PCTEST 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D1900V2 – SN: 5d149 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 10/18/2020 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 12/11/2019 | Annual | 12/11/2020 | 7570 | | SPEAG | EX3DV4 | SAR Probe | 12/11/2019 | Annual | 12/11/2020 | 7571 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/12/2020 | Annual | 3/12/2021 | 1368 | | SPEAG | DAE4 | Data Acquisition Electronics | 6/22/2020 | Annual | 12/7/2019 | 1533 | ### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2020 | rage 1014 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|-------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/23/2018 | 10/18/2020 | 1.193 | 3.93 | 4.02 | 2.29% | 2.05 | 2.05 | 0.00% | 52.9 | 49.1 | 3.8 | 6.3 | 4.6 | 1.7 | -23.4 | -26.5 | -13.10% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (9/.) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/23/2018 | 10/18/2020 | 1.193 | 3.94 | 4.07 | 3.30% | 2.07 | 2.08 | 0.48% | 48.5 | 47.3 | 1.2 | 8.2 | 4.7 | 3.5 | -21.5 | -25.1 | -16.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2020 | rage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2020 | rage 3 of 4 | ### Impedance & Return-Loss Measurement Plot for Body TSL ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2450V2-719 Aug20 ### CALIBRATION CERTIFICATE Object D2450V2 - SN:719 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 8-28-2ú Calibration date: August 14, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|---|--|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | in house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | | , | | | UYU | | | und septemb <u>e</u> De drei Medic Research ann bliac | Salahan kabanyan daramatan Salah dari 1902 dari 1907 dari kabanya katalan dari 1908 dari 1908 dari 1908 dari 1 | | | Approved by: | Katja Pok ovi c | Technical Manager | ALC. | | | | | | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | To following parameters and career and specific | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.5 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.07 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-719_Aug20 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.9 Ω + 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.3 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.0 Ω + 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.2 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.150 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-719_Aug20 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 13.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.2 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.3 W/kg #### SAR(1 g) = 13 W/kg; SAR(10 g) = 6.09 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.6% Maximum value of SAR (measured) = 21.0 W/kg 0 dB = 21.0 W/kg = 13.22 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 14.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.8 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 24.7 W/kg #### SAR(1 g) = 13 W/kg; SAR(10 g) = 6.07 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dBW/kg ### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2450V2-797_Sep20 ### CALIBRATION CERTIFICATE Object D2450V2 - SN:797 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: September 09, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778
| 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | l | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | 11.4 | | | | | U. Y. | | Approved by: | Katja Pokovic | Technical Manager | | | | | | July 1 | | | | | | Issued: September 10, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52,10,4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | AM AN AN | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.92 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-797_Sep20 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.0 Ω + 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.9 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.1 Ω + 9.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.6 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.152 ns | |----------------------------------|----------| | - 1 | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | · · · · · · · · · · · · · · · · · · · | | |-----------------------|---------------------------------------|-------| | | Manufactured by | SPEAG | Certificate No: D2450V2-797_Sep20 #### **DASY5 Validation Report for Head TSL** Date: 08.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.0 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.2% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.39 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 09.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{
kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 23.9 W/kg #### SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.92 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 53.7% Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg ### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D2600V2-1064_Jun19 ## **CALIBRATION CERTIFICATE** Object D2600V2 - SN:1064 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 44 06-70-7 Calibration date: June 14, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 29-May-19 (No. EX3-7349_May19) | May-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Oter Andr | l.s. | 0 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | //11// | | | | | MIKKS | | Approved by: | Katja Pokovic | Technical Manager | an | | | | | / Le 1/3- | Issued: June 20, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not ap not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 2.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 58.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 26.0 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.5 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 55.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.33 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 25.0 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1064_Jun19 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.8 Ω - 6.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.2 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.6 Ω - 4.4 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.9 dB | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.151 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the
dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1064_Jun19 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 14.06.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kg Maximum value of SAR (measured) = 25.1 W/kg 0 dB = 25.1 W/kg = 14.00 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 14.06.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.6 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.6 W/kg 0 dB = 23.6 W/kg = 13.73 dBW/kg ### Impedance Measurement Plot for Body TSL 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D2600V2 – SN: 1064 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: June 14, 2020 Description: SAR Validation Dipole at 2600 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 7/18/2019 | Annual | 7/18/2020 | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 1/21/2020 | Annual | 1/21/2021 | 3589 | | SPEAG | EX3DV4 | SAR Probe | 7/15/2019 | Annual | 7/15/2020 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1323 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/13/2020 | Annual | 1/13/2021 | 1558 | ### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|-------------------|-------------------| | Calibrated By: | Test Engineer | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Managing Director | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2600V2 – SN: 1064 | 6/14/2020 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 6/14/2019 | 6/14/2020 | 1.151 | 5.81 | 5.68 | -2.24% | 2.6 | 2.56 | -1.54% | 49.8 | 48.6 | 1.2 | -6.9 | -5.8 | 1.1 | -23.2 | -24.4 | -5.00% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 6/14/2019 | 6/14/2020 | 1.151 | 5.56 | 5.43 | -2.34% | 2.5 | 2.39 | -4.40% | 46.6 | 48.1 | 1.5 | -4.4 | -3.6 | 0.8 | -24.9 | -27.6 | -10.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1064 | 6/14/2020 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL ### Impedance & Return-Loss Measurement Plot for Body TSL ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D5GHzV2-1191_Sep20 ### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1191 Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz \ Calibration date: September 10, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the
certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | 1 | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | - | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Labo ratory Technician | | | | | | You | | Approved by: | Katja Pokovic | Technical Manager | MM | | | | | | Issued: September 10, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 10.0 mm, dz = 10.0 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | The following parameters and edicardione were appri | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.47 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1191_Sep20 Page 3 of 20 Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | The following parameters and calculations were appropriate | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 4.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | To tonowing post- | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.8 ± 6 % | 5.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 4 W 40 W | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1191_Sep20 Page 4 of 20 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | To following parameters and the following parameters are a first transfer and the first transfer
and the first transfer and the first transfer and t | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.7 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | **Body TSL parameters at 5200 MHz** The following parameters and calculations were applied. | The following parameters and saliculations were appri- | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.5 ± 6 % | 5.43 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | The following parameters and a susceptibility | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.4 ± 6 % | 5.50 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.50 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 19.5 % (k=2) | Page 6 of 20 # Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 5.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7 .85 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.7 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 6.19 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.53 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1191_Sep20 # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 6.26 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.52 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 19.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 52.0 Ω - 9.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.3 dB | ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 53.4 Ω - 6.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.9 Ω - 5.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 59.2 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 56.2 Ω + 2.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 52.7 Ω - 8.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | #### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 53.1 Ω - 4.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB |
Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 57.8 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22,2 dB | | Certificate No: D5GHzV2-1191_Sep20 #### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 60.2 Ω + 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.2 dB | # Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 56.8 Ω + 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1,202 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D5GHzV2-1191_Sep20 #### **DASY5 Validation Report for Head TSL** Date: 07.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.87$ S/m; $\epsilon_r = 34.0$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.01$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.06 \text{ S/m}$; $\varepsilon_r = 33.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electromics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.03 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.98 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.7% Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.97 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.1 W/kg #### SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.36 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 19.5 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.08 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.9 W/kg #### SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 19.3 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.29 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg #### SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.5 W/kg 0 dB = 19.5 W/kg = 12.90 dBW/kg # Impedance Measurement Plot for Head TSL (5200, 5600, 5800 MHz) # Impedance Measurement Plot for Head TSL (5250, 5750 MHz) #### **DASY5 Validation Report for Body TSL** Date: 10.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 47.5$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5250 MHz; $\sigma = 5.50$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.98 \text{ S/m}$; $\varepsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5750 MHz; $\sigma = 6.19 \text{ S/m}$; $\varepsilon_r = 46.5$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5800 MHz; $\sigma = 6.26 \text{ S/m}$; $\varepsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.72 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.1 W/kg #### SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 16.9 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.69 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.1 W/kg # SAR(1 g) = 7.50 W/kg; SAR(10 g) = 2.11 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 17.2 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.38 V/m: Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.5 W/kg #### SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.19 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 18.5 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.99 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg #### SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.10 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 62.8% Maximum value of SAR (measured) = 18.2 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.89 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg #### SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.08 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.2 W/kg 0 dB = 18.5 W/kg = 12.67 dBW/kg # Impedance Measurement Plot for Body TSL (5200, 5600, 5800 MHz) # Impedance Measurement Plot for Body TSL (5250, 5750 MHz) # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ #### **Evaluation Condition (f=5200 MHz)** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| | | | | ### SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.7 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | Condition | | | • | | | #### SAR result with SAM Head (Mouth \cong F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | |
---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 87.6 W/kg ± 20.3 % (k=2) | | 2 (10) (11) 170 | condition | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | L COHURON 3 | | #### SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Ear ≅ D90) SAR for nominal Head TSL parameters | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 53.2 W/kg ± 20.3 % (k=2) | normalized to 1W 18.1 W/kg ± 19.9 % (k=2) Certificate No: D5GHzV2-1191_Sep20 Additional assessments outside the current scope of SCS 0108 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head² # **Evaluation Condition (f=5800 MHz)** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| # SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.8 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.9 % (k=2) | # SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|------------------|--------------------------|--| | SAR for nominal Head TSL parameters | normalized to 1W | 90.6 W/kg ± 20.3 % (k=2) | | | | | | | | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | | # SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 80.9 W/kg ± 20.3 % (k=2) | | 2.60 | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 57.6 W/kg ± 20.3 % (k=2) | | | | | | 0 1 40 3 (40) (11 LTO) | condition | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | Certificate No: D5GHzV2-1191_Sep20 $^{^{\}rm 2}$ Additional assessments outside the current scope of SCS 0108 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D5GHzV2-1237_Aug18 | ۱ | CALIBRAT | ION | CER | TIFI | CATE | |---|----------|-----|-----|------|------| | ١ | | | | | | Object D5GHzV2 - SN:1237 Calibration procedure(s) QA CAL-22.v3 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: August 10, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | P1-19A | | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | SN: 3503 | 30-Dec-17 (No. EX3-3503_Dec17) | Dec-18 | | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | # di | Check Date (in house) | Scheduled Check | | SN: GB37480704 | 07-Oct-15 (In house check Oct-16) | in house check: Oct-18 | | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | in house check: Oct-18 | | Name | Function | Signature | | Manu Seitz | Laboratory Technician | A. b | | | | grange | | Katja Pokovic | Technical Manager | MA | | | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Manu Seitz | SN: 104778 | Issued: August 17, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 4.61 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.3 W/kg ± 19.9 % (k=2)
| | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.7 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Page 4 of 13 ### Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | ### **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 5.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.91 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1237_Aug18 Page 5 of 13 # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.16 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.65 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.5 Ω - 3.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.0 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 50.1 Ω + 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.7 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 52.7 Ω + 0.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.2 dB | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 46.5 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.2 dB | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 53.1 Ω + 6.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 53.6 Ω + 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.9 dB | #### **General Antenna Parameters and Design** | | | |----------------------------------|-------------| | Electrical Delay (one direction) | 1,195 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 04, 2015 | Certificate No: D5GHzV2-1237_Aug18 #### **DASY5 Validation Report for Head TSL** Date: 10.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.98$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz, ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 30.12.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.17 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.4 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.53 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.6 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 20.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement
grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.04 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 19.9 W/kg Certificate No: D5GHzV2-1237_Aug18 P 0 dB = 19.9 W/kg = 12.99 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 10.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f=5250 MHz; $\sigma=5.49$ S/m; $\epsilon_r=46.9$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.96$ S/m; $\epsilon_r=46.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.16$ S/m; $\epsilon_r=46$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz; Calibrated: 30.12.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.22 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 17.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.51 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.5 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.91 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.0 W/kg Certificate No: D5GHzV2-1237_Aug18 Page 11 of 13 0 dB = 18.0 W/kg = 12.55 dBW/kg # Impedance Measurement Plot for Body TSL ### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D5GHzV2 – SN: 1237 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: 08/09/2019 Description: SAR Validation Dipole at 5GHz Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 10/2/2018 | Annual | 10/2/2019 | US39170118 | | Agilent | N5182A | MXG Vector Signal Generator | 6/27/2019 | Annual | 6/27/2020 | US46240505 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1207470 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1339007 | | Control Company | 4040 | Temperature / Humidity Monitor | 2/28/2018 | Biennial | 2/28/2020 | 150761911 | | Control Company | 4352 | Ultra Long Stem Thermometer | 2/28/2018 | Biennial | 2/28/2020 | 170330160 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 5/23/2018 | Biennial | 5/23/2020 | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 7417 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/13/2019 | Annual | 2/13/2020 | 665 | | SPEAG | EX3DV4 | SAR Probe | 7/15/2019 | Annual | 7/15/2020 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1323 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Dogo 1 of 4 | | |--------------------|--------------|-------------|--| | D5GHzV2 – SN: 1237 | 08/09/2019 | Page 1 of 4 | | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | equency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 17.0
dBm | Measured
Head SAR (1g)
W/kg @ 17.0
dBm | (96) | Certificate
SAR Target
Head (10g)
W/kg @ 17.0
dBm | (10a) W//ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |------------------|---------------------|----------------|---|--|---|--------|---|---------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5250 | 8/10/2018 | 8/9/2019 | 1.195 | 4.065 | 3.81 | -6.27% | 1.18 | 1.09 | -7.23% | 47.5 | 46.5 | 1 | -3.5 | -7.5 | 4 | -27 | -22.2 | 17.70% | PASS | | 5600 | 8/10/2018 | 8/9/2019 | 1.195 | 4.285 | 4.06 | -5.25% | 1.23 | 1.15 | -6.12% | 50.1 | 50.9 | 0.8 | 4.7 | 0.8 | 3.9 | -26.7 | -30.1 | -12.80% | PASS | | 5750 | 8/10/2018 | 8/9/2019 | 1.195 | 4.03 | 3.8 | -5.71% | 1.16 | 1.07 | -7.36% | 52.7 | 51.4 | 1.3 | 0.8 | -1.4 | 2.2 | -31.2 | -30.4 | 2.60% | PASS | | equency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 17.0
dBm | Measured
Body SAR (1g)
W/kg @ 17.0
dBm | (96) | Certificate
SAR Target
Body (10g)
W/kg @ 17.0
dBm | (10a) M/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5250 | 8/10/2018 | 8/9/2019 | 1.195 | 3.78 | 3.52 | -6.88% | 1.06 | 0.981 | -7.45% | 46.5 | 47.4 | 0.9 | -1.3 | -5.9 | 4.6 | -28.2 | -23.6 | 16.20% | PASS | | 5600 | 8/10/2018 | 8/9/2019 | 1.195 | 3.925 | 3.81 | -2.93% | 1.1 | 1.05 | -4.55% | 53.1 | 51.2 | 1.9 | 6.2 | 4.6 | 1.6 | -23.5 | -26.4 | -12.40% | PASS | | 5750 | 8/10/2018 | 8/9/2019 | 1.195 | 3.795 | 3.58 | -5.67% | 1.06 | 1 | -5.66% | 53.6 | 53.8 | 0.2 | 2.1 | 0.2 | 1.9 | -27.9 | -28.7 | -3.00% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/09/2019 | Page 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL #### Impedance & Return-Loss Measurement Plot for Body TSL #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D5GHzV2 – SN: 1237 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: 08/10/2020 Description: SAR Validation Dipole at 5GHz Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------
------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/27/2019 | Annual | 8/27/2020 | 1339027 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk Inc | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 4/21/2020 | Annual | 4/21/2021 | 7357 | | SPEAG | EX3DV4 | SAR Probe | 5/18/2020 | Annual | 5/18/2021 | 7538 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/1/2020 | Annual | 7/15/2021 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/6/2020 | Annual | 4/15/2021 | 1407 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Daga 1 of 1 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/10/2020 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Frequency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 17.0
dBm | Measured
Head SAR (1g)
W/kg @ 17.0
dBm | (0/.) | Certificate
SAR Target
Head (10g)
W/kg @ 17.0
dBm | (10a) M/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |--------------------|---------------------|----------------|---|--|---|--------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5250 | 8/10/2018 | 8/10/2020 | 1.195 | 4.065 | 3.69 | -9.23% | 1.18 | 1.06 | -9.79% | 47.5 | 51.5 | 4 | -3.5 | -5.1 | 1.6 | -27 | -25.6 | 5.20% | PASS | | 5600 | 8/10/2018 | 8/10/2020 | 1.195 | 4.285 | 4 | -6.65% | 1.23 | 1.13 | -7.76% | 50.1 | 49.1 | 1 | 4.7 | 2.7 | 2 | -26.7 | -30.9 | -15.70% | PASS | | 5750 | 8/10/2018 | 8/10/2020 | 1.195 | 4.03 | 3.71 | -7.94% | 1.16 | 1.06 | -8.23% | 52.7 | 53.2 | 0.5 | 0.8 | 2.7 | 1.9 | -31.2 | -27.8 | 10.90% | PASS | | Frequency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 17.0
dBm | Measured
Body SAR (1g)
W/kg @ 17.0
dBm | (0/.) | Certificate
SAR Target
Body (10g)
W/kg @ 17.0
dBm | Measured
Body SAR
(10g) W/kg @
17.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5250 | 8/10/2018 | 8/10/2020 | 1.195 | 3.78 | 3.58 | -5.29% | 1.06 | 1 | -5.66% | 46.5 | 48.7 | 2.2 | -1.3 | -2.4 | 1.1 | -28.2 | -31.6 | -12.00% | PASS | | 5600 | 8/10/2018 | 8/10/2020 | 1.195 | 3.925 | 3.72 | -5.22% | 1.1 | 1.04 | -5.45% | 53.1 | 48.3 | 4.8 | 6.2 | 5.8 | 0.4 | -23.5 | -24.4 | -3.70% | PASS | | 5750 | 8/10/2018 | 8/10/2020 | 1.195 | 3.795 | 3.57 | -5.93% | 1.06 | 0.99 | -6.51% | 53.6 | 54.7 | 1.1 | 2.1 | 3.5 | 1.4 | -27.9 | -24.7 | 11.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/10/2020 | Page 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL #### Impedance & Return-Loss Measurement Plot for Body TSL