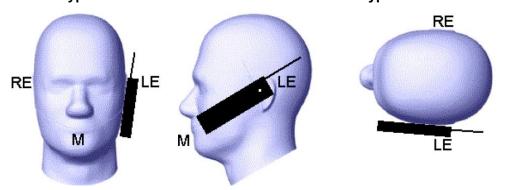


ANNEX D Position of the wireless device in relation to the phantom

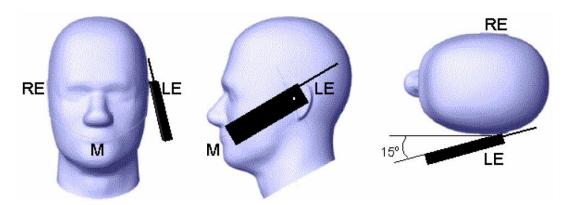
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

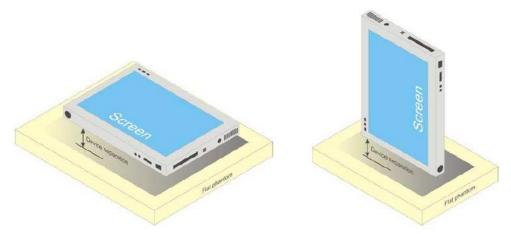
 W_b Width of the bottom of the handset

A Midpoint of the width W_t of the handset at the level of the acoustic output


B Midpoint of the width W_b of the bottom of the handset

Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM


Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-supported device

Other devices that fall into this category include tablet type portable computers and credit card transaction authorisation terminals, point-of-sale and/or inventory terminals. Where these devices may be torso or limb-supported, the same principles for body-supported devices are applied. The example in Picture D.1 shows a tablet form factor portable computer for which SAR should be separately assessed with

- a) each surface and
- b) the separation distances

positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. If the intended use is not specified in the user instructions, the device shall be tested directly against the flat phantom in all usable orientations.

Picture D.4 Tablet form factor portable computer

D.3 DUT Setup Photos

Picture D.5

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

TableE.1: Composition of the Tissue Equivalent Matter

		•			•			
Frequency	025Uaad	925Dady	1900	1900	2450	2450	5800	5800
(MHz)	835Head	835Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	\	\	\	\	\	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\
Preventol	0.1	0.1	\	\	\	\	\	\
Cellulose	1.0	1.0	\	\	\	\	\	\
Glycol	\	\	44.450	20.06	44.4E	27.22	\	\
Monobutyl	1	\	44.452	29.96	41.15	27.22	\	\
Diethylenglycol	\	\	\	\	\	\	17.04	17.04
monohexylether	\	\	\	\	١	\	17.24	17.24
Triton X-100	\	\	\	\	\	\	17.24	17.24
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Parameters								
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation for 3846

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3846	Head 750MHz	Jan.19,2017	750 MHz	OK
3846	Head 850MHz	Jan.19,2017	850 MHz	OK
3846	Head 900MHz	Jan.18,2017	900 MHz	OK
3846	Head 1750MHz	Jan.17,2017	1750 MHz	OK
3846	Head 1810MHz	Jan.17,2017	1810 MHz	OK
3846	Head 1900MHz	Jan.16,2017	1900 MHz	OK
3846	Head 1950MHz	Jan.16,2017	1950 MHz	OK
3846	Head 2000MHz	Jan.16,2017	2000 MHz	OK
3846	Head 2100MHz	Jan.16,2017	2100 MHz	OK
3846	Head 2300MHz	Jan.15,2017	2300 MHz	OK
3846	Head 2450MHz	Jan.15,2017	2450 MHz	OK
3846	Head 2550MHz	Jan.15,2017	2550 MHz	OK OK
3846	Head 2600MHz	Jan.15,2017	2600 MHz	OK
3846	Head 3500MHz	Jan.14,2017	3500 MHz	OK OK
3846	Head 3700MHz	Jan.14,2017	3700 MHz	OK OK
3846	Head 5200MHz	Jan.13,2017	5200 MHz	OK OK
3846	Head 5500MHz	Jan.13,2017	5500 MHz	OK OK
3846	Head 5800MHz	Jan.13,2017	5800 MHz	OK OK
3846	Body 750MHz	Jan.19,2017	750 MHz	OK OK
3846	Body 850MHz	Jan.19,2017	850 MHz	OK
3846	Body 900MHz	Jan.18,2017	900 MHz	OK OK
3846	Body 1750MHz	Jan.17,2017	1750 MHz	OK
3846	Body 1810MHz	Jan.17,2017 Jan.17,2017	1810 MHz	OK OK
3846	Body 1900MHz	Jan.16,2017	1900 MHz	OK
3846	Body 1950MHz	Jan.16,2017	1950 MHz	OK
3846	Body 2000MHz	Jan.16,2017	2000 MHz	OK
3846 3846	Body 2100MHz Body 2300MHz	Jan.16,2017	2100 MHz 2300 MHz	OK OK
	-	Jan.15,2017		OK
3846	Body 2450MHz	Jan.15,2017	2450 MHz	
3846	Body 2550MHz	Jan.15,2017	2550 MHz	OK OK
3846	Body 2600MHz Body 3500MHz	Jan.15,2017	2600 MHz	OK OK
3846	,	Jan.14,2017	3500 MHz	
3846	Body 3700MHz	Jan.14,2017	3700 MHz	OK OK
3846	Body 5200MHz	Jan.13,2017	5200 MHz	OK OK
3846	Body 5500MHz	Jan.13,2017	5500 MHz	OK OK
3846	Body 5800MHz	Jan.13,2017	5800 MHz	OK

ANNEX G Probe Calibration Certificate

Probe 3846 Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client

CTTL

Certificate No: Z16-97251

CALIBRATION O	CERTIFICATE
---------------	-------------

Object

EX3DV4 - SN:3846

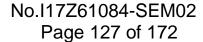
Calibration Procedure(s)

FD-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 13, 2017


This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration		
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17		
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17		
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17		
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18		
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18		
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17		
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17		
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration		
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17		
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17		
	Name	Function	Signature		
Calibrated by:	Yu Zongying	SAR Test Engineer			
Reviewed by:	Qi Dianyuan	SAR Project Leader	Soft		
Approved by:	Lu Bingsong	Deputy Director of the laboratory	The wastr		
Issued: January 1/4, 2017					
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.					

Certificate No: Z16-97251

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97251

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3846

Calibrated: January 13, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z16-97251