

RADIO TEST REPORT FCC ID: 2A7DX-ACTIVE8PRO

Product: Tablet PC Trade Mark: Blackview Model No.: Active 8 Pro Family Model: N/A Report No.: S24050904103001 Issue Date: Jul. 12, 2024

Prepared for

DOKE COMMUNICATION (HK) LIMITED

19H MAXGRAND PLAZA NO 3 TAI YAU STREET SAN PO KONG KL

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Table of Contents

1 T	1 TEST RESULT CERTIFICATION		
2 S	2 SUMMARY OF TEST RESULTS		
3 FA	ACILITIES AND ACCREDITATIONS	5	
3.1	FACILITIES	5	
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5	
3.3	MEASUREMENT UNCERTAINTY	5	
4 G	SENERAL DESCRIPTION OF EUT	6	
5 D	DESCRIPTION OF TEST MODES	8	
6 SI	ETUP OF EQUIPMENT UNDER TEST	0	
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM		
6.2	SUPPORT EQUIPMENT		
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS		
7 T	EST REQUIREMENTS	13	
7.1	CONDUCTED EMISSIONS TEST	13	
7.2	RADIATED SPURIOUS EMISSION		
7.3	NUMBER OF HOPPING CHANNEL		
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT		
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	27	
7.6	20DB BANDWIDTH TEST		
7.7	PEAK OUTPUT POWER		
7.8	CONDUCTED BAND EDGE MEASUREMENT		
7.9	SPURIOUS RF CONDUCTED EMISSION		
7.10			
7.11			
8 T	EST RESULTS	35	
8.1	Dwell Time		
8.2	MAXIMUM CONDUCTED OUTPUT POWER		
8.3	-20dB Bandwidth	51	
8.4	Occupied Channel Bandwidth		
8.5	CARRIER FREQUENCIES SEPARATION		
8.6	NUMBER OF HOPPING CHANNEL		
8.7	BAND EDGE		
8.8	BAND EDGE(HOPPING)		
8.9	CONDUCTED RF SPURIOUS EMISSION	86	

TEST RESULT CERTIFICATION 1

Applicant's name:	DOKE COMMUNICATION (HK) LIMITED
Address:	19H MAXGRAND PLAZA NO 3 TAI YAU STREET SAN PO KONG KL
Manufacturer's Name::	Shenzhen DOKE Electronic Co., Ltd
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	
Product name:	Tablet PC
Trade Mark:	Blackview
Model and/or type reference:	Active 8 Pro
Family Model:	N/A
Test Sample number::	S240509041003
Date of Test:	Jun. 01, 2024 ~ Jul. 12, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.

Prepared . By :

Gavan Zhang Gavan Zhang By Aaron Cheng By Aaron Cheng (Supervisor) Approved By Alex L (Manag (Project Engineer)

(Supervisor)

Alex Li

(Manager)

Version.1.3

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

NTEK ILW®

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Tablet PC	
Trade Mark	Blackview	
FCC ID	2A7DX-ACTIVE8PRO	
Model No.	Active 8 Pro	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	1.5 dBi	
Adapter	Model: QZ-03002AC00 Input:100-240V~50/60Hz 0.8A Output: (PD)5.0V3.0A or 9.0V3.0A or 12.0V2.5A 15.0V2.0A or 20.0V1.5A (PPS)3.3V-11.0V3.0A(33.0W Max)	
Battery	DC 3.87V, 22000mAh, 85.14Wh	
Power supply	DC 3.87V from battery or DC 5V from Adapter.	
HW Version	TP769_A1_V1.0	
SW Version	Active8Pro_NEU_TP769_V1.0_01	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

Report No.	Version	Description	Issued Date
S24050904103001	Rev.01	Initial issue of report	Jul. 12, 2024
	_		
	_		
	+		

NTEK 北视

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Cartificate #4299 01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y and Z-plane. The X-plane results were found as the worst case and were shown in this report.

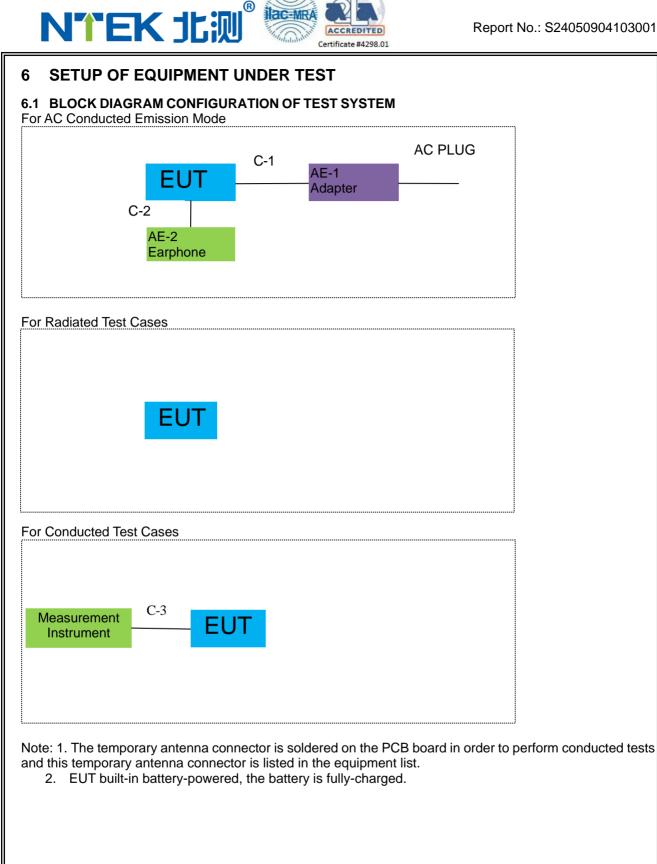
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission		
Final Test Mode Description			
Mode 1	normal link mode		


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

ac-M

ACCREDITED

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	QZ-03002AC00	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

R

lac-M

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in [Length] column.

(3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-MF

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.26	2025.04.25	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2026.01.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.01.23	2025.01.22	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.27	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

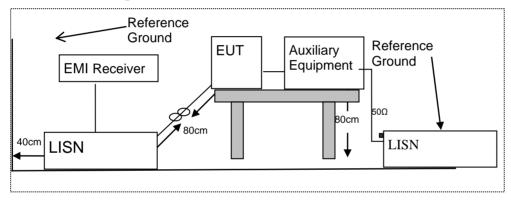
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Fraguenov(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

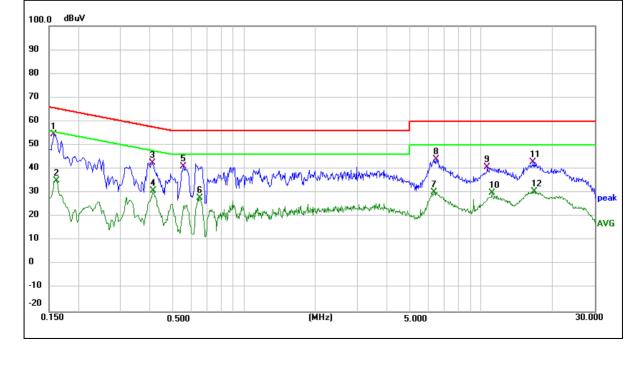
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

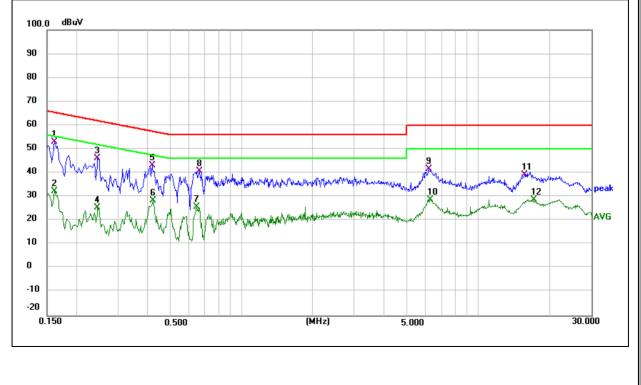

EUT:	Tablet PC	Model Name :	Active 8 Pro
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	44.74	9.95	54.69	65.57	-10.88	QP
0.1620	25.19	9.95	35.14	55.36	-20.22	AVG
0.4100	31.96	10.47	42.43	57.65	-15.22	QP
0.4140	20.38	10.47	30.85	47.57	-16.72	AVG
0.5540	30.24	10.75	40.99	56.00	-15.01	QP
0.6500	16.79	10.95	27.74	46.00	-18.26	AVG
6.3420	20.66	9.68	30.34	50.00	-19.66	AVG
6.4260	34.26	9.68	43.94	60.00	-16.06	QP
10.6100	31.14	9.69	40.83	60.00	-19.17	QP
11.1140	20.36	9.69	30.05	50.00	-19.95	AVG
16.5140	33.14	9.71	42.85	60.00	-17.15	QP
16.7260	20.78	9.71	30.49	50.00	-19.51	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Tablet PC	Model Name :	Active 8 Pro
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
43.21	9.95	53.16	65.36	-12.20	QP
22.50	9.95	32.45	55.36	-22.91	AVG
35.99	10.14	46.13	61.89	-15.76	QP
15.38	10.14	25.52	51.89	-26.37	AVG
32.77	10.49	43.26	57.49	-14.23	QP
18.07	10.49	28.56	47.41	-18.85	AVG
14.94	10.95	25.89	46.00	-20.11	AVG
29.68	10.97	40.65	56.00	-15.35	QP
31.85	9.68	41.53	60.00	-18.47	QP
19.21	9.68	28.89	50.00	-21.11	AVG
29.50	9.71	39.21	60.00	-20.79	QP
19.05	9.71	28.76	50.00	-21.24	AVG
	(dBµV) 43.21 22.50 35.99 15.38 32.77 18.07 14.94 29.68 31.85 19.21 29.50	43.219.9522.509.9535.9910.1415.3810.1432.7710.4918.0710.4914.9410.9529.6810.9731.859.6819.219.6829.509.71	(dBµV)(dB)(dBµV)43.219.9553.1622.509.9532.4535.9910.1446.1315.3810.1425.5232.7710.4943.2618.0710.4928.5614.9410.9525.8929.6810.9740.6531.859.6841.5319.219.6828.8929.509.7139.21	$(dB\mu V)$ (dB) $(dB\mu V)$ $(dB\mu V)$ 43.219.9553.1665.3622.509.9532.4555.3635.9910.1446.1361.8915.3810.1425.5251.8932.7710.4943.2657.4918.0710.4928.5647.4114.9410.9525.8946.0029.6810.9740.6556.0031.859.6841.5360.0019.219.6828.8950.0029.509.7139.2160.00	$(dB\mu V)$ (dB) $(dB\mu V)$ $(dB\mu V)$ $(dB\mu V)$ 43.21 9.95 53.16 65.36 -12.20 22.50 9.95 32.45 55.36 -22.91 35.99 10.14 46.13 61.89 -15.76 15.38 10.14 25.52 51.89 -26.37 32.77 10.49 43.26 57.49 -14.23 18.07 10.49 28.56 47.41 -18.85 14.94 10.95 25.89 46.00 -20.11 29.68 10.97 40.65 56.00 -15.35 31.85 9.68 41.53 60.00 -21.11 29.50 9.71 39.21 60.00 -20.79

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to Foo Fait 15.205, Restricted bands					
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	(-,,	- ()	
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Fraguanay (MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

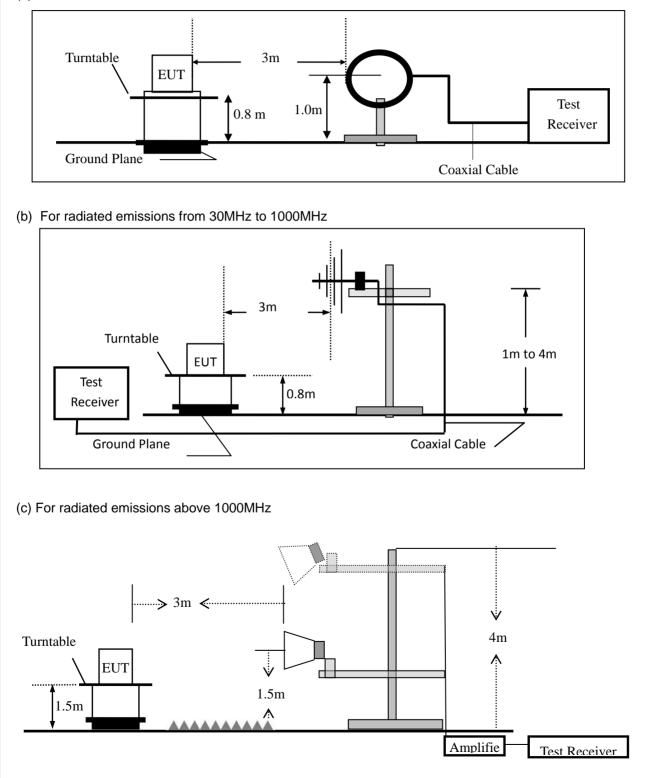
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

NTEK 北视


The Measuring equipment is listed in the section 6.3 of this test report.

ac.M

ACCREDITED

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

	-
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Ab aug 1000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	1 MHz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Tablet PC Model Name : Active 8 Pro Temperature: **25°**℃ 55% **Relative Humidity:** Test Mode: Pressure: 1010hPa Mode 4 DC 3.87V Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 36.0007 7.19 18.67 25.86 40.00 -14.14 QP 20.29 QP V 46.6662 7.87 28.16 40.00 -11.84 V 150.0107 13.21 15.27 28.48 43.50 -15.02QP QP V 280.0237 11.05 19.89 30.94 46.00 -15.06 V 325.5957 11.21 20.69 31.90 46.00 -14.10 QP V 779.6067 7.91 27.93 35.84 46.00 -10.16 QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	47.3253	6.82	20.39	27.21	40.00	-12.79	QP
Н	134.5591	10.82	15.38	26.20	43.50	-17.30	QP
Н	187.7530	10.11	18.11	28.22	43.50	-15.28	QP
Н	283.9791	16.33	19.98	36.31	46.00	-9.69	QP
Н	374.6225	13.82	21.76	35.58	46.00	-10.42	QP
Н	763.3757	7.60	27.81	35.41	46.00	-10.59	QP
80.0	dBuV/m						
70							
60							
50							
40					5	6 Martin Ann	Ander
30	worth the second the second		2	3 Transfiller burger		my for and and in the second	Areas .
20 1	and the section of the section of the	happened the second	ywwyne weer enwre yw Crww	- Maren - MAMANTELLE			
10							
0.0							
	10 60.		(MHz)	300.00	<u> </u>	1000.000

ACCREDITED Certificate #4298.01

	Emission	Above 1	GHz (1GH	z to 25GH	z)		1			
EUT:	Tab	let PC		Mode	l No.:		Active 8 Pro			
Temperature:	20	°C	Relative Humidity:			/:	48%			
Test Mode:	Mo	de2/Mod	e3/Mode4	Test I	By:		Gavar	n Zhang		
All the modula	All the modulation modes have been tested, and the worst result was report as below:									
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lii	mits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBj	uV/m)	(dB)		
			Low Chan	nel (2402 M	/Hz)(GFSK)-	-Abo	ve 1G			
4804	68.38	5.21	35.59	44.30	64.88	74	4.00	-9.12	Pk	Vertical
4804	50.98	5.21	35.59	44.30	47.48	54	4.00	-6.52	AV	Vertical
7206	70.3	6.48	36.27	44.60	68.45	74	4.00	-5.55	Pk	Vertical
7206	45.55	6.48	36.27	44.60	43.70	54	4.00	-10.30	AV	Vertical
4804	68.85	5.21	35.55	44.30	65.31	74	4.00	-8.69	Pk	Horizontal
4804	49.47	5.21	35.55	44.30	45.93	54	4.00	-8.07	AV	Horizontal
7206	70.26	6.48	36.27	44.52	68.49	74	4.00	-5.51	Pk	Horizontal
7206	49.18	6.48	36.27	44.52	47.41	54	4.00	-6.59	AV	Horizontal
			Mid Chan	nel (2441 N	/Hz)(GFSK)-	-Abov	/e 1G			
4882	70.74	5.21	35.66	44.20	67.41	74	4.00	-6.59	Pk	Vertical
4882	48.37	5.21	35.66	44.20	45.04	54	4.00	-8.96	AV	Vertical
7323	69.21	7.10	36.50	44.43	68.38	74	4.00	-5.62	Pk	Vertical
7323	49.08	7.10	36.50	44.43	48.25	54	4.00	-5.75	AV	Vertical
4882	68.39	5.21	35.66	44.20	65.06	74	4.00	-8.94	Pk	Horizontal
4882	45.42	5.21	35.66	44.20	42.09	54	4.00	-11.91	AV	Horizontal
7323	68.43	7.10	36.50	44.43	67.60	74	4.00	-6.40	Pk	Horizontal
7323	48.16	7.10	36.50	44.43	47.33	54	4.00	-6.67	AV	Horizontal
		-	High Chan	nel (2480 M	/Hz)(GFSK)-	- Abo	ve 1G			
4960	70.55	5.21	35.52	44.21	67.07	74	4.00	-6.93	Pk	Vertical
4960	50.69	5.21	35.52	44.21	47.21	54	4.00	-6.79	AV	Vertical
7440	68.74	7.10	36.53	44.60	67.77	74	4.00	-6.23	Pk	Vertical
7440	46.01	7.10	36.53	44.60	45.04	54	4.00	-8.96	AV	Vertical
4960	68.83	5.21	35.52	44.21	65.35	74	4.00	-8.65	Pk	Horizontal
4960	48.61	5.21	35.52	44.21	45.13	54	4.00	-8.87	AV	Horizontal
7440	68.21	7.10	36.53	44.60	67.24	74	4.00	-6.76	Pk	Horizontal
7440	46.42	7.10	36.53	44.60	45.45	54	4.00	-8.55	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

UT:	Tablet PC	0			Mode	l No.:		Active	8 Pro		
emperature	20 ℃					Relative Humidity: 48%					
est Mode:	Mode2/ N	/lode4			Test I	By:		Gava	n Zhang		
All the modu	lation mod	les have	been teste	ed, a	and the	e worst resu	ult wa	is repo	rt as belo	w:	
Frequency	Meter Reading	Cable Loss	Antenna Factor		amp ictor	Emission Level	Lir	mits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dB	uV/m)	(dB)	Туре	
			1	Mbps	s(GFS	K)-Non-hopp	ing				
2310.00	70.33	2.97	27.80	43	3.80	57.30		74	-16.70	Pk	Horizonta
2310.00	49.62	2.97	27.80	43	3.80	36.59		54	-17.41	AV	Horizonta
2310.00	70.96	2.97	27.80	43	3.80	57.93		74	-16.07	Pk	Vertical
2310.00	47.00	2.97	27.80	43	3.80	33.97	ł	54	-20.03	AV	Vertical
2390.00	68.87	3.14	27.21	43	3.80	55.42		74	-18.58	Pk	Vertical
2390.00	48.00	3.14	27.21	43	3.80	34.55	4	54	-19.45	AV	Vertical
2390.00	69.07	3.14	27.21	43	3.80	55.62		74	-18.38	Pk	Horizonta
2390.00	49.74	3.14	27.21	43	3.80	36.29		54	-17.71	AV	Horizonta
2483.50	69.51	3.58	27.70	44	4.00	56.79		74	-17.21	Pk	Vertical
2483.50	48.19	3.58	27.70	44	4.00	35.47		54	-18.53	AV	Vertical
2483.50	70.92	3.58	27.70	44	4.00	58.20		74	-15.80	Pk	Horizonta
2483.50	46.83	3.58	27.70	44	4.00	34.11	4	54	-19.89	AV	Horizonta
		-		1Mb	ops(GF	SK)-hopping	ļ				-
2310.00	68.85	2.97	27.80	43	3.80	55.82		74	-18.18	Pk	Horizonta
2310.00	47.02	2.97	27.80	43	3.80	33.99	4	54	-20.01	AV	Horizonta
2310.00	70.67	2.97	27.80	43	3.80	57.64		74	-16.36	Pk	Vertical
2310.00	45.21	2.97	27.80	43	3.80	32.18	4	54	-21.82	AV	Vertical
2390.00	70.39	3.14	27.21	43	3.80	56.94		74	-17.06	Pk	Vertical
2390.00	49.44	3.14	27.21	43	3.80	35.99		54	-18.01	AV	Vertical
2390.00	69.81	3.14	27.21	43	3.80	56.36	-	74	-17.64	Pk	Horizonta
2390.00	45.73	3.14	27.21	43	3.80	32.28	4	54	-21.72	AV	Horizonta
2483.50	68.45	3.58	27.70	44	4.00	55.73		74	-18.27	Pk	Vertical
2483.50	45.25	3.58	27.70	44	4.00	32.53		54	-21.47	AV	Vertical
2483.50	70.47	3.58	27.70	44	4.00	57.75		74	-16.25	Pk	Horizonta
2483.50	46.19	3.58	27.70	44	1.00	33.47		54	-20.53	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

EUT: Tablet PC					Model No.:			Active 8 Pro			
Cemperature: 20 ℃					Relat	ive Humidity	y:	48%			
Fest Mode:	М	ode2/ Moc	le4		Test I	By:		Gava	n Zhang		
All the modu	lation m	odes have	been test	ed, a	nd th	e worst resu	ult wa	is repo	rt as belo	W:	
Frequency	Reading Level	g Cable Loss	Antenna Factor		amp ctor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	B)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре	
3260	70.28	4.04	29.57	44	.70	59.19		74	-14.81	Pk	Vertical
3260	49.07	4.04	29.57	44	.70	37.98	ę	54	-16.02	AV	Vertical
3260	70.91	4.04	29.57	44	.70	59.82	-	74	-14.18	Pk	Horizonta
3260	48.69	4.04	29.57	44	.70	37.60	ę	54	-16.40	AV	Horizonta
3332	70.86	4.26	29.87	44	.40	60.59	-	74	-13.41	Pk	Vertical
3332	49.27	4.26	29.87	44	.40	39.00	ę	54	-15.00	AV	Vertical
3332	68.73	4.26	29.87	44	.40	58.46		74	-15.54	Pk	Horizonta
3332	49.07	4.26	29.87	44	.40	38.80	Ę	54	-15.20	AV	Horizonta
17797	59.53	10.99	43.95	43	.50	70.97	-	74	-3.03	Pk	Vertical
17797	38.67	10.99	43.95	43	.50	50.11	į	54	-3.89	AV	Vertical
17788	55.68	11.81	43.69	44	.60	66.58	-	74	-7.42	Pk	Horizonta
17788	31.19	11.81	43.69	44	.60	42.09	Į	54	-11.91	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

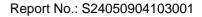
7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup


Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Gavan Zhang

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Tablet PC	Model No.:	Active 8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Gavan Zhang

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FIPA antenna (Gain: 1.5 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

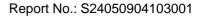
7.11.2 Frequency Hopping System

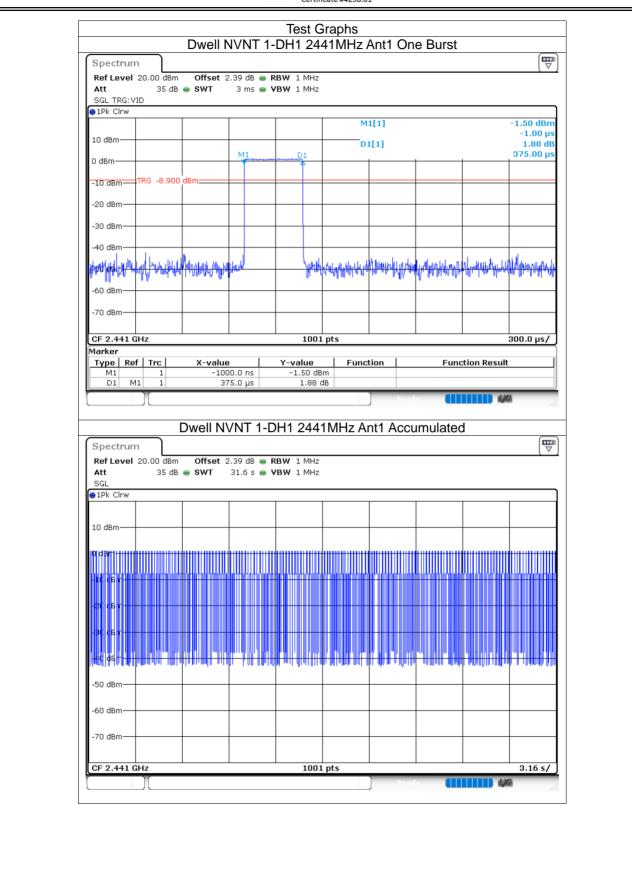
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

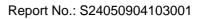
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

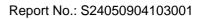
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


8 TEST RESULTS

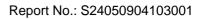

8.1 Dwell Time

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.375	76.5	204	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.63	202.12	124	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.88	267.84	93	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.384	77.568	202	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.635	207.645	127	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	259.92	90	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.381	78.105	205	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	206.01	126	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	268.584	93	31600	400	Pass



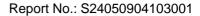
SGL TRG: VID	55 45	SWT	5 115 -	VBW 1 MHz					,
●1Pk Clrw					м	1[1]			-8.19 dBm
10 dBm					D	l[1]			00000000 s -0.10 dB
0 dBm	м	1						1	.63000 ms
-10 dBm-TRG		dBm ™™™	<u>Uwahunanun</u> un	พมพลุกการพุกษร					
-20 dBm									
-30 dBm									
-40 dBm									
uterty the and put provided in	ul lil hilu				, willing and	hter have the second	handelinghander	elanghyal (pyhyteles)	HARION CONTRACTOR
-60 dBm									
-70 dBm									
CF 2.441 GHz				1001	pts				500.0 μs/
Marker _Type Ref T	rc	X-value	.	Y-value	Func	tion	Fund	tion Result	: 1
M1 D1 M1	1		0.0 s .63 ms	-8.19 dB -0.10 d	m				
						Rea	4 (II		2
								J	
Country		Jweii IN	VINT 1-L	DH3 2441		IT ACC	umulated	1	Ē
Spectrum Ref Level 20.0	IO dBm	Offset 2	2.39 dB 👄 I	RBW 1 MHz					
		e swt		VBW 1 MHz					
Att									
SGL 91Pk Clrw									
SGL IPk Clrw									
SGL									
SGL IPk Clrw									
SGL 9 1Pk Clrw 10 dBm									
SGL 9 1Pk Clrw 10 dBm									
SGL									
SGL									
SGL									
SGL									
SGL									
SGL									
SGL									
SGL 9 IPk Clrw 10 dBm 0 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -50 dBm -70 dBm									
SGL 9 1Pk Clrw 10 dBm 0 dBm 10 dBm 140 28m 140 28m 140 28m 140 28m 140 28m 140 28m 140 28m 140 28m 150 48m -50 dBm -60 dBm									3.16 s/
SGL									3.16 s/

Report No.: S24050904103001

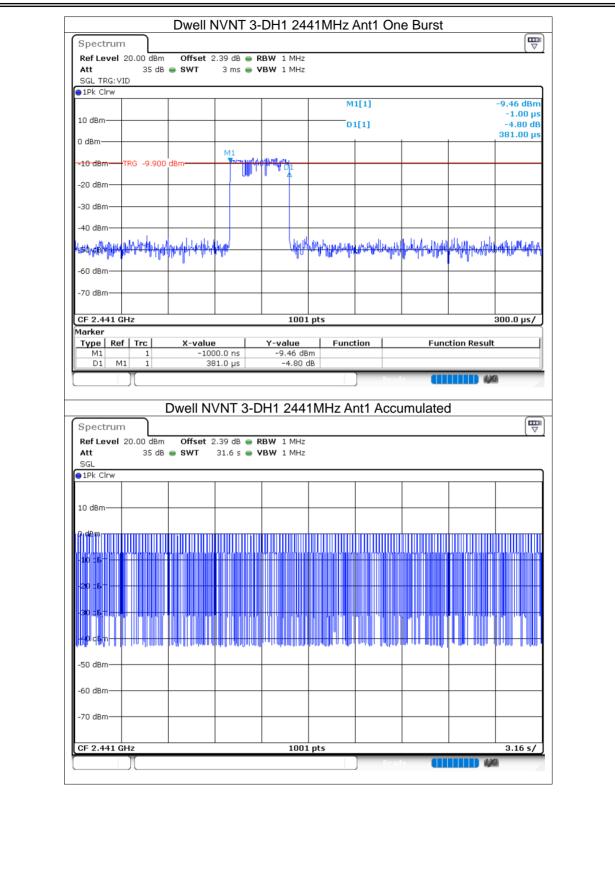


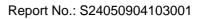
SGL TRG: VID 91Pk Clrw						
			M1[1]			-9.66 dBm -8.00 µs
10 dBm			D1[1]		2	-7.39 dB .88000 ms
0 dBm						
-10 dBm-TRG -9.000 dBm		D1				
-20 dBm		1				
-30 dBm						
-40 dBm				La del car	a di sa	
			un and the second	and an and the second	000m-00m-00m	www.chumphila
-60 dBm						
-70 dBm						
CF 2.441 GHz		1001 pts				800.0 µs/
Marker Type Ref Trc	X-value `	Y-value F	unction	Func	tion Result	
M1 1 D1 M1 1	-8.0 µs 2.88 ms	-9.66 dBm -7.39 dB				
			Rea	•		1
Du	ell NVNT 1-DH		- 1 - 1 1		1	
Ref Level 20.00 dBm (Offset 2.39 dB 👄 RB	W I MHZ				
Ref Level 20.00 dBm Q Att 35 dB 5 5 SGL 1Pk Clrw 1 1						
Att 35 dB 👄 SGL						
Att 35 dB • 5 SGL • 1Pk Clrw						
Att 35 dB ● 5 SGL ● 1Pk Clrw 10 dBm ■ dBm						
Att 35 dB ● 5 SGL ● 1Pk Clrw 10 dBm ■ dBm						
Att 35 dB ● 5 SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm	3WT 31.6 5 • VB					
Att 35 dB ● 5 SGL 91Pk Clrw 10 dBm 10 dBm -10 dBm 10 dBm -30 dBm -30 dBm	3WT 31.6 5 • VB	W 1 MHz				
Att 35 dB ● 5 SGL • ● 1Pk Clrw • 10 dBm • •	3WT 31.6 5 • VB	W 1 MHz				
Att 35 dB ● 5 SGL ● ● 1Pk Clrw ● 10 dBm ● +10 dBm ● -20 dBm ● -30 dBm ● -50 dBm ●	3WT 31.6 5 • VB	W 1 MHz				
Att 35 dB ● 5 SGL • ● 1Pk Clrw • 10 dBm • +10 dBm • -20 dBm • -30 dBm • -50 dBm •	3WT 31.6 5 • VB	W 1 MHz				
Att 35 dB 5 SGL • • ● 1Pk Clrw • • 10 dBm • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • <td>3WT 31.6 5 • VB</td> <td>W 1 MHz</td> <td></td> <td></td> <td></td> <td>3.16 s/)</td>	3WT 31.6 5 • VB	W 1 MHz				3.16 s/)

10 dBm	●1Pk Clrw					м	1[1]			-1.94 dBm
0 dbm 186 - 9,700 dbm 186 - 9,700 dbm 196 - 197 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	10 dBm									
-20 dBm -30 dBm -40 dBm	0 dBm				pulturyby1					384.00 µs
-30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -70 dBm -7	-10 dBm-	TRG -9.700	dBm		4					
+0 dBm 10000 fbm and 1000 fbm and 10000 fbm and 1000 fbm and	-20 dBm—									
-60 dbm -60 dbm -60 dbm -60 dbm -60 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm	-30 dBm—									
-60 dBm -70 dBm -70 dBm -70 dBm Type Ref Trc X-value 1001 pts 300.0 µ5/ Marker Type Ref Trc X-value 1-0.94 dBm M1 1 1 -1000.0 ns -1.94 dBm M1 1 1 -1000.0 ns -1.94 dBm -0.96 dB -0.96 dB								h. t		
-70 dBm -70 dBm -70 dBm Type Ref Trc X-value 1 1 1 - 1000.0 ns -1.94 dBm D1 1 1 384.0 µs -0.96 dB Dwell NVNT 2-DH1 2441MHz Ant1 Accumulated Spectrum Ref Level 20.00 dBm Offset 2.39 dB ● RBW 1 MHz Att 35 dB ● SWT 31.6 s ● VBW 1 MHz SqL ● 1Pk Clw 10 dBm 0 dBm -10 de -10 dBm -10 dBm	- Halpiteleyeteleyeteleye	alle by the state of the state	Kyreliu Allerlyk	MA	իստի	H-MANAAAA	ondireland a	hally hall have a second se	er frihjerer fri	<u>hi multiplik</u>
CF 2.441 GHz 1001 pts 300.0 µs/ Marker Type [Ref] Trc X-value Function Function Result M1 1 -1000.0 ns -1.94 dBm Image: Sector Secto	-60 dBm—									
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 -1000.0 ns -1.94 dBm	-70 dBm—									
Type Ref Trc X-value Y-value Function Function Result D1 1 -1000.0 ns -1.94 dBm -0.96 dB	<u> </u>	GHz	1	1	100:	pts		1		300.0 µs/
D1 M1 1 384.0 µs -0.96 dB Dwell NVNT 2-DH1 2441MHz Ant1 Accumulated Spectrum Image: Construction of the second sec	Type Re						tion	Fund	tion Result	:
Spectrum Product Ref Level 20.00 dBm Offset 2.39 dB RBW 1 MHz Att 35 dB SWT 31.6 s VBW 1 MHz SGL IPk Clrw Image: Submarries of the submarries							, III			74
Spectrum Product Ref Level 20.00 dBm Offset 2.39 dB RBW 1 MHz Att 35 dB SWT 31.6 s VBW 1 MHz SGL IPk Clrw Image: Submarries of the submarries							Read			
Ref Level 20.00 dBm Offset 2.39 dB RBW 1 MHz Att 35 dB SWT 31.6 s VBW 1 MHz SGL Image: SGL Image: SGL Image: SGL Image: SGL Image: SGL <			Dwell N	/NT 2-D)H1 244	1MHz Ai	nt1 Accu	umulated	ł	
10 dBm 0 <th>Att</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Att									
0 d80 10 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
40 dtirt 900 9										
40 dtirt 900 9	●1Pk Clrw									
40 dtirt 900 9	●1Pk Clrw									
40 dtirt 900 9	●1Pk Clrw									
40 dtirt 900 9	●1Pk Clrw									
-50 dBm -60 dBm -70	1Pk Cirw 10 dBm 0 dBm									
-60 dBm -70 dBm CF 2.441 GHz 1001 pts 3.16 s/	1Pk Cirw 10 dBm 0 dBm									
-70 dBm										
CF 2.441 GHz 1001 pts 3.16 s/										
	1Pk Cirw 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -50 dBm -50 dBm									
										3.16 s/



SGL TRG: VID 1Pk Clrw		1						
10 dBm					1[1]		0.0	-0.10 dBm)0000000 s
	M1			D	[1]		1	-2.99 dB .63500 ms
0 dBm		anyahahan alayaha	-salahopose-verge	4				
- 10 dBm TRG -9.70)0 dBm							
-20 dBm								
-30 dBm								
-40 dBm								
-soldby/14/14/14/14/14/14/14/14/14/14	\h <mark>r</mark>			hyper states	hter water a state water	hlpopping	4)/261,102444	ulmillarllyh
-60 dBm						· · · ·		
-70 dBm								
CF 2.441 GHz Marker			1001	pts				500.0 µs/
Type Ref Trc	X-value	e 0.0 s	Y-value -0.10 dB	Funct	tion	Fund	tion Result	
D1 M1 1	1.	635 ms	-0.10 08					
					Read	y (II		
	Dwell N	VNT 2-D	H3 244	1MHz Ai	nt1 Accu	mulated	1	
Spectrum								
RefLevel 20.00 dB	m Offset : B = SWT	2.39 dB 👄 R 31.6 s 👄 V						
SGL	5 - 5WI	31.0 5 🛶 🖌						
●1Pk Clrw								
10 dBm								
0 dBm++++++++++++++++++++++++++++++++++++								
	hihi bida a dala a dala idala							
-10 28 m			and the second					
-10 :8m								
-10 :87								
-1С 28т -2С 28т -3С 28т							A 1 1 100	-
-10 28 т		н					y	
U.45.88.000000000000000000000000000000000		ու է ուսել է					y	
· · · · · · · · · · · · · · · · · · ·							y	
							y	
ក្មេង 2001 មេម៉ឺដី ភូមិច្របារប្រជាពល							y	
-50 dBm							y	
-50 dBm							y	3.16 s/

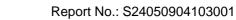

Report No.: S24050904103001



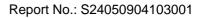
SGL TRG:\	'ID								
					M	1[1]			-8.40 dBm 00000000 s
10 dBm					Di	1[1]			-1.66 dB
0 dBm	M1							2	2.88800 ms
-10 dBm	TRG -9.800	dBm 44.44.44.44.44.44.44.44.44.44.44.44.44.	har the second and the	uppetitystysta					
-20 dBm—									
-30 dBm									
-40 dBm	d.			L.	adi Ukuda katudi ka	al hanshele canada	manduludum	Maril Anderson	and and and date
				r	An attes 1	unsa ook it atoo la far	ս Աանստեր առվ	- old - old bell	<u> 1 I I I I I I I I I I I I I I I I I I </u>
-60 dBm									
-70 dBm									
CF 2.441	GHz			1001	pts				800.0 µs/
Marker Type Re	f Trc	X-value	, 1	Y-value	Fund	tion	Eupr	tion Result	
M1	1		0.0 s 388 ms	-8.40 dB -1.66 c	m				
	T T					Read	v M		1
	[Dwell N	VNT 2-D	H5 244	1MHz Ai	nt1 Accu	umulated	ł	
Spectrur Ref Level Att	20.00 dBm		2.39 dB 👄 R 31.6 s 👄 V						
Ref Level	20.00 dBm		2.39 dB 🕳 R 31.6 s 👄 V						
Ref Level Att SGL	20.00 dBm								
Ref Level Att SGL ● 1Pk Clrw	20.00 dBm								
Ref Level Att SGL 1Pk Clrw 10 dBm	20.00 dBm								
Ref Level Att SGL ● 1Pk Clrw 10 dBm 0 dBm -10 dBm	20.00 dBm								
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm	20.00 dBm 35 dB	• SWT	31.6 s • V						
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm	20.00 dBm 35 dB		31.6 s • V						
Ref Level Att SGL ● 1Pk Clrw 10 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -50 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					3.16 s/
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • •	BW 1 MHz					3.16 s/

	/ID								
10 dBm						1[1]		0.0	-9.24 dBm 0000000 s
0 dBm					D	1[1]		1	-6.81 dB .63500 ms
-10 dBm-	тра .0.000		in to tail the second	hin Load Utenling	ዛልለ				
-20 dBm-	110 -9.900				D1 4				
-30 dBm-									
-40 dBm									
	1						u alstl. t	at a la Maran	
ի ի ի ի ի ի ի -60 dBm—	hillhundilitig				GAT Y HILING	allen and the second	proMMM	MANNAN	www.dhuhand
-70 dBm									
CF 2.441	CH2			1001	nts				500.0 µs/
Marker									
Type Re M1	1	X-value	0.0 s	Y-value -9.24 dB		tion	Fund	tion Result	
D1 N	/1 1	1.6	535 ms	-6.81 c	18	Read			1
						,			////
		Dwell N\	/NT 3-D	0H3 244 ⁻	1MHz A	nt1 Accu	imulated	1	
Spectrur	n I 20.00 dBm	Offset	2 39 dB 👄	RBW 1 MHz	,				
Att SGL		s swt		VBW 3 MHz					
● 1Pk Clrw							1		
10 dBm									
10 0000									
р.dBm									
0 dBm									
-10 cBm -20 cBm									
-1C ¢6m									
-10 сыг -20 сыг -50 сыг -40 сыг									
-10 cBm -20 cBm	γ/10000 J. P. 000							Pure and	
-10 сыг -20 сыг -50 сыг -40 сыг			ν (19 19 19 19 19 19 19 19 19 19 19 19 19 1			νυμα _τ ις _{φυ} ριμις	
-10 сыг — -20 сыг — -30.сыл — -40 сыг — -50 dBm —			ν, μ., μ. μ., μ. μ., μ.	211 10 10 10 10 10 10 10 10 10 10 10 10 1				Pupula U	
-10 сви — -20 сви — -30 сви — -40 сви — -50 dви — -60 dви —									
-10 сын — -20 сын — -30 сын — -30 сын — -40 сын — -50 dBm — -60 dBm —				2/ ()	א איז איז איז איז איז איז איז איז איז אי				3.16 s/

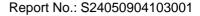
Report No.: S24050904103001



				м	1[1]			13.89 dBm
10 dBm					(1)			-8.00 µs 1.25 dB
0 dBm					.[1]		2	.88800 ms
-10 dBm TRG	-10.000 dBm	1. John Martin Martin	Will refer to the first of the second					
-20 dBm			4					
-30 dBm								
-40 dBm								
Manan			A	hipporneuria	halphylagerge	pur de parte de la parte	ANN THE MAN	ullhallow allered
-60 dBm							in n ik	
-70 dBm								
-70 aBm								
CF 2.441 GHz Marker			1001	pts				800.0 µs/
Type Ref Tr M1	rc X-valu	ie -8.0 μs	Y-value -13.89 dB	Func	tion	Fund	tion Result	
D1 M1		.888 ms	1.25 c		<u> </u>			
					Read			
	Dwell N	IVNT 3-D	H5 244′	IMHz Ai	nt1 Accu	imulated	ł	_
Spectrum								
	0 dBm Offset 35 dB ⊜ SWT	2.39 dB 👄 R 31.6 s 👄 V						
SGL IPk Clrw								
10 dBm								
10 dBm								
Ω dBm								
19 dBm								
р dßm								
19 dBm								
12 dBm -11 dBm -2C dEm -3C dEm								
۵ dBm -10 dBm -20 dBm -30 dBm -36 dBm -50 dBm								
۵ dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm								
Д dBm -1c dEm -2c dEm -2c dEm -3c dEm -3c dEm -50 dBm								
A dBm -1C dBm -2C dEm -3C dEm -3C dEm -3C dBm -50 dBm -60 dBm								
A dBm -10 dBm -20 dBm -30 ldEm -30 ldEm -50 dBm -60 dBm -70 dBm								3.16 s/

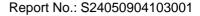

8.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	1.61	21	Pass
NVNT	1-DH5	2441	Ant1	1.08	21	Pass
NVNT	1-DH5	2480	Ant1	1.77	21	Pass
NVNT	2-DH5	2402	Ant1	0.73	21	Pass
NVNT	2-DH5	2441	Ant1	0.32	21	Pass
NVNT	2-DH5	2480	Ant1	1.02	21	Pass
NVNT	3-DH5	2402	Ant1	0.53	21	Pass
NVNT	3-DH5	2441	Ant1	0.13	21	Pass
NVNT	3-DH5	2480	Ant1	0.82	21	Pass

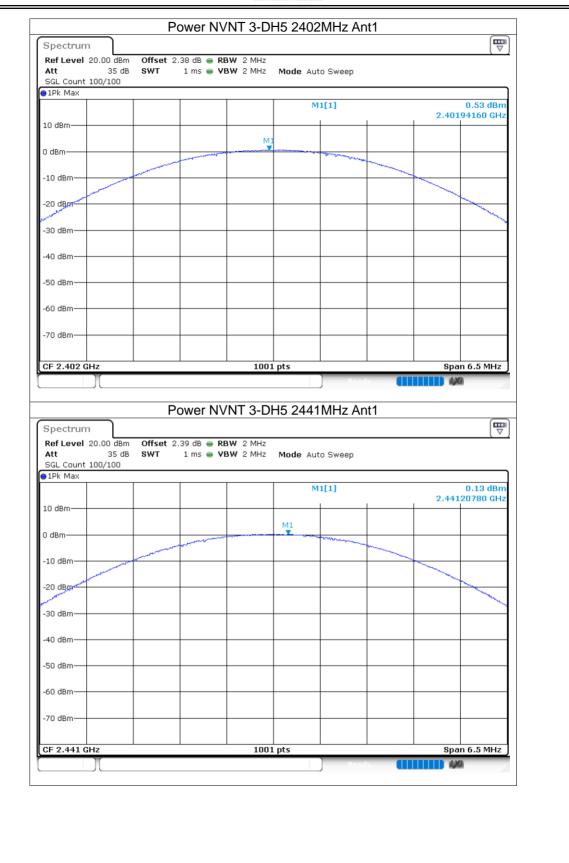


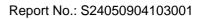
		f set 2.38 dB 🖷	RBW 2 MHz	H5 2402MI			
Att SGL Count 1	35 dB SV 00/100	/T 1 ms 👄	VBW 2 MHz	Mode Auto Sy	weep		
●1Pk Max				M1[1]			1.61 dBm
10 dBm				(mili)	1	2.40	1.01 UBII 196000 GHz
			Ш				
0 dBm							
-10 dBm							
-20 dBm							
-20 ubiii							
-30 dBm							
-40 dBm							_
-50 dBm							
-60 dBm							
-70 dBm							
			1001			0	
	0.00 dBm Off	f set 2.39 dB 👄	RBW 2 MHz	H5 2441MI		SF	aan 5.0 MHz)
Spectrum	0.00 dBm Off 35 dB SW		IVNT 1-DP	H5 2441MI		St	
Spectrum Ref Level 2 Att SGL Count 11	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	IVNT 1-DP	H5 2441MI	weep		
Spectrum Ref Level 2 Att SGL Count 11	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPK Max	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441M	weep		₩ .08 dBm
Spectrum Ref Level 2/ Att SGL Count 1/ @1Pk Max 10 dBm 0 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2/ Att SGL Count 1/ 10 dBm 0 dBm -10 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2/ Att SGL Count 1/ @1Pk Max 10 dBm 0 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2/ Att SGL Count 1/ 10 dBm 0 dBm -10 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2/ Att SGL Count 1/ IPk Max 10 dBm -10 dBm -10 dBm -20 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2 Att SGL Count 1 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2 Att SGL Count 11 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2 Att SGL Count 1 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2 Att SGL Count 11 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Off 35 dB SW	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI Mode Auto St M1[1]	weep		₩ .08 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	0.00 dBm Of 35 dB SW 00/100	f set 2.39 dB 👄	VVNT 1-DP	H5 2441MI	weep	2.44	1.08 dBm +103500 GHz
Spectrum Ref Level 2 Att SGL Count 11 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0.00 dBm Of 35 dB SW 00/100	f set 2.39 dB 👄	NVNT 1-DP RBW 2 MHz VBW 2 MHz	H5 2441MI	weep	2.44	₩ .08 dBm



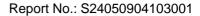


Att 35 0 SGL Count 100/100		2.42 dB 👄 RBW 2 1 ms 👄 VBW 2		Auto Sweep			
1Pk Max							
				M1[1]		2.479	1.77 dBm 999000 GHz
10 dBm		+					
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm				_			
-70 dBm							
CF 2.48 GHz	-		1001 pts		1	Spa	n 5.0 MHz
Spectrum Ref Level 20.00 dB	m Offset 2	Power NVNT 2.38 dB ● RBw 2 1 ms ● VBW 2	2-DH5 24(nt1		
Spectrum Ref Level 20.00 dB Att 35 (SGL Count 100/100	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(D2MHz Ar	nt1		
Spectrum Ref Level 20.00 dB	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(nt1	2.40:	0.73 dBm 187010 GHz
Spectrum Ref Level 20.00 dB Att 35 (SGL Count 100/100	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	nt1	2.40:	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 (SGL Count 100/100) 1Pk Max	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(Auto Sweep	ht1	2.403	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 d SGL Count 100/100 1Pk Max 10 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	nt1	2.40:	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 d SGL Count 100/100 1Pk Max 10 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	nt1	2,40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 (SGL Count 100/100) 1Pk Max 10 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	nt1	2.40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 (SGL Count 100/100) IPk Max 10 dBm -10 dBm -20 dBm -20 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	nt1	2.40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 of SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	nt1	2.40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 of SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep		2,40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 (SGL Count 100/100) IPk Max 10 dBm -10 dBm -20 dBm -20 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep	ht1	2.40:	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 of SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep		2.40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 of SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep		2.40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 of SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep		2.40	0.73 dBm
Spectrum Ref Level 20.00 dB Att 35 0 SGL Count 100/100 IPk Max I0 dBm I0	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(Auto Sweep	10 11		0.73 dBm 187010 GHz
Spectrum Ref Level 20.00 dB Att 35 of SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	m Offset 2	2.38 dB 👄 RBW 2	2-DH5 24(MHz Mode /	Auto Sweep			0.73 dBm 187010 GHz

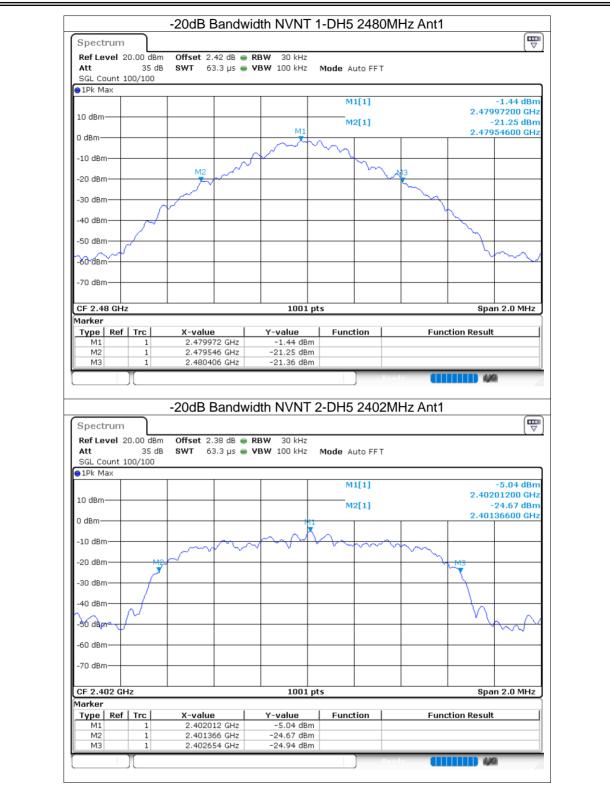



Spectrum			T
Ref Level 20.00 dBm Offset 2.42 dB .	RBW 2 MHz		<u> </u>
Att 35 dB SWT 1 ms 🖷	VBW 2 MHz Mode Auto Sweep	5	
SGL Count 100/100			
1Pk Max			
	M1[1]	0.82 d	
		2.48003250	GHz
10 dBm			
	NL		
0 dBm			
-10 dBm			
-20 dBm			
autor and a second s			mar .
-30 dBm			~
-50 dBill			
10 db			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.48 GHz	1001 pts	Span 6.5 M	Hz

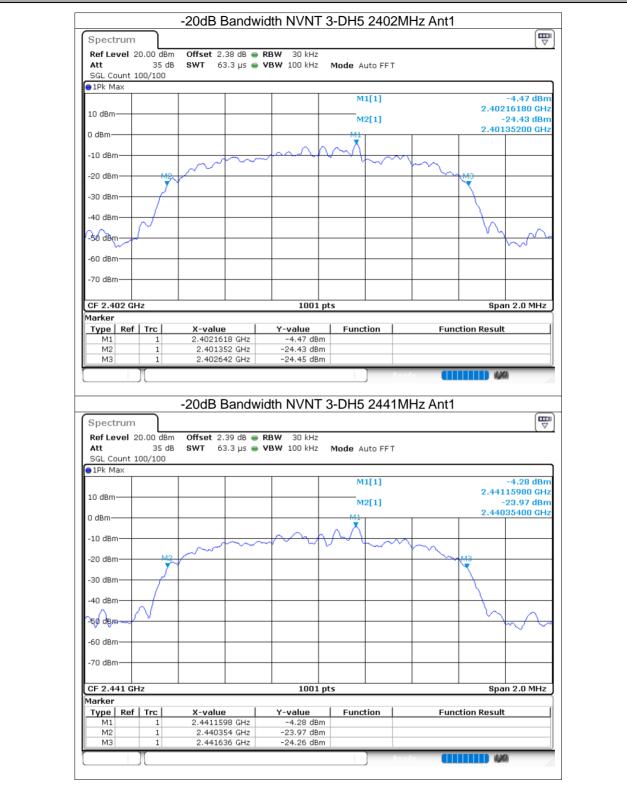
8.3 -20dB Bandwidth

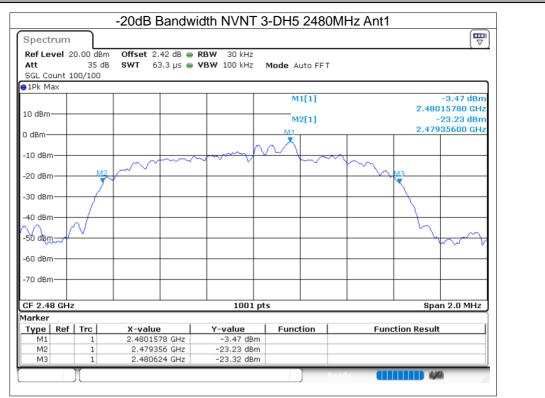

0.5 -200						
Condit	ion Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVN	T 1-DH5	2402	Ant1	0.86	0	Pass
NVN	T 1-DH5	2441	Ant1	0.852	0	Pass
NVN	T 1-DH5	2480	Ant1	0.86	0	Pass
NVN	T 2-DH5	2402	Ant1	1.288	0	Pass
NVN	T 2-DH5	2441	Ant1	1.26	0	Pass
NVN	T 2-DH5	2480	Ant1	1.254	0	Pass
NVN	T 3-DH5	2402	Ant1	1.29	0	Pass
NVN	T 3-DH5	2441	Ant1	1.282	0	Pass
NVN	T 3-DH5	2480	Ant1	1.268	0	Pass

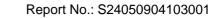
ACCREDITED Certificate #4298.01

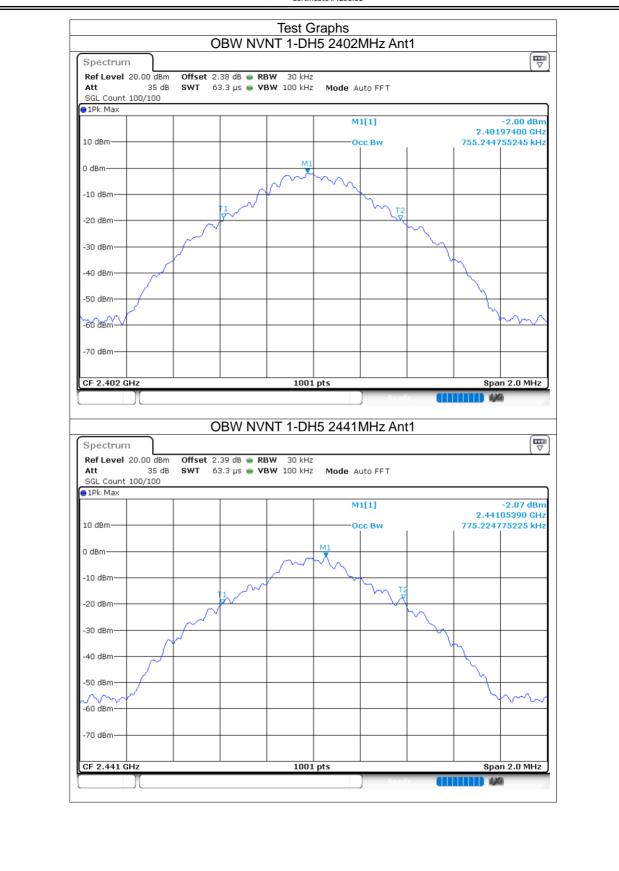


		_	-200B E	Bandwi	dth NVNT	1-DH5 2	2402M			_
Spect Ref Le Att		0.00 dBm 35 dB			RBW 30 kHz VBW 100 kHz	Mode Aut	o FF T			
SGL Co		00/100								
U×K (¥						M1[1]			-1.59 dB
10 dBm	-					M2[1]			205190 GF -21.54 dB
0 dBm-						M1		1		154600 GH
-10 dBr						~~				
			M2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ma	13		
-20 dBr	n		\sim	-				\sim		
-30 dBr	n		\downarrow \sim					$\vdash \gamma$		
-40 dBr	n									
-50 dBr	n	<u>/</u>							\rightarrow	
-60 der	~/	*							~	han
-70 dBr	n									
CF 2.4	02 GH	z			1001	pts		l	Spa	in 2.0 MHz
Marker				1		1		-		
Type M1 M2 M3		1 1 1 1	2.40205 2.4015	19 GHz 46 GHz	Y-value -1.59 dBn -21.54 dBn	n		Func	tion Resul	L
		1	2.4024	06 GHz	-21.19 dBn	n				-
Spect			-20dB E	Bandwi	dth NVNT		2441MI	Hz Ant1		
Ref Le Att SGL Co	vel 2	0.00 dBm	-20dB E	Bandwi		1-DH5 2		Hz Ant1) W	0 (E
Ref Le Att	vel 2	0.00 dBm 35 dB	-20dB E	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2	o FFT	Hz Ant1		-1.97 dB
Ref Le Att SGL Co	ount 1	0.00 dBm 35 dB	-20dB E	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut	0 FFT 1]	Hz Ant1	2.441	-1.97 dB 115780 GF
Ref Le Att SGL Co 1Pk M	ount 1	0.00 dBm 35 dB	-20dB E	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut	0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB
Ref Le Att SGL Co 1Pk M 10 dBm 0 dBm-	ount 1	0.00 dBm 35 dB	-20dB E	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL Co 1Pk M 10 dBm 0 dBm-	n	0.00 dBm 35 dB	-20dB E	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL Co 1Pk M 10 dBm 0 dBm-	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL Co 1Pk M 10 dBm 0 dBm-	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL Co 1Pk M 10 dBm 0 dBm- -10 dBr -20 dBr	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL Cc ● 1Pk M 10 dBm -10 dBm -20 dBr -30 dBr	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL C(1Pk M 10 dBm 0 dBm- -10 dBm -20 dBr -30 dBr -40 dBr -50 dBr	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL C(10 dBm -10 dBm -20 dBr -20 dBr -30 dBr -40 dBr -50 dBr	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL C(1Pk M 10 dBm 0 dBm- -10 dBm -20 dBr -30 dBr -40 dBr -50 dBr	n	0.00 dBm 35 dB	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	1-DH5 2 Mode Aut M1[0 FFT 1]	Hz Ant1	2.44 1	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL C(10 dBm -10 dBm -20 dBr -20 dBr -30 dBr -40 dBr -50 dBr	vel 2 ount 11 ax n n n n n n n	0.00 dBm 35 dB 00/100	-20dB E offset 2. swT 63	Bandwi	dth NVNT RBW 30 kHz	Mode Aut	0 FFT 1]	Barrier Anti	2.441	-1.97 dB 115780 GF -21.84 dB
Ref Le Att SGL CC ● 1Pk M 10 dBm -10 dBm -20 dBm -20 dBr -30 dBr -40 dBr -50 dBr -60 dBr -70 dBr CF 2.4 Marker	ount 11 Jax n	0.00 dBm 35 dB 00/100	-20dB E	39 dB • I 3.3 μs • '	dth NVNT	1-DH5 2 Mode Aut M1[M1 M1 M2 M1	0 FFT 1] 1]	3	2.441 2.44(-1.97 dB 115780 GF -21.84 dB 554800 GF
Ref Le Att SGL Cc ● 1Pk M 10 dBm -10 dBm -20 dBr -20 dBr -30 dBr -40 dBr -50 dBr -60 dBr -70 dBr	ount 11 Jax n	0.00 dBm 35 dB 00/100	-20dB E offset 2. swT 63	39 dB • 1	dth NVNT	1-DH5 2 Mode Aut M1[M2[M1 M2 M1	0 FFT 1] 1]	3	2.441	-1.97 dB 115780 GF -21.84 dB 554800 GF
Ref Le Att SGL Cr ● 1Pk M 10 dBm 0 dBm- -10 dBr -20 dBr -30 dBr -40 dBr -50 dBr -60 dBr -70 dBr -70 dBr -70 dBr -10 dBr -20 dBr -40 dBr -50 dBr -70 dBr -70 dBr Marker Type M1	ount 11 Jax n	0.00 dBm 35 dB 00/100	-20dB E	39 dB • 1 3.3 µs • 1	dth NVNT RBW 30 kHz VBW 100 kHz 	Mode Aut Mode Aut M1[M2[M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	0 FFT 1] 1]	3	2.441 2.44(-1.97 dB 115780 GF -21.84 dB 554800 GF
Ref Le Att SGL CC ● 1Pk M 10 dBm -10 dBm -20 dBm -20 dBr -30 dBr -40 dBr -50 dBr -60 dBr -70 dBr CF 2.4 Market Type M1	ount 11 Jax n	0.00 dBm 35 dB 00/100	-20dB E	39 dB • 1 3.3 µs • 1	dth NVNT RBW 30 kHz yBW 100 kHz 	Mode Aut Mode Aut M1[M2[M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	0 FFT 1] 1]	3	2.441 2.44(-1.97 dB 115780 GF -21.84 dB 554800 GF



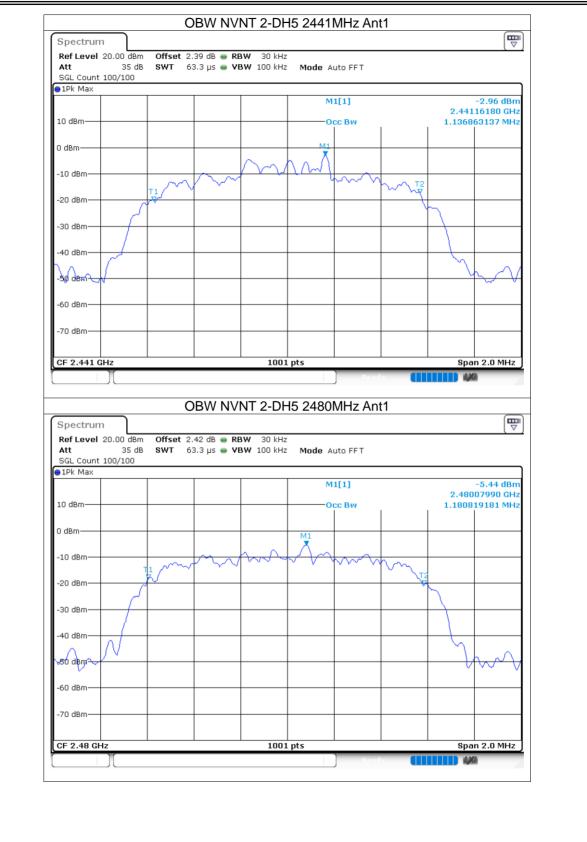


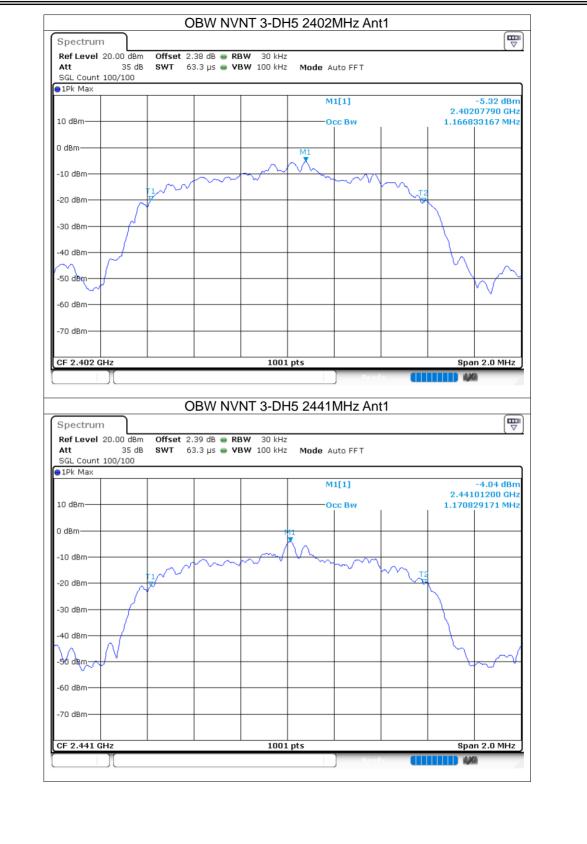


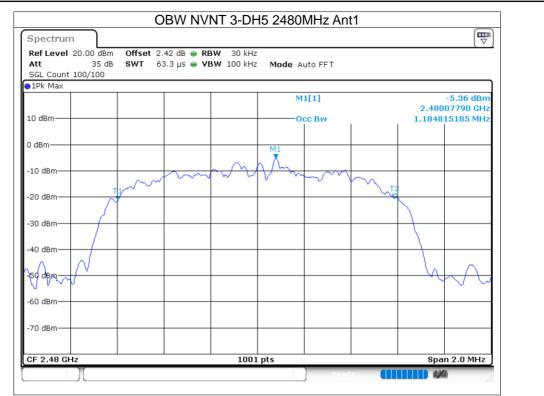


8.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)					
NVNT	1-DH5	2402	Ant1	0.755					
NVNT	1-DH5	2441	Ant1	0.775					
NVNT	1-DH5	2480	Ant1	0.757					
NVNT	2-DH5	2402	Ant1	1.183					
NVNT	2-DH5	2441	Ant1	1.137					
NVNT	2-DH5	2480	Ant1	1.181					
NVNT	3-DH5	2402	Ant1	1.167					
NVNT	3-DH5	2441	Ant1	1.171					
NVNT	3-DH5	2480	Ant1	1.185					





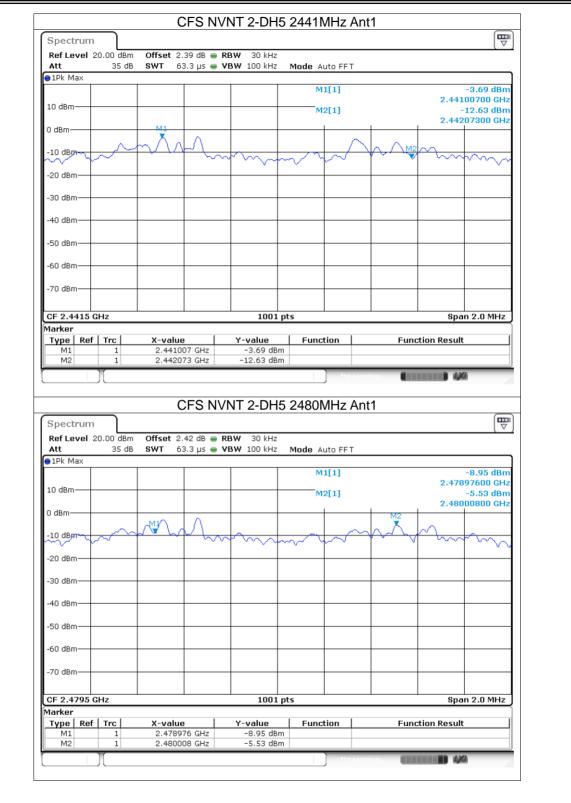


NTEK 北测®

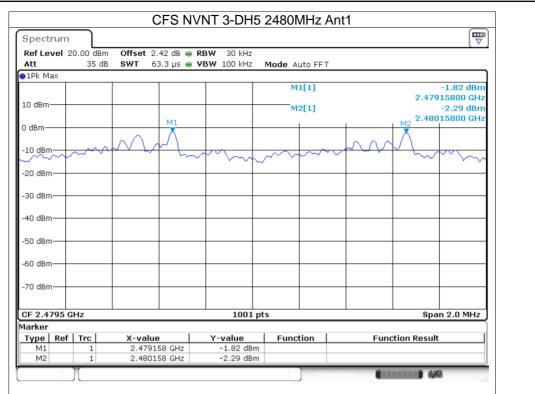
8.5 Carrier Frequencies Separation

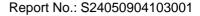
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2402.052	2403.054	1.002	0.573	Pass
NVNT	1-DH5	Ant1	2441.054	2442.056	1.002	0.568	Pass
NVNT	1-DH5	Ant1	2478.972	2480.158	1.186	0.573	Pass
NVNT	2-DH5	Ant1	2402.158	2403.16	1.002	0.859	Pass
NVNT	2-DH5	Ant1	2441.007	2442.073	1.066	0.84	Pass
NVNT	2-DH5	Ant1	2478.976	2480.008	1.032	0.836	Pass
NVNT	3-DH5	Ant1	2402.162	2403.158	0.996	0.86	Pass
NVNT	3-DH5	Ant1	2441.007	2441.988	0.981	0.855	Pass
NVNT	3-DH5	Ant1	2479.158	2480.158	1	0.845	Pass

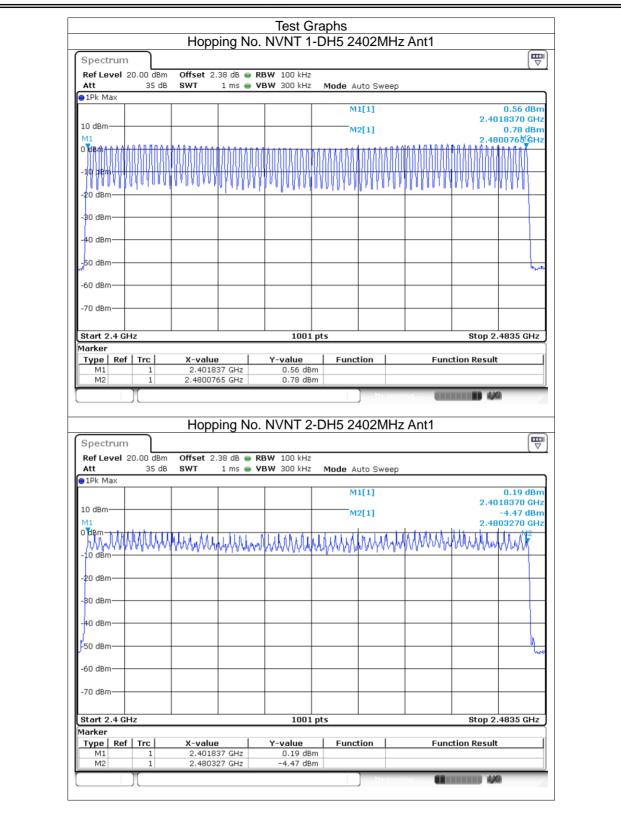
ACCREDITED Certificate #4298.01











8.6 Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

