Humidity: # [TestMode: TX N40 5670 channel]; [Polarity: Horizontal] ### **Radiated Emission Measurement** Site Limit: FCC Part15 (PK) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: Band3-N40-TX-H Note: | No. | М | k. Freq. | | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|---|-----------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 11400.000 | 39.77 | 11.76 | 51.53 | 74.00 | -22.47 | peak | | | | Power: Distance: *:Maximum data x:Over limit !:over margin (Reference Only Humidity: # [TestMode: TX N40 5755 channel]; [Polarity: Horizontal] ### **Radiated Emission Measurement** Site Limit: FCC Part15 (PK) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: Band4-N40-TX-L Note: | No. | М | k. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|---|-----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 11490.000 | 39.77 | 11.89 | 51.66 | 74.00 | -22.34 | peak | | | | Power: Distance: *:Maximum data x:Over limit !:over margin (Reference Only Temperature: Humidity: # [TestMode: TX N40 5755 channel]; [Polarity: Vertical] ### **Radiated Emission Measurement** Polarization: Vertical Site Limit: FCC Part15 (PK) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: Band4-N40-TX-L Note: | No. | Λ | Иk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | | | |-----|---|----|-----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|--------|---------| | | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | * | 11490.000 | 39.56 | 11.89 | 51.45 | 74.00 | -22.55 | peak | | | | Power: Distance: *:Maximum data x:Over limit !:over margin (Reference Only # [TestMode: TX N40 5795 channel]; [Polarity: Horizontal] ### **Radiated Emission Measurement** Data #5 Date: 2021/7/29 Site Limit: FCC Part15 (PK) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: Band4-N40-TX-H Note: Polarization: Horizontal Temperature: Humidity: Power: Distance: | No. | М | k. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|---|-----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 11650.000 | 38.42 | 11.93 | 50.35 | 74.00 | -23.65 | peak | | | | *:Maximum data x:Over limit !:over margin (Reference Only [TestMode: TX N40 5795 channel]; [Polarity: Vertical] ### Radiated Emission Measurement Site Limit: FCC Part15 (PK) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: Band4-N40-TX-H Note: Polarization: Vertical Temperature: Power: Humidity: Distance: | No. | MI | k. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | | | |-----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|--------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 11650.000 | 39.35 | 11.93 | 51.28 | 74.00 | -22.72 | peak | | | | *:Maximum data x:Over limit !:over margin (Reference Only ## 14 DFS: CHANNEL CLOSING TRANSMISSION TIME | Test Standard | 47 CFR Part 15, Subpart E 15.407 | |------------------------|----------------------------------| | Test Method | KDB 905462 D02 Section 7.8.3 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | #### **14.1 LIMITS** | | 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second | |--------|--| | | period(should be performed with Radar Type 0. The measurement timing begins at | | | the end of the Radar Type 0 burst. It is comprised of 200 milliseconds starting at | | Limit: | the beginning of the Channel Move Time plus any additional intermittent control | | | signals required facilitating a Channel move (an aggregate of 60 milliseconds) | | | during the remainder of the 10 second period. The aggregate duration of control | | | signals will not count quiet periods in between transmissions) | ### 14.2 BLOCK DIAGRAM OF TEST SETUP ## 14.3 PROCEDURE - 1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing. - 2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device. - 3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse. - 4) EUT will associate with the master at channel. The file ¡°iperf.exe¡± specified by the FCC is streamed Report No.: BLA-EMC-202106-A6604 Page 64 of 513 from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test. - 5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB. - 6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type. - 7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin. - 8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel. ## 14.4 TEST DATA Pass: Please Refer To DFS Report: BLA-EMC-202106-A6605 Report No.: BLA-EMC-202106-A6604 Page 66 of 513 ### 15 DFS: NON-OCCUPANCY PERIOD | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | |------------------------|----------------------------------|--|--|--|--| | Test Method | KDB 905462 D02 Section 7.8.3 | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | #### **15.1 LIMITS** | | Minimum 30 minutes | |--|--------------------| |--|--------------------| #### 15.2 BLOCK DIAGRAM OF TEST SETUP ### 15.3 PROCEDURE - 1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing. - 2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device. - 3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse. - 4) EUT will associate with the master at channel. The file <code>j°iperf.exej±</code> specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test. - 5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB. - 6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Report No.: BLA-EMC-202106-A6604 Page 67 of 513 Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type. 7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin. 8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel. # 15.4 TEST DATA Pass: Please Refer To DFS Report: BLA-EMC-202106-A6605 ## 16 PEAK POWER SPECTRUM DENSITY | Test Standard | 47 CFR Part 15, Subpart E 15.407 | |------------------------|----------------------------------| | Test Method | KDB 789033 D02 II F | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ## **16.1 LIMITS** | Free
band(N | quency
(IHz) | Limit | | | | | |----------------|-----------------|--|--|--|--|--| | 5150 5 | 2250 | ≤17dBm in 1MHz for master device | | | | | | 5150-5 | 0230 | ≤11dBm in 1MHz for client device | | | | | | 5250-5 | 5350 | ≤11dBm in 1MHz for client device | | | | | | 5470-5 | 5725 | ≤11dBm in 1MHz for client device | | | | | | 5725-5 | 5850 | ≤30dBm in 500 kHz | | | | | | Remark: | The maximu | m power spectral density is measured as a conducted emission by | | | | | | | direct connec | etion of a calibrated test instrument to the equipment under test. | | | | | # 16.2 BLOCK DIAGRAM OF TEST SETUP 16.3 TEST DATA 17 TRANSMITTER POWER CONTROL | Test Standard | 47 CFR Part 15, Subpart E 15.407 | |---------------|----------------------------------| | Test Method | KDB 789033 D02 II E | ### 17.1 CONCLUSION # Standard Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.35dBi. 18 MAXIMUM CONDUCTED OUTPUT POWER | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | | |------------------------|----------------------------------|--|--|--|--|--| | Test Method | KDB 789033 D02 II E | | | | | | | Test Mode (Pre-Scan) | TX | | | | | | | Test Mode (Final Test) | TX | | | | | | | Tester | Jozu | | | | | | | Temperature | 25℃ | | | | | | | Humidity | 60% | | | | | | ## **18.1 LIMITS** | Free
band(M | quency
(Hz) | Limit | | | | | | |----------------|--|--|--|--|--|--|--| | 5150-5 | 250 | ≤1W(30dBm) for master device | | | | | | | 3130-3 | 230 | ≤250mW(24dBm) for client device | | | | | | | 5250-5 | 350 | ≤250mW(24dBm) for client device or 11dBm+10logB* | | | | | | | 5470-5 | 725 | ≤250mW(24dBm) for client device or 11dBm+10logB* | | | | | | | 5725-5 | 850 | ≤1W(30dBm) | | | | | | | Remark: | * Where B is the 26dB emission bandwidth in MHz. | | | | | | | | | The maximum conducted output power must be measured over any interval of | | | | | | | | | continuous transmission using instrumentation calibrated in terms of an | | | | | | | | | rms-equivalent voltage. | | | | | | | # 18.2 BLOCK DIAGRAM OF TEST SETUP ## 18.3 TEST DATA # 19 MINIMUM 6 DB BANDWIDTH (5.725-5.85 GHZ BAND) | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | |------------------------|----------------------------------|--|--|--|--| | Test Method | KDB 789033 D02 II C 2 | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | ## **19.1 LIMITS** | Limit: | ≥500 kHz | | |--------|----------|--| ## 19.2 BLOCK DIAGRAM OF TEST SETUP ## 19.3 TEST DATA 20 26DB EMISSION BANDWIDTH | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | |------------------------|----------------------------------|--|--|--|--| | Test Method | KDB 789033 D02 II C 1 | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | ## 20.1 BLOCK DIAGRAM OF TEST SETUP # 20.2 TEST DATA # **21 99% BANDWIDTH** | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | |------------------------|----------------------------------|--|--|--|--| | Test Method | KDB 789033 II D | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | ## 21.1 BLOCK DIAGRAM OF TEST SETUP # 21.2 TEST DATA # 22 DUTY CYCLE | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | |------------------------|----------------------------------|--|--|--|--| | Test Method | KDB 789033 II B 1 | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | ## 22.1 BLOCK DIAGRAM OF TEST SETUP # 22.2 TEST DATA ## 23 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | Test Standard | 47 CFR Part 15, Subpart E 15.407 | | | | | | |------------------------|----------------------------------|--|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 6.2 | | | | | | | Test Mode (Pre-Scan) | Transmitting mode | | | | | | | Test Mode (Final Test) | Transmitting mode | | | | | | | Tester | Jozu | | | | | | | Temperature | 25℃ | | | | | | | Humidity | 60% | | | | | | #### **23.1 LIMITS** | Frequency of | Conducted limit(dBµV) | | | | | |---|-----------------------|-----------|--|--|--| | emission(MHz) | Quasi-peak | Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5-5 | 56 | 46 | | | | | 5-30 | 60 | 50 | | | | | *Decreases with the logarithm of the frequency. | | | | | | ### 23.2 BLOCK DIAGRAM OF TEST SETUP ### 23.3 PROCEDURE - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. Report No.: BLA-EMC-202106-A6604 Page 79 of 513 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor ## 23.4 TEST DATA # [TestMode: Transmitting mode]; [Line: Nutral] Limit: FCC Class B Conduction(QP) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: 5.1GWIFI mode Note: Site | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0.2020 | 40.51 | 9.75 | 50.26 | 63.53 | -13.27 | QP | | | 2 | 0.2020 | 28.26 | 9.75 | 38.01 | 53.53 | -15.52 | AVG | | | 3 | 0.2700 | 34.18 | 9.76 | 43.94 | 61.12 | -17.18 | QP | | | 4 | 0.2700 | 23.04 | 9.76 | 32.80 | 51.12 | -18.32 | AVG | | | 5 | 1.2780 | 22.76 | 9.85 | 32.61 | 56.00 | -23.39 | QP | | | 6 | 1.2780 | 19.27 | 9.85 | 29.12 | 46.00 | -16.88 | AVG | | | 7 * | 3.6260 | 35.12 | 9.91 | 45.03 | 56.00 | -10.97 | QP | | | 8 | 3.6260 | 25.08 | 9.91 | 34.99 | 46.00 | -11.01 | AVG | | | 9 | 8.4620 | 25.83 | 10.07 | 35.90 | 60.00 | -24.10 | QP | | | 10 | 8.4620 | 18.70 | 10.07 | 28.77 | 50.00 | -21.23 | AVG | | | 11 | 19.6740 | 27.44 | 10.43 | 37.87 | 60.00 | -22.13 | QP | | | 12 | 19.6740 | 23.45 | 10.43 | 33.88 | 50.00 | -16.12 | AVG | | *:Maximum data x:Over limit (Reference Only !:over margin # [TestMode: Transmitting mode]; [Line: Line] Limit: FCC Class B Conduction(QP) EUT: WIFI/BT Module M/N: 6222C-PUC Mode: 5.1GWIFI mode Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.2020 | 41.47 | 9.83 | 51.30 | 63.53 | -12.23 | QP | | | 2 | | 0.2020 | 30.23 | 9.83 | 40.06 | 53.53 | -13.47 | AVG | | | 3 | | 0.2700 | 33.99 | 9.84 | 43.83 | 61.12 | -17.29 | QP | | | 4 | | 0.2700 | 26.51 | 9.84 | 36.35 | 51.12 | -14.77 | AVG | | | 5 | | 0.8059 | 24.87 | 9.89 | 34.76 | 56.00 | -21.24 | QP | | | 6 | | 0.8059 | 22.67 | 9.89 | 32.56 | 46.00 | -13.44 | AVG | | | 7 | | 3.3580 | 33.84 | 9.97 | 43.81 | 56.00 | -12.19 | QP | | | 8 | * | 3.3580 | 24.44 | 9.97 | 34.41 | 46.00 | -11.59 | AVG | | | 9 | | 12.5020 | 21.92 | 10.27 | 32.19 | 60.00 | -27.81 | QP | | | 10 | | 12.5020 | 16.50 | 10.27 | 26.77 | 50.00 | -23.23 | AVG | | | 11 | | 20.8140 | 23.92 | 10.42 | 34.34 | 60.00 | -25.66 | QP | | | 12 | | 20.8140 | 19.87 | 10.42 | 30.29 | 50.00 | -19.71 | AVG | | Power: Humidity: *:Maximum data x:Over limit !:over margin (Reference Only **24 ANTENNA REQUIREMENT** | Test Standard | 47 CFR Part 15, Subpart E 15.407 | |---------------|----------------------------------| | Test Method | N/A | ### 24.1 CONCLUSION # Standard Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.35dBi. # 25 APPENDIX # 25.1 DUTY CYCLE | Condition | Mode | Frequency (MHz) | Antenna | Duty Cycle (%) | Correction Factor (dB) | |-----------|------|-----------------|---------|----------------|------------------------| | NVNT | a | 5180 | Sum | 73.88 | 1.31 | | NVNT | a | 5200 | Sum | 73.54 | 1.33 | | NVNT | a | 5240 | Sum | 73.55 | 1.33 | | NVNT | a | 5260 | Sum | 73.54 | 1.33 | | NVNT | a | 5280 | Sum | 73.54 | 1.33 | | NVNT | a | 5320 | Sum | 73.83 | 1.32 | | NVNT | a | 5500 | Sum | 73.55 | 1.33 | | NVNT | a | 5600 | Sum | 73.55 | 1.33 | | NVNT | a | 5700 | Sum | 74.01 | 1.31 | | NVNT | a | 5745 | Sum | 73.72 | 1.32 | | NVNT | a | 5785 | Sum | 73.55 | 1.33 | | NVNT | a | 5825 | Sum | 73.73 | 1.32 | | NVNT | ac20 | 5180 | Sum | 26.5 | 5.77 | | NVNT | ac20 | 5200 | Sum | 26.43 | 5.78 | | NVNT | ac20 | 5240 | Sum | 26.54 | 5.76 | | NVNT | ac20 | 5260 | Sum | 26.49 | 5.77 | | NVNT | ac20 | 5280 | Sum | 26.45 | 5.78 | | NVNT | ac20 | 5320 | Sum | 26.5 | 5.77 | | NVNT | ac20 | 5500 | Sum | 26.51 | 5.77 | | NVNT | ac20 | 5600 | Sum | 26.51 | 5.77 | | NVNT | ac20 | 5700 | Sum | 26.49 | 5.77 | | NVNT | ac20 | 5745 | Sum | 26.43 | 5.78 | | NVNT | ac20 | 5785 | Sum | 26.44 | 5.78 | | NVNT | ac20 | 5825 | Sum | 26.51 | 5.77 | | NVNT | ac40 | 5190 | Sum | 18.66 | 7.29 | | NVNT | ac40 | 5230 | Sum | 18.66 | 7.29 | | NVNT | ac40 | 5270 | Sum | 18.67 | 7.29 | | NVNT | ac40 | 5310 | Sum | 18.62 | 7.3 | | NVNT | ac40 | 5510 | Sum | 18.62 | 7.3 | | NVNT | ac40 | 5590 | Sum | 18.63 | 7.3 | | NVNT | ac40 | 5670 | Sum | 18.58 | 7.31 | | NVNT | ac40 | 5755 | Sum | 18.64 | 7.3 | | NVNT | ac40 | 5795 | Sum | 18.62 | 7.3 | | NVNT | ac80 | 5210 | Sum | 40.05 | 3.97 | | NVNT | ac80 | 5290 | Sum | 40.02 | 3.98 | | NVNT | ac80 | 5530 | Sum | 40.05 | 3.97 | | NVNT | ac80 | 5610 | Sum | 40.01 | 3.98 | | NVNT | ac80 | 5690 | Sum | 40.11 | 3.97 | | NVNT | ac80 | 5775 | Sum | 40.19 | 3.96 | | NVNT | n20 | 5180 | Sum | 26.02 | 5.85 | | NVNT | n20 | 5200 | Sum | 26.03 | 5.85 | | NVNT | n20 | 5240 | Sum | 26.05 | 5.84 | | NVNT | n20 | 5260 | Sum | 26.02 | 5.85 | |------|-----|------|-----|-------|------| | NVNT | n20 | 5280 | Sum | 26.04 | 5.84 | | NVNT | n20 | 5320 | Sum | 26.02 | 5.85 | | NVNT | n20 | 5500 | Sum | 26.02 | 5.85 | | NVNT | n20 | 5600 | Sum | 26 | 5.85 | | NVNT | n20 | 5700 | Sum | 26 | 5.85 | | NVNT | n20 | 5745 | Sum | 26 | 5.85 | | NVNT | n20 | 5785 | Sum | 26 | 5.85 | | NVNT | n20 | 5825 | Sum | 26.01 | 5.85 | | NVNT | n40 | 5190 | Sum | 18.04 | 7.44 | | NVNT | n40 | 5230 | Sum | 18.05 | 7.44 | | NVNT | n40 | 5270 | Sum | 18.04 | 7.44 | | NVNT | n40 | 5310 | Sum | 18.15 | 7.41 | | NVNT | n40 | 5510 | Sum | 18.03 | 7.44 | | NVNT | n40 | 5590 | Sum | 18.08 | 7.43 | | NVNT | n40 | 5670 | Sum | 18.02 | 7.44 | | NVNT | n40 | 5755 | Sum | 18.04 | 7.44 | | NVNT | n40 | 5795 | Sum | 18.04 | 7.44 | | | | | | | | Duty Cycle NVNT a 5180MHz Sum Duty Cycle NVNT a 5200MHz Sum Duty Cycle NVNT a 5240MHz Sum Duty Cycle NVNT a 5260MHz Sum Duty Cycle NVNT a 5280MHz Sum Duty Cycle NVNT a 5320MHz Sum Duty Cycle NVNT a 5500MHz Sum Duty Cycle NVNT a 5600MHz Sum Duty Cycle NVNT a 5700MHz Sum Duty Cycle NVNT a 5745MHz Sum Duty Cycle NVNT a 5785MHz Sum Duty Cycle NVNT a 5825MHz Sum Duty Cycle NVNT ac20 5180MHz Sum Duty Cycle NVNT ac20 5200MHz Sum Duty Cycle NVNT ac20 5240MHz Sum Duty Cycle NVNT ac20 5260MHz Sum Duty Cycle NVNT ac20 5280MHz Sum Duty Cycle NVNT ac20 5320MHz Sum Duty Cycle NVNT ac20 5500MHz Sum Duty Cycle NVNT ac20 5600MHz Sum Duty Cycle NVNT ac20 5700MHz Sum Duty Cycle NVNT ac20 5745MHz Sum Duty Cycle NVNT ac20 5785MHz Sum Duty Cycle NVNT ac20 5825MHz Sum Duty Cycle NVNT ac40 5190MHz Sum Duty Cycle NVNT ac40 5230MHz Sum Duty Cycle NVNT ac40 5270MHz Sum Duty Cycle NVNT ac40 5310MHz Sum Duty Cycle NVNT ac40 5510MHz Sum Duty Cycle NVNT ac40 5590MHz Sum Duty Cycle NVNT ac40 5670MHz Sum Duty Cycle NVNT ac40 5755MHz Sum Duty Cycle NVNT ac40 5795MHz Sum Duty Cycle NVNT ac80 5210MHz Sum Duty Cycle NVNT ac80 5290MHz Sum Duty Cycle NVNT ac80 5530MHz Sum Duty Cycle NVNT ac80 5610MHz Sum Duty Cycle NVNT ac80 5690MHz Sum Duty Cycle NVNT ac80 5775MHz Sum Duty Cycle NVNT n20 5180MHz Sum Duty Cycle NVNT n20 5200MHz Sum Duty Cycle NVNT n20 5240MHz Sum Duty Cycle NVNT n20 5260MHz Sum Duty Cycle NVNT n20 5280MHz Sum Duty Cycle NVNT n20 5320MHz Sum Duty Cycle NVNT n20 5500MHz Sum Duty Cycle NVNT n20 5600MHz Sum Duty Cycle NVNT n20 5700MHz Sum Duty Cycle NVNT n20 5745MHz Sum Duty Cycle NVNT n20 5785MHz Sum Duty Cycle NVNT n20 5825MHz Sum Duty Cycle NVNT n40 5190MHz Sum Duty Cycle NVNT n40 5230MHz Sum Duty Cycle NVNT n40 5270MHz Sum Duty Cycle NVNT n40 5310MHz Sum Duty Cycle NVNT n40 5510MHz Sum Duty Cycle NVNT n40 5590MHz Sum Duty Cycle NVNT n40 5670MHz Sum Duty Cycle NVNT n40 5755MHz Sum Duty Cycle NVNT n40 5795MHz Sum