20	1.028 1.028 1.050 1.050 1.050 1.050 1.028 1.028 1.028 1.028 1.028 1.050 1.050 1.050	0.004 0.003 0.004 0.002 0.003 0.001 m) <sim1> 0.004 0.005 0.005 0.004 0.005 0.002 0.003</sim1>	0.004 0.003 0.004 0.002 0.003 0.001 0.004 0.004 0.005 0.004 0.005 0.002 0.002 0.003	Plot 12

Remark:

1. The value with black color is the maximum SAR Value of each test band. 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [WIFI2.4G]										
Ch.	Freq. (MHz)	Service	Test Position	Condi Pov (dB	ver	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
	measured / reported SAR numbers – Head										
1	2412.0	802.11b	Left Che	ek	11.04	11.50	-3.53	1.112	0.040	0.044	Plot 13
1	2412.0	802.11b	Left Ti	lt	11.04	11.50	1.01	1.112	0.023	0.026	
1	2412.0	802.11b	Right Ch	eek	11.04	11.50	0.24	1.112	0.030	0.033	
1	1 2412.0 802.11b Right Tilt 11.04 11.50 -0.31 1.112 0.014 0.016										
			measured / rep	orted S	AR numb	ers - Body (h	otspot oper	n, distance	0mm)		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 121

<u>SHE</u>	NZHEN LCS	COMPLIANCE T	ESTING LABOR	FCC II	D: 2ARTX-T	F81	Report N	lo.: LCS2008	26042AEB	
1	2412.0	802.11b	Front	11.04	11.50	0.25	1.112	0.069	0.077	Plot 14
1	2412.0	802.11b	Rear	11.04	11.50	1.21	1.112	0.052	0.058	
1	2412.0	802.11b	Right	11.04	11.50	0.47	1.112	0.020	0.022	
1	2412.0	802.11b	Тор	11.04	11.50	0.41	1.112	0.014	0.016	

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

4.4.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$(SAR_1 + SAR_2)^{1.5} < 0.04$$

(peak location separation,mm)

	Estimated stand alone SAR									
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)					
Bluetooth*	2450	Head	4.00	5	0.105					
Bluetooth*	2450	Hotspot	4.00	5	0.105					
Bluetooth*	2450	Body-worn	4.00	5	0.105					

Remark:

- 1. Bluetooth*- Including Lower power Bluetooth
- 2. Maximum average power including tune-up tolerance;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.4 Simultaneous TX SAR Considerations

4.5.1 Introduction

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna. The device has 3 antennas, WWAN main antenna and WWAN diversity antenna(RX only), WiFi-BT antenna supports 2.4GWi-Fi and BT. The 2 TX antennas can always transmit simultaneously. The work mode combination is showed as below table.

Application Simultaneous Transmission information:

Combination No.	Mode
1	WWAN+WIFI
2	WWAN+BT

4.5.2 Evaluation of Simultaneous SAR *Head Exposure Conditions*

Simultaneous transmission SAR for WiFi and GSM

Test GSM850 GSM1900 WiFi2.4G MAX. SAR1- Peak Simut

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 121

SHENZHEN	LCS COMPLIAN	CE TESTING LA	ABORATORY L	TD FO	FCC ID: 2ARTX-T81			Report No.: LCS200826042AE	
	Position	Reported SAR1-g (W/kg)	Reported SAR1-g (W/kg)	Reported SAR1-g (W/kg)	ΣSAR1-g (W/kg)	g Limit (W/kg)	location separation ratio	Meas. Required	
	Left Cheek	0.002	0.069	0.044	0.113	1.6	no	no	
	Left Tilt	0.001	0.033	0.026	0.059	1.6	no	no	
	Right Cheek	0.001	0.021	0.033	0.054	1.6	no	no	
	Right Tilt	0.001	0.014	0.016	0.030	1.6	no	no	

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.027	0.105	0.044	0.149	1.6	no	no
Left Tilt	0.014	0.082	0.026	0.108	1.6	no	no
Right Cheek	0.016	0.088	0.033	0.121	1.6	no	no
Right Tilt	0.009	0.069	0.016	0.085	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Reported SAR1 g(M//kg)		Те	st Position	
Reported SAR1-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt
LTE Band5	0.029	0.015	0.008	0.005
LTE Band41	0.006	0.005	0.004	0.003
WiFi2.4G	0.044	0.026	0.033	0.016
MAX. ΣSAR1-g (W/kg)	0.073	0.041	0.041	0.021
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no
Simut Meas. Required	no	no	no	no

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.002	0.069	0.105	0.174	1.6	no	no
LeftTilt	0.001	0.033	0.105	0.138	1.6	no	no
Right Cheek	0.001	0.021	0.105	0.126	1.6	no	no
Right Tilt	0.001	0.014	0.105	0.119	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.027	0.105	0.105	0.210	1.6	no	no
LeftTilt	0.014	0.082	0.105	0.187	1.6	no	no
RightChek	0.016	0.088	0.105	0.193	1.6	no	no
Right Tilt	0.009	0.069	0.105	0.174	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Penerted SAR1 g(M//kg)		Test Position						
Reported SAR1-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt				
LTE Band5	0.029	0.015	0.008	0.005				
LTE Band41	0.006	0.005	0.004	0.003				
BT Estimated SAR1-g (W/kg)	0.105	0.105	0.105	0.105				
MAX. ΣSAR1-g (W/kg)	0.134	0.120	0.113	0.110				
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6				
Peak location separation ratio	no	no	no	no				
Simut Meas. Required	no	no	no	no				

Body Hotspot Exposure Conditions

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: 2ARTX-T81 Report No.: LCS200826042AEB

	Simultaneous transmission SAR for WiFi and GSM								
Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required		
Front	0.002	0.056	0.077	0.133	1.6	no	no		
Rear	0.003	0.090	0.058	0.148	1.6	no	no		
Left	/	/	0.022	0.022	1.6	no	no		
Right	0.001	0.011	/	0.011	1.6	no	no		
Bottom	0.001	0.021	/	0.021	1.6	no	no		
Тор	/	1	0.016	0.016	1.6	no	no		

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.022	0.273	0.077	0.350	1.6	no	no
Rear	0.046	0.140	0.058	0.198	1.6	no	no
Left	/	/	0.022	0.022	1.6	no	no
Right	0.034	0.132	/	0.132	1.6	no	no
Bottom	0.021	0.089	/	0.089	1.6	no	no
Тор	/	1	0.016	0.016	1.6	no	no

SAR for WiFi and LTE

Reported SAR1-g(W/kg)		Test Position							
Reported SAR I-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор			
LTE Band5	0.023	0.054	1	0.025	0.022	/			
LTE Band41	0.004	0.008	/	0.005	0.004				
WiFi2.4G	0.077	0.058	0.022	1	1	0.016			
MAX. ΣSAR1-g (W/kg)	0.100	0.112	0.022	0.025	0.022	0.016			
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6			
Peak location separation ratio	no	no	no	no	no	no			
Simut Meas. Required	no	no	no	no	no	no			

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.002	0.056	0.105	0.161	1.6	no	no
Rear	0.003	0.090	0.105	0.195	1.6	no	no
Left	/	1	0.105	0.105	1.6	no	no
Right	0.001	0.011	/	0.011	1.6	no	no
Bottom	0.001	0.021	/	0.021	1.6	no	no
Тор	/	1	0.105	0.105	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.022	0.273	0.105	0.378	1.6	no	no
Rear	0.046	0.140	0.105	0.245	1.6	no	no
Left	/	1	0.105	0.105	1.6	no	no
Right	0.034	0.132	/	0.132	1.6	no	no
Bottom	0.021	0.089	/	0.089	1.6	no	no

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD				Y LTD	FCC ID: 2ART.	X-T81	Report No	Report No.: LCS200826042AEB		
	Тор	/	/	0.105	0.105	1.6	no	no		

Peperted SAR1 g(M//kg)	Test Position						
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор	
LTE Band5	0.023	0.054	1	0.025	0.022	1	
LTE Band41	0.004	0.008	/	0.005	0.004		
BT Estimated SAR1-g (W/kg)	0.105	0.105	0.105	1	1	0.105	
MAX. ΣSAR1-g (W/kg)	0.128	0.159	0.105	0.025	0.022	0.105	
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6	
Peak location separation ratio	no	no	no	no	no	no	
Simut Meas. Required	no	no	no	no	no	no	

Simultaneous transmission SAR for BT and LTE

Note:

1. The WiFi and BT share same antenna, so cannot transmit at same time.

2. The value with **block** color is the maximum values of standalone

3. The value with blue color is the maximum values of ΣSAR_{1-q}

4.5 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Frequency		RF		Repeated	Highest	First Repeated	
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR _{1-g} (Wkg)	Measued SAR _{1-g} (W/kg)	Largest to Smallest SAR Ratio
	GSM850	Standalone	Body-Back	no	0.003	0.003	n/a
835	WCDMA Band V	Standalone	Body-Back	no	0.046	0.042	n/a
	LTE Band 5	Standalone	Body-Back	no	0.054	0.053	n/a
1900	GSM1900	Standalone	Body-Back	no	0.090	0.087	n/a
1900	WCDMA Band II	Standalone	Body-Front	no	0.273	0.248	n/a
2450	2.4GWLAN	Standalone	Body-Front	no	0.077	0.069	n/a
2600	LTE Band 41	Standalone	Body-Back	no	0.008	0.008	n/a

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

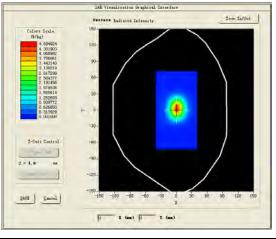
4.6 General description of test procedures

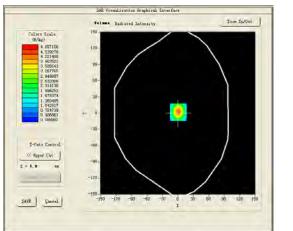
- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.

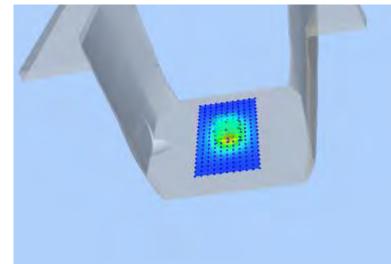
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 121

<u>SHENZHEN I</u>	LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: 2ARTX-T81	Report No.: LCS200826042AEB
3.	Tests in body position were performed in that	configuration, which gener	rates the highest time based
	averaged output power (see conducted powe		5
4.	Tests in head position with GSM were perform	ned in voice mode with 1 ti	meslot unless
	GPRS/EGPRS/DTM function allows parallel		
5.	UMTS was tested in RMC mode with 12.2 kb		
6.	WiFi was tested in 802.11b/g/n mode with 1 M		
	testing for 802.11g/n is not required since Wh		
7	ratio of OFDM to DSSS specified maximum of		ted SAR is ≤ 1.2 W/kg.
	Required WiFi test channels were selected at		hannala with the same measured
0.	According to FCC KDB pub 248227 D01, Wh maximum output power, the channel closest		
	and when there are multiple test channels wit		
	separation from mid-band frequency; for exar		
	higher frequency (number) channel is selecte		
9.	According to FCC KDB pub 941225 D06 this		th 10 mm distance to the phantom
	for operation in WiFi hot spot mode.		
10.	. Per FCC KDB pub 941225 D06 the edges with	h antennas within 2.5 cm a	are required to be evaluated for
	SAR to cover WiFi hot spot function.		
11.	. According to IEEE 1528 the SAR test shall be	e performed at middle chan	nnel. Testing of top and bottom
10	channel is optional.		the energy in a mode of a
12.	 According to KDB 447498 D01 testing of othe frequency band is not required when the report 		
	power channel is:	ited 1-g of 10-g SAR for th	le mid-band of highest output
	• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g resp	ectively when the transmi	ssion band is < 100 MHz
	• \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g resp		
	and 200 MHz		
	● ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g resp	ectively, when the transmi	ssion band is ≥ 200 MHz
13.	. IEEE 1528-2003 require the middle channel t		
	that are designed to operate in technologies	with tight tolerances for ma	ximum output power variations
	across channels in the band.		
14.	. Per KDB648474 D04 require when the report		ccessory, measured without a
4 5	headset connected to the handset, is < 1.2 W		
15.	 Per KDB648474 D04 require when the separ larger than or equal to that tested for hotspot 		
	voice and data, such as UMTS, LTE and Wi-I		
	SAR data may be used to support body-worn		
	(surface)		
16.	. 10-g extremity SAR is required only for the su	irfaces and edges with hot	spot mode 1-g SAR > 1.2 W/kg.
	. Per KDB648474 D04 require for phablet SAR		
	diagonal dimension > 15.0 cm or an overall d		
	10-g extremity SAR is required only for the su	irfaces and edges with hots	spot mode 1-g reported SAR >
	1.2 W/kg.		
18.	. 10-g extremity SAR is required only for the su	irfaces and edges with hots	spot mode 1-g SAR > 1.2 W/kg.
4.7 Meas	urement Uncertainty (450MHz-6GHz)		
Not require	d as SAR measurement uncertainty analysis is	required in SAR reports or	nly when the highest measured
	equency band is \geq 1.5 W/kg for 1-g SAR accori		
		J	
1			

4.8 System Check Results

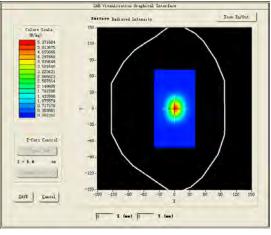

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: September 15, 2020

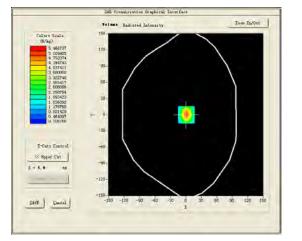

Medium(liquid type)Frequency (MHz)Relative permittivity (real part)Conductivity (S/m)Input powerCrest FactorConversion FactorVariation (%)SAR 10g (W/Kg)SAR 1g (W/Kg)	HSL_850 835.0000 42.82 0.92 100mW 1.0 1.55 2.100000 0.622422 0.901144
SURFACE SAR	VOLUME SAR
240 Vocalization draphred Taterfore Calver Sail 0 Au 0 Au <tr< td=""><td>Sak Visaskisskim örgåleral Taterfare Tolmer Sala 0 /b2 10000 1 00000 00000 0 000000 00000 0 000000 00000 0 000000 00000 0 000000 000000 0 0000000 000000 0 000000000000000 0 0000000000000000000000000000000</td></tr<>	Sak Visaskisskim örgåleral Taterfare Tolmer Sala 0 /b2 10000 1 00000 00000 0 000000 00000 0 000000 00000 0 000000 00000 0 000000 000000 0 0000000 000000 0 000000000000000 0 0000000000000000000000000000000

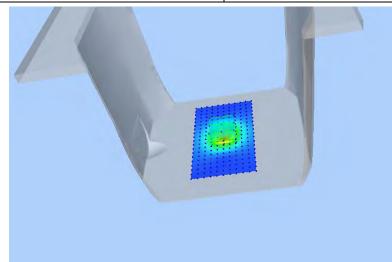

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 121

Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date:September 16, 2020

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	3.901070
SAR 10g (W/Kg)	2.023120
Variation (%)	-1.140000
Conversion Factor	1.86
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.37
Relative permittivity (real part)	38.56
Frequency (MHz)	1900.0000
Medium(liquid type)	HSL_1900

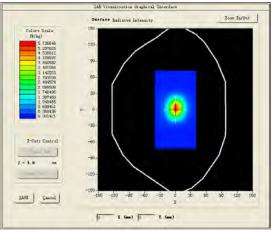


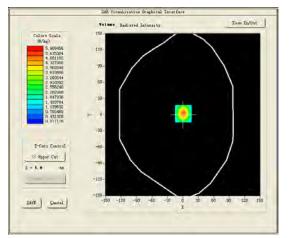


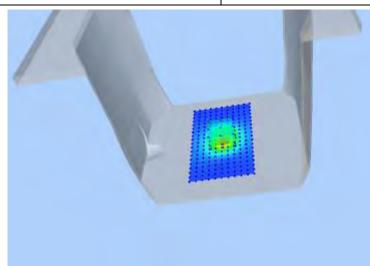

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 121

Test mode:2450MHz(Head) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: September 17, 2020

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	5.412044
SAR 10g (W/Kg)	2.501144
Variation (%)	-0.410000
Conversion Factor	1.91
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.84
Relative permittivity (real part)	39.70
Frequency (MHz)	2450.0000
Medium(liquid type)	HSL_2450






This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 121

Test mode:2600MHz(Head) Product Description:Validation Model:Dipole SID2600 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: September 18, 2020

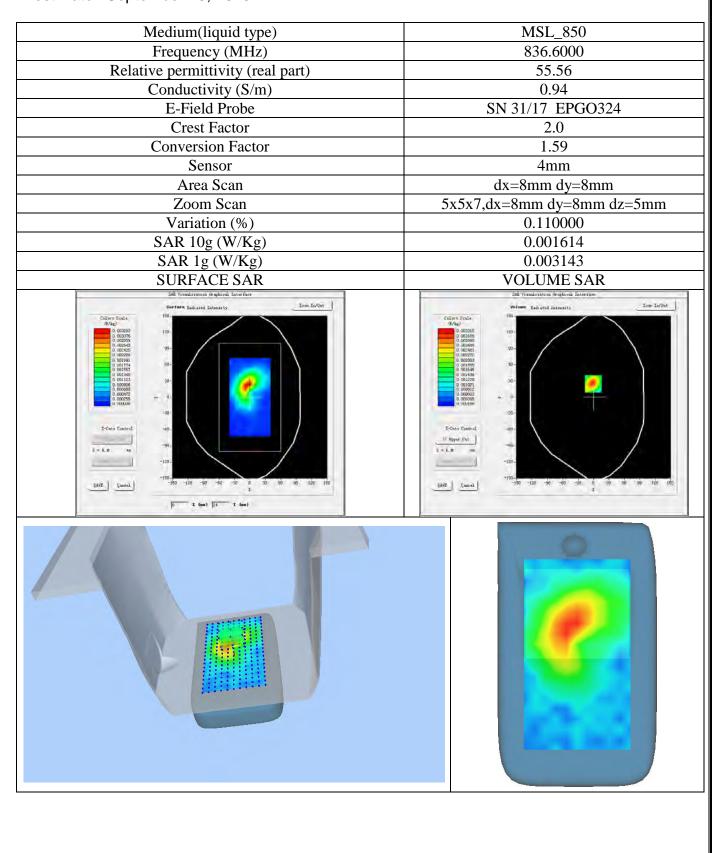
SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	5.632140
SAR 10g (W/Kg)	2.241052
Variation (%)	3.210000
Conversion Factor	1.89
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.92
Relative permittivity (real part)	38.43
Frequency (MHz)	2600.0000
Medium(liquid type)	HSL_2600

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 121

4.9 SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02; **#1**

Test Mode: GSM850MHz,Middle channel (Head Left Cheek) Product Description: Tablet Model: T81 Test Date: September 15, 2020


MSL_850
836.6000
55.56
0.94
SN 31/17 EPGO324
2.0
1.59
4mm
dx=8mm dy=8mm
5x5x7,dx=8mm dy=8mm dz=5mm
-1.580000
0.001034
0.001753
VOLUME SAR
Shi Wandistra Seginal Interface Volume Industri Intensity Zom Infort
Chart Schatt 100 0 000000 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 10000000 100

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 121

|--|

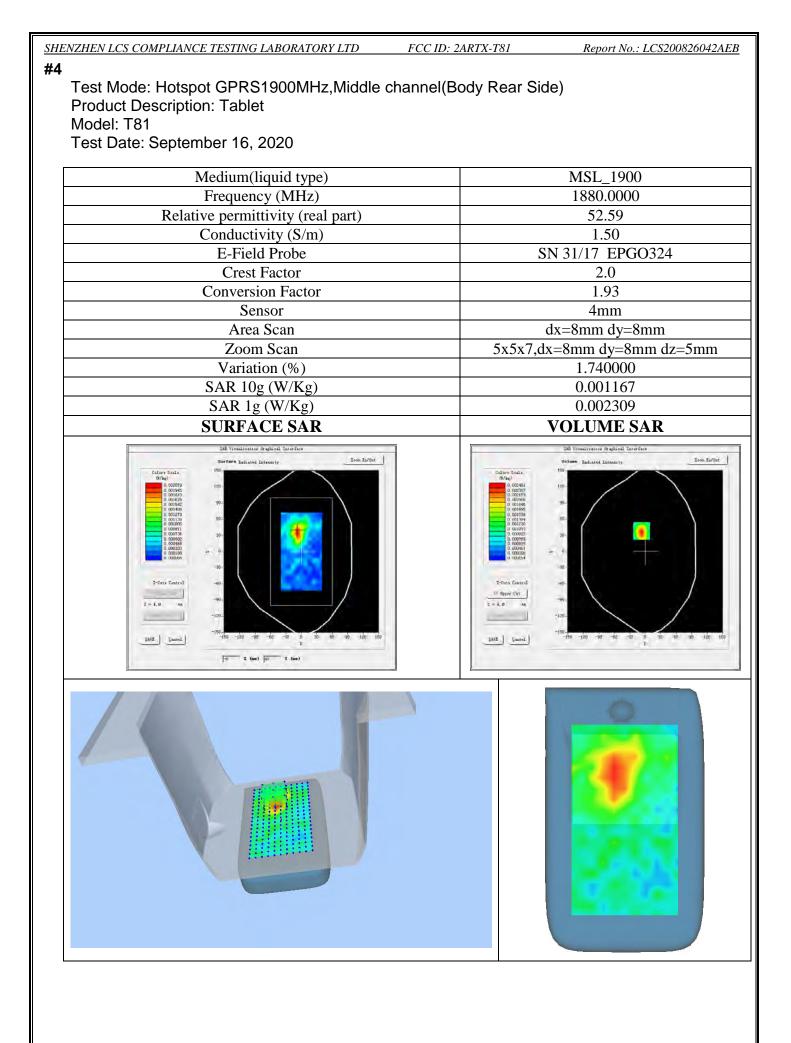
Report No.: LCS200826042AEB

#2 Test Mode: Hotspot GSM850MHz,Middle channel(Body Rear Side) Product Description: Tablet Model: T81 Test Date: September 15, 2020

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD
--

#3


FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

Test Mode: GPRS1900MHz,Middle channel(Head Left Cheek) Product Description: Tablet Model: T81 Test Date: September 16, 2020

Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	52.59
Conductivity (S/m)	1.50
E-Field Probe	SN 31/17 EPGO324
Crest Factor	2.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-4.910000
SAR 10g (W/Kg)	0.033982
SAR 1g (W/Kg)	0.066730
SURFACE SAR	VOLUME SAR
Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distant Jo Zomm Tar/Dot O Column State Column State Instant Distate Zomm Tar/Dot	Sub (reminants as it applied) later fore Colors Sub. Year Telassed Loisans (r Zeen La/Oxi Original 0.0002000 0.000200 0.000200

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 121

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 121

|--|

Report No.: LCS200826042AEB

#5 Test Mode: WCDMA Band V,High channel(Head Left Cheek) Product Description: Tablet Model: T81 Test Date: September 15, 2020

Medium(liquid type)	MSL_850
Frequency (MHz)	846.6000
Relative permittivity (real part)	55.12
Conductivity (S/m)	0.94
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.59
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.870000
SAR 10g (W/Kg)	0.013932
SAR 1g (W/Kg)	0.025482
SURFACE SAR	VOLUME SAR
20th Transference forgitions Statestan	21 Winderstein Staffinglund Interior
Difference Enternance Lannastry Colume Social 0 colorido 0 colorido 0 colorido 1 colorido 1 colorido	Culture Scale Pointeen Test actual Latensaity Zene La/Det 0 (max) 0 (max) 100 100 100 0 (max) 0 (max) 00 0 (max) 100 0 (max) 0 (max) 00 00 00 0 (max) 0 (max) 0 (max) 00 00 0 (max) 0 (max) 0 (max) 0 (max) 00 0 (max) 0 (max) 0 (max) 0 (max) 00 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max) 0 (max)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 121

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC I
--	-------

D: 2ARTX-T81

#6 Test Mode: Hotspot WCDMA Band V,High channel(Body Rear Side) Product Description: Tablet Model: T81 Test Date: September 15, 2020

Medium(liquid type)	MSL_850
Frequency (MHz)	846.6000
Relative permittivity (real part)	55.12
Conductivity (S/m)	0.94
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.59
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.180000
SAR 10g (W/Kg)	0.022028
SAR 1g (W/Kg)	0.041838
SURFACE SAR	VOLUME SAR
Callers SetLa 0 - 644LS 0 - 664LS 0 - 664LS </td <td>$\frac{1}{100}$</td>	$\frac{1}{100}$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 121

Test Mode: WCDMA Band II,High channel(Head Le Product Description: Tablet Model: T81 Test Date: September 16, 2020	eft Cheek)
Medium(liquid type)	MSL_1900
Frequency (MHz)	1907.6000
Relative permittivity (real part)	53.47
Conductivity (S/m)	1.50
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.930000
SAR 10g (W/Kg)	0.047649
SAR 1g (W/Kg)	0.095283
SURFACE SAR	VOLUME SAR
2 0 00000 0 000000 0 0000000 0 0000000 0 000000 0 000000 0 000000 0 000000 0 000000 0 00000000	C (E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C

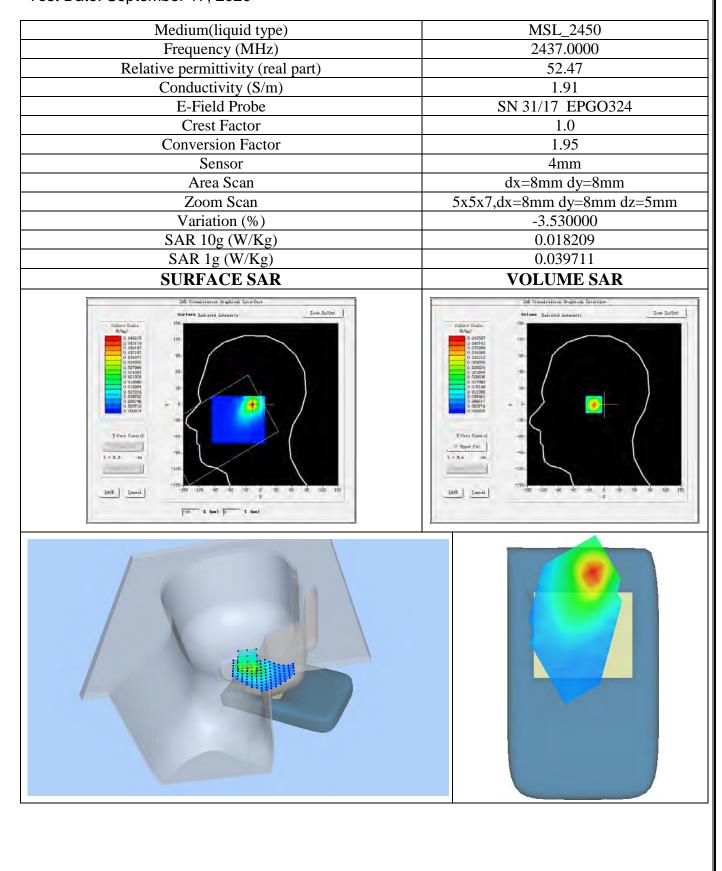
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 121

	SHENZHEN LCS COMPLIANCE	TESTING LABORATORY LTD	FCC ID: 2ARTX-T81
--	-------------------------	------------------------	-------------------

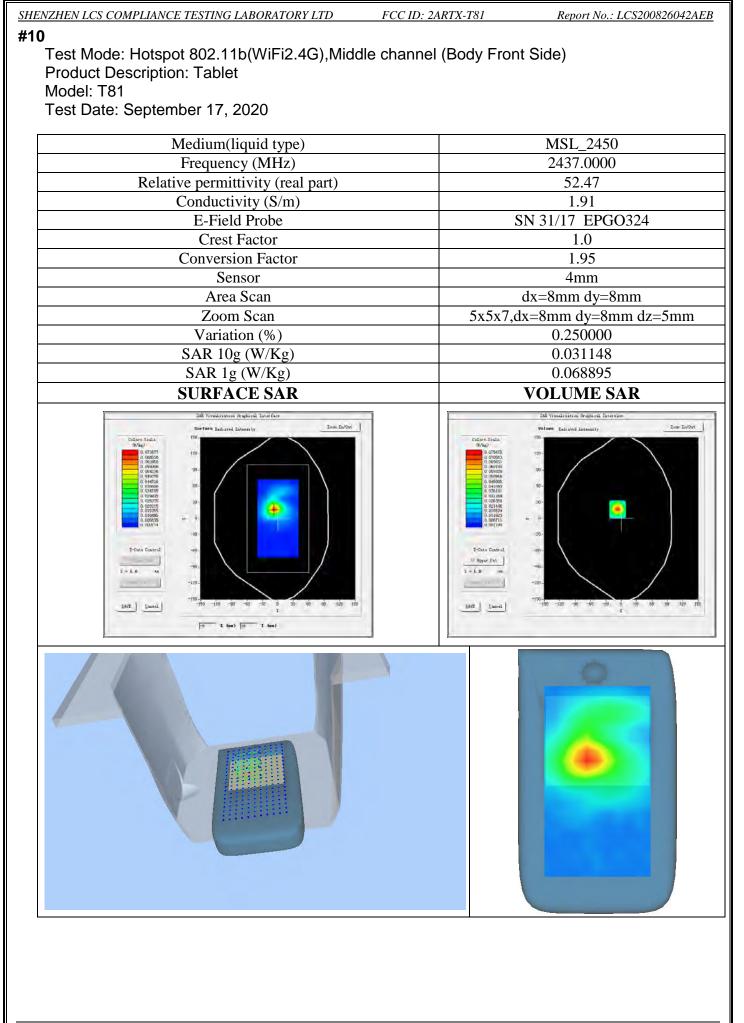
#8 Test Mode: Hotspot WCDMA Band II,High channel(Body Front Side) Product Description: Tablet Model: T81 Test Date: September 16, 2020

Medium(liquid type)	MSL_1900
Frequency (MHz)	1907.6000
Relative permittivity (real part)	53.47
Conductivity (S/m)	1.50
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.110000
SAR 10g (W/Kg)	0.113311
SAR 1g (W/Kg)	0.247812
SURFACE SAR	VOLUME SAR
28/0 (secal) sature in sphere) Taxar 0 - 2006<	State Year Zon La/Ort Original Salars Test area Test area Test area Original Original Test area Test area Test area Test area Original Original Test area Test area Test area Test area Test area Original Original Original Test area Test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 121

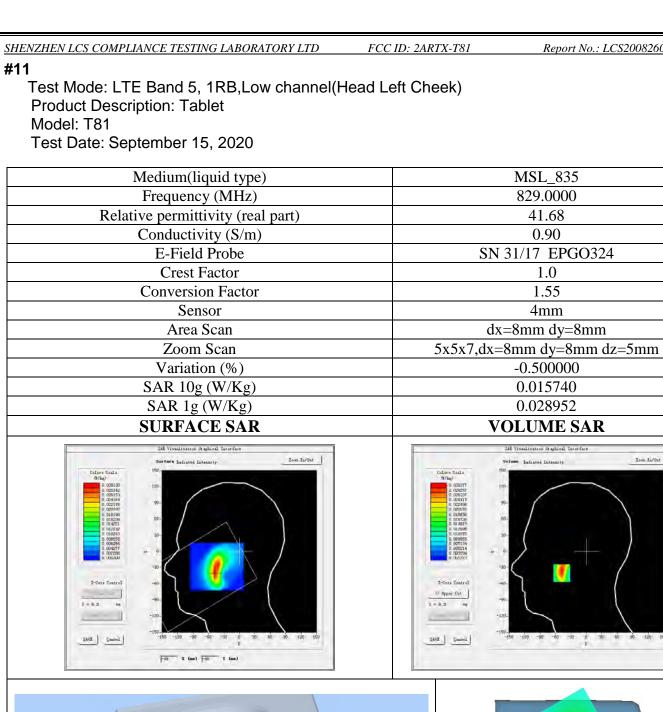

	SHENZHEN LCS C	COMPLIANCE TESTING LABORATORY LTD
--	----------------	-----------------------------------

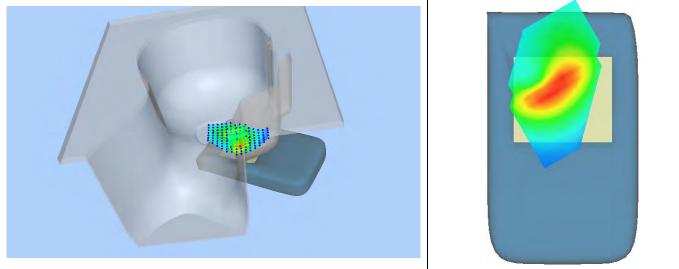
#9


FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

Test Mode: 802.11b(WiFi2.4G),Middle channel (Head Left Cheek) Product Description: Tablet Model: T81 Test Date: September 17, 2020




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 121

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 121

Zom In/Out

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 121

|--|

FCC ID: 2ARTX-T81 #12 Test Mode: LTE Band 5, 1RB,Low channel(Body Rear Side) **Product Description: Tablet** Model: T81 Test Date: September 15, 2020 Medium(liquid type) MSL_835 Frequency (MHz) 829.0000 Relative permittivity (real part) 41.68 0.90 Conductivity (S/m) **E-Field Probe** SN 31/17 EPGO324 Crest Factor 1.0 **Conversion Factor** 1.55 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) -0.090000 SAR 10g (W/Kg) 0.027698 SAR 1g (W/Kg) 0.053386 SURFACE SAR **VOLUME SAR** Zom In/Out Iom In/Out Report Col SAVE Gautel -90 -60 0 30 10 30 120 120 1342 Gantel -150 -120 -30 -30 -30 30 30 30 120 1 -120 -30 1 I (am) 24 I (am)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 121

|--|

Report No.: LCS200826042AEB

#13 Test Mode: LTE Band 41, 1RB,High channel (Head Left Cheek) Product Description: Tablet Model: T81 Test Date: September 18, 2020

Madiner (liquid treas)	MCI 2600
Medium(liquid type)	MSL_2600
Frequency (MHz)	2506.0000
Relative permittivity (real part)	<u>39.68</u> 1.89
Conductivity (S/m) E-Field Probe	
	SN 31/17 EPGO324
Crest Factor	1.58
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.810000
SAR 10g (W/Kg)	0.002804
SAR 1g (W/Kg)	0.005654
SURFACE SAR	VOLUME SAR
204 Transition Registed Enterface 0040 0040 0040 0040 00400	Solution in typiced. Tator for Version Version <

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 121

Report No.: LCS200826042AEB

#14 Test Mode: LTE Band 41, 1RB,High channel (Body Rear Side) Product Description: Tablet Model: T81 Test Date: September 18, 2020

Medium(liquid type)	MSL_2600
Frequency (MHz)	2506.0000
Relative permittivity (real part)	39.68
Conductivity (S/m)	1.89
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.58
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.000000
SAR 10g (W/Kg)	0.003688
SAR 1g (W/Kg)	0.008025
SURFACE SAR	VOLUME SAR
Callers Scala 0.00054 0.000057 0.0000000 0.000057 0.0000000 0.0000000000	Column Scale This Town Table Scale Town Table Scale 0 0.00001 100 000001 100 0 0.00001 000 000 000 000 0 0.00001 000 000 000 000 000 0 0.00001 000

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 121

5. ALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.281.2.18.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 31/17 EPGO324

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 10/08/2019

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 121

Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/8/2019	Jes
Checked by :	Jérôme LUC	Product Manager	10/8/2019	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	10/8/2019	thim Muthowski

-	Customer Name
Distribution :	Shenzhen LCS
Distribution :	Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	10/8/2019	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 121 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD

FCC ID: 2ARTX-T81

Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

TABLE OF CONTENTS

1	Dev	ice Under Test	
2	Pro	luct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	
6	List	of Equipment10	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 121

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

DEVICE UNDER TEST 1

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 31/17 EPGO324	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ	
	Dipole 2: R2=0.203 MΩ	
	Dipole 3: R3=0.218 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 121

Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 121

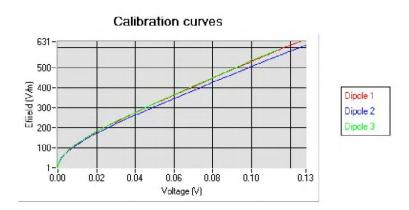
Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS


Calibration Parameters				
Liquid Temperature	21 °C			
Lab Temperature	21 °C			
Lab Humidity	45 %			

5.1 <u>SENSITIVITY IN AIR</u>

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.80	0.83	0.68

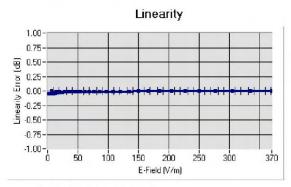
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 121


Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.2 <u>LINEARITY</u>

Linearity: I+/-1.13% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

LOWER DETECTION LIMIT: 9mW/kg

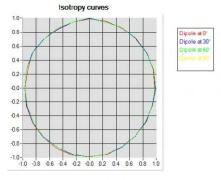
Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 121

Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

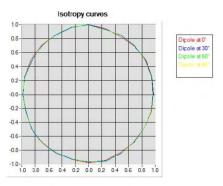

Ref: ACR.281.2.18.SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.0	5 dB	
0.0	7 dB	



HL1800 MHz

		•	
-	Axial	isotropy:	•

- Hemispherical isotropy:

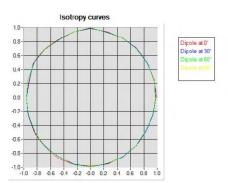
0.06	dB
0.07	dB

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 121

Report No.: LCS200826042AEB


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.06 dB 0.10 dB

Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 70 of 121

Report No.: LCS200826042AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2019	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 121