

FCC 47 CFR Part 15.407 TEST REPORT

For

Smart Projector

MODEL NUMBER: HY300

REPORT NUMBER: E01A23070868F00305

ISSUE DATE: September 1, 2023

FCC ID:2BCAX-T08

Prepared for

GuangDong SINOY Smart Technology CO., LTD
5TH Floor, Building #2, RunFengZhiGu Industrial Park,Changpin Town,DongGuan
City, Guangdong, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hitech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF No.: 01-R005-3A TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E01A23070868F00305 Page 2 of 53

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	September 1, 2023	Initial Issue	Poal Chen

REPORT NO.: E01A23070868F00305 Page 3 of 53

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203, FCC Part 15.407(a)(1) (2)	Pass
26 dB emission bandwidth	KDB 789033 D02 v02r01 Section C.1	FCC Part 15.407 (a)(2)(5)	Pass
6 dB bandwidth	KDB 789033 D02 v02r01 Section C.2	FCC Part 15.407 (e)	Pass
Maximum conducted output power	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	FCC Part 15.407 (a)(1)(2)(3)	Pass
Peak Power Spectral Density	KDB 789033 D02 v02r01 Section F	FCC Part 15.407 (a)(1)(2)(3)	Pass
Radiated Emissions and Band Edge Measurement	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	FCC Part 15.407 (b)(1)(2)(3)(4)(6), FCC Part 15.209/205	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2.	FCC Part 15.407 (b)(6), FCC Part 15.207	Pass
Frequency Stability	N/A	FCC 15.407 (g)	Pass
Duty Cycle	ANSI C63.10-2013, Clause 12.2	None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <FCC 47 CFR Part 15.407> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATTESTATION OF TEST RESULTS	5
2. TEST METHODOLOGY	6
3. FACILITIES AND ACCREDITATION	6
4. CALIBRATION AND UNCERTAINTY	7
4.1. MEASURING INSTRUMENT CALIBRATION	7
4.2. MEASUREMENT UNCERTAINTY	7
5. EQUIPMENT UNDER TEST	8
5.1. DESCRIPTION OF EUT	8
5.2. CHANNEL LIST	9
5.3. THE WORSE CASE POWER SETTING PARAMETER	9
5.4. DESCRIPTION OF AVAILABLE ANTENNAS	
5.5. SUPPORT UNITS FOR SYSTEM TEST	
5.6. SETUP DIAGRAM	11
6. MEASURING EQUIPMENT AND SOFTWARE USED	12
7. ANTENNA PORT TEST RESULTS	14
7.1. 26 dB emission bandwidth	14
7.2. 6 dB bandwidth	16
7.3. Maximum conducted output power	
7.4. Peak Power Spectral Density	19
7.5. FREQUENCY STABILITY	21
7.6. Duty Cycle	23
8. RADIATED TEST RESULTS	24
9. ANTENNA REQUIREMENT	47
10. AC POWER LINE CONDUCTED EMISSION	48
PENDIX: PHOTOGRAPHS OF TEST CONFIGURATION	51
APPENDIX: PHOTOGRAPHS OF THE EUT	52

REPORT NO.: E01A23070868F00305 Page 5 of 53

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: GuangDong SINOY Smart Technology CO., LTD

Address: 5TH Floor, Building #2, RunFengZhiGu Industrial Park, Changpin

Town, Dong Guan City, Guangdong, China

Manufacturer Information

Company Name: GuangDong SINOY Smart Technology CO., LTD

Address: 5TH Floor, Building #2, RunFengZhiGu Industrial Park, Changpin

Town, Dong Guan City, Guangdong, China

Factory Information

Company Name: GuangDong SINOY Smart Technology CO., LTD

Address: 5TH Floor, Building #2, RunFengZhiGu Industrial Park, Changpin

Town, Dong Guan City, Guangdong, China

EUT Information

Product Description: Smart Projector

Model: HY300

Series Model: P1, P2, P5, P6, P7, P8, P9, HY300A, S27, T08, T09,

W13-S, W13-M, M8, G1, G5, BL108, BL128, A1

Sample Received Date: July 31, 2023

Sample Status: Normal

Sample ID: A23070868 004

Date of Tested: August 2, 2023 to August 30, 2023

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
FCC 47 CFR Part 15.407	Pass		

Tiger Xu

Laboratory Supervisor

TRF No.: 01-R005-3A

Checked By:

Pyson Daz

Dyson Dai

Project Engineer

REPORT NO.: E01A23070868F00305 Page 6 of 53

2. TEST METHODOLOGY

All tests were performed in accordance with the standard FCC 47 CFR Part 15.407

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4422.01)
	Dong Guan Anci Electronic Technology Co., Ltd. has been
	assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1230)
	Dong Guan Anci Electronic Technology Co., Ltd. has been
Accreditation Certificate	recognized to perform compliance testing on equipment subject to
Accreditation Certificate	Supplier's Declaration of Conformity (SDoC) and Certification rules
	ISED (Company No.: 22768)
	Dong Guan Anci Electronic Technology Co., Ltd. has been
	registered and fully described in a report filed with ISED. The
	Company Number is 22768 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0079.

Note: All tests measurement facilities use to collect the measurement data are located at 1-2/F., Building A, and 1F Building B, No.11, Headquarters 2 Road, Songshan Lake Hightech Industrial Development Zone, Dongguan, Guangdong, China

REPORT NO.: E01A23070868F00305 Page 7 of 53

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
Emission Bandwidth	1.96	±9.0 PPM
Maximum Conduct Output Power	1.96	± 1.12 dB
Power Spectral Density	1.96	± 2.1 dB
Conducted Band edge	1.96	±9.0 PPM
Conducted spurious emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB 26.5 GHz-40 GHz: ± 2.6 dB
Frequency Stability	1.96	±9.0 PPM

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Frequency Range	k	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E01A23070868F00305 Page 8 of 53

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Smart Projector	
Model		HY300	
Series Model		P1, P2, P5, P6, P7, P8, P9, HY300A, S27, T08, T09, W13-S, W13-M, M8, G1, G5, BL108, BL128, A1	
EUT Classification		Class B	
Hardware Version		V1.0	
Software Version		V1.0	
Ratings		AC100-260V~ 50/60Hz 2.5A	
Power Supply AC		120V/60Hz	

Frequency Band:	5150 MHz to 5250 MHz (U-NII-1) 5 725 MHz to 5 850 MHz (U-NII-3)		
Frequency Range:	5180 MHz to 5240 MHz 5 745 MHz to 5 825 MHz		
Support Standards:	IEEE 802.11a/n/ac/ax		
TPC Function:	Not Support		
DFS Operational mode:	Not Support		
Type of Modulation:	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM(256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA(1024QAM,256QAM, 64QAM, 16QAM, QPSK, BPSK)		
Channel Spacing:	IEEE 802.11a/n HT20/ac VHT20/ax HE20: 20 MHz IEEE 802.11n HT40/ac VHT40/ax HE40: 40 MHz		
Data Rate:	IEEE 802.11a: Up to 54 Mbps IEEE 802.11n HT20: Up to MCS7 IEEE 802.11n HT40: Up to MCS7 IEEE 802.11ac VHT20: Up to MCS9 IEEE 802.11ac VHT40: Up to MCS9 IEEE 802.11ac VHT80: Up to MCS9 IEEE 802.11ax HE20: Up to MCS11 IEEE 802.11ax HE40: Up to MCS11 IEEE 802.11ax HE80: Up to MCS11		
Number of Channels:	5150 MHz to 5250 MHz: 4 for IEEE 802.11a/n HT20/ac VHT20/ax HE20 2 for IEEE 802.11n HT40)/ac VHT40/ax HE40 5725 MHz to 5850 MHz: 5 for IEEE 802.11a/n HT20/ac VHT20/ax HE20 2 for IEEE 802.11n HT40/ac VHT40/ax HE40		
Antenna Type:	PCB Antenna		
Antenna Gain:	U-NII-1:4.45dBi U-NII-3:1.68dBi		
EUT Test software:	rf_test		

REPORT NO.: E01A23070868F00305 Page 9 of 53

5.2. CHANNEL LIST

UN	III-1	UNII-1		
(For Bandw	idth=20MHz)	(For Bandwidth=40MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
36	5180	38	5190	
40	5200	46	5230	
44	5220			
48	5240			

	III-3	UNII-3		
(For Bandwi	idth=20MHz)	(For Bandwidth=40MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
149	5745	151	5755	
153	5765	159	5795	
157	5785			
161	5805			
165	5825			

5.3. THE WORSE CASE POWER SETTING PARAMETER

UNII-1

Mode	Rate	Channel	Soft set value
		36	05
11a	6M	40	05
		48	05
		36	05
11n HT20	MCS0	40	05
		48	05
11n HT40	MCS0	38	05
111111140		46	05
	MCS0	36	05
11ac VHT20		40	05
		48	05
11ac VHT40	MCS0	38	05
1146 1111 40	WOOO	46	05
		36	05
11ax HE20	MCS0	40	05
		48	05
11ax HE40	MCS0	38	05
TTAXTIL40	IVICOU	46	05

REPORT NO.: E01A23070868F00305 Page 10 of 53

UNII-3

Mode	Rate	Channel	Soft set value
		149	05
11a	6M	157	05
		165	05
		149	05
11n HT20	MCS0	157	05
		165	05
11n HT40	MCS0	151	05
111111140	IVICSU	159	05
		149	05
11ac VHT20	MCS0	157	05
		165	05
11ac VHT40	MCS0	151	05
11ac VIII+0	IVICOU	159	05
		149	05
11ax HE20	MCS0	157	05
		165	05
11ax HE40	MCS0	151	05
TTAXTIL40	HE40 MCS0		05

THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.2.

Maximum power setting referring to section 5.3.

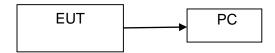
Worst case Data Rates declared by the customer:

802.11a 20 mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11ac VHT20 mode: MCS0 802.11ac VHT40 mode: MCS0 802.11ax HE20 mode: MCS0 802.11ax HE40 mode: MCS0

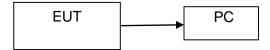
5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna No.	Frequency Band	Antenna Type	Max Antenna Gain (dBi)
1	5150-5250	PCB Antenna	4.45
1	5725-5850	PCB Antenna	1.68

REPORT NO.: E01A23070868F00305 Page 11 of 53


IEE Std. 802.11	Transmit and Receive Mode	Description
802.11a	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ac VHT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ac VHT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ax HE20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
802.11ax HE40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.5. SUPPORT UNITS FOR SYSTEM TEST


Equipment	Manufacturer	Model No.
PC	Lenovo	T14

5.6. SETUP DIAGRAM

AC conducted emission:

Radiated Emission:

RF conducted:

REPORT NO.: E01A23070868F00305 Page 12 of 53

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51281878	2022-10-08	2023-10-07	
USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2022-10-08	2023-10-07	
Radio Frequency control box	MWRF-test	MW200- RFCB	MW220111ANCI	2023-05-10	2024-05-09	
Radio Frequency control box	MWRF-test	MW200- RFCB 2#	/	2023-05-10	2024-05-09	
RF Test Software	MWRF-test	MTS 8310	N/A	N/A	N/A	
temperature humidity chamber	Espec	SH-241	SH-241-2014	2022-10-08	2023-10-07	

Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	Keysight	9m*6m*6m	N/A	2021-11-13	2024-11-12	
EMI Test Receiver	ROHDE&SCHWARZ			2023-05-10		
Bilog Antenna	Schwarzbeck	VULB9163	VULB9163- 1290	2022-12-12	2023-12-11	
RF Cable	ZKJC	ZT06S-NJ- NJ-11M	19060398	2023-05-10	2024-05-09	
RF Cable	ZKJC	ZT06S-NJ- NJ-0.5M	19060400	2023-05-10	2024-05-09	
RF Cable	ZKJC	ZT06S-NJ- NJ-2.5M	19060404	2023-05-10	2024-05-09	
Test Software	Farad	EZ-EMC (Ver.FA- 03A2 RE)	N/A	N/A	N/A	

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi- anechoic Chamber	Keysight	9m*6m*6m	N/A	2021-11-13	2024-11-12
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-10-29	2023-10-28
Horn antenna	A-INFO	LB-10180-SF	J203109061 2123	2023-05-10	2024-05-09
Low noise Amplifiers	A-INFO	LA1018N400 9	J101313052 4001	2023-05-10	2024-05-09
RF Cable	ZKJC	ZT26-NJ-NJ- 11M	19060401	2023-05-10	2024-05-09

RF Cable	ZKJC	ZT26-NJ-NJ- 2.5M	19060402	2023-05-10	2024-05-09	
RF Cable	ZKJC	ZT26-NJ-NJ- 0.5M	19060403	2023-05-10	2024-05-09	
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A	
Test Equipment	Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
1# Shielded Room	chengyu	8m*4m*3.3m	N/A	2022-11-22	2025-11-21	
EMI Test Receiver	ROHDE&SCH WARZ	ESCI	101358	2023-05-10	2024-05-09	
LISN	ROHDE&SCH WARZ	ENV216	101413	2022-10-08	2023-10-07	
RF Cable	N/A	ZT06S-NJ- NJ-2.5M	19044022	2023-05-10	2024-05-09	
Test Software	Farad	EZ-EMC (Ver.ANCI- 3A1)	N/A	N/A	N/A	

REPORT NO.: E01A23070868F00305 Page 14 of 53

7. ANTENNA PORT TEST RESULTS

7.1. 26 DB EMISSION BANDWIDTH

LIMITS

CFR 47 FCC Part15, Subpart E					
Test Item	Limit	Frequency Range (MHz)			
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250			

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
IRRW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW.
IVBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

REPORT NO.: E01A23070868F00305 Page 15 of 53

TEST RESULTS

Test results refer to report E01A23070868F00306 - Appendix C

REPORT NO.: E01A23070868F00305

Page 16 of 53

7.2. 6 DB BANDWIDTH

LIMITS

CFR 47 FCC Part15, Subpart E					
Test Item	Limit	Frequency Range (MHz)			
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850			

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C2. for 6 dB Emission Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz
VBW	For 6 dB Bandwidth: ≥ 3*RBW
Trace	Max hold
Sweep	Auto couple

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00306 - Appendix F

TRF No.: 01-R005-3A

Global Testing, Great Quality.

REPORT NO.: E01A23070868F00305

Page 17 of 53

7.3. MAXIMUM CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	
Conducted Output Power	☐ Outdoor Access Point: 1 W (30 dBm) ☐ Indoor Access Point: 1 W (30 dBm) ☐ Fixed Point-To-Point Access Points: 1 W (30 dBm) ☐ Client Devices: 250 mW (24 dBm)	5150 ~ 5250	
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850	

Note

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):

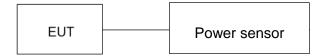
- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW ≥ 3 MHz.
- (iv) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 %, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- (viii) Trace average at least 100 traces in power averaging (rms) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

Method PM (Measurement using an RF average power meter):

- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
- b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
- c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

TRF No.: 01-R005-3A Global Testing, Great Quality.

REPORT NO.: E01A23070868F00305 Page 18 of 53


- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Straddle channel power was measured using spectrum analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00306 - Appendix B

REPORT NO.: E01A23070868F00305 Page 19 of 53

7.4. PEAK POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	
Power Spectral Density	Outdoor Access Point: 17 dBm/MHz Indoor Access Point: 17 dBm/MHz Fixed Point-To-Point Access Points: 17 dBm/MHz Client Devices: 11 dBm/MHz	5150 ~ 5250	
	30 dBm/500kHz	5725 ~ 5850	

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyser and use the following settings:

For U-NII-1:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	1 MHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

For U-NII-3:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Allow trace to fully stabilize and Use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TRF No.: 01-R005-3A

Global Testing, Great Quality.

REPORT NO.: E01A23070868F00305 Page 20 of 53

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00306 - Appendix D

REPORT NO.: E01A23070868F00305 Page 21 of 53

7.5. FREQUENCY STABILITY

LIMITS

The frequency of the carrier signal shall be maintained within band of operation.

TEST PROCEDURE

- 1. The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between $-10 \,^{\circ}\text{C} \sim 40 \,^{\circ}\text{C}$ (declared by customer).
- 2. The temperature was incremented by 10 °C intervals and the unit allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.
- 3. The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	10 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

- 4. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5minutes, and 10 minutes after the EUT is energized.
- 5. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

TEST ENVIRONMENT

	Normal Test Conditions	Extreme Test Conditions	
Relative Humidity	20 % - 75 %	/	
Atmospheric Pressure	100 kPa ~102 kPa	/	
Temperature	T _N (Normal Temperature):	T _L (Low Temperature): -10 °C	
	20 °C	T _H (High Temperature): 40 °C	
Supply Voltage	V _N (Normal Voltage): AC 120 V	V _L (Low Voltage): AC 102 V	
Supply Voltage	V _N (Normal Voltage). AC 120 V	V _H (High Voltage): AC 138 V	

REPORT NO.: E01A23070868F00305 Page 22 of 53

TEST ENVIRONMENT

Temperature	24.6℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00306 - Appendix E .

REPORT NO.: E01A23070868F00305 Page 23 of 53

7.6. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B.

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00306 - Appendix A

REPORT NO.: E01A23070868F00305 Page 24 of 53

8. RADIATED TEST RESULTS

Radiated Emissions and Band Edge MeasurementLIMITS

Refer to CFR 47 FCC $\S15.205$, $\S15.209$ and $\S15.407$ (b).

Radiation Disturbance Test Limit for FCC (Class B)

Emissions radiated outside of the specified frequency bands above 30 MHz							
Frequency Range	Field Strength Limit	Field Strength Limit					
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m					
		Quasi-Peak					
30 - 88	100	40					
88 - 216	150	43.5					
216 - 960	200	46					
Above 960	500	54					
Above 1000	500	Peak	Average				
Above 1000	500	74	54				

FCC Emissions radiated outside of the specified frequency bands below 30 MHz							
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters							
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

REPORT NO.: E01A23070868F00305 Page 25 of 53

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b).

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)							
Frequency Range	EIRP Limit	Field Strength Limit					
(MHz)	EIRF LIIIII	(dBuV/m) at 3 m					
5150~5250 MHz	PK: -27 (dBm/MHz)	PK:68.2(dBµV/m)					
	PK: -27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1					
5725~5850 MHz	PK: 10 (dBm/MHz) *2	PK: 105.2 (dBµV/m) *2					
3725~5650 WIF12	PK: 15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3					
	PK: 27 (dBm/MHz) *4	PK: 122.2 (dBµV/m) *4					

Note:

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made

^{*1} beyond 75 MHz or more above of the band edge.

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

REPORT NO.: E01A23070868F00305 Page 26 of 53

to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

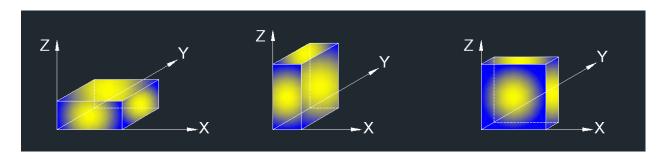
REPORT NO.: E01A23070868F00305 Page 27 of 53

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

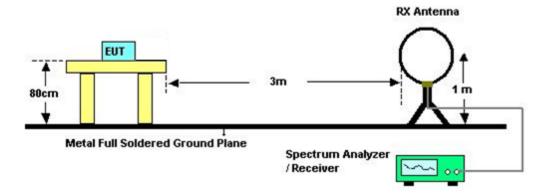
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

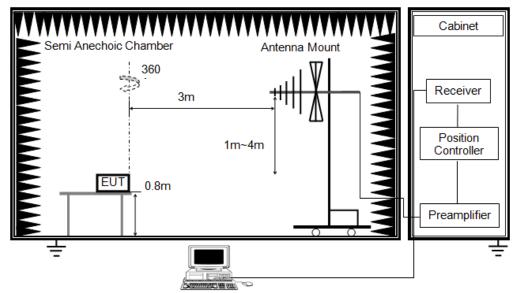

Above 1 GHz

The setting of the spectrum analyser

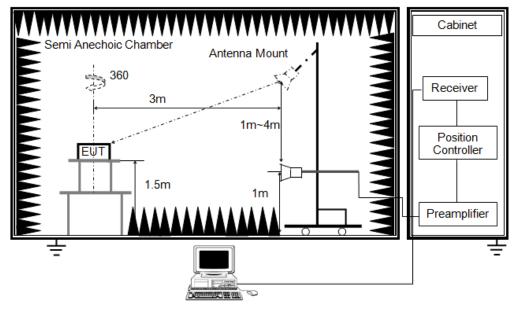
RBW	1 MHz
	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

REPORT NO.: E01A23070868F00305 Page 29 of 53


TEST SETUP

9kHz-30MHz

30MHz-1GHz

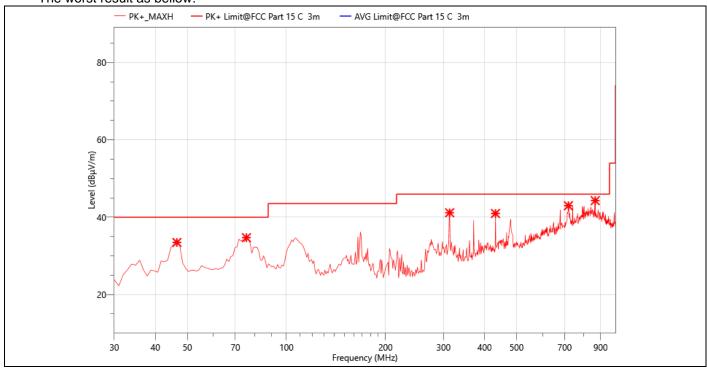
Above 1GHz

TRF No.: 01-R005-3A

Global Testing, Great Quality.

REPORT NO.: E01A23070868F00305 Page 30 of 53

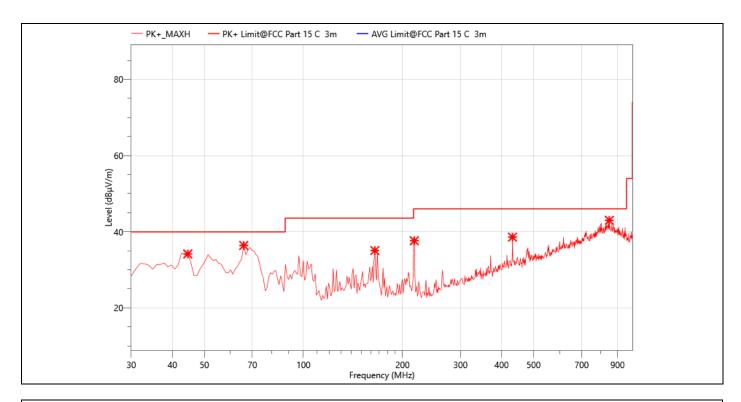
TEST ENVIRONMENT


Temperature	24.3℃	Relative Humidity	54%RH
Atmosphere Pressure	101kPa		

REPORT NO.: E01A23070868F00305 Page 31 of 53

TEST RESULTS

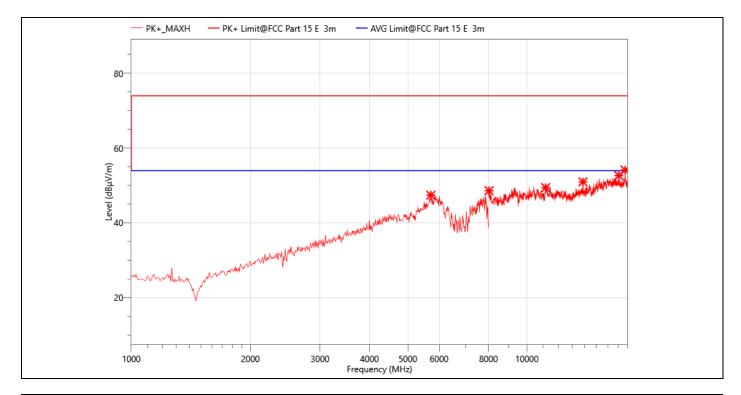
Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)


The worst result as bellow:

EUT: Temperature: **Smart Projector** 24.3℃ M/N.: HY300 **Humidity:** 54%RH Mode: 802.11ax HE20 5240MHz **Power Rating:** AC 120V/60Hz **Test Time: Test Engineer:** 2023-08-30 **Berny**

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
INO.	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	Det.	(cm)	FOI.	(deg)	(dB)
1	46.490	37.54	33.46	40.00	6.54	PK+	100.0	Н	182.1	-4.08
2	75.590	40.08	34.70	40.00	5.30	PK+	100.0	H	182.1	-5.38
3	313.240	41.58	41.15	46.00	4.85	PK+	100.0	Η	182.1	-0.43
4	431.580	36.90	40.95	46.00	5.05	PK+	100.0	Н	182.1	4.05
5	718.700	32.64	42.95	46.00	3.05	PK+	100.0	Н	182.1	10.31
6	867.110	31.01	44.28	46.00	1.72	PK+	100.0	Н	182.1	13.27

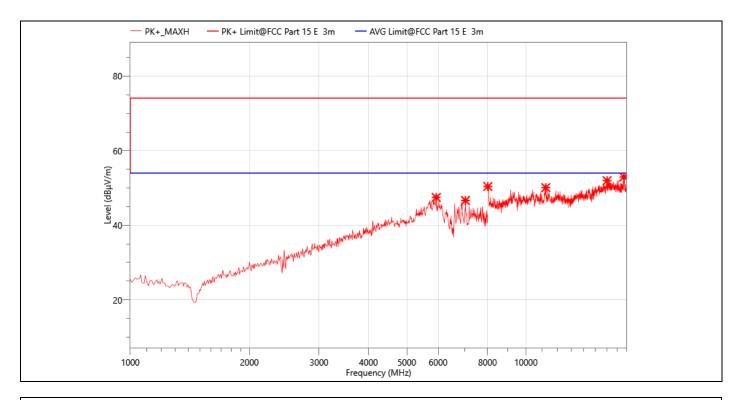
REPORT NO.: E01A23070868F00305 Page 32 of 53



EUT: Smart Projector Temperature: 24.3℃ M/N.: HY300 **Humidity:** 54%RH Mode: 802.11ax HE20 5240MHz **Power Rating:** AC 120V/60Hz Berny **Test Time: Test Engineer:** 2023-08-30

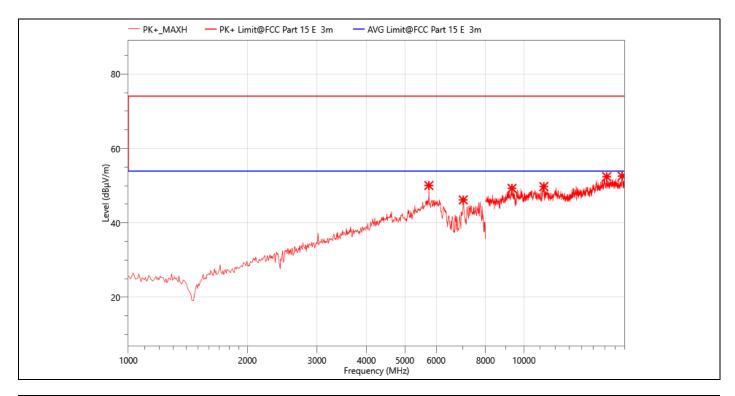
No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	44.550	38.38	34.16	40.00	5.84	PK+	100.0	V	182.1	-4.22
2	65.890	40.18	36.40	40.00	3.60	PK+	100.0	V	182.1	-3.78
3	164.830	40.66	35.06	43.50	8.44	PK+	100.0	V	182.1	-5.6
4	217.210	42.26	37.63	46.00	8.37	PK+	100.0	V	182.1	-4.63
5	431.580	34.53	38.58	46.00	7.42	PK+	100.0	V	182.1	4.05
6	849.650	29.07	43.00	46.00	3.00	PK+	100.0	V	182.1	13.93

REPORT NO.: E01A23070868F00305 Page 33 of 53


• Undesirable radiated Spurious Emission Above 1GHz (1GHz to 26.5GHz) All modes has been tested and the worst result recorded as below:

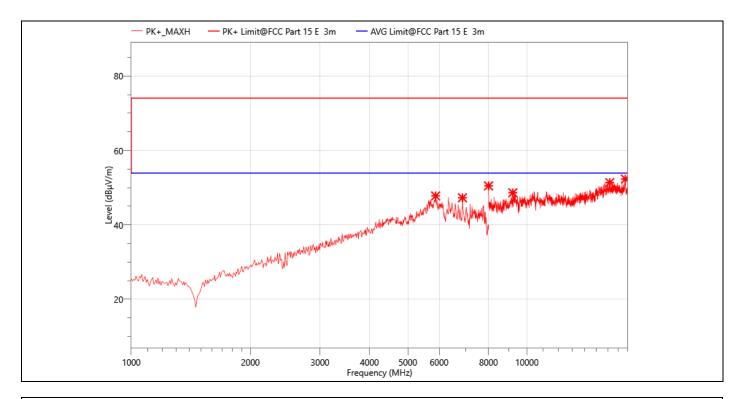
EUT: Smart Projector Temperature: 24.3℃ **Humidity:** M/N.: HY300 54%RH **Power Rating:** Mode: 802.11ax HE20 5180MHz AC 120V/60Hz **Test Engineer: Berny Test Time:** 2023-08-30

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBuV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	5718.000	53.26	47.38	74.00	26.62	PK+	150.0	Н	182.1	-5.88
2	8025.000	50.86	48.58	74.00	25.42	PK+	150.0	Н	182.1	-2.28
3	11155.000	48.39	49.42	74.00	24.58	PK+	150.0	Н	182.1	1.03
4	13860.000	49.45	50.96	74.00	23.04	PK+	150.0	Н	182.1	1.51
5	17080.000	48.78	52.64	74.00	21.36	PK+	150.0	Н	182.1	3.86
6	17715.000	49.20	54.11	74.00	19.89	PK+	150.0	Н	182.1	4.91


REPORT NO.: E01A23070868F00305 Page 34 of 53

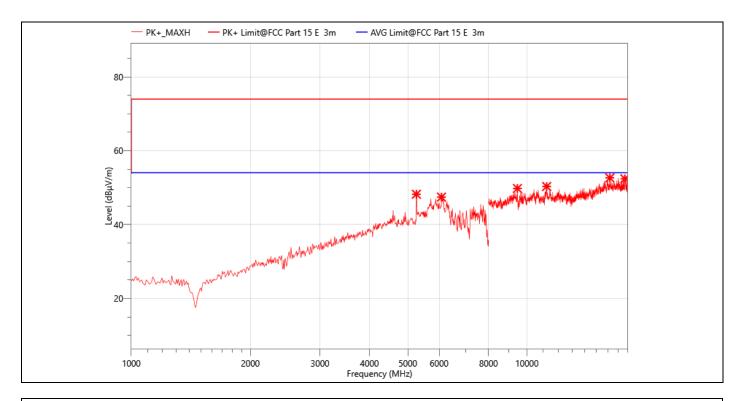
EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11ax HE20 5180MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)		(cm)		(deg)	(dB)
1	5935.000	52.48	47.47	74.00	26.53	PK+	150.0	V	182.1	-5.01
2	7034.000	49.36	46.64	74.00	27.36	PK+	150.0	V	182.1	-2.72
3	8010.000	52.74	50.40	74.00	23.60	PK+	150.0	V	182.1	-2.34
4	11225.000	48.69	50.09	74.00	23.91	PK+	150.0	V	182.1	1.4
5	16045.000	49.07	51.97	74.00	22.03	PK+	150.0	V	182.1	2.9
6	17690.000	48.34	52.94	74.00	21.06	PK+	150.0	V	182.1	4.6


REPORT NO.: E01A23070868F00305 Page 35 of 53

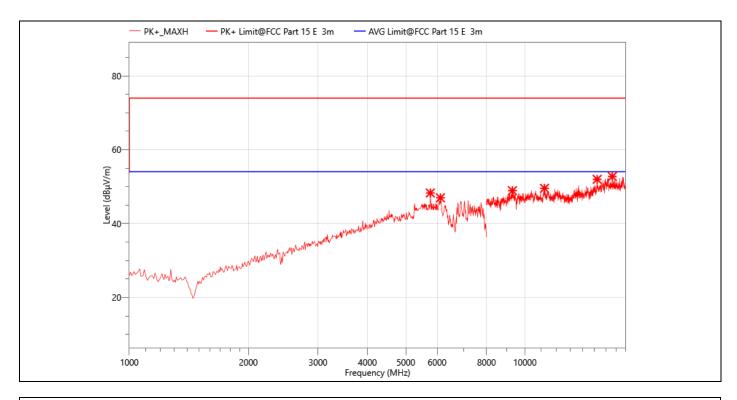
EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11ax HE20 5200MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)		(cm)		(deg)	(dB)
1	5753.000	56.47	50.05	74.00	23.95	PK+	150.0	Η	182.1	-6.42
2	7027.000	48.97	46.17	74.00	27.83	PK+	150.0	Η	182.1	-2.8
3	9330.000	50.23	49.30	74.00	24.70	PK+	150.0	Ι	182.1	-0.93
4	11230.000	48.64	49.77	74.00	24.23	PK+	150.0	Ι	182.1	1.13
5	16195.000	47.25	52.42	74.00	21.58	PK+	150.0	Ι	182.1	5.17
6	17705.000	47.92	52.57	74.00	21.43	PK+	150.0	Τ	182.1	4.65


REPORT NO.: E01A23070868F00305 Page 36 of 53

EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11ax HE20 5200MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq. (MHz)	Reading	Meas. (dBuV/m)	Limit (dBuV/m)	Margin	Det.	Height	Pol.	Azimuth	Corr.
	(IVI□Z)	(dBµV)	(ubµv/III)	(ubµv/III)	(dBµV/m)		(cm)		(deg)	(dB)
1	5879.000	52.92	47.80	74.00	26.20	PK+	150.0	V	182.1	-5.12
2	6873.000	51.05	47.28	74.00	26.72	PK+	150.0	V	182.1	-3.77
3	8000.000	52.89	50.49	74.00	23.51	PK+	150.0	V	182.1	-2.4
4	9215.000	48.98	48.63	74.00	25.37	PK+	150.0	V	182.1	-0.35
5	16200.000	46.45	51.37	74.00	22.63	PK+	150.0	V	182.1	4.92
6	17740.000	47.01	52.33	74.00	21.67	PK+	150.0	V	182.1	5.32


REPORT NO.: E01A23070868F00305 Page 37 of 53

EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11ax HE20 5240MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

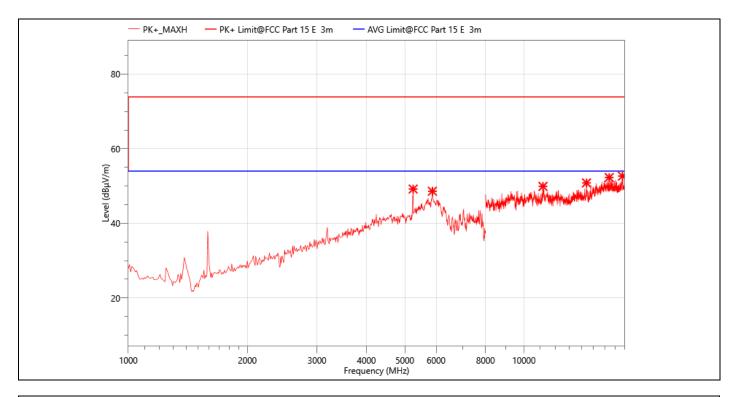
No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
INO.	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Det.	(cm)	FOI.	(deg)	(dB)
1	5256.000	55.63	48.22	74.00	25.78	PK+	150.0	Η	182.1	-7.41
2	6082.000	52.73	47.44	74.00	26.56	PK+	150.0	Η	182.1	-5.29
3	9465.000	50.62	49.79	74.00	24.21	PK+	150.0	Ι	182.1	-0.83
4	11220.000	48.78	50.32	74.00	23.68	PK+	150.0	Η	182.1	1.54
5	16205.000	47.98	52.65	74.00	21.35	PK+	150.0	Н	182.1	4.67
6	17685.000	47.81	52.41	74.00	21.59	PK+	150.0	Н	182.1	4.6

REPORT NO.: E01A23070868F00305 Page 38 of 53

EUT: Smart Projector Temperature: 24.3℃ M/N.: HY300 **Humidity:** 54%RH 802.11ax HE20 5240MHz **Power Rating:** Mode: AC 120V/60Hz **Test Time: Test Engineer: Berny** 2023-08-30

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
140.	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	DCI.	(cm)	1 01.	(deg)	(dB)
1	5767.000	54.74	48.30	74.00	25.70	PK+	150.0	V	182.1	-6.44
2	6117.000	51.69	46.98	74.00	27.02	PK+	150.0	V	182.1	-4.71
3	9300.000	49.81	48.92	74.00	25.08	PK+	150.0	V	182.1	-0.89
4	11210.000	48.48	49.55	74.00	24.45	PK+	150.0	V	182.1	1.07
5	15230.000	49.45	51.99	74.00	22.01	PK+	150.0	V	182.1	2.54
6	16635.000	48.59	52.75	74.00	21.25	PK+	150.0	V	182.1	4.16

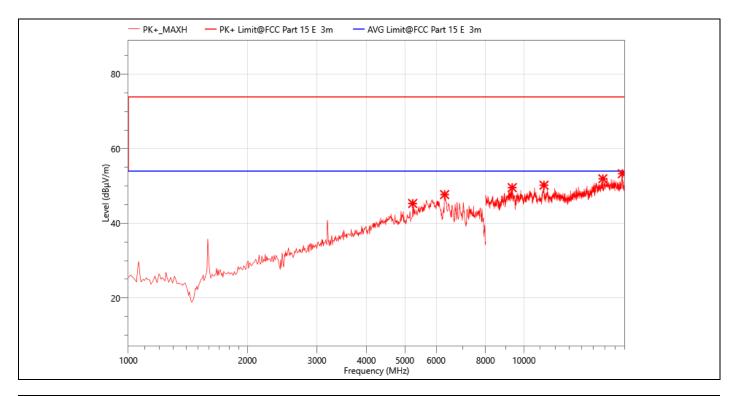
Note: 1.All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).


2.Emission Level= Reading Level+Probe Factor +Cable Loss.

 $3.\text{EIRP[dBm]} = \text{E[dB}\mu\text{V/m]} + 20 \log(\text{d[meters]}) - 104.77$

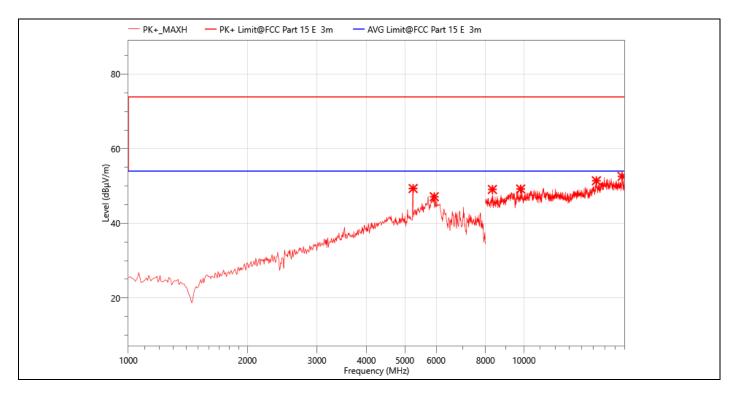
d is the measurement distance in 3 meters.

4.802.11a, 802.11n HT20, 802.11n HT40, 802.11ac VHT20, 802.11ac VHT40, 802.11ax HE20,802.11ax HE40,all has been tested, the worst case is 802.11ax HE20,only shown the worst case.


REPORT NO.: E01A23070868F00305 Page 39 of 53

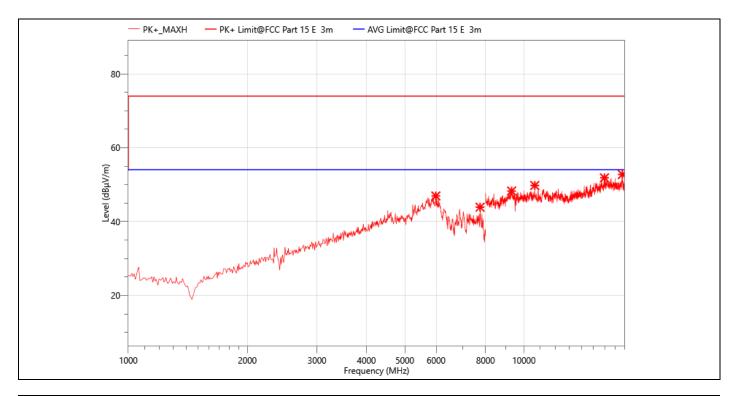
EUT: **Smart Projector** Temperature: 24.3℃ M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11a 5745MHz AC 120V/60Hz **Test Engineer: Test Time:** Berny 2023-08-30

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	5249.000	56.89	49.19	74.00	24.81	PK+	150.0	Н	182.1	-7.7
2	5872.000	53.81	48.61	74.00	25.39	PK+	150.0	Н	182.1	-5.2
3	11175.000	49.01	49.91	74.00	24.09	PK+	150.0	Н	182.1	0.9
4	14395.000	49.04	50.84	74.00	23.16	PK+	150.0	Н	182.1	1.8
5	16430.000	48.60	52.28	74.00	21.72	PK+	150.0	Ι	182.1	3.68
6	17745.000	47.28	52.66	74.00	21.34	PK+	150.0	Н	182.1	5.38


REPORT NO.: E01A23070868F00305 Page 40 of 53

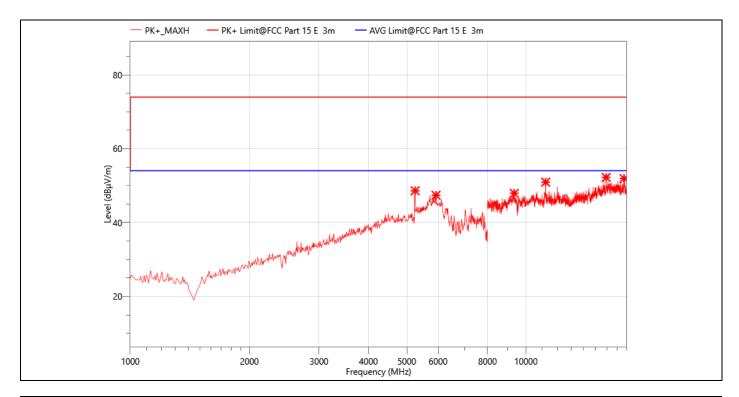
EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH Mode: 802.11a 5745MHz **Power Rating:** AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)		(cm)		(deg)	(dB)
1	5235.000	53.12	45.32	74.00	28.68	PK+	150.0	V	182.1	-7.8
2	6306.000	52.12	47.71	74.00	26.29	PK+	150.0	V	182.1	-4.41
3	9345.000	50.63	49.57	74.00	24.43	PK+	150.0	V	182.1	-1.06
4	11240.000	49.62	50.22	74.00	23.78	PK+	150.0	V	182.1	0.6
5	15830.000	49.33	51.95	74.00	22.05	PK+	150.0	V	182.1	2.62
6	17735.000	48.05	53.31	74.00	20.69	PK+	150.0	V	182.1	5.26


REPORT NO.: E01A23070868F00305 Page 41 of 53

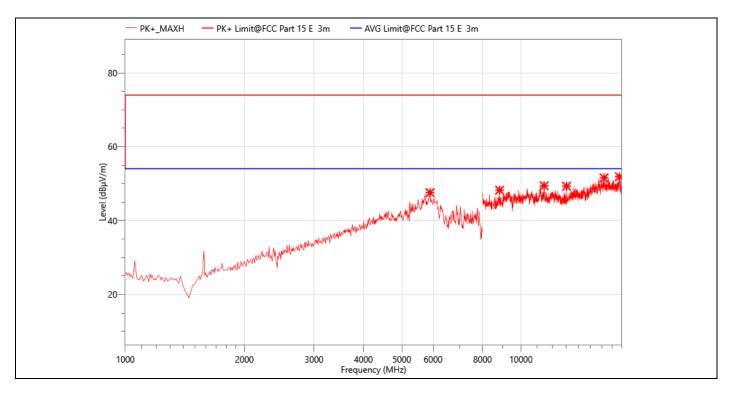
EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11a 5785MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)		(cm)		(deg)	(dB)
1	5249.000	57.04	49.34	74.00	24.66	PK+	150.0	Η	182.1	-7.7
2	5935.000	52.15	47.14	74.00	26.86	PK+	150.0	Η	182.1	-5.01
3	8325.000	51.24	49.08	74.00	24.92	PK+	150.0	Ι	182.1	-2.16
4	9815.000	50.46	49.21	74.00	24.79	PK+	150.0	Ι	182.1	-1.25
5	15250.000	48.64	51.41	74.00	22.59	PK+	150.0	Ι	182.1	2.77
6	17705.000	47.93	52.58	74.00	21.42	PK+	150.0	Τ	182.1	4.65


REPORT NO.: E01A23070868F00305 Page 42 of 53

Temperature: **EUT: Smart Projector 24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11a 5785MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
NO.	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Det.	(cm)	1 01.	(deg)	(dB)
1	5991.000	52.35	46.94	74.00	27.06	PK+	150.0	V	182.1	-5.41
2	7748.000	46.73	43.90	74.00	30.10	PK+	150.0	V	182.1	-2.83
3	9310.000	49.27	48.28	74.00	25.72	PK+	150.0	V	182.1	-0.99
4	10655.000	49.93	49.78	74.00	24.22	PK+	150.0	V	182.1	-0.15
5	15980.000	47.92	51.85	74.00	22.15	PK+	150.0	V	182.1	3.93
6	17735.000	47.49	52.75	74.00	21.25	PK+	150.0	V	182.1	5.26


REPORT NO.: E01A23070868F00305 Page 43 of 53

EUT: Smart Projector Temperature: **24.3℃** M/N.: HY300 **Humidity:** 54%RH **Power Rating:** Mode: 802.11a 5825MHz AC 120V/60Hz **Test Engineer: Test Time:** 2023-08-30 **Berny**

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1						DIC:	_ /	11	182.1	` '
ı	5249.000	56.32	48.62	74.00	25.38	PK+	150.0	Н	102.1	-7.7
2	5928.000	52.26	47.40	74.00	26.60	PK+	150.0	Н	182.1	-4.86
3	9345.000	48.98	47.92	74.00	26.08	PK+	150.0	I	182.1	-1.06
4	11220.000	49.42	50.96	74.00	23.04	PK+	150.0	Η	182.1	1.54
5	15950.000	48.73	52.22	74.00	21.78	PK+	150.0	Η	182.1	3.49
6	17710.000	47.14	51.92	74.00	22.08	PK+	150.0	I	182.1	4.78

REPORT NO.: E01A23070868F00305 Page 44 of 53

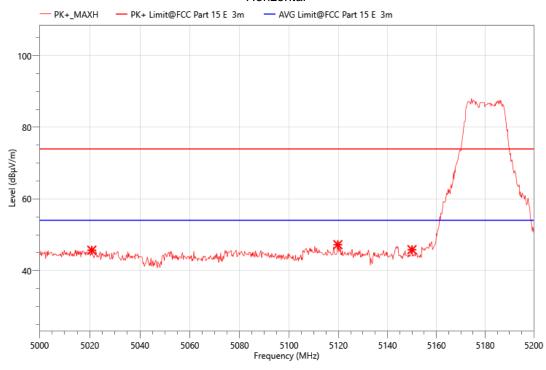
EUT: Smart Projector Temperature: 24.3℃ M/N.: HY300 **Humidity:** 54%RH 802.11a 5825MHz **Power Rating:** Mode: AC 120V/60Hz **Test Time: Test Engineer: Berny** 2023-08-30

No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
NO.	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Det.	(cm)	FUI.	(deg)	(dB)
1	5893.000	52.65	47.56	74.00	26.44	PK+	150.0	V	182.1	-5.09
2	8835.000	49.82	48.24	74.00	25.76	PK+	150.0	V	182.1	-1.58
3	11450.000	48.64	49.42	74.00	24.58	PK+	150.0	V	182.1	0.78
4	13045.000	49.01	49.31	74.00	24.69	PK+	150.0	V	182.1	0.3
5	16230.000	47.22	51.57	74.00	22.43	PK+	150.0	V	182.1	4.35
6	17735.000	46.60	51.86	74.00	22.14	PK+	150.0	V	182.1	5.26

Note: 1.All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

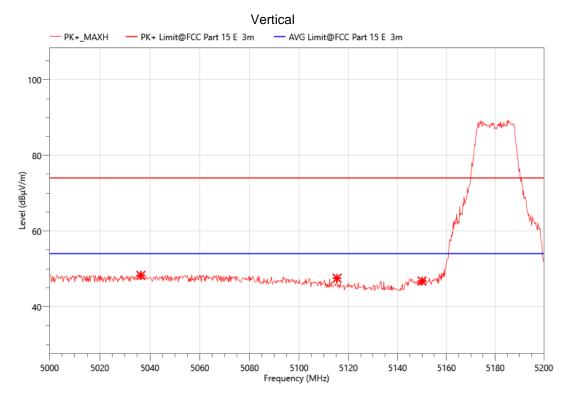
2.Emission Level= Reading Level+Probe Factor +Cable Loss.

 $3.EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$


d is the measurement distance in 3 meters.

4.802.11a, 802.11n HT20, 802.11n HT40, 802.11ac VHT20, 802.11ac VHT40, 802.11ax HE20, 802.11ax HE40, all has been tested, the worst case is 802.11a, only shown the worst case.

Band Edge Band I 5150-5250MHz


802.11ax HE20

Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	DCI.	(cm)	1 01.	(deg)	(dB)
5020.800	54.29	45.69	74.00	28.31	PK+	150.0	Ι	182.1	-8.6
5119.800	55.08	47.24	74.00	26.76	PK+	150.0	Н	182.1	-7.84
5150.000	54.07	45.84	74.00	28.16	PK+	150.0	Н	182.1	-8.23

REPORT NO.: E01A23070868F00305 Page 46 of 53

Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
5036.400	56.97	48.29	74.00	25.71	PK+	150.0	V	182.1	-8.68
5115.400	55.36	47.53	74.00	26.47	PK+	150.0	V	182.1	-7.83
5150.000	55.02	46.79	74.00	27.21	PK+	150.0	V	182.1	-8.23

Note:1.802.11a, 802.11n HT20, 802.11n HT40, 802.11ac VHT20, 802.11ac VHT40, 802.11ax HE20 ,802.11ax HE40, all has been tested, the worst case is 802.11ax HE20, only shown the worst case.

2. The high channel main frequency is too far away from the restricted band and does not require testing.

Band IV(5.725-5.85 GHz)

Note: The main frequency is too far away from the restricted band and does not require testing.

REPORT NO.: E01A23070868F00305 Page 47 of 53

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

Pass

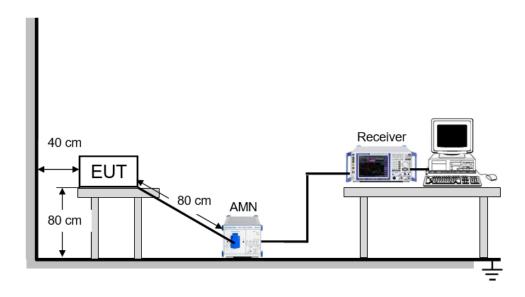
REPORT NO.: E01A23070868F00305 Page 48 of 53

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

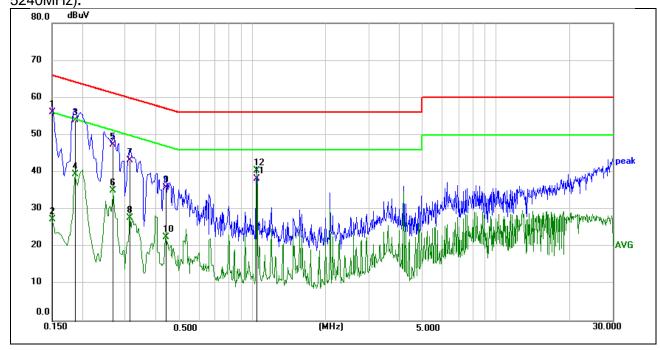

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

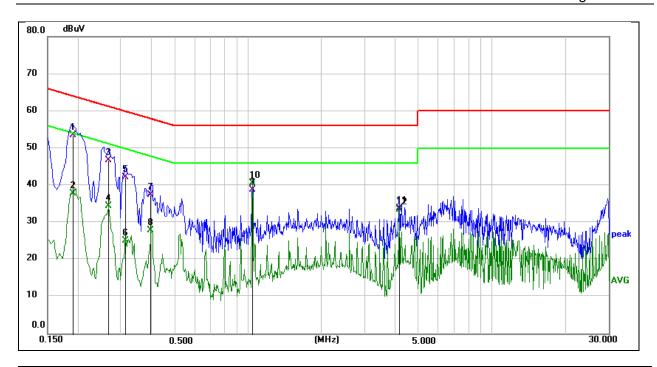

TEST ENVIRONMENT

Temperature	26 ℃	Relative Humidity	54%RH
Atmosphere Pressure	101kPa		

REPORT NO.: E01A23070868F00305 Page 49 of 53

TEST RESULTS

All the modes have been tested, only the worst data was recorded in the report (802.11ax HE20 5240MHz).



EUT: **Smart Projector** Phase: L1 M/N.: **HY300 Temperature:** 26℃ Mode: 802.11ax HE20 5240MHz **Humidity:** 54%RH **Test Engineer:** Aiden **Power Rating:** AC120V/60Hz

Test Time: 2023-08-04

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)	
1	0.1500	46.34	9.76	56.10	66.00	-9.90	QP
2	0.1500	17.60	9.76	27.36	56.00	-28.64	AVG
3	0.1860	44.09	9.81	53.90	64.21	-10.31	QP
4	0.1860	29.50	9.81	39.31	54.21	-14.90	AVG
5	0.2670	37.58	9.72	47.30	61.21	-13.91	QP
6	0.2670	25.31	9.72	35.03	51.21	-16.18	AVG
7	0.3120	33.29	9.91	43.20	59.92	-16.72	QP
8	0.3120	17.84	9.91	27.75	49.92	-22.17	AVG
9	0.4380	25.88	9.92	35.80	57.10	-21.30	QP
10	0.4380	12.59	9.92	22.51	47.10	-24.59	AVG
11	1.0410	28.51	9.79	38.30	56.00	-17.70	QP
12	1.0410	30.62	9.79	40.41	46.00	-5.59	AVG

REPORT NO.: E01A23070868F00305 Page 50 of 53

Phase: **EUT: Smart Projector** N M/N.: HY300 **Temperature:** 26°C Mode: 802.11ax HE20 5240MHz **Humidity:** 54%RH **Test Engineer:** Aiden **Power Rating:** AC120V/60Hz

Test Time: 2023-08-04

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)	
1	0.1905	43.65	9.75	53.40	64.01	-10.61	QP
2	0.1905	28.03	9.75	37.78	54.01	-16.23	AVG
3	0.2670	37.01	9.79	46.80	61.21	-14.41	QP
4	0.2670	24.74	9.79	34.53	51.21	-16.68	AVG
5	0.3120	32.39	9.71	42.10	59.92	-17.82	QP
6	0.3120	15.32	9.71	25.03	49.92	-24.89	AVG
7	0.3975	27.75	9.75	37.50	57.91	-20.41	QP
8	0.3975	18.12	9.75	27.87	47.91	-20.04	AVG
9	1.0410	28.93	9.87	38.80	56.00	-17.20	QP
10	1.0410	30.63	9.87	40.50	46.00	-5.50	AVG
11	4.1640	23.88	9.92	33.80	56.00	-22.20	QP
12	4.1640	23.43	9.92	33.35	46.00	-12.65	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

REPORT NO.: E01A23070868F00305 Page 51 of 53

PENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

Please refer to report E01A23070868F00307.

REPORT NO.: E01A23070868F00305 Page 52 of 53

APPENDIX: PHOTOGRAPHS OF THE EUT

Please refer to report E01A23070868F00308.

REPORT NO.: E01A23070868F00305 Page 53 of 53

--- END OF REPORT---