

TEST REPORT

FCC PART 15.247

Report Reference No. CTL2407232066-WF02

Compiled by: (position+printed name+signature)

Happy Guo (File administrators)

Tested by: (position+printed name+signature)

Jack Wang (Test Engineer)

Approved by: (position+printed name+signature)

Ivan Xie (Manager)

Product Name: Front center console entertainment system assembly

Model/Type reference G050-CENTER-CONSOLE-1

List Model(s).....: N/A

Trade Mark....: N/A

FCC ID...... 2BLND-G050L

Applicant's name Indigo Technologies, Inc.

Address of applicant 73 Holton St. Woburn, MA 01801, USA

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification.....:

Standard: FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of receipt of test item: Aug. 26, 2024

Date of Test Date...... Aug. 26, 2024-Oct. 22, 2024

Date of Issue: Oct. 23, 2024

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL2407232066-WF02	Oct. 23, 2024
	C1L240/232000-WF02	Date of issue

Equipment under Test : Front center console entertainment system assembly

Sample No : CTL2407232066

Model /Type : G050-CENTER-CONSOLE-1

Listed Models : N/A

Applicant : Indigo Technologies, Inc.

Address : 73 Holton St. Woburn, MA 01801, USA

Manufacturer : Indigo Technologies, Inc.

Address : 73 Holton St. Woburn, MA 01801, USA

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Report No.: CTL2407232066-WF02

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2024-10-23	CTL2407232066-WF02	Tracy Qi
100		0	- 0	
1 1 1 1			1 10	
100			200	
	- 1			
		CM		- 40
	0 0			(A) (B)
		3	144	A 10
	The state of the s			10 10 10

	Table of Contents	Page
1. SU	JMMARY	5
1.1.	TEST STANDARDS	5
1.2.	Test Description	
1.3.	Test Facility	
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. GE	ENERAL INFORMATION	8
2.1.	Environmental conditions	8
2.2.	GENERAL DESCRIPTION OF EUT	8
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	g
2.4.	EQUIPMENTS USED DURING THE TEST	10
2.5.	Related Submittal(s) / Grant (s)	
2.6.	Modifications	
3. TE	ST CONDITIONS AND RESULTS	
3.1.	CONDUCTED EMISSIONS TEST	11
3.2.	RADIATED EMISSIONS AND BAND EDGE	
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	22
3.4.	Power Spectral Density	23
3.5.	6dB Bandwidth	24
3.6.	Out-of-band Emissions	25
3.7.	Antenna Requirement	26
4. TE	ST SETUP PHOTOS OF THE EUT	27
e ev	TEDNIAL AND INTERNAL DUOTOS OF THE FLIT	20

V1.0 Page 5 of 28 Report No.: CTL2407232066-WF02

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB 558074 D01 v05r02: KDB558074 D01 15.247 Meas Guidance v05r02

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	N/A
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

V1.0

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co.,Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

V1.0 Page 7 of 28 Report No.: CTL2407232066-WF02

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission9KHz~30MHz	±3.66dB	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C		
Normal Temperature.	25 0		
Relative Humidity:	55 %		
Air Pressure:	101 kPa		

2.2. General Description of EUT

Product Name:	Front center console entertainment system assembly			
Model/Type reference:	G050-CENTER-CONSOLE-1			
Power supply:	DC12V power supply			
2.4G WIFI				
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)			
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/802.11n(H40):OFDM			
Operation frequency: 802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz				
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40): 7			
Channel separation:	5MHz			
Antenna type:	PIFA Antenna			
Antenna gain:	3.02dBi			

Note1: For more details, please refer to the user's manual of the EUT.

Note2: Antenna gain provided by the applicant.

V1.0 Page 9 of 28 Report No.: CTL2407232066-WF02

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/03/06/09/11 were selected for WIFI test.

Operation Frequency WIFI:

Channal	Гио жиз о жи / N Л I I = \	Ob are a al	Гла этта эт (NALL=)
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		200
7	2442		100

Note: The line display in grey were the channel selected for testing

Power Parameters:

Test Software Version	CMD Command					
Frequency	2412/2422MHz	2412/2422MHz 2437MHz 2452/2462MHz				
802.11b	0	0	0			
802.11g	0	0	0			
802.11n(HT20)	0	0	0			
802.11n(HT40)	0	0	0			

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10th Harmonic	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11n(40MHz)/OFDM	13.5 Mbps	3/6/9
- 1	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5 Mbps	3//9

There was 2 test Modes. TM1 to TM2 were shown below:

TM1 : Operate in 2.4G WIFI mode;

TM2 : Idle mode.

1. All test modes were tested, but we only recorded the worst case in this report.

^{***}Note:

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.		Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2-Z5		860014/010	2024/04/30	2025/04/29
Double cone logarithmic antenna	Schwarzbeck	VULB 9168		824	2023/02/13	2026/02/12
EMI Test Receiver	R&S	ESC	CI	1166.5950.03	2024/04/30	2025/04/29
Spectrum Analyzer	Agilent	N902	:0A	US46220290	2024/05/02	2025/05/01
Spectrum Analyzer	Keysight	N902	:0A	MY53420874	2024/05/02	2025/05/01
Horn Antenna	Sunol Sciences Corp.	DRH-118		A062013	2021/12/23	2024/12/22
Active Loop Antenna	Da Ze	ZN30900A		/	2024/04/30	2025/04/29
Amplifier	Agilent	8449B		3008A02306	2024/04/30	2025/04/29
Amplifier	Brief&Smart	LNA-4018		2104197	2024/05/03	2025/05/02
Temperature/Humi dity Meter	Ji Yu	MC501		/	2024/05/04	2025/05/03
Power measurement module	TSTPASS	TSPS2023R		TSCB220016	2024/05/03	2025/05/02
Power Sensor	Agilent	U202 ⁻	1XA	MY53340004	2024/05/04	2025/05/03
Power Sensor	Agilent	U202 ⁻	1XA	MY54080012	2024/05/03	2025/05/02
Spectrum Analyzer	RS	FS	Р	1164.4391.38	2024/05/03	2025/05/02
Test Software						
Name of Software				V	ersion	
TST-PASS				,	V2.0	- 41
EZ_EMC(Below 1GHz)		Sec.	V1.1.4.2			
EZ_EMC((Above 1GHz)				V	1.1.4.2	11.11
	= '((' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '					

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

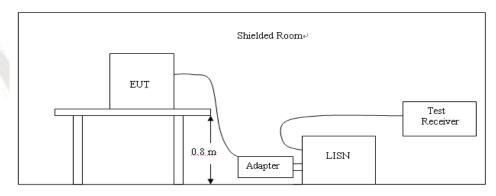
2.6. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 11 of 28 Report No.: CTL2407232066-WF02

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (c	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a Speaker; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

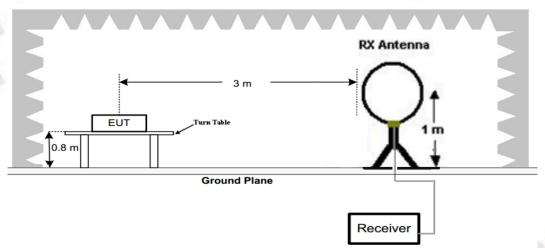
TEST RESULTS

Battery powered products do not require this test.

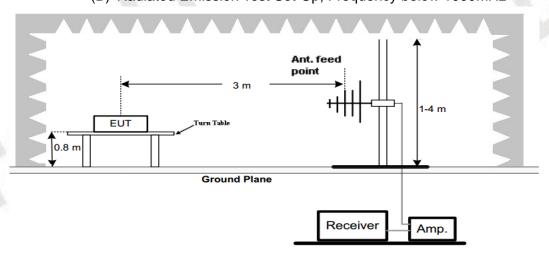
3.2. Radiated Emissions and Band Edge

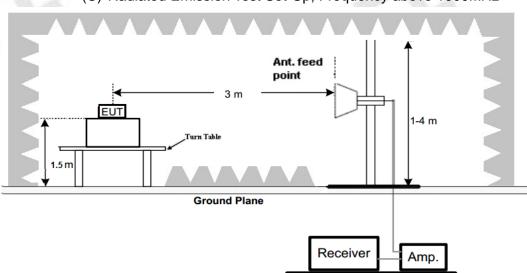
<u>Limit</u>

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Padiated	emission	limite
Naulaicu	CHIDOMUL	111111113


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

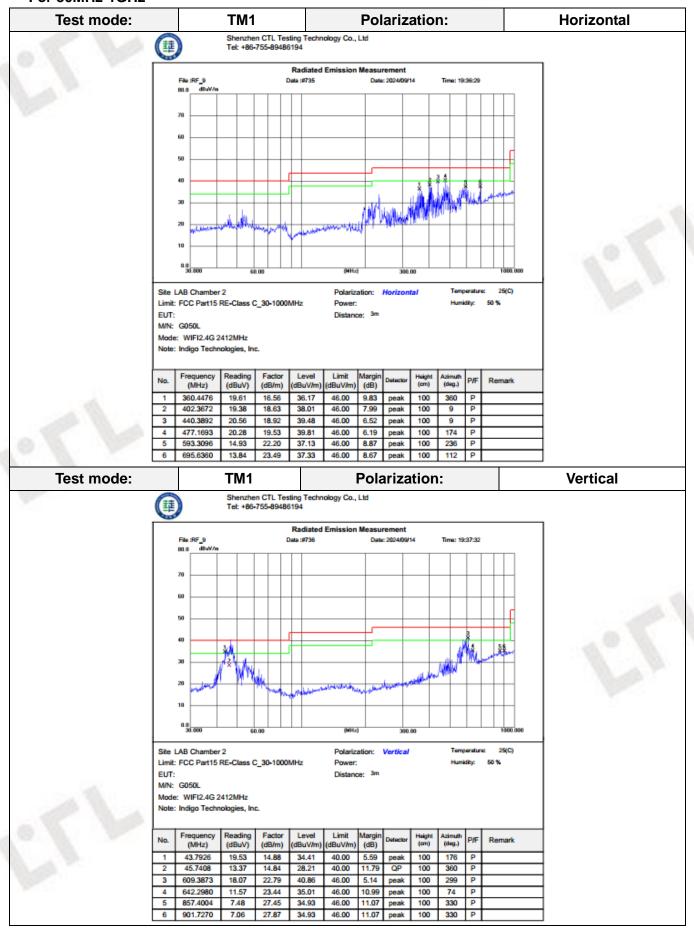

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

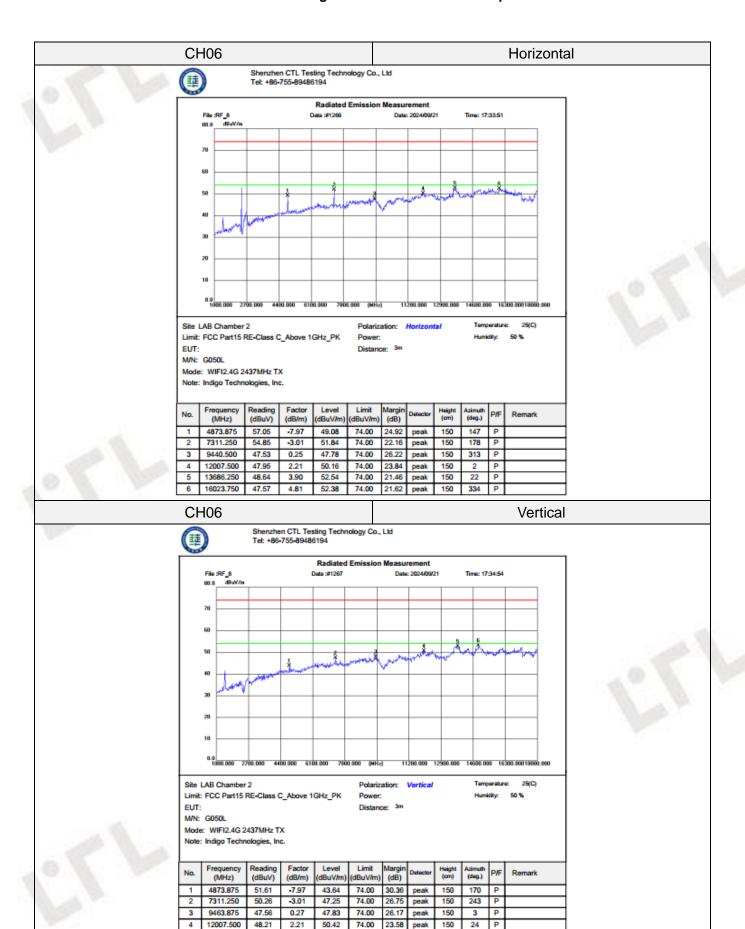

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

TEST RESULTS

Remark:

- 1. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 2. All three channels (lowest/middle/highest) of each mode were measured above1GHz and recorded worst case at 802.11b mode.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, Found the
 emission level are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded
 in report.


For 30MHz-1GHz



For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (H20) /802.11n (H40) all have been tested, only worse case 802.11b is reported

74.00

21,25

74.00 20.92 peak

13790.375

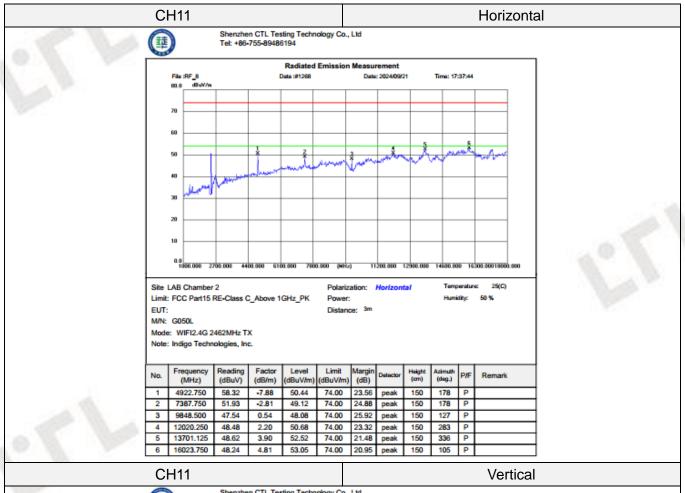
6 14897.500 49.94

49.00

3.75

3.14

52.75


53.08

Р

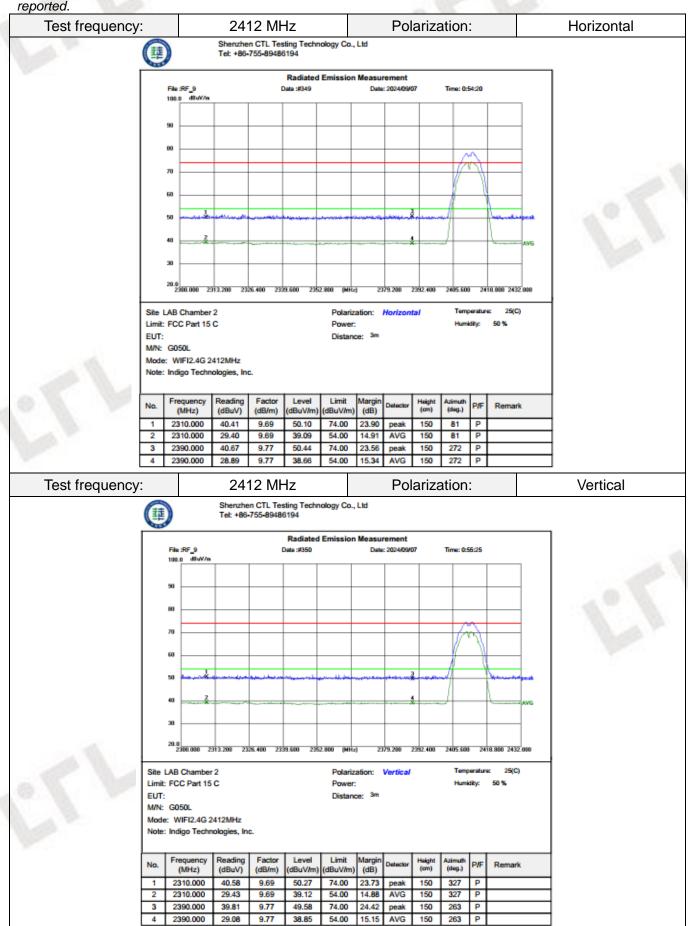
358

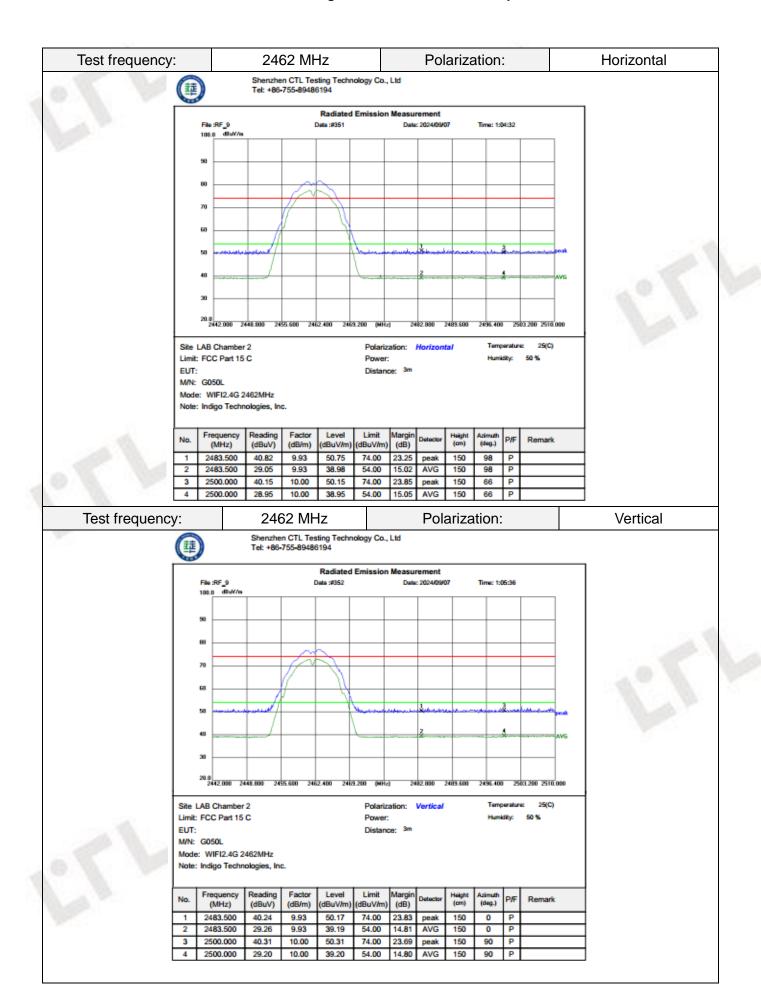
150 76

150

(III)

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194


				Radiated	Emission	Measu	rement					
	File:RF_8			Data :#1269		Date	2024/09/2	1	Time: 17:	38:47		
	80.0 dlluV/m								_			
	70								_			
	60						-	+	-			
								5	A 18			
	50		· k	2	3	. 64	Santant.		~\\\	in jer	44	
			1	بالمارانين	, Sumue	WW.	- T	7				
	40	Market Market	Application of the last					+	_			
	[البسنديان	opin Pagasasiani										
	30								_			
	20											
	10											
	0.0											
	1000.000 2	700.000 44	00.000 610	0.000 780	0.000 (MHz) 11	200.000 1	2900.000	14600.00	10 16	300.00018000.0	100
224	I AD Chambar				Delorie	office.	Montions		Tomo	orahin	er 25/C1	_
	LAB Chamber	_	About 1	OH- DV			Vertical			erature		
imit	: FCC Part15	_	_Above 1	GHz_PK	Power:		Vertical		Temp		e: 25(C) 50 %	
imit	FCC Part15	_	_Above 1	GHz_PK			Vertical					
imit EUT: WN:	FCC Part15	RE-Class 0		GHz_PK	Power:		Vertical					
imit EUT: WN: Mode	: FCC Part15 : : G050L e: WIFI2.4G 2	RE-Class (x	GHz_PK	Power:		Vertical					
imit EUT: WN: Mode	FCC Part15	RE-Class (x	GHz_PK	Power:		Vertical					
imit EUT: WN: Mode	: FCC Part15 : : G050L e: WIFI2.4G 2	RE-Class (x	GHz_PK	Power:		Vertical					
imit UT: MN: Mode Note	G050L e: WIFI2.4G 2 : Indigo Techn	RE-Class (x	Level	Power: Distance			Height	Humi	dity:	50%	
imit UT: MN: Mode Note	: FCC Part15 : : G050L e: WIFI2.4G 2 : Indigo Techn	RE-Class C	X c.	Level	Power: Distance	be: 3m	Vertical Detector	Height (cm)	Humi			
imit UT: MN: Mode Note	G050L e: WIFI2.4G 2 : Indigo Techn	RE-Class C	X c. Factor	Level	Power: Distance	e: 3m			Humi	dity:	50%	
imit I/N: I/Ode I/Ode	: FCC Part15 : G050L e: WIFI2.4G 2 : Indigo Techn Frequency (MHz)	462MHz T. ologies, In Reading (dBuV)	X c. Factor (dB/m)	Level (dBuV/m)	Power: Distance	Margin (dB)	Detector	(cm)	Azimuth (deg.)	P/F	50%	
imit UT: M/N: Mode Note	: FCC Part15 : : G050L e: WIFI2.4G 2 : Indigo Techn Frequency (MHz) 4922.750	462MHz T. ologies, In Reading (dBuV) 54.89	Factor (dB/m)	Level (dBuV/m) 47.01	Power: Distance Limit (dBuV/m) 74.00	Margin (dB) 26.99	Detector peak	(cm) 150	Azimuth (deg.)	P/F	50%	
imit EUT: M/N: Mode Note	: FCC Part15 : : G050L e: WIFI2.4G 2 : Indigo Techn Frequency (MHz) 4922.750 7387.750	462MHz T. ologies, In Reading (dBuV) 54.89 48.81	Factor (dB/m) -7.88 -2.81	Level (dBuV/m) 47.01 46.00	Limit (dBuV/m) 74.00	Margin (dB) 26.99 28.00	Detector peak peak	(cm) 150 150	Azimuth (deg.) 171	P/F P	50%	
Limit EUT: M/N: Mode Note	EFCC Part15 EG050L EWIF12.4G 2 Indigo Techn Frequency (MHz) 4922.750 7387.750 9398.000	462MHz T. ologies, Inc. Reading (dBuV) 54.89 48.81 47.65	Factor (dB/m) -7.88 -2.81 0.21	Level (dBuV/m) 47.01 46.00 47.86	Limit (dBuV/m) 74.00 74.00	Margin (dB) 26.99 28.00 26.14	Detector peak peak peak	(em) 150 150 150	Azimuth (deg.) 171 140 97	P/F P P	50%	


REMARKS:

- 1. Level (dBuV/m) =Reading (dBuV)+ Factor (dB/m).
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor.
- 3. Margin value = Limit(dBuV/m)- Level(dBuV/m).
- 4. PK detector measurement value is lower than the average limit. Therefore, there is no need to test AV detector measurements.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not record in report.
- 7. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20) /802.11n (H40) all have been tested, only worse case 802.11802.11b is reported.

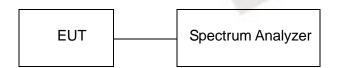
REMARKS:

- 1. Level (dBuV/m) =Reading (dBuV)+ Factor (dB/m).
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor.
- 3. Margin value = Limit(dBuV/m)- Level(dBuV/m).
- 4. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.


Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

Report No.: CTL2407232066-WF02

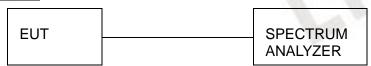
- a) Set the RBW=1MHz..
- b) Set VBW=3MHz.
- c) Set span≥[3×RBW].
- d) Sweep time = auto couple.
- e) Detector=RMS.
- f) Trace mode=max hold.
- g) Allow trace to fully stabilize.
- h) Use Average marker function to determine the Average amplitude level.

Test Configuration

Test Results

Raw data reference to Section 2 from CTL2407232066-WF02_2.4G_WIFI_Appendix. .

3.4. Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = Average.
- 6. Sweep points = 40001
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting PSD level must be 8dBm.

Test Configuration

Test Results

Raw data reference to Section 3 from CTL2407232066-WF02_2.4G_WIFI_Appendix. .

V1.0 Page 24 of 28 Report No.: CTL2407232066-WF02

3.5. 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Raw data reference to Section 1 from CTL2407232066-WF02_2.4G_WIFI_Appendix. .

Report No.: CTL2407232066-WF02

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

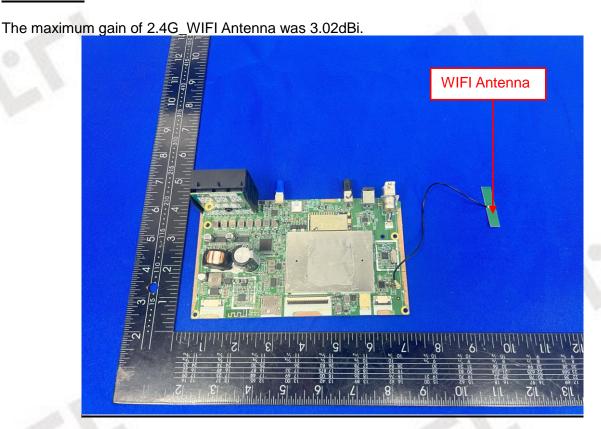
Test Results

Raw data reference to Section 4 from CTL2407232066-WF02_2.4G_WIFI_Appendix. .

Report No.: CTL2407232066-WF02

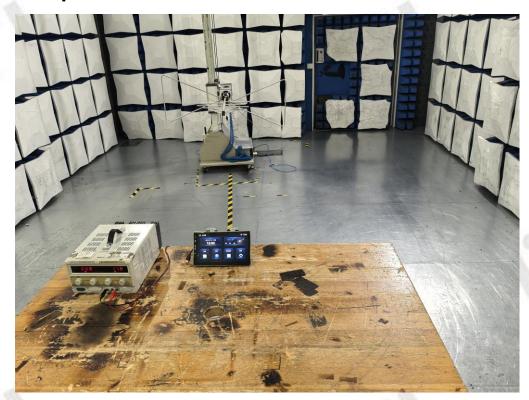
3.7. Antenna Requirement

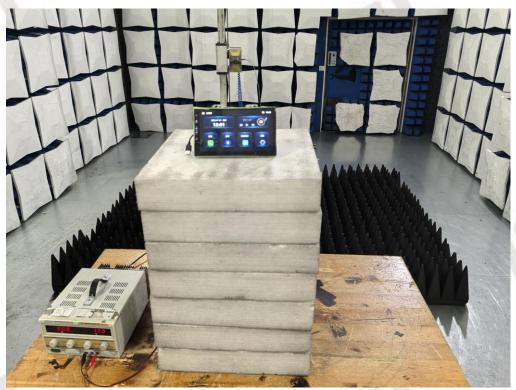
Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(b) (4):


(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Test Result:

V1.0 Page 27 of 28 Report No.: CTL2407232066-WF02

4. Test Setup Photos of the EUT

5. External and Internal Photos of the EUT

Reference to the test report No.CTL2407232066-WF01

Report No.: CTL2407232066-WF02