FCC TEST REPORT

FCC ID:2ASBQ-65AMVF58

Report No. : SSP24080153-1E

Applicant : Shanghai I-Pivot Intelligent Technology Co., Ltd

Product Name: 65inch interactive kiosk, single sided screen

Model Name : 65AMVF58-P03-Bk

Test Standard: FCC Part 15.225

Date of Issue : 2024-08-23

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 29

APPROVE

Test Report Basic Information

Applicant...... Shanghai I-Pivot Intelligent Technology Co., Ltd

Room 404, Unit 62, No. 4499 Dushi Road, Minhang District, Shanghai, China,

Address of Applicant..... 200000

Manufacturer...... Shanghai I-Pivot Intelligent Technology Co., Ltd

Room 404, Unit 62, No. 4499 Dushi Road, Minhang District, Shanghai, China,

Address of Manufacturer.....: 200000

Product Name...... 65inch interactive kiosk, single sided screen

Brand Name..... -

Main Model...... 65AMVF58-P03-Bk

Series Models...... 65AMVF59-P03-Bk

FCC Part 15 Subpart C

ANSI C63.4-2014

Test Standard...... ANSI C63.10-2013

Test Result...... PASS

Tested By (Coke Huang)

Reviewed By...... Lieber Ouyang)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 29

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	7
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	9
2. Summary of Test Results	10
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	11
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	12
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions	23
6.1 Standard and Limit	23
6.2 Test Procedure	23
6.3 Test Data and Results	23
7. Frequency Stability	26
7.1 Standard and Limit	26
7.2 Test Procedure	26
7.3 Test Data and Results	26
8. Occupied Bandwidth	28
8.1 Standard and Limit	28
8.2 Test Procedure	28
8.3 Test Data and Results	28

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-08-23	Initial Release	Lahm Peng

FCC Test Report Page 4 of 29

1. General Information

1.1 Product Information

Product Name:	65inch interactive kiosk,single sided screen
Trade Name:	-
Main Model:	65AMVF58-P03-Bk
Series Models:	65AMVF59-P03-Bk
Rated Voltage:	AC 100-240V, 50/60Hz
Power Adapter:	-
Battery:	-
Test Sample No:	SSP24080153-1
Hardware Version:	V1.0
Software Version:	V1.0

Report No: SSP24080153-1E

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification			
Wireless Standard:	RFID		
Operating Frequency:	13.56MHz		
Max. Field Strength:	70.83dBuV/m		
Modulation:	FSK		
Antenna Gain:	0dBi		
Type of Antenna:	Loop Antenna		
Type of Device:	☐ Portable Device	Mobile Device	☐ Modular Device

FCC Test Report Page 5 of 29

List of Test Mo	odes				
Test Mode	De	escription		Remarl	ζ
TM1	Tra	ansmitting		13.56MF	łz
TM2		-		-	
TM3		-		-	
List and Detai	ls of Auxiliary	y Cable			
Descrij	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite
-		-		-	-
-		-		-	-
List and Details of Auxiliary Equipment					
Descrip	ption	Manufacturer		Model	Serial Number
-		-		-	-
-				-	

Report No: SSP24080153-1E

FCC Test Report Page 6 of 29

1.3 Compliance Standards

Compliance Standards		
ECC Dant 15 Cubmout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
All measurements contained in this	s report were conducted with all above standards	
According to standards for test	methodology	
ECC Post 15 Culturat C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
	American National Standard for Methods of Measurement of Radio-Noise Emissions	
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40	
	GHz.	
American National Standard of Procedures for Compliance Testing of Unlicense		
ANSI C63.10-2013	Wireless Devices	
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which		
result is lowering the emission, should be checked to ensure compliance has been maintained.		

Report No: SSP24080153-1E

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.	
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,	
	Guangming District, Shenzhen, Guangdong, China	
CNAS Laboratory No.:	L18863	
A2LA Certificate No.:	6893.01	
FCC Registration No:	583813	
ISED Registration No.:	CN0164	

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 29

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
	Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A	
		Radiated Emissi	ons		•	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06	
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06	
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06	
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02	
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06	
Signal Generator	Agilent	N5182A	MY47071192	2024-08-07	2025-08-06	
Radio Tester	ROHDE&SCHWARZ	CMW500	2K50-126968	2024-08-07	2025-08-06	
Temperature Chamber	ASTUOD	TT-5166	53269	2024-03-13	2025-03-12	

Report No: SSP24080153-1E

FCC Test Report Page 8 of 29

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dedicted Projectors	30MHz ∼ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Frequency Stability	9kHz ~ 26GHz	±0.16 ppm
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
DC Voltage	DC 0~30V	±0.1 %
Temperature	-40~50℃	±0.3℃

Report No: SSP24080153-1E

FCC Test Report Page 9 of 29

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.225(a)	Radiated Emissions	Passed
FCC Part 15.225(b)(c)	Out of Band Emissions	Passed
FCC Part 15.225(e)	Frequency Stability	Passed
FCC Part 15.215(c)	Occupied Bandwidth	Passed

Report No: SSP24080153-1E

Passed: The EUT complies with the essential requirements in the standard $\,$

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 29

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24080153-1E

3.2 Test Result

This product has an Loop antenna, fulfill the requirement of this section.

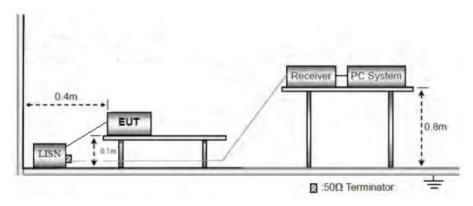
FCC Test Report Page 11 of 29

Report No: SSP24080153-1E

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:


Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver

Attenuation: 10dB

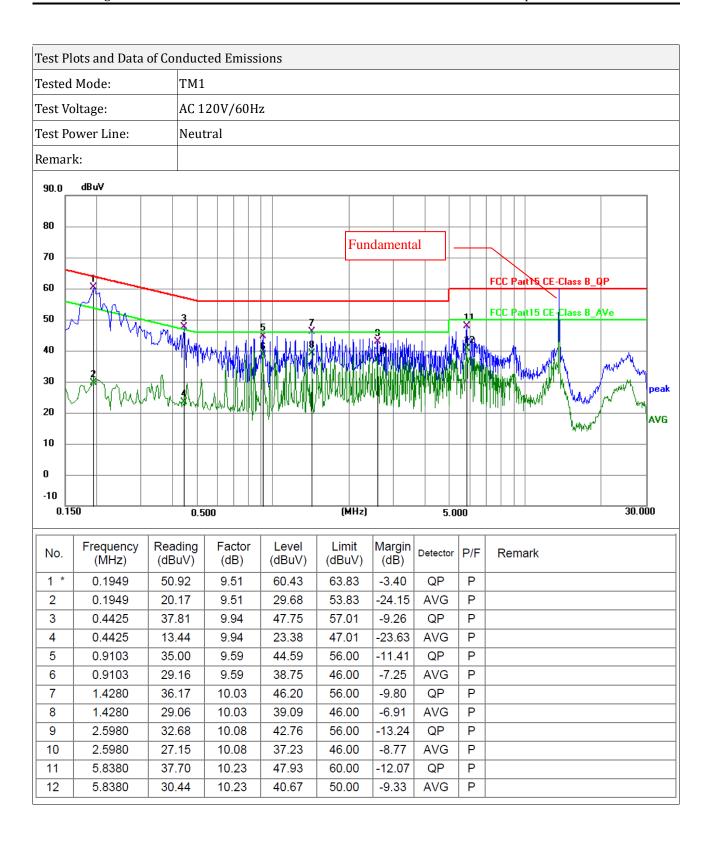
Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

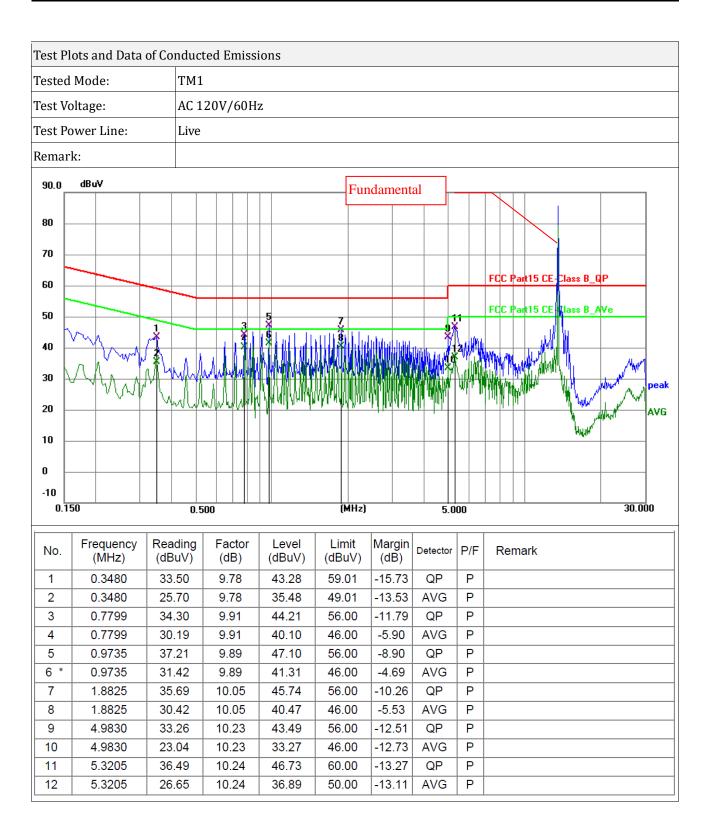
FCC Test Report Page 12 of 29

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP24080153-1E


- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results


Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 29

FCC Test Report Page 14 of 29

FCC Test Report Page 15 of 29

5. Radiated Emissions

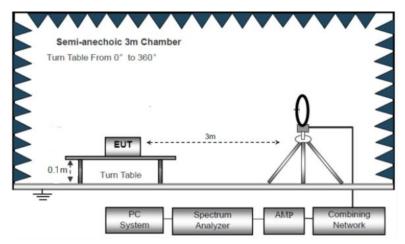
5.1 Standard and Limit

According to §15.225(a), The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848 microvolts/meter at 30 meters.

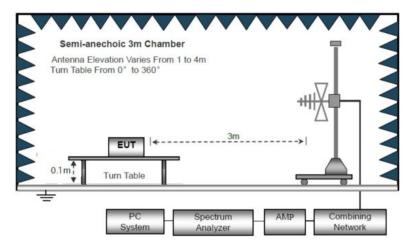
Report No: SSP24080153-1E

According to §15.225(d) The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in §15.209.

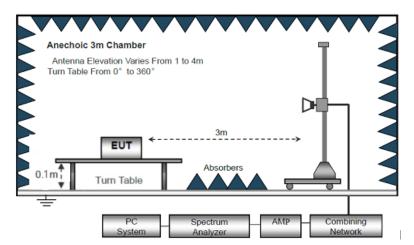
According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


Frequency of Emission	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(kHz)	300	
0.490~1.705	24000/F(kHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	
Note: The more stringent limit applies at transition frequencies.			

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 29

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From $30 \, \text{MHz}$ to $1 \, \text{GHz}$

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 29

a) The EUT is placed on a turntable, which is 0.1m above ground plane for test frequency range below 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24080153-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

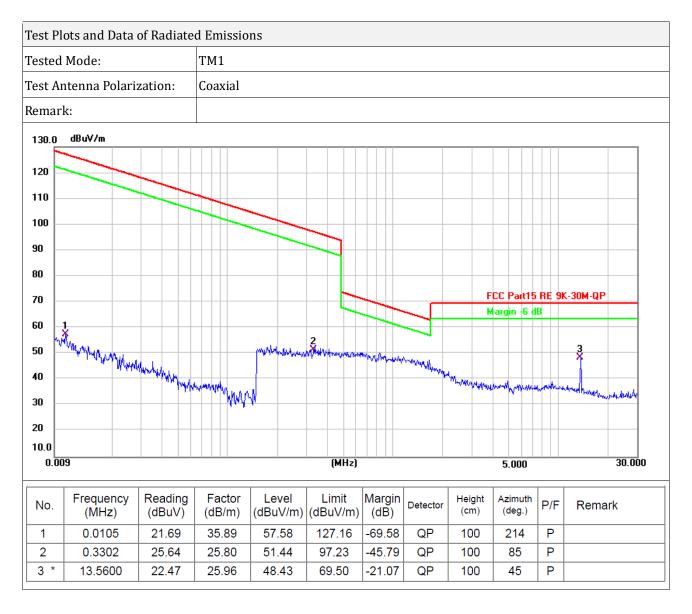
VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold

- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results

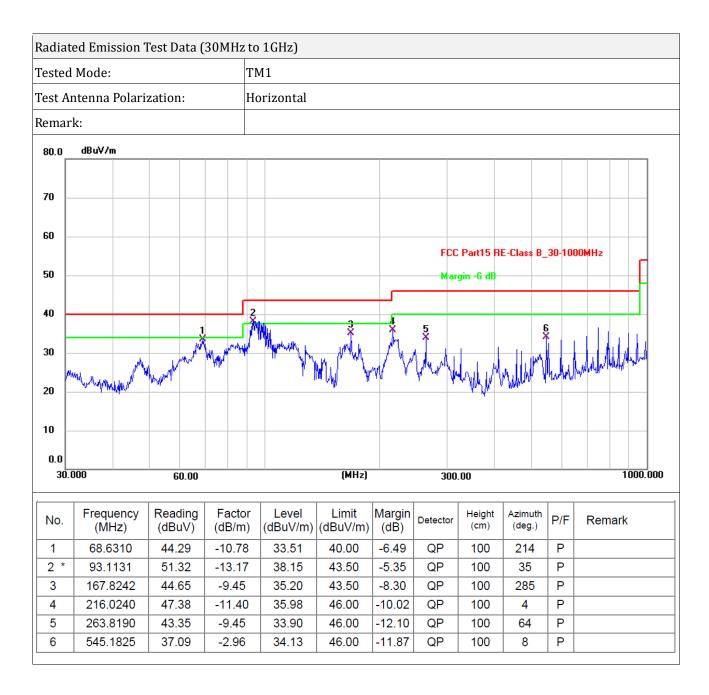

Based on all tested data, the EUT complied with the FCC Part 15.225 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

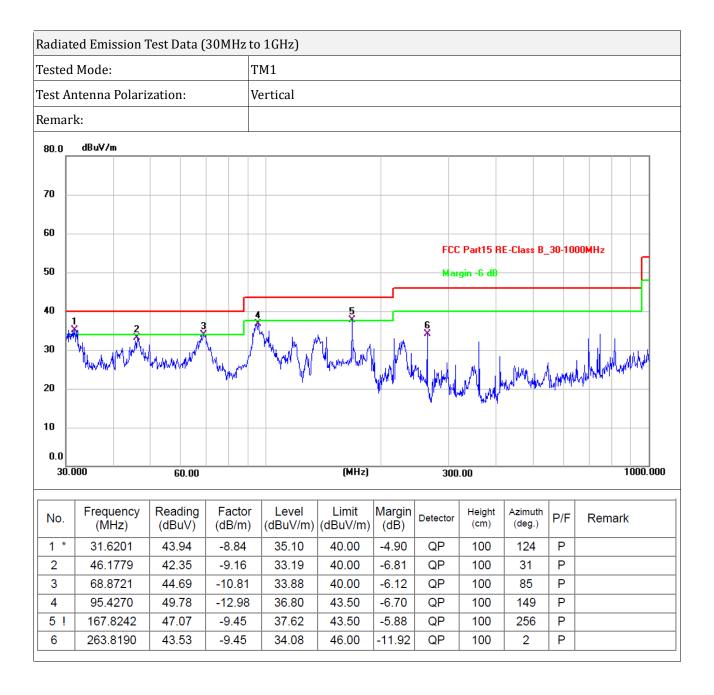
FCC Test Report Page 18 of 29

Test Pl	lots and Data	of Radiate	d Emissio	ns							
Tested Mode:		TM1									
Test Antenna Polarization:			Coplaner								
Remar	·k:										
130.0	dBuV/m										
130.0											
120											
110			$\downarrow\downarrow\downarrow$								
100											
90											
80											
70			FCC Part15 RE 9K-30 Margin -6 dB				(-30M-QP				
60									aryin o u		
50	in month of the second of the	1		market	Mohitotale at was		2				3. Amarin marin danish
40	, Ladryvar Myhh	Maritan .		1	A Late & London	······································	- washington the	lm			3 X
40		y hardway.	Andreas Agricultural de la constantina	.N				- AND	AND THE PROPERTY OF	handra	Angeline no de devicte
30			464	<u>~</u>							
20											
10.0											22.000
0.0	บร				(MHz)				5.000		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	0.0352	14.53	32.39	46.92	116.66	-69.74	QP	100	360	Р	
2 *	1.6450	22.73	26.03	48.76	63.27	-14.51	QP	100	173	Р	
3	13.5600	17.97	25.96	43.93	69.50	-25.57	QP	100	11	Р	

FCC Test Report Page 19 of 29



Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.


Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

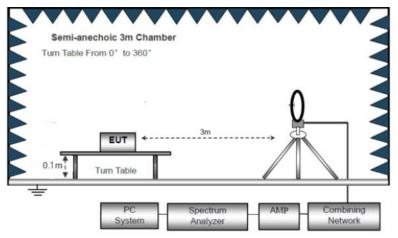
Note 3: For 9kHz-30MHz, Distance extrapolation factor = $40 \log$ (specific distance/test distance)(dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

FCC Test Report Page 20 of 29

FCC Test Report Page 21 of 29

FCC Test Report Page 22 of 29

6. Band-edge Emissions


6.1 Standard and Limit

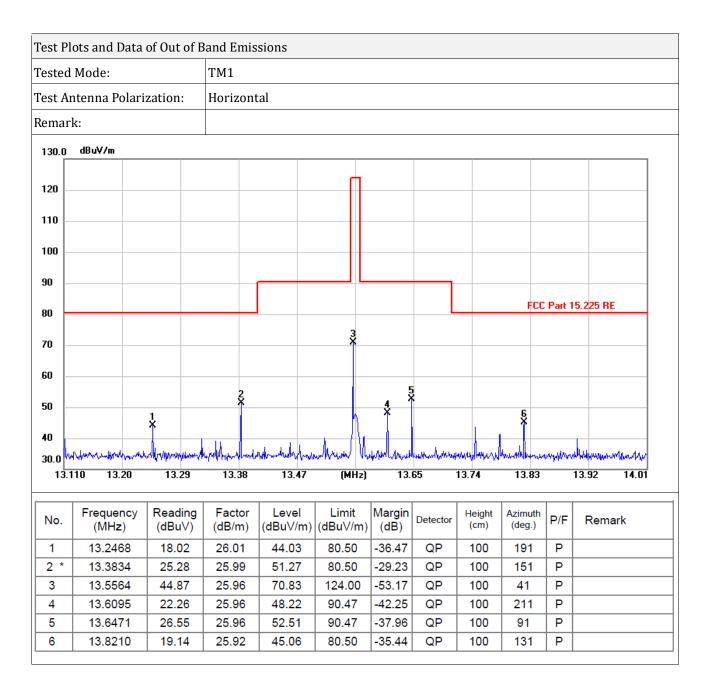
According to FCC 15.225 (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

According to FCC 15.225 (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.4 and section 6.10.

Test Setup Block Diagram


As the radiated emissions testing, set the RBW=10kHz VBW=30kHz, observed the outside band of 13.11MHz to 14.01MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.225 standard limit, and with the worst case as below:

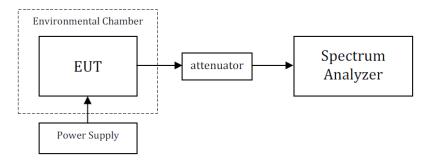
Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 23 of 29

FCC Test Report Page 24 of 29

Test Plots and Data of Out of Band Emissions											
Tested Mode:			TM1								
Test Antenna Polarization:			Vertical	Vertical							
Remar	k:										
130.0	dBuV/m		-								
120					— П						
110											
100											
90									FCC	Part 1	5.225 RE
80										· circ i	<u> </u>
70					1 X						
60											
50 _			4 *		<u> </u>	2 X			5		
40		6 X		1 1	<u>. //</u>				5 X		
30.0	110 12 20	12.20	42.20	13.47	And Market Mark		waterafeatistic		13.83		Martin and and and and and and and and and an
13.110 13.20 13.29 13.38 13.47 (MHz) 13.65 13.74 13.83 13.92 14.01											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	13.5564	44.87	25.96	70.83	124.00	-53.17	QP	100	171	Р	
2	13.6095	22.26	25.96	48.22	90.47	-42.25	QP	100	126	Р	
3	13.6471	26.55	25.96	52.51	90.47	-37.96	QP	100	61	Р	
4 *	13.3834	25.28	25.99	51.27	80.50	-29.23	QP	100	341	Р	
5 6	13.8210 13.2468	19.14 18.02	25.92 26.01	45.06 44.03	80.50 80.50	-35.44 -36.47	QP QP	100	33 251	P	
	13.2408	10.02	20.01	44.03	00.50	-30.47	UP.	100	201		

FCC Test Report Page 25 of 29


7.1 Standard and Limit

According to 15.225(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Report No: SSP24080153-1E

7.2 Test Procedure

Test is conducting under the description of ANSI C63.10-2013 section 6.8.

Test Setup Block Diagram

7.3 Test Data and Results

FCC Test Report Page 26 of 29

Reference Frequency: 13.56MHz, Limit: 100ppm						
Temperature	Power Supplied	Frequency Error				
(°C)	(VAC)	Error (Hz)	Error (ppm)			
50	120	166	12.24			
40	120	142	10.47			
30	30 120		9.44			
20	120	105	7.74			
10	120	95	7.01			
0	120	86	6.34			
-10	120	76	5.60			
-20	120	53	3.91			

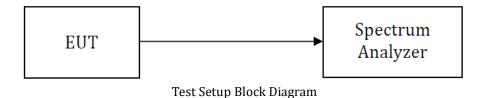
Reference Frequency: 13.56MHz, Limit: 100ppm							
Temperature	Power Supplied	Frequency Error					
(°C)	(VAC)	Error (Hz)	Error (ppm)				
20	108	109	8.04				
20	132	104	7.67				

FCC Test Report Page 27 of 29

8. Occupied Bandwidth

8.1 Standard and Limit

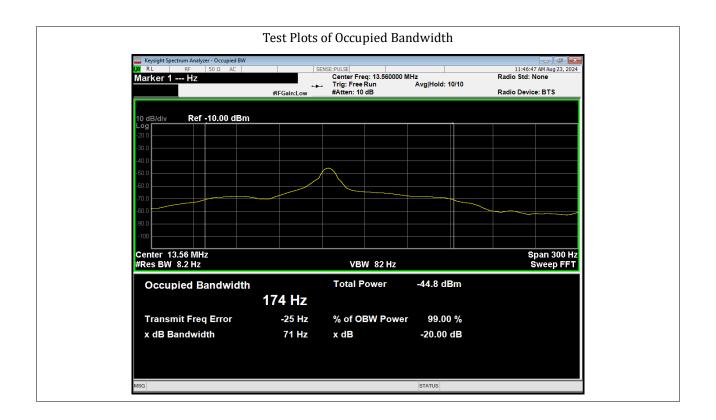
According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.


Report No: SSP24080153-1E

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 8.2Hz, VBW = 82Hz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.


All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

8.3 Test Data and Results

FCC Test Report Page 28 of 29

Test Frequency	20dB Bandwidth	99% Bandwidth
13.56MHz	71Hz	174Hz

***** END OF REPORT *****

FCC Test Report Page 29 of 29