



Contact person
Andreas Johnson
Electronics
+46 10 516 57 86
andreas.johnson@ri.se

Date Reference 7P01338-FWL

Page 1 (2) Ac



Ericsson AB Anders Karlsson BURA DURA RP QRM Torshamnsgatan 21 164 80 Stockholm

# Radio measurements on Radio 2219 B5 radio equipment with FCC ID TA8AKRC161678-1 and IC: 287AB-AS1616781

(5 appendices)

# **Test object**

Product name: Radio 2219 B5 Product number: KRC 161 678/1

# **Summary**

See appendix 1 for details.

| Standard             | Compliant                              | Appendix |   |
|----------------------|----------------------------------------|----------|---|
| FCC CFR 47 / IC RS   |                                        |          |   |
|                      |                                        |          |   |
| 2.1046 / RSS-132 5.4 | RF power output                        | Yes      | 2 |
| 2.1051 / RSS-132 5.5 | Spurious emission at antenna terminals | Yes      | 3 |
| 2.1053 / RSS-132 5.5 | Field strength of spurious radiation   | Yes      | 4 |

#### SP Technical Research Institute of Sweden

**Electronics - EMC** 

Performed by Examined by

Tomas Lennhager Monika Fuller



# **Table of contents**

| Description of the test object         | Appendix 1 |
|----------------------------------------|------------|
| Purpose of test                        | Appendix 1 |
| Operation modes during measurements    | Appendix 1 |
| RF power output                        | Appendix 2 |
| Spurious emission at antenna terminals | Appendix 3 |
| Field strength of spurious radiation   | Appendix 4 |
| External photos                        | Appendix 5 |



### Description of the test object related to multi RAT WCDMA + LTE mode

Equipment: Radio equipment Radio 2219 B5

Product number KRC 161 678/1 FCC ID TA8AKRC161678-1 IC: 287AB-AS1616781

HVIN AS1616781

Hardware revision state: R1A

Frequency range: TX: 869 - 894 MHz

RX: 824 - 849 MHz

IBW: 25 MHz

Output power: Max 80 W/ carrier for WCDMA, LTE ≥5 MHz channel bandwidth

Max 20 W/ carrier for LTE ≤3 MHz channel bandwidth

Max output power 80 W/ antenna port

Antenna ports: 2 TX/RX ports

RF configurations: LTE: 1-4 carriers/ port (2x 10 MHz, 1x 15 MHz)

WCDMA: 1-4 carriers/ port

Total numbers of carriers: 6/ port

LTE: TX Diversity, 2x2 MIMO, 4x4 MIMO<sup>1</sup> and NB IoT in-band

operation.

WCDMA: 2x2 MIMO

Contiguous Spectrum (CS), Non-Contiguous Spectrum (NCS),

Carrier Aggregation (CA) inter-band<sup>2</sup> and intra-band

RF power Tolerance: +0.6/-2.0 dB

CPRI Speed 9.8 Gbit/s

Channel bandwidth: WCDMA: 3.8 and 5 MHz

LTE: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz and 15 MHz

Modulations: WCDMA: QPSK, 16QAM and 64QAM

LTE: QPSK, 16QAM, 64QAM and 256QAM

Nominal supply voltage: -48VDC

The information above is supplied by the manufacturer.

<sup>&</sup>lt;sup>1</sup> 4x4 MIMO requires an additional unit.

<sup>&</sup>lt;sup>2</sup> Carrier Aggregation (CA) inter-band requires an additional unit operating on the other band.



# **Operation modes during measurements**

MSR, WCDMA + LTE

WCDMA measurements were performed with the test object transmitting test models as defined in 3GPP TS 25.141. Test model 1 (TM1) was used to represent QPSK. Test model 5 (TM5) to represent 16QAM modulation and Test model 6 (TM6) to represent 64QAM modulation.

LTE measurements were performed with the test object transmitting test models as defined in 3GPP TS 36.141. Test model E-TM1.1 was used to represent QPSK, test model E-TM3.2 to represent 16QAM, test model E-TM3.1 to represent 64QAM modulation and test model E-TM3.1A to represent 256QAM modulation.

All measurements were performed with the test object configured for maximum transmit power. The measured configurations covers worst case settings. The settings below were used for all measurements if not otherwise noted.

WCDMA MIMO mode TM5: 8 HS-PDSCH at 240ksps + 30 DPCH:s at 30 ksps (SF=128) Channel bandwidth 5 MHz

LTE MIMO mode E-TM1.1 Channel bandwidth 5 MHz.

#### **Conducted measurements**

The test object was supplied with -48 VDC by an external power supply. Additional connections are documented in the set-up drawings for conducted measurements.

### **Radiated measurements**

The test object was powered with -48 VDC by an external power supply. Additional connections are documented in the set-up drawings for radiated measurements.

#### **Purpose of test**

The purpose of the tests is to verify compliance to the performance characteristics specified in applicable items of FCC CFR 47 and Industry Canada RSS-132 and RSS-Gen. Test scope limited to multi RAT WCDMA + LTE mode.



#### References

Measurements were done according to relevant parts of the following standards:

ANSI 63.4-2014

ANSI/TIA/EIA-603-D-2010

CFR 47 part 2, April, 2017

CFR 47 part 22, April, 2017

KDB 662911 D01 Multiple Transmitter Output v02r02

KDB 971168 D01 Power Meas License Digital Systems v02r02

KDB 971168 D03 IM Emission Repeater Amp v01

3GPP TS 25.141 V13.3.0

3GPP TS 36.141 V13.6.0

3GPP TS 37.141 V13.5.0

RSS-Gen Issue 4

RSS-132 Issue 3



# Test frequencies used for conducted and radiated measurements

TX test frequencies, conducted measurements:

Symbolic name:2W1L:

|       | Frequency | EARFCN/ | Bandwidth | Test model |
|-------|-----------|---------|-----------|------------|
|       | [MHz]     | UARFCN  | [MHz]     |            |
| WCDMA | 871.4     | 4357    | 5         | TM5        |
| WCDMA | 876.4     | 4382    | 5         | TM5        |
| LTE   | 891.5     | 2625    | 5         | E-TM1.1    |

According to FCC KDB 971168 D03

Symbolic name:3W3L:

| Symbolic manie: 1 EZ. |           |         |           |            |
|-----------------------|-----------|---------|-----------|------------|
|                       | Frequency | EARFCN/ | Bandwidth | Test model |
|                       | [MHz]     | UARFCN  | [MHz]     |            |
| WCDMA                 | 871.4     | 4357    | 5         | TM5        |
| WCDMA                 | 876.4     | 4382    | 5         | TM5        |
| LTE                   | 879.4     | 2504    | 1.4       | E-TM1.1    |
| WCDMA                 | 888.2     | 4441    | 5         | TM5        |
| LTE                   | 891.4     | 2625    | 5         | E-TM1.1    |
| LTE                   | 893.3     | 2643    | 5         | E-TM1.1    |

TX test frequencies, radiated measurements:

Symbolic name: WL1:

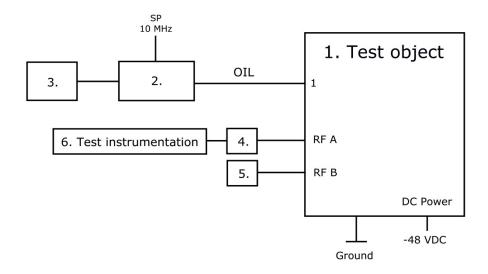
|       | Frequency | EARFCN/ | Bandwidth | Test model |
|-------|-----------|---------|-----------|------------|
|       | [MHz]     | UARFCN  | [MHz]     |            |
| WCDMA | 871.4     | 4357    | 5         | TM5        |
| LTE   | 891.5     | 2625    | 5         | E-TM1.1    |

Symbolic name:WL2:

|       | Frequency | EARFCN/ | Bandwidth | Test model |
|-------|-----------|---------|-----------|------------|
|       | [MHz]     | UARFCN  | [MHz]     |            |
| WCDMA | 871.4     | 4357    | 5         | TM5        |
| WCDMA | 876.4     | 4382    | 5         | TM5        |
| LTE   | 891.5     | 2625    | 5         | E-TM1.1    |

According to FCC KDB 971168 D03

Symbolic name: WL3:


|       | Frequency | EARFCN/ | Bandwidth | Test model |
|-------|-----------|---------|-----------|------------|
|       | [MHz]     | UARFCN  | [MHz]     |            |
| WCDMA | 871.4     | 4357    | 5         | TM5        |
| LTE   | 886.5     | 2575    | 5         | E-TM1.1    |
| LTE   | 891.5     | 2625    | 5         | E-TM1.1    |

According to FCC KDB 971168 D03

All RX frequencies were configured 45 MHz below the corresponding TX frequency according the applicable duplex offset for the operating band.



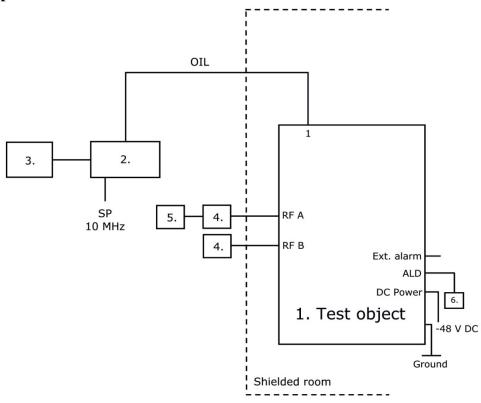
# **Test setup: Conducted measurements**



# **Test object:**

1. Radio 2219 B5, KRC 161 678/1, rev. R1A, s/n: D825138266 With Radio Software: CXP 901 7316/2, rev. R64HS. FCC ID TA8AKRC161678-1 and IC: 287AB-AS1616781

# **Associated equipment:**


2. Testing Equipment: CT10, LPC 102 487/1, rev. R1C, s/n: T01F265031, BAMS – 1000797753 with software CXA 104 446/1, rev. R8U

# **Functional test equipment:**

| 3. | HP EliteBook 8560w, BAMS – 1001236850                                            |  |
|----|----------------------------------------------------------------------------------|--|
| 4. | RF Attenuator: SP number: 902 282                                                |  |
| 5. | Terminator, 50 ohm                                                               |  |
| 6. | SP Test Instrumentation according to measurement equipment list for each test.   |  |
|    | The signal analyzer was connected to the SP 10 MHz reference standard during all |  |
|    | measurements.                                                                    |  |



# **Test setup: Radiated measurements**



#### **Test object:**

Ground wire

1. Radio 2219 B5, KRC 161 678/1, rev. R1A, s/n: D825138266 With Radio Software: CXP 901 7316/2, rev. R64HS. FCC ID TA8AKRC161678-1 and IC: 287AB-AS1616781

#### **Associated equipment:**

| _ = |    |                                                                   |  |  |
|-----|----|-------------------------------------------------------------------|--|--|
|     | 2. | Testing Equipment:                                                |  |  |
|     |    | CT10, LPC 102 467/1, rev. R1C, s/n: T01F375047, BAMS – 1001466801 |  |  |
|     |    | with software CXA 104 446/1, rev. R8U                             |  |  |

**Functional test equipment:** 

| 3. | HP EliteBook 8560w, BAMS – 1001236850                        |  |
|----|--------------------------------------------------------------|--|
| 4. | Attenuator/ Terminator                                       |  |
| 5. | 6. R&S ESIB 26, SP no: 503 292, for supervision purpose only |  |

**Interfaces: Type of port:** Power: -48VDC DC Power RF port A, 4.3-10 connector, combined TX/RX Antenna RF port B, 4.3-10 connector, combined TX/RX Antenna 1, optical interface Signal 2, optical interface, not used in this configuration Signal EXT Alarm, shielded multi-wire Signal ALD, shielded multi-wire Signal

Ground

# Measurement equipment

REPORT

|                                           | Calibration Due | SP number |
|-------------------------------------------|-----------------|-----------|
| Test site Tesla                           | 2019-12         | 503 881   |
| R&S ESU 40                                | 2017-07         | 901 385   |
| R&S FSQ 40                                | 2017-07         | 504 143   |
| R&S FSW 43                                | 2017-08         | 902 073   |
| Control computer with                     | -               | 503 899   |
| R&S software EMC32 version 9.15.0         |                 |           |
| High pass filter 1-18 GHz                 | 2017-06         | 901 501   |
| High pass filter 1-20 GHz                 | 2017-06         | 901 373   |
| RF attenuator Weinschel 6905-40-11-LIM    | 2018-03         | 902 282   |
| Coaxial cable Sucoflex 102EA              | 2018-03         | BX50191   |
| Coaxial cable Sucoflex 102EA              | 2018-03         | BX50236   |
| ETS Lindgren BiConiLog Antenna 3142E      | 2019-03         | BX61914   |
| EMCO Horn Antenna 3115                    | 2019-12         | 502 175   |
| μComp Nordic, Low Noise Amplifier         | 2017-12         | 901 545   |
| Temperature and humidity meter, Testo 635 | 2017-05         | 504 023   |
| Temperature and humidity meter, Testo 625 | 2017-06         | 504 188   |

### **Uncertainties**

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor k=2 (95% level of confidence).

Compliance evaluation is based on a shared risk principle with respect to the measurement uncertainty.

# Reservation

The test results in this report apply only to the particular test object as declared in the report.

### **Delivery of test object**

The test object was delivered 2017-02-14.

## Manufacturer's representative

Mikael Jansson, Ericsson AB.

# **Test engineers**

Tomas Lennhager, Tomas Isbring and Andreas Johnson, RISE.

# **Test participant**

None.



# RF power output measurements according to CFR 47 2.1046 / IC RSS-132 5.4

| Date       | Temperature  | Humidity  |
|------------|--------------|-----------|
| 2017-04-07 | 24 °C ± 3 °C | 29% ± 5 % |

#### Test set-up and procedure

The test object was connected to a signal analyzer measuring peak and RMS output power in CDF mode. A RBW of 80 MHz was used.

| Measurement equipment                    | SP number |
|------------------------------------------|-----------|
| Rohde & Schwarz signal analyser FSW 43   | 902 073   |
| RF attenuator                            | 502 282   |
| Testo 635 temperature and humidity meter | 504 203   |

Measurement uncertainty: 1.1 dB

#### **Results**

Rated output power at RF connector 49 dBm/ port.

| Symbolic name | Port RFA<br>[RMS dBm/ dB PAR] | Port RFB<br>[RMS dBm/ dB PAR] | Total power <sup>1)</sup> [RMS dBm] |
|---------------|-------------------------------|-------------------------------|-------------------------------------|
| 2W1L          | 48.29/ 7.28                   | 48.34/ 7.30                   | 51.33                               |
| 3W3L          | 48.63/ 7.36                   | 48.71/7.38                    | 51.68                               |

<sup>1):</sup> summed output power according to FCC KDB662911 Multiple transmitter output

#### Remark

This unit is tested without antenna. ERP/EIRP compliance is addressed at the time of licensing, as required by the responsible FCC/IC Bureau(s). Licensee's are required to take into account maximum allowed antenna gain used in combination with above power settings to prevent the radiated output power to exceed the limits.

# Limits

CFR47  $\$  22.913: The effective radiated power ERP shall not exceed 1000 W or 800 W/ MHz

(PSD) per sector.

The PAR (0.1%) shall not exceed 13 dB.

RSS-132 5.4: The average equivalent isotropically radiated power (e.i.r.p.) limits in

SRSP-503 apply, resulting in a maximum EIRP of 1640 W.

The PAR (0.1%) shall not exceed 13 dB.

| Complies? Yes |  |
|---------------|--|
|---------------|--|



# Conducted spurious emission measurements according to CFR 47 2.1051 / IC RSS-132 5.5

| Date       | Temperature                                    | Humidity       |
|------------|------------------------------------------------|----------------|
| 2017-04-07 | $24  ^{\circ}\text{C} \pm 3  ^{\circ}\text{C}$ | $29\% \pm 5\%$ |

#### Test set-up and procedure

The measurements were made per definition in § 22.917. The output was connected to a spectrum analyzer with the RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

Before comparing the results to the limit, 6 dB [ $10 \log (4)$ ] should be added according to method c "measure and add  $10 \log (N_{ANT})$ " of FCC KDB662911 D01 Multiple Transmitter Output.

| Measurement equipment                    | SP number |
|------------------------------------------|-----------|
| Rohde & Schwarz signal analyzer FSQ40    | 504 143   |
| RF attenuator                            | 901 508   |
| High pass filter                         | 901 501   |
| Testo 635 temperature and humidity meter | 504 203   |

Measurement uncertainty: 3.7 dB

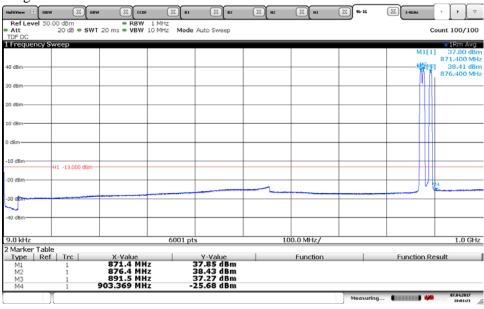
#### Results

| Diagram | Symbolic name Tested Port |      |
|---------|---------------------------|------|
| 1 a+b+c | W2L1                      | RF B |
| 2 a+b+c | W3L3                      | RF A |

#### Remarks

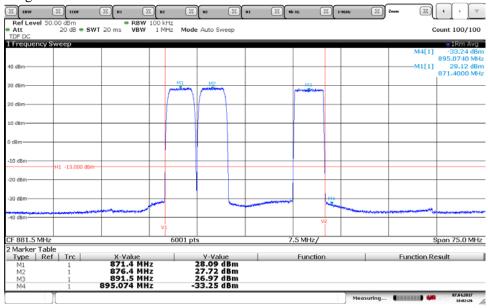
The upper frequency boundary covers 10x the highest TX fundamental frequency. The highest fundamental frequency is 894MHz. The measurements were made up to 9 GHz (10x894 MHz = 8.94 GHz).

#### Limits


CFR 47 § 22.917: Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm per 100 kHz RBW below 1 GHz and 1MHz RBW above 1 GHz.

IC RSS-132 5.5.1.2: Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least  $43 + 10 \log (P) dB$  per any 100 kHz RBW.

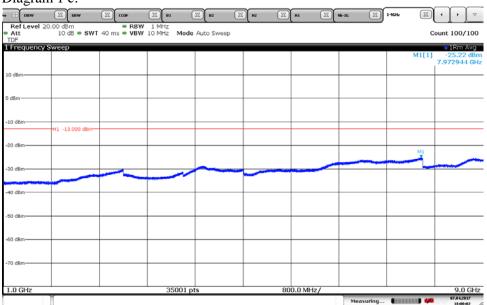
| Complication | Voc |
|--------------|-----|
| Complies?    | res |




### Diagram 1 a:



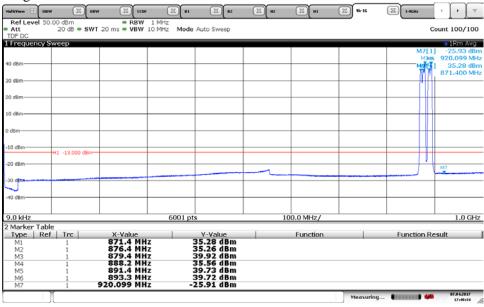
18:01:22 07.04.2017


### Diagram 1 b:



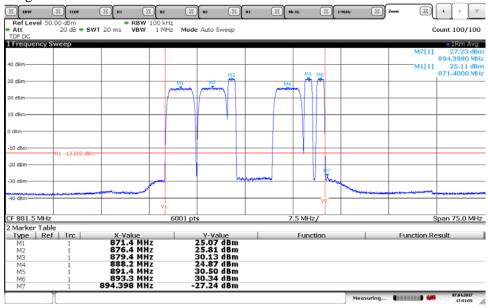
18:02:26 07.04.2017




# Diagram 1 c:



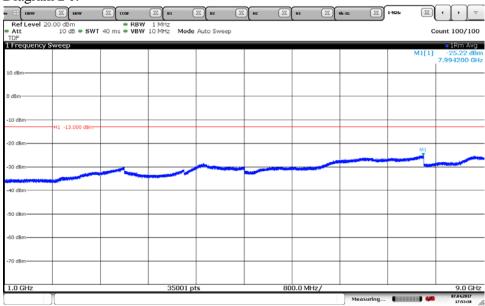
18:00:03 07.04.2017




### Diagram 2 a:



17:49:35 07.04.2017


### Diagram 2 b:



17:51:55 07.04.2017



# Diagram 2 c:



17:53:38 07.04.2017



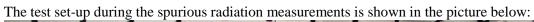
# Field strength of spurious radiation measurements according to 47 CFR 2.1053 / IC RSS-133 5.5

| Date       | Temperature                                    | Humidity   |
|------------|------------------------------------------------|------------|
| 2017-02-22 | $22  ^{\circ}\text{C} \pm 3  ^{\circ}\text{C}$ | 31 % ± 5 % |
| 2017-02-24 | $22  ^{\circ}\text{C} \pm 3  ^{\circ}\text{C}$ | 25 % ± 5 % |

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarization of the antenna. The antenna distance was 3 m in the frequency range 30 MHz – 9 GHz.

The measurement was performed with a RBW of 1 MHz.


A propagation loss in free space was calculated. The used formula was

$$\gamma = 20 \log \left( \frac{4\pi D}{\lambda} \right)$$
,  $\gamma$  is the propagation loss and  $D$  is the antenna distance.

The measurement procedure was as the following:

- A pre-measurement is performed with peak detector. For measurement < 1 GHz the test object was measured in eight directions with the antenna at three heights, 1.0 m,</li>
   1.5 m and 2.0. For measurements > 1 GHz the test object was measured in seventeen directions with the antenna at 1.0 m height.
- 2. Spurious radiation on frequencies closer than 20 dB to the limit in the pre-measurement is scanned 0-360 degrees and the antenna is scanned 1-4 m for maximum response. The emission is then measured with the RMS detector and the RMS value is reported. Frequencies closer than 10 dB to the limit when measured with the RMS detector were measured with the substitution method according to ANSI/TIA/-603-D-2010.







# **Measurement equipment**

| Measurement equipment                     | SP number |
|-------------------------------------------|-----------|
| Semi anechoic chamber Tesla               | 503 881   |
| R&S ESU 40                                | 901 385   |
| EMC 32 ver. 9.15.0                        | 503 899   |
| ETS Lindgren BiConiLog 3142E              | BX61914   |
| ETS Lindgren Horn Antenna 3115            | 502 175   |
| μComp Nordic, Low Noise Amplifier         | 901 545   |
| HP Filter 1-18 GHz                        | 901 501   |
| Temperature and humidity meter, Testo 625 | 504 188   |



# **Test frequencies**

| WCDMA+LTE     |
|---------------|
| Symbolic name |
| WL1           |
| WL2           |
| WL3           |

#### **Results**

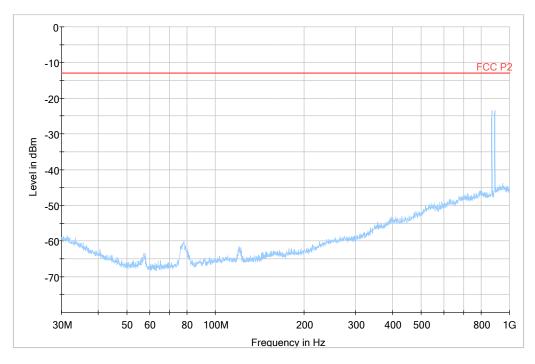
representing worst case:

Multi RAT WCDMA + LTE, symbolic name: WL1, Diagram 1 a-b

|                 | Spurious emission level (dBm)    |                                  |  |
|-----------------|----------------------------------|----------------------------------|--|
| Frequency (MHz) | Vertical                         | Horizontal                       |  |
| 30-9000         | All emission > 20 dB below limit | All emission > 20 dB below limit |  |

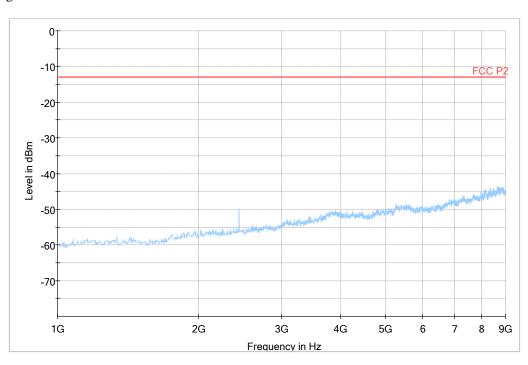
Measurement uncertainty: 3.1 dB

# Limits


CFR 47 §22.917 and IC RSS-132 5.6

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm.

| C1:9        | 17  |
|-------------|-----|
| L Complies? | Yes |




# Diagram 1a:



Note: The emission between 869 MHz to 894 MHz is the carrier frequency and shall be ignored in the context.

# Diagram 1b:





# **External photos**





Rear side



Left side



Right side











Test object label:



# SFP module:

