

**CTC** Laboratories, Inc.

# **TEST REPORT**

| Report No:                      | CTC2024240510                                                                        |                                 |  |
|---------------------------------|--------------------------------------------------------------------------------------|---------------------------------|--|
| FCC ID:                         | WNA-HPR3A-W5                                                                         |                                 |  |
| Applicant:                      | Shenzhen Skyworth Digital Technology Co.,LTD.                                        |                                 |  |
| Address:                        | 14/F Unit A. Skyworth Building, Gaoxin Ave.1s., Nanshan<br>District, Shenzhen, China |                                 |  |
| Manufacturer                    | Shenzhen Skyworth Digital Techno                                                     | ology Co.,LTD.                  |  |
| Address:                        | 14/F Unit A. Skyworth Building, Ga<br>District, Shenzhen, China                      | aoxin Ave.1s., Nanshan          |  |
| Product Name:                   | TBD, SET TOP BOX                                                                     |                                 |  |
| Trade Mark:                     | SKYWORTH, STRONG, QVWI, N                                                            | ext                             |  |
| Model/Type reference:           | HPR3A                                                                                |                                 |  |
| Listed Model(s):                | HPR311                                                                               |                                 |  |
| Standard:                       | FCC CFR Title 47 Part 15 Subpart C Section 15.247                                    |                                 |  |
| Test Report Form No             | CTC-TR-059_A1                                                                        |                                 |  |
| Master TRF                      | Dated 2024-09-20                                                                     |                                 |  |
| Date of receipt of test sample: | Oct. 18, 2024                                                                        |                                 |  |
| Date of testing                 | Oct. 21, 2024 ~ Oct. 30, 2024                                                        |                                 |  |
| Date of issue                   | Dec. 06, 2024                                                                        |                                 |  |
| Result                          | PASS                                                                                 |                                 |  |
| Compiled by:                    |                                                                                      | 1. mail ann                     |  |
| (Printed name+signature)        | Lucy Lan                                                                             | luey lan<br>Zric Zhang<br>Jahas |  |
| Supervised by:                  |                                                                                      | Zic zhana                       |  |
| (Printed name+signature)        | Eric Zhang                                                                           |                                 |  |
| Approved by:                    |                                                                                      | Jemas                           |  |
| (Printed name+signature)        | Totti Zhao                                                                           | /*                              |  |

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. This report is only provided to customers for activities such as scientific research, teaching, internal quality control, product development.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of China Inspection And Testing



#### **Table of Contents**

#### Page

| 1. | TEST | SUMMARY                                      | 3  |
|----|------|----------------------------------------------|----|
| 1. | .1.  | Test Standards                               | 3  |
| 1. | .2.  | REPORT VERSION                               | 3  |
| 1. | .3.  | TEST DESCRIPTION                             | 3  |
| 1. | .4.  | TEST FACILITY                                | 4  |
| 1. | .5.  | MEASUREMENT UNCERTAINTY                      | 5  |
| 1. | .6.  | Environmental Conditions                     | 5  |
| 2. | GEN  | ERAL INFORMATION                             | 6  |
| 2. | .1.  | CLIENT INFORMATION                           | 6  |
| 2. | .2.  | GENERAL DESCRIPTION OF EUT                   | 6  |
| 2. | .3.  | ACCESSORY EQUIPMENT INFORMATION              |    |
| 2. | .4.  | OPERATION STATE                              | 9  |
| 2. | .5.  | Measurement Instruments List                 | 10 |
| 3. | TEST | ITEM AND RESULTS                             | 11 |
| 3. | .1.  | CONDUCTED EMISSION                           | 11 |
| 3. | .2.  | RADIATED EMISSION                            |    |
| 3. | .3.  | BAND EDGE EMISSIONS (RADIATED)               | 36 |
| 3. | .4.  | BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED) |    |
| 3. | .5.  | 20dB Bandwidth                               | 64 |
| 3. | .6.  | CHANNEL SEPARATION                           | 71 |
| 3. | .7.  | NUMBER OF HOPPING CHANNEL                    |    |
| 3. | .8.  | Dwell Time                                   | 75 |
| 3. | .9.  | PEAK OUTPUT POWER                            |    |
| 3. | .10. | DUTY CYCLE                                   |    |
| 3. | .11. | ANTENNA REQUIREMENT                          | 91 |



# 1. TEST SUMMARY

### 1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz.

<u>ANSI C63.10-2013</u>: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

### 1.2. Report Version

| Revised No. | Report No.    | Date of issue | Description |
|-------------|---------------|---------------|-------------|
| 01          | CTC2024240510 | Dec. 06, 2024 | Original    |
|             |               |               |             |
|             |               |               |             |

### **1.3. Test Description**

| FCC Part 15 Subpart C (15.247)                |                             |        |                  |
|-----------------------------------------------|-----------------------------|--------|------------------|
| Test Item                                     | Standard Section            | Result | Test<br>Engineer |
| Antenna Requirement                           | 15.203                      | Pass   | Alicia Liu       |
| Conducted Emission                            | 15.207                      | Pass   | Alicia Liu       |
| Restricted Bands                              | 15.205                      | Pass   | Alicia Liu       |
| Hopping Channel Separation                    | 15.247(a)(1)                | Pass   | Alicia Liu       |
| Dwell Time                                    | 15.247(a)(iii)              | Pass   | Alicia Liu       |
| Peak Output Power                             | 15.247(b)(1)                | Pass   | Alicia Liu       |
| Number of Hopping Frequency                   | 15.247(a)(iii)              | Pass   | Alicia Liu       |
| Conducted Band Edge and<br>Spurious Emissions | 15.247(d)                   | Pass   | Alicia Liu       |
| Radiated Band Edge and<br>Spurious Emissions  | 15.205&15.209&<br>15.247(d) | Pass   | Alicia Liu       |
| Radiated Spurious Emission                    | 15.247(d) &15.209           | Pass   | Alicia Liu       |
| 20dB Bandwidth                                | 15.247(a)                   | Pass   | Alicia Liu       |

Note:

1. The measurement uncertainty is not included in the test result.

2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



### 1.4. Test Facility

#### Address of the report laboratory

#### CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

#### Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

#### A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

#### FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



### **1.5. Measurement Uncertainty**

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

| Test Items                      | Measurement Uncertainty                     | Notes |
|---------------------------------|---------------------------------------------|-------|
| 20dB Emission Bandwidth         | ±0.0196%                                    | (1)   |
| Carrier Frequency Separation    | ±1.9%                                       | (1)   |
| Number of Hopping Channel       | ±1.9%                                       | (1)   |
| Time of Occupancy               | ±0.028%                                     | (1)   |
| Max Peak Conducted Output Power | ±0.743 dB                                   | (1)   |
| Band-edge Spurious Emission     | ±1.328 dB                                   | (1)   |
| Conducted RF Spurious Emission  | 9kHz-1GHz: ±0.746dB<br>1GHz-26GHz: ±1.328dB | (1)   |
| Conducted Emissions 9kHz~30MHz  | ±3.08 dB                                    | (1)   |
| Radiated Emissions 30~1000MHz   | ±4.51 dB                                    | (1)   |
| Radiated Emissions 1~18GHz      | ±5.84 dB                                    | (1)   |
| Radiated Emissions 18~40GHz     | ±6.12 dB                                    | (1)   |

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

### **1.6. Environmental Conditions**

During the measurement the environmental conditions were within the listed ranges:

| Temperature:       | 15 °C to 35 °C |
|--------------------|----------------|
| Relative Humidity: | 20 % to 75 %   |
| Air Pressure:      | 101 kPa        |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



# 2. GENERAL INFORMATION

### 2.1. Client Information

| Applicant:    | Shenzhen Skyworth Digital Technology Co.,LTD.                                                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address:      | 14/F Unit A. Skyworth Building, Gaoxin Ave.1s., Nanshan District, Shenzhen, China                                                                                             |
| Manufacturer: | Shenzhen Skyworth Digital Technology Co.,LTD.                                                                                                                                 |
| Address:      | 14/F Unit A. Skyworth Building, Gaoxin Ave.1s., Nanshan District, Shenzhen, China                                                                                             |
| Factory:      | Shenzhen Skyworth Digital Technology Co., LTD. Baoan Factory                                                                                                                  |
| Address:      | 2-5F,Integration Multi-Storied Building, Skyworth Science and Technology<br>Industrial Park, Tangtou Industrial Zone, Shiyan Street, Baoan District,<br>Shenzhen city, China. |

### 2.2. General Description of EUT

| Product Name:         | TBD, SET TOP BOX                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------|
| Trade Mark:           | SKYWORTH, STRONG, QVWI, Next                                                                 |
| Model/Type reference: | HPR3A                                                                                        |
| Listed Model(s):      | HPR311                                                                                       |
| Model Difference:     | Only the models name is different                                                            |
| Sample ID:            | CTC241012-002-S001                                                                           |
| Power Supply:         | DC12V 1A from AC/DC Adapter                                                                  |
| Adapter Model 1       | YS-SKY120100U00P <sup>Note1</sup><br>Input: 100-240V~ 50/60Hz 0.5A<br>Output: 12Vdc/1A 12.0W |
| Adapter Model 2       | RJ-SKY120100U60S <sup>Note2</sup><br>Input: 100-240V~ 50/60Hz 0.5A<br>Output: 12Vdc/1A 12.0W |
| Adapter Model 3       | BS12A-1201000US<br>Input: 100-240V~ 50/60Hz 0.4A<br>Output: 12Vdc/1A 12.0W                   |
| Hardware version:     | /                                                                                            |
| Software version:     | /                                                                                            |

#### Note:

1. YS-SKY120100U0XP, (where X represents for marketing purpose with no safety impact, it can be 0-9)

2. RJ-SKY120100UXXS (XX=00-99, stands for customer code)

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| Bluetooth 5.0 / BR+EDR |                         |
|------------------------|-------------------------|
| Modulation:            | GFSK, π/4-DQPSK, 8-DPSK |
| Operation Frequency:   | 2402MHz~2480MHz         |
| Channel Number:        | 79                      |
| Channel Separation:    | 1MHz                    |
| Antenna Type:          | PCB Antenna             |
| Antenna Gain:          | 1.87 dBi                |



## 2.3. Accessory Equipment Information

| Equipment Information     |                |              |              |  |
|---------------------------|----------------|--------------|--------------|--|
| Name                      | Model          | S/N          | Manufacturer |  |
| Notebook                  | ThinkPad T460s | /            | Lenovo       |  |
| Cable Information         |                |              |              |  |
| Name                      | Shielded Type  | Ferrite Core | Length       |  |
| LAN Cable                 | Unshielded     | NO           | 150cm        |  |
| Test Software Information |                |              |              |  |
| Name                      | Version        | /            | /            |  |
| SecureCRT                 | 1              | /            | 1            |  |

CTC Laboratories, Inc.



### 2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

| Channel | Frequency (MHz) |
|---------|-----------------|
| 00      | 2402            |
| 01      | 2403            |
| :       | :               |
| 38      | 2440            |
| 39      | 2441            |
| 40      | 2442            |
| :       | :               |
| 77      | 2479            |
| 78      | 2480            |

Note: The display in grey were the channel selected for testing.

#### Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



### 2.5. Measurement Instruments List

|      | RF Test System - SRD                        |              |           |              |                  |  |
|------|---------------------------------------------|--------------|-----------|--------------|------------------|--|
| Item | Test Equipment                              | Manufacturer | Model No. | Serial No.   | Calibrated Until |  |
| 1    | MXA Signal Analyzer                         | Keysight     | N9020A    | MY46471737   | Dec. 12, 2024    |  |
| 2    | MXG Vector Signal<br>Generator              | Agilent      | N5182A    | MY47420864   | Dec. 12, 2024    |  |
| 3    | PSG Analog Signal<br>Generator              | Agilent      | E8257D    | MY46521908   | Dec. 12, 2024    |  |
| 4    | USB Wideband Power<br>Sensor                | Keysight     | U2021XA   | MY55130004   | Mar. 15, 2025    |  |
| 5    | USB Wideband Power<br>Sensor                | Keysight     | U2021XA   | MY55130006   | Mar. 15, 2025    |  |
| 6    | High and low<br>temperature test<br>chamber | ESPEC        | MT3035    | /            | Mar. 25, 2025    |  |
| 7    | Test Software                               | Tonscend     | JS1120-3  | V2.6.88.0346 | /                |  |

|      |                                 | Radia        | ited emission          |            |                  |
|------|---------------------------------|--------------|------------------------|------------|------------------|
| Item | Test Equipment                  | Manufacturer | Manufacturer Model No. |            | Calibrated Until |
| 1    | Trilog-Broadband<br>Antenna     | Schwarzbeck  | VULB 9163              | 01026      | Dec. 18, 2024    |
| 2    | Horn Antenna                    | Schwarzbeck  | BBHA 9120D             | 9120D-647  | Sep. 25, 2025    |
| 3    | Test Receiver                   | Keysight     | N9038A                 | MY56400071 | Dec. 12, 2024    |
| 4    | Broadband Amplifier             | SCHWARZBECK  | BBV9743B               | 259        | Dec. 12, 2024    |
| 5    | Mirowave Broadband<br>Amplifier | SCHWARZBECK  | BBV9718C               | 111        | Dec. 12, 2024    |
| 6    | 3m chamber 3                    | YIHENG       | EE106                  | /          | Aug. 28, 2026    |
| 7    | Test Software                   | FARA         | EZ-EMC                 | FA-03A2    | /                |

|      | Conducted emission |              |           |                |                  |  |  |  |  |  |
|------|--------------------|--------------|-----------|----------------|------------------|--|--|--|--|--|
| Item | Test Equipment     | Manufacturer | Model No. | Serial No.     | Calibrated until |  |  |  |  |  |
| 1    | LISN               | R&S          | ENV216    | 101112         | Dec. 12, 2024    |  |  |  |  |  |
| 2    | LISN               | R&S          | ENV216    | 101113         | Dec. 12, 2024    |  |  |  |  |  |
| 3    | EMI Test Receiver  | R&S          | ESCS30    | 100353         | Dec. 12, 2024    |  |  |  |  |  |
| 4    | ISN CAT6           | Schwarzbeck  | NTFM 8158 | CAT6-8158-0046 | Dec. 12, 2024    |  |  |  |  |  |
| 5    | ISN CAT5           | Schwarzbeck  | NTFM 8158 | CAT5-8158-0046 | Dec. 12, 2024    |  |  |  |  |  |
| 6    | Test Software      | R&S          | EMC32     | 6.10.10        | /                |  |  |  |  |  |

Note: 1. The Cal. Interval was one year.

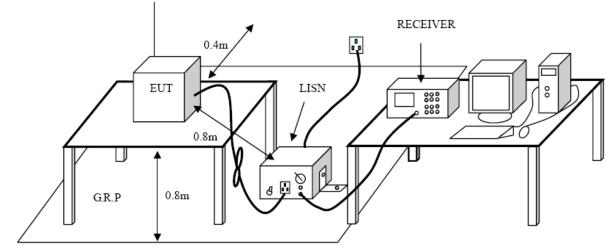
- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.



# 3. TEST ITEM AND RESULTS

### 3.1. Conducted Emission


#### <u>Limit</u>

#### FCC CFR Title 47 Part 15 Subpart C Section 15.207

|                 | Conducte   | ed Limit (dBμV) |
|-----------------|------------|-----------------|
| Frequency (MHz) | Quasi-peak | Average         |
| 0.15 - 0.5      | 66 to 56 * | 56 to 46 *      |
| 0.5 - 5         | 56         | 46              |
| 5 - 30          | 60         | 50              |

\* Decreases with the logarithm of the frequency.

#### Test Configuration



#### Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

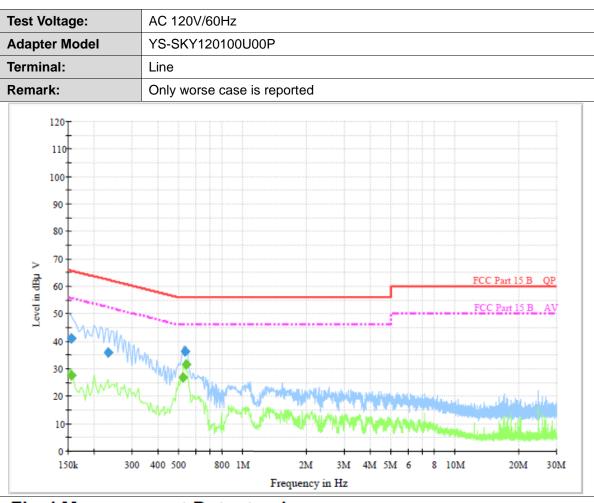
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50  $\mu$ H coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.


8. During the above scans, the emissions were maximized by cable manipulation.

#### Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

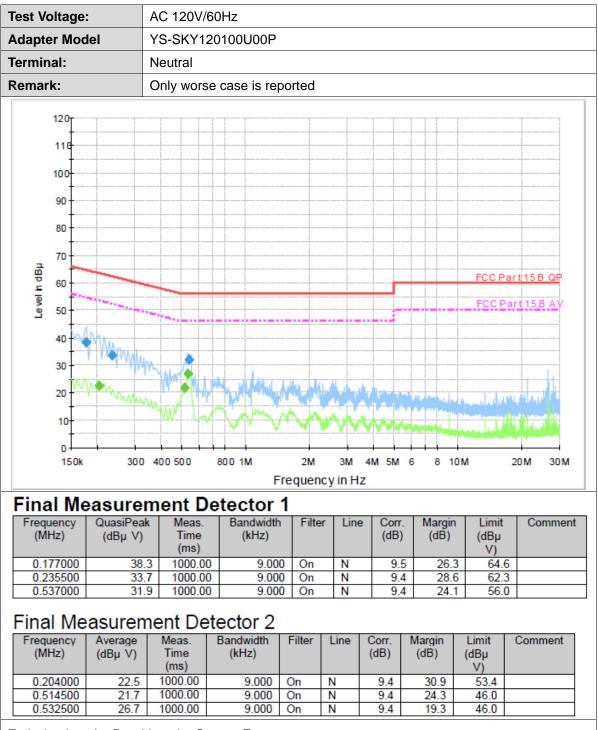




#### **Final Measurement Detector 1**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|----------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.154500           | 41.1                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 24.7           | 65.8                |         |
| 0.231000           | 36.0                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 26.4           | 62.4                |         |
| 0.532500           | 36.3                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 19.7           | 56.0                |         |

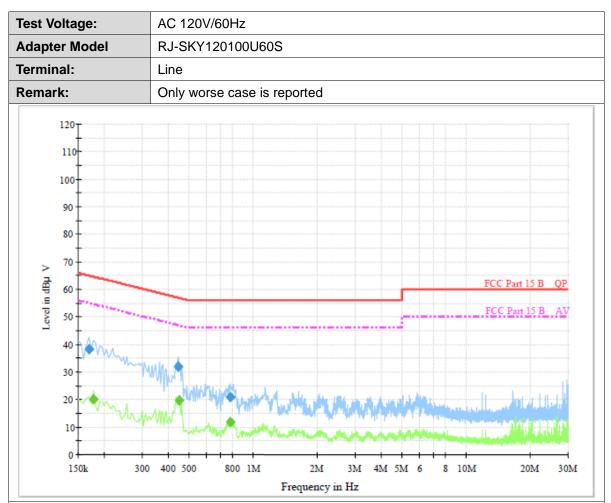
### Final Measurement Detector 2


| Frequency<br>(MHz) | Average<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|--------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.154500           | 27.8               | 1000.00               | 9.000              | On     | L1   | 9.5           | 28.0           | 55.8                |         |
| 0.519000           | 26.9               | 1000.00               | 9.000              | On     | L1   | 9.5           | 19.1           | 46.0                |         |
| 0.537000           | 31.4               | 1000.00               | 9.000              | On     | L1   | 9.5           | 14.6           | 46.0                |         |

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn






Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

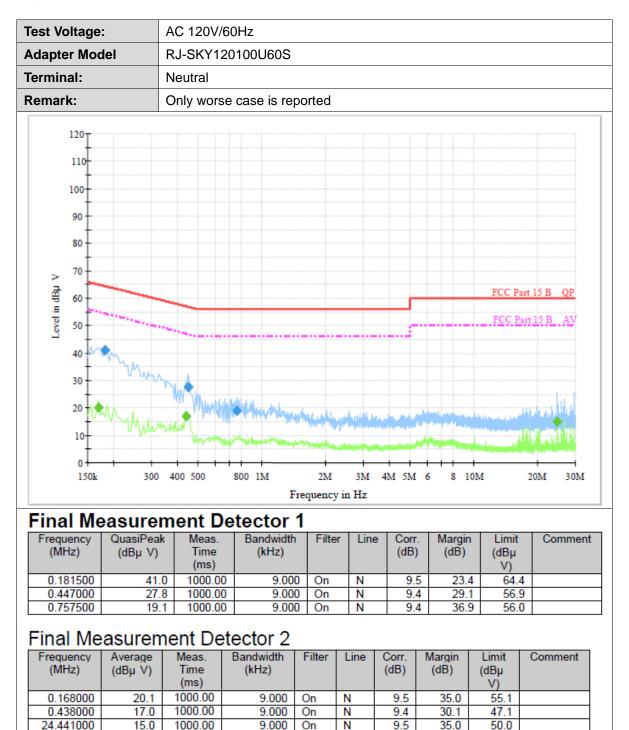




### Final Measurement Detector 1

| Frequency<br>(MHz) | QuasiPeak<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|----------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.168000           | 38.3                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 26.8           | 65.1                |         |
| 0.442500           | 31.9                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 25.1           | 57.0                |         |
| 0.780000           | 21.1                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 34.9           | 56.0                |         |

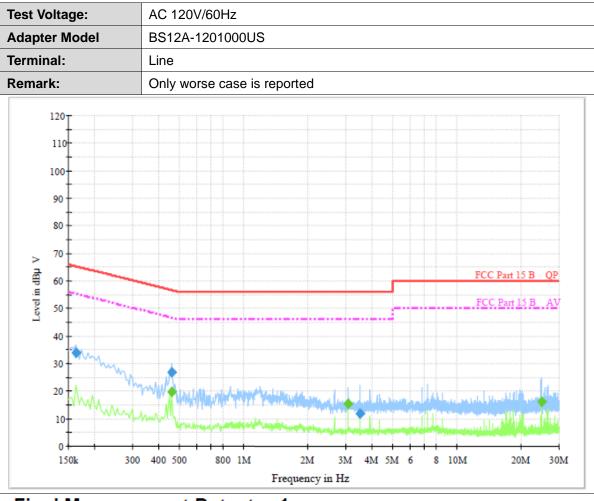
### Final Measurement Detector 2


| Average | Meas.                   | Bandwidth                                            | Filter                                                                                                                               | Line                                                                                                                                                       | Corr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Margin                                                                                                                                                                                                                | Limit                                                                                                                                                                                                                                                                     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dBµV)  | Time                    | (kHz)                                                |                                                                                                                                      |                                                                                                                                                            | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (dB)                                                                                                                                                                                                                  | (dBµ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | (ms)                    |                                                      |                                                                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       | V)                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.2    | 1000.00                 | 9.000                                                | On                                                                                                                                   | L1                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.4                                                                                                                                                                                                                  | 54.6                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.8    | 1000.00                 | 9.000                                                | On                                                                                                                                   | L1                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.1                                                                                                                                                                                                                  | 46.9                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11.8    | 1000.00                 | 9.000                                                | On                                                                                                                                   | L1                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.2                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | (dBµ V)<br>20.2<br>19.8 | (dBµ V) Time<br>(ms)<br>20.2 1000.00<br>19.8 1000.00 | (dBμ V)         Time<br>(ms)         (kHz)           20.2         1000.00         9.000           19.8         1000.00         9.000 | (dBμ V)         Time<br>(ms)         (kHz)           20.2         1000.00         9.000         On           19.8         1000.00         9.000         On | (dBμ V)         Time<br>(ms)         (kHz)         Image: Comparison of the state of th | (dBμ V)         Time<br>(ms)         (kHz)         (dB)           20.2         1000.00         9.000         On         L1         9.5           19.8         1000.00         9.000         On         L1         9.5 | (dBμ V)         Time<br>(ms)         (kHz)         (dB)         (dB)         (dB)           20.2         1000.00         9.000         On         L1         9.5         34.4           19.8         1000.00         9.000         On         L1         9.5         27.1 | (dBμ V)         Time<br>(ms)         (kHz)         (dB)         (dB) |

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn






Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

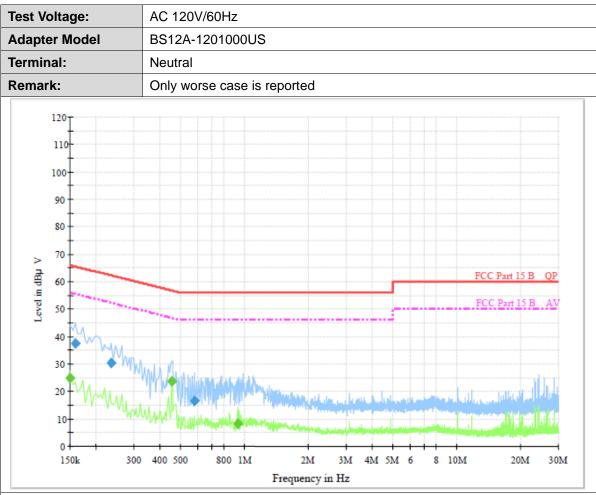




### Final Measurement Detector 1

| Frequency<br>(MHz) | QuasiPeak<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|----------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.163500           | 33.8                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 31.5           | 65.3                |         |
| 0.460500           | 27.0                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 29.7           | 56.7                |         |
| 3.489000           | 11.9                 | 1000.00               | 9.000              | On     | L1   | 9.5           | 44.1           | 56.0                |         |

### Final Measurement Detector 2


|   | Frequency<br>(MHz) | Average<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|---|--------------------|--------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| [ | 0.460500           | 19.8               | 1000.00               | 9.000              | On     | L1   | 9.5           | 26.9           | 46.7                |         |
| ĺ | 3.075000           | 15.2               | 1000.00               | 9.000              | On     | L1   | 9.5           | 30.8           | 46.0                |         |
| [ | 24.954000          | 16.3               | 1000.00               | 9.000              | On     | L1   | 9.7           | 33.7           | 50.0                |         |

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





### **Final Measurement Detector 1**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµ V) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµ<br>V) | Comment |
|--------------------|----------------------|-----------------------|--------------------|--------|------|---------------|----------------|---------------------|---------|
| 0.159000           | 37.6                 | 1000.00               | 9.000              | On     | Ν    | 9.5           | 27.9           | 65.5                |         |
| 0.235500           | 30.6                 | 1000.00               | 9.000              | On     | N    | 9.4           | 31.7           | 62.3                |         |
| 0.577500           | 16.5                 | 1000.00               | 9.000              | On     | Ν    | 9.4           | 39.5           | 56.0                |         |

### Final Measurement Detector 2

| Frequency | Average | Meas.   | Bandwidth | Filter | Line | Corr. | Margin | Limit | Comment |
|-----------|---------|---------|-----------|--------|------|-------|--------|-------|---------|
| (MHz)     | (dBµV)  | Time    | (kHz)     |        |      | (dB)  | (dB)   | (dBµ  |         |
|           |         | (ms)    |           |        |      |       |        | V)    |         |
| 0.150000  | 25.0    | 1000.00 | 9.000     | On     | N    | 9.5   | 31.0   | 56.0  |         |
| 0.451500  | 23.6    | 1000.00 | 9.000     | On     | N    | 9.4   | 23.2   | 46.8  |         |
| 0.924000  | 8.2     | 1000.00 | 9.000     | On     | Ν    | 9.4   | 37.8   | 46.0  |         |

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

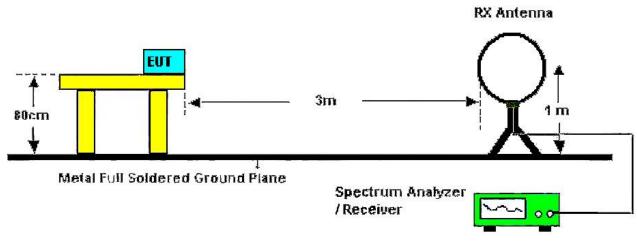


### 3.2. Radiated Emission

#### <u>Limit</u>

#### FCC CFR Title 47 Part 15 Subpart C Section 15.209

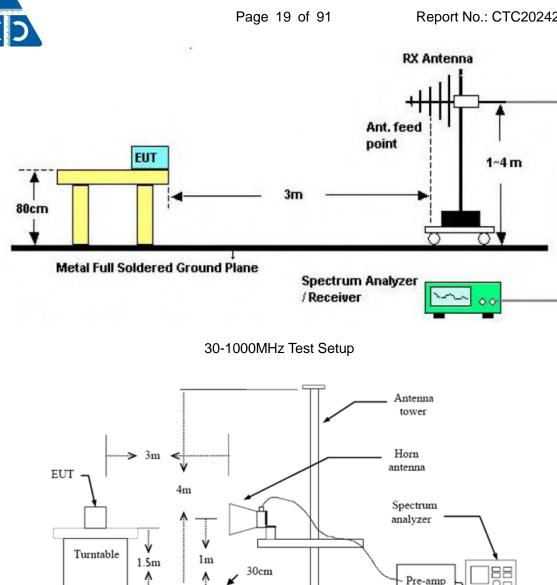
| Frequency   | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F (kHz)       | 300                  |
| 0.490~1.705 | 24000/F (kHz)      | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| 960~1000    | 500                | 3                    |


|                       | dBµV/m | (at 3 meters) |
|-----------------------|--------|---------------|
| Frequency Range (MHz) | Peak   | Average       |
| Above 1000            | 74     | 54            |

#### Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level ( $dB\mu V/m$ )=20log Emission Level ( $\mu V/m$ ).


#### **Test Configuration**



Below 30MHz Test Setup

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



Above 1GHz Test Setup

#### **Test Procedure**

1. The EUT was setup and tested according to ANSI C63.10:2013.

The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for 2. above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

Set to the maximum power setting and enable the EUT transmit continuously. 5.

Use the following spectrum analyzer settings 6.

Span shall wide enough to fully capture the emission being measured; (1)

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

#### CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

(5) From 1 GHz to 10<sup>th</sup> harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.10 Duty Cycle.

#### Test Mode

Please refer to the clause 2.4.

#### Test Result

#### 9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| An   | t. Pol.    |                                 |            | Н    | oriz | ont     | al            |                  |     |                 |             |             |               |          |             |   |
|------|------------|---------------------------------|------------|------|------|---------|---------------|------------------|-----|-----------------|-------------|-------------|---------------|----------|-------------|---|
| Ad   | apter      | Model                           |            | Y    | S-S  | KY      | 12010         | 0000P            |     |                 |             |             |               |          |             |   |
| Tes  | st Moc     | le:                             |            | T    | X G  | FS      | K Moo         | de 2402MHz       |     |                 |             |             |               |          |             |   |
| Re   | mark:      |                                 |            | 0    | nly  | wo      | rse ca        | se is reporte    | d.  |                 |             |             |               |          |             |   |
| 90.0 | dBu\       | //m                             |            |      |      |         |               |                  |     |                 | Î           | ĺ           | ĺ             |          |             |   |
| 80   |            |                                 |            |      |      |         |               |                  |     |                 |             |             |               |          |             |   |
| 70   |            |                                 |            |      |      |         |               |                  |     |                 |             |             |               |          |             |   |
| 60   |            |                                 |            |      |      |         |               |                  |     | F               | CC Part15   | Class B 3   | 3M Radiatio   | DN       |             |   |
| 50   |            |                                 |            |      |      |         |               |                  | -   | м               | argin -6 d  | B           |               |          |             |   |
| 40   | <u> </u>   |                                 |            |      |      |         |               |                  | -   |                 |             |             |               |          | 5<br>× 6    |   |
| 30   |            |                                 |            |      |      |         |               |                  |     |                 |             |             | *             |          | ×           |   |
| 20   |            |                                 | INIAMA.    |      |      |         |               | 2                | 4/1 |                 | b lynn wert | S.A. 4      |               | a market | - Jungt and |   |
| 10   | Jun Market | water at the state of the state | linite J.M | (MM) | 4MA  | Mus     | w. W. W. W.   | work water       | M   | Manterstan      | Al Mart     | V. marrie   |               |          |             |   |
| 0    | ļ          |                                 |            |      |      | . 14. 1 | <u> </u>      |                  | _   |                 |             |             |               |          |             |   |
| -10  | 0.000      |                                 |            |      |      |         |               |                  |     |                 |             |             |               |          | 1000.0      |   |
| 3    | 0.000      |                                 | 60         | 0.00 | _    |         |               | (MHz)            |     | 300             | ).00        |             |               |          | 1000.0      |   |
| 1    | No.        | Freq<br>(M                      | uen<br>Hz) | су   |      |         | ading<br>8u∨) | Factor<br>(dB/m) |     | Level<br>BuV/m) |             | mit<br>V/m) | Margi<br>(dB) |          | Detector    |   |
|      | 1          | 57.3                            | 3923       | 3    |      | 36      | .82           | -18.62           |     | 18.20           | 40          | .00         | -21.8         | 0        | QP          | Ť |
|      | 2          | 171.                            | 392        | 6    |      | 40      | .37           | -19.37           |     | 21.00           | 43          | .50         | -22.5         | 0        | QP          |   |
|      | 3          | 392.                            | 095        | 1    |      | 35      | .53           | -15.27           |     | 20.26           | 46          | .00         | -25.7         | 4        | QP          |   |
|      | 4          | 588.                            | 905        | 1    |      | 36      | .59           | -9.76            |     | 26.83           | 46          | .00         | -19.1         | 7        | QP          | T |

6

5 \*

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-5.55

-3.32

35.51

32.10

46.00

54.00

-10.49

-21.90

QP

QP

41.06

35.42

2.Margin value = Level -Limit value

836.2443

986.0717

CTC Laboratories, Inc.





| Ant. Pol                        | •               | Ve              | ertical                                   |                                         |                           |                         |                               |                      |                 |
|---------------------------------|-----------------|-----------------|-------------------------------------------|-----------------------------------------|---------------------------|-------------------------|-------------------------------|----------------------|-----------------|
| Adapter                         | Model           | Y               | S-SK                                      | Y12010                                  | 0U00P                     |                         |                               |                      |                 |
| Fest Mo                         | de:             | Т               | K GFS                                     | SK Mod                                  | e 2402MHz                 |                         |                               |                      |                 |
| Remark:                         | :               | 0               | nly wo                                    | orse cas                                | se is reported            | l.                      |                               |                      |                 |
| 30.0 dBu                        | V/m             |                 |                                           |                                         |                           |                         |                               |                      |                 |
| 30                              |                 |                 |                                           |                                         |                           |                         |                               |                      |                 |
| 70                              |                 |                 |                                           |                                         |                           |                         |                               |                      |                 |
| 50                              |                 |                 |                                           |                                         |                           | F                       | CC Part15 Class B             | 3M Radiation         |                 |
| 50                              |                 |                 |                                           |                                         |                           | M                       | argin -6 dB                   |                      |                 |
|                                 |                 |                 |                                           |                                         |                           |                         |                               |                      |                 |
| 10 <b></b>                      |                 |                 |                                           |                                         |                           |                         |                               |                      |                 |
|                                 | 1               | w               |                                           |                                         |                           |                         |                               | 5                    | 6               |
| 30                              |                 | h.              | W. Human                                  |                                         | Why is the                | Δ                       |                               | 5                    | 6               |
| 20                              |                 | <b>h</b> uyyi   | W WINNING AND                             | AND | W Walnut                  | Marrian man             | a walking all for and go half | 5<br>Juniter Mary    | 6               |
| 30                              |                 | 444 <b>4</b> 11 | W. Managara                               | A A A A A A A A A A A A A A A A A A A   | W Walking W               | Martin man              | nertherade the                | 5<br>Julion Wandhar  | E<br>Manager    |
| 20                              |                 | <b>1</b>        | WWWWWWWWW                                 | A A A A A A A A A A A A A A A A A A A   | White                     | Martin Martin           | Nerthangen and a hale         | 5<br>Juniten Marinen | E<br>Management |
|                                 |                 | 60.00           | N. M. |                                         | (MHz)                     |                         | 0.00                          | 5<br>hallow          | 5<br>           |
|                                 |                 |                 | Rea                                       |                                         | Warner                    |                         |                               |                      | 1000.00         |
|                                 | Frequer<br>(MHz | псу             |                                           | ading<br>BuV)                           | (MHz)                     | 30<br>Level             | 0.00                          | Margin               | 1000.00         |
|                                 | Frequer         | ncy<br>)        | (dl                                       | ading                                   | (MHz)<br>Factor           | 30<br>Level             | 0.00<br>Limit                 | Margin               | 1000.00         |
| 30<br>20<br>10<br>30.000<br>NO. | Frequer<br>(MHz | ncy<br>)<br>)7  | (dl<br>48                                 | ading<br>BuV)                           | (MHz)<br>Factor<br>(dB/m) | 30<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m)             | Margin<br>(dB)       | 1000.00         |

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-19.57

-9.69

-3.38

21.98

28.30

30.88

43.50

46.00

54.00

-21.52

-17.70

-23.12

QP

QP

QP

41.55

37.99

34.26

2.Margin value = Level -Limit value

174.4241

590.9737

982.6200

CTC Laboratories, Inc.





| Ant       | . Pol.     |       |                | Horiz | onta     | al             |                                                                                                                 |                  |             |                    |                 |           |         |
|-----------|------------|-------|----------------|-------|----------|----------------|-----------------------------------------------------------------------------------------------------------------|------------------|-------------|--------------------|-----------------|-----------|---------|
| Ada       | apter l    | Model |                | RJ-S  | KY1      | 20100          | 0U60S                                                                                                           |                  |             |                    |                 |           |         |
| Test      | t Mod      | le:   |                | TX G  | FSk      | K Mode         | e 2402MHz                                                                                                       |                  |             |                    |                 |           |         |
| Ren       | nark:      |       |                | Only  | wor      | se cas         | e is reported.                                                                                                  |                  |             |                    |                 |           |         |
| 90.0<br>F | dBuV       | '/m   |                |       |          |                |                                                                                                                 |                  |             |                    |                 |           |         |
| BO        |            |       |                |       |          |                |                                                                                                                 |                  |             |                    |                 |           |         |
| 0         |            |       |                |       |          |                |                                                                                                                 |                  |             |                    |                 |           |         |
| 60        |            |       |                |       |          |                |                                                                                                                 |                  |             |                    | 3M Radiatio     | DN        |         |
| 50<br>40  |            |       |                |       |          |                |                                                                                                                 |                  | Margin -6 d | B                  |                 |           |         |
| 30        |            |       |                |       |          |                | 2                                                                                                               |                  |             |                    |                 |           |         |
| 20        |            | Jul   | Aliantia, and  | Alu.  |          |                | $\longrightarrow$                                                                                               | hymneyyyyne      | 5<br>( ()   | e<br>Martin Martin | 6<br>In Am Waln | knot many | mulence |
| 10        | and hunder |       | . վ. այս դերգե | Wyn   | Ministra | ner mander der | un an an an and a start a start a start a start a start a start | ~ Aunth And A    | Wynyfall Pm |                    |                 |           |         |
| 0         |            |       |                |       |          |                |                                                                                                                 |                  |             |                    |                 |           |         |
| -10<br>30 | .000       |       | 60.00          | )     |          |                | (MHz)                                                                                                           | :                | 300.00      |                    |                 |           | 1000.00 |
| N         | lo.        |       | uency<br>Hz)   | F     |          | ding<br>uV)    | Factor<br>(dB/m)                                                                                                | Level<br>(dBuV/m |             | mit<br>ıV/m)       | Marg<br>(dB)    |           | etector |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|
| 1   | 51.3005            | 36.78             | -18.04           | 18.74             | 40.00             | -21.26         | QP       |
| 2 * | 183.2005           | 50.46             | -20.13           | 30.33             | 43.50             | -13.17         | QP       |
| 3   | 291.0358           | 34.20             | -17.83           | 16.37             | 46.00             | -29.63         | QP       |
| 4   | 400.4318           | 38.72             | -15.07           | 23.65             | 46.00             | -22.35         | QP       |
| 5   | 483.9094           | 32.51             | -12.51           | 20.00             | 46.00             | -26.00         | QP       |
| 6   | 590.9737           | 31.32             | -9.69            | 21.63             | 46.00             | -24.37         | QP       |
|     |                    |                   |                  |                   |                   |                |          |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.





| Ant      | . Pol. |            |              | Ve       | ertica | ıl           |      |                  |                   |                   |                           |          |
|----------|--------|------------|--------------|----------|--------|--------------|------|------------------|-------------------|-------------------|---------------------------|----------|
| Ada      | pter   | Model      |              | R        | J-SK   | Y120         | 100  | U60S             |                   |                   |                           |          |
| Tes      | t Mod  | le:        |              | ТΣ       | ( GF   | SK N         | lode | e 2402MHz        |                   |                   |                           |          |
| Ren      | nark:  |            |              | Or       | nly w  | orse         | cas  | e is reported    |                   |                   |                           |          |
| 90.0<br> | dBu¥   | //m        |              |          |        |              |      |                  |                   |                   |                           |          |
| 80       |        |            |              |          |        |              |      |                  |                   |                   |                           |          |
| 70       |        |            |              |          |        |              |      |                  |                   |                   |                           |          |
|          |        |            |              |          |        |              |      |                  |                   |                   |                           |          |
| 60       |        |            |              |          |        |              |      |                  |                   | CC Part15 Class B | 3M Radiation              |          |
| 50       |        |            |              |          |        |              |      |                  | , <b>,</b>        | largin -6 dB      |                           |          |
| 40       |        |            |              |          |        |              |      |                  |                   |                   |                           |          |
| 30       |        |            | Manaka       |          |        |              |      | 3 14             |                   |                   | 6                         |          |
| 20       |        | MANN       | - 197        | runii in | 4h.    |              |      | 1 Mr. war        | <b>V</b> u.       | 5                 | and and the off           | Annana   |
| 10       | WWWWWW | din adin   |              |          |        | WMM March    | han  | May w            | Werning working   | a manus pris      | of the work of the second |          |
|          | Mu     |            |              |          |        |              | × ·  |                  | 60°               |                   |                           |          |
| 0<br>-10 |        |            |              |          |        |              |      |                  |                   |                   |                           |          |
|          | .000   |            | 60           | .00      |        |              |      | (MHz)            | 30                | 0.00              |                           | 1000.00  |
| N        | lo.    | Freq<br>(M | uenc<br>IHz) | ÿ        |        | eadin<br>BuV |      | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)            | Detector |
| 1        | *      | 52.2       | 2079         |          | 5      | 0.52         | 2    | -18.13           | 32.39             | 40.00             | -7.61                     | QP       |

2

3

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-20.25

-18.86

-20.09

-16.23

-9.69

30.00

27.06

26.74

19.00

27.27

40.00

43.50

43.50

46.00

46.00

-10.00

-16.44

-16.76

-27.00

-18.73

QP

QP

QP

QP

QP

50.25

45.92

46.83

35.23

36.96

2.Margin value = Level -Limit value

69.1141

141.8262

182.5592

350.4768

590.9737

CTC Laboratories, Inc.





| Δn   | t. Pol. |                   | Hor | rizonta  | al          |                       |                   |                       |                |          |
|------|---------|-------------------|-----|----------|-------------|-----------------------|-------------------|-----------------------|----------------|----------|
|      |         | Model             |     |          | 20100       | 0US                   |                   |                       |                |          |
|      | st Mod  |                   |     |          |             | e 2402MHz             |                   |                       |                |          |
| Re   | mark:   |                   | Onl | y wor    | rse cas     | e is reported.        |                   |                       |                |          |
| 90.0 | ) dBu   | //m               |     | -        |             | •                     | 1                 |                       | 1 1            |          |
| 80   |         |                   |     |          |             |                       |                   |                       |                |          |
| 70   |         |                   |     | _        |             |                       |                   |                       |                |          |
| 60   |         |                   |     |          |             |                       | FI                | CC Part15 Class B 3   | M Radiation    |          |
| 50   |         |                   |     |          |             |                       | м                 | argin -6 dB           |                |          |
| 40   |         |                   |     | <u> </u> |             |                       |                   | 4                     |                |          |
| 30   |         |                   |     |          |             |                       |                   | 3 × 5                 |                | E E      |
| 20   |         | 1                 | 41. | 2        |             | . And                 | Ma MM we with.    | And which             | multimult      | humher   |
| 10   | - March |                   |     | Mymy     | http://     | wither when the state | - Artha W         | la kirVAMushi. Avi uz |                |          |
| 0    | - W     |                   |     |          |             |                       |                   |                       |                |          |
| -10  | 30.000  |                   |     |          |             | (MHz)                 |                   |                       |                | 1000.000 |
|      | 30.000  | 60.               | .00 |          |             | (MHZ)                 | 300               | .00                   |                | 1000.000 |
|      | No.     | Frequenc<br>(MHz) | y   |          | ding<br>uV) | Factor<br>(dB/m)      | Level<br>(dBuV/m) | Limit<br>(dBuV/m)     | Margin<br>(dB) | Detector |
|      | 1       | 58.8185           |     | 36       | .67         | -18.72                | 17.95             | 40.00                 | -22.05         | QP       |
|      | 2       | 77.8654           |     | 40       | .06         | -21.82                | 18.24             | 40.00                 | -21.76         | QP       |

6

3

4 \*

5

Remarks: 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-16.42

-15.27

-12.33

-3.32

31.95

34.79

29.67

32.02

46.00

46.00

46.00

54.00

-14.05

-11.21

-16.33

-21.98

QP

QP QP

QP

48.37

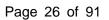
50.06

42.00

35.34

2.Margin value = Level -Limit value

343.1800


392.0951

492.4685

986.0717

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





| Ant. I        | Pol        |                     |             | V    | ertic | -<br>al |               |                |      |                   |                         |              |                |       |        |     |
|---------------|------------|---------------------|-------------|------|-------|---------|---------------|----------------|------|-------------------|-------------------------|--------------|----------------|-------|--------|-----|
|               |            | Model               |             |      |       |         | 120100        |                |      |                   |                         |              |                |       |        |     |
|               |            |                     |             |      |       |         |               |                |      |                   |                         |              |                |       |        |     |
| Test I        |            | e:                  |             | T    | ΧG    | FS      | K Mod         | e 2402MH       | IZ   |                   |                         |              |                |       |        |     |
| Rema          |            |                     |             | 0    | nly   | wo      | rse ca        | se is repor    | ted. |                   |                         |              |                |       |        |     |
| 90.0<br>      | dBu¥       | '/m                 |             |      |       |         |               |                |      |                   |                         |              |                |       |        |     |
| BO —          |            |                     |             |      |       |         |               |                |      |                   |                         |              |                |       |        |     |
| 70 -          |            |                     |             |      |       |         |               |                |      |                   |                         |              |                |       |        |     |
| 50 -          |            |                     |             |      |       |         |               |                |      |                   | FCC Part1               | i Class B    | 3M Radiation   | n     |        |     |
| 50 -          |            |                     |             |      |       |         |               |                |      |                   | Margin -6 (             | iB           |                |       |        |     |
| 40 <b> </b> - |            |                     |             |      |       | _       |               |                |      |                   |                         |              |                |       |        |     |
| 30            |            |                     |             |      |       |         |               |                |      |                   |                         | 5<br>X       |                |       | 6<br>X |     |
| 20            | 1<br>X     |                     |             | 1    | Å     | 114     |               | and the        | *    | . MAMANA AND A    | พาใ <sup>ห</sup> ้ไฟไมก | allow        | purchardenne   | mouth | mart   |     |
| 10            | , June     | navig for the state | Marin 1     | WWW) | ψ.    |         | A management  | MULLIN         | N.N  | אשינו רייא        | ייזייז און און          |              |                |       |        |     |
| )<br>10       |            |                     |             |      |       |         |               |                |      |                   |                         |              |                |       |        |     |
| 30.00         | 00         |                     | 6           | 0.00 |       |         |               | (MI            | Hz)  | 30                | 00.00                   |              |                |       | 1000   | .00 |
| No            | <b>b</b> . | Freq<br>(M          | uen<br>IHz) | су   |       |         | iding<br>8uV) | Facto<br>(dB/m |      | Level<br>(dBuV/m) |                         | mit<br>ıV/m) | Margir<br>(dB) | De    | tecto  | )r  |
| 1             |            | 32.                 | 7486        | 3    |       | 37      | .23           | -18.92         | 2    | 18.31             | 40                      | .00          | -21.69         | ) (   | QP     | _   |
| 2             |            | 57.                 | 3923        | 3    |       | 35      | .98           | -18.62         | 2    | 17.36             | 40                      | .00          | -22.64         | 1 (   | QP     | _   |

3

4

5 \*

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-21.67

-19.61

-12.14

-3.38

21.02

22.33

30.96

31.48

40.00

43.50

46.00

54.00

-18.98

-21.17

-15.04

-22.52

QP

QP

QP

QP

42.69

41.94

43.10

34.86

2.Margin value = Level -Limit value

77.0505

175.0367

501.1790

982.6200

CTC Laboratories, Inc.



| Ant. Pol.  | Horizontal                                                                   |
|------------|------------------------------------------------------------------------------|
| Test Mode: | TX GFSK Mode 2402MHz                                                         |
| Remark:    | No report for the emission which more than 20 dB below the prescribed limit. |
|            |                                                                              |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|
| 1   | 4803.676           | 41.90             | 2.00             | 43.90             | 74.00 | -30.10         | peak     |
| 2 * | 4803.713           | 27.51             | 2.00             | 29.51             | 54.00 | -24.49         | AVG      |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

| nt. Pol. |                    | Vertical             |                  |                   |                   |                |                  |
|----------|--------------------|----------------------|------------------|-------------------|-------------------|----------------|------------------|
| est Mod  | de:                | TX GFSK Mo           | de 2402MHz       | <u>Z</u>          |                   |                |                  |
| emark:   |                    | No report for limit. | the emission     | which more t      | han 20 dB be      | elow the p     | rescribed        |
|          |                    |                      |                  |                   |                   |                |                  |
|          |                    |                      |                  |                   |                   |                |                  |
|          |                    | 1                    |                  | 1                 |                   |                |                  |
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV)    | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector         |
| No.      |                    | · ·                  |                  |                   |                   | -              | Detector<br>peak |

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| nt. Pol. |                    | Horizontal           |                  |                   |                   |                |                 |
|----------|--------------------|----------------------|------------------|-------------------|-------------------|----------------|-----------------|
| est Mod  | le:                | TX GFSK Mo           | de 2441MHz       | 2                 |                   |                |                 |
| Remark:  |                    | No report for limit. | the emission     | which more t      | han 20 dB be      | elow the p     | rescribed       |
|          |                    |                      |                  |                   |                   |                |                 |
|          |                    |                      |                  |                   |                   |                |                 |
|          |                    |                      |                  |                   |                   |                |                 |
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV)    | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector        |
| No.      |                    |                      |                  |                   |                   | -              | Detector<br>AVG |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

| Ant. Pol.           |                      | Vertical             |                  |                   |                   |                |           |
|---------------------|----------------------|----------------------|------------------|-------------------|-------------------|----------------|-----------|
| Test Mod            | de:                  | TX GFSK Mo           | de 2441MHz       | 2                 |                   |                |           |
| Remark:             |                      | No report for limit. | the emission     | which more        | han 20 dB be      | elow the p     | rescribed |
|                     |                      |                      |                  |                   |                   |                |           |
|                     |                      |                      |                  |                   |                   | 1              | 1 1       |
| No.                 | Frequency<br>(MHz)   | Reading<br>(dBu∀)    | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |
| 1                   | 4881.083             | 41.42                | 2.09             | 43.51             | 74.00             | -30.49         | peak      |
| 2 *                 | 4881.157             | 26.43                | 2.09             | 28.52             | 54.00             | -25.48         | AVG       |
|                     |                      |                      |                  |                   |                   |                |           |
|                     |                      |                      |                  |                   |                   |                |           |
| Remarks<br>I.Factor | :<br>(dB/m) = Antenn | a Factor (dB/m       | n)+Cable Fac     | ctor (dB)-Pre-    | amplifier Fac     | tor            |           |
|                     | value = Level -L     | •                    | -                | . ,               | -                 |                |           |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| Ant. Pol. |                    | Horizontal           |                  |                   |                   |                |            |   |
|-----------|--------------------|----------------------|------------------|-------------------|-------------------|----------------|------------|---|
| Test Mod  | de:                | TX GFSK Mo           | de 2480MHz       | 7                 |                   |                |            |   |
| Remark:   |                    | No report for limit. | the emission     | which more        | than 20 dB b      | elow the p     | orescribed |   |
|           |                    |                      |                  |                   |                   |                |            |   |
|           |                    |                      |                  |                   |                   |                |            |   |
| No.       | Frequency<br>(MHz) | Reading<br>(dBuV)    | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector   |   |
| 1         | 4959.809           | 40.59                | 2.21             | 42.80             | 74.00             | -31.20         | peak       |   |
| 2 *       | 4960.965           | 26.54                | 2.21             | 28.75             | 54.00             | -25.25         | AVG        |   |
|           |                    |                      |                  |                   |                   |                | · /        | _ |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

| Ant. Po | ol.                | Vertical                                                                    |                  |                   |                   |                |           |
|---------|--------------------|-----------------------------------------------------------------------------|------------------|-------------------|-------------------|----------------|-----------|
| lest M  | ode:               | TX GFSK Mo                                                                  | de 2480MHz       | z                 |                   |                |           |
| Remar   | 'k:                | No report for the emission which more than 20 dB below the prescribe limit. |                  |                   |                   |                | rescribec |
|         |                    |                                                                             |                  |                   |                   |                |           |
|         |                    |                                                                             |                  |                   |                   |                |           |
| No.     | Frequency<br>(MHz) | Reading<br>(dBuV)                                                           | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |
| 1 '     | * 4959.997         | 26.38                                                                       | 2.21             | 28.59             | 54.00             | -25.41         | AVG       |
| 2       | 4960.284           | 40.59                                                                       | 2.21             | 42.80             | 74.00             | -31.20         | peak      |

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



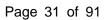
| Ant. Pol.  | Horizontal                                                                   |
|------------|------------------------------------------------------------------------------|
| Test Mode: | TX π/4-DQPSK Mode 2402MHz                                                    |
| Remark:    | No report for the emission which more than 20 dB below the prescribed limit. |
|            |                                                                              |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|
| 1 * | 4803.263           | 27.03             | 1.99             | 29.02             | 54.00 | -24.98         | AVG      |
| 2   | 4804.355           | 41.32             | 2.00             | 43.32             | 74.00 | -30.68         | peak     |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

| Ant. Pol.  | Vertical                                                                     |
|------------|------------------------------------------------------------------------------|
| Test Mode: | TX π/4-DQPSK Mode 2402MHz                                                    |
| Remark:    | No report for the emission which more than 20 dB below the prescribed limit. |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|
| 1 ' | 4803.350           | 27.13             | 2.00             | 29.13             | 54.00 | -24.87         | AVG      |
| 2   | 4803.822           | 41.79             | 2.00             | 43.79             | 74.00 | -30.21         | peak     |


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





| Ant. Pol. |                    | Horizontal                |                  |                   |                   |                |           |  |
|-----------|--------------------|---------------------------|------------------|-------------------|-------------------|----------------|-----------|--|
| Test Mod  | le:                | TX π/4-DQPSK Mode 2441MHz |                  |                   |                   |                |           |  |
| Remark:   |                    | No report for t<br>limit. | the emission     | which more t      | han 20 dB be      | elow the p     | rescribed |  |
|           |                    |                           |                  |                   |                   |                |           |  |
|           |                    |                           |                  |                   |                   |                |           |  |
| No.       | Frequency<br>(MHz) | Reading<br>(dBu∀)         | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |  |
| 1         | 4882.768           | 40.31                     | 2.09             | 42.40             | 74.00             | -31.60         | peak      |  |
| 2 *       | 4882.775           | 26.48                     | 2.09             | 28.57             | 54.00             | -25.43         | AVG       |  |
| ·         |                    |                           |                  |                   |                   |                |           |  |
|           |                    |                           |                  |                   |                   |                |           |  |


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

| Ant. Pol. |                    | Vertical             |                  |                   |                   |                |           |
|-----------|--------------------|----------------------|------------------|-------------------|-------------------|----------------|-----------|
| est Mod   | le:                | TX π/4-DQPS          | SK Mode 244      | 1MHz              |                   |                |           |
| emark:    |                    | No report for limit. | the emission     | which more t      | han 20 dB be      | elow the p     | rescribed |
|           |                    |                      |                  |                   |                   |                |           |
|           |                    |                      |                  |                   |                   |                |           |
| No.       | Frequency<br>(MHz) | Reading<br>(dBu∀)    | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |
| 1         | 4881.245           | 40.69                | 2.09             | 42.78             | 74.00             | -31.22         | peak      |
| 2 *       | 4882.093           | 26.60                | 2.09             | 28.69             | 54.00             | -25.31         | AVG       |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





| Test Mode:<br>Remark: |                  | •                 |                  | -                 | han 20 dB be                                                                     | low the p      | rescribed |  |
|-----------------------|------------------|-------------------|------------------|-------------------|----------------------------------------------------------------------------------|----------------|-----------|--|
| Remark:               |                  | •                 | the emission     | which more t      | han 20 dB be                                                                     | low the p      | rescribed |  |
|                       |                  |                   |                  |                   | Remark:         No report for the emission which more than 20 dB below th limit. |                |           |  |
|                       |                  |                   |                  |                   |                                                                                  |                |           |  |
|                       |                  |                   |                  |                   |                                                                                  |                |           |  |
| No. Fr                | equency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m)                                                                | Margin<br>(dB) | Detector  |  |
| 1 4                   | 959.559          | 40.83             | 2.21             | 43.04             | 74.00                                                                            | -30.96         | peak      |  |
| 2* 4                  | 960.308          | 26.63             | 2.21             | 28.84             | 54.00                                                                            | -25.16         | AVG       |  |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

|        |                                              |                                                                             | Vertical         |                   |                   |                |           |  |  |
|--------|----------------------------------------------|-----------------------------------------------------------------------------|------------------|-------------------|-------------------|----------------|-----------|--|--|
|        | Test Mode:         TX π/4-DQPSK Mode 2480MHz |                                                                             |                  |                   |                   |                |           |  |  |
| emark: |                                              | No report for the emission which more than 20 dB below the prescribe limit. |                  |                   |                   |                | rescribed |  |  |
|        |                                              |                                                                             |                  |                   |                   |                |           |  |  |
|        |                                              |                                                                             |                  |                   |                   |                |           |  |  |
| No.    | Frequency<br>(MHz)                           | Reading<br>(dBu∀)                                                           | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector  |  |  |
| 1 *    | 4960.230                                     | 26.57                                                                       | 2.21             | 28.78             | 54.00             | -25.22         | AVG       |  |  |
| 2      | 4960.242                                     | 40.84                                                                       | 2.21             | 43.05             | 74.00             | -30.95         | peak      |  |  |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| Ant. Pol.  | Horizontal                                                                   |
|------------|------------------------------------------------------------------------------|
| Test Mode: | TX 8-DPSK Mode 2402MHz                                                       |
| Remark:    | No report for the emission which more than 20 dB below the prescribed limit. |
|            |                                                                              |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|
| 1 * | 4803.065           | 27.29             | 1.99             | 29.28             | 54.00 | -24.72         | AVG      |
| 2   | 4803.753           | 40.82             | 2.00             | 42.82             | 74.00 | -31.18         | peak     |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

| Ant. Pol.                         |           | Vertical                                                                     |        |       |       |        |   |
|-----------------------------------|-----------|------------------------------------------------------------------------------|--------|-------|-------|--------|---|
| Test Mode: TX 8-DPSK Mode 2402MHz |           |                                                                              |        |       |       |        |   |
| Remark:                           |           | No report for the emission which more than 20 dB below the prescribed limit. |        |       |       |        |   |
|                                   |           |                                                                              |        |       |       |        |   |
|                                   |           |                                                                              |        |       |       |        |   |
|                                   | Frequency | Reading                                                                      | Factor | Level | Limit | Margin | - |

| No. | (MHz)    | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector |
|-----|----------|--------|--------|----------|----------|--------|----------|
| 1 * | 4803.139 | 27.18  | 1.99   | 29.17    | 54.00    | -24.83 | AVG      |
| 2   | 4803.618 | 41.58  | 2.00   | 43.58    | 74.00    | -30.42 | peak     |

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| Ant. Pol.                         |                    | Horizontal                                                                   |                  |                   |                   |                |          |  |
|-----------------------------------|--------------------|------------------------------------------------------------------------------|------------------|-------------------|-------------------|----------------|----------|--|
| Test Mode: TX 8-DPSK Mode 2441MHz |                    |                                                                              |                  |                   |                   |                |          |  |
| Remark:                           |                    | No report for the emission which more than 20 dB below the prescribed limit. |                  |                   |                   | rescribed      |          |  |
|                                   |                    |                                                                              |                  |                   |                   |                |          |  |
|                                   |                    |                                                                              |                  |                   |                   |                |          |  |
| No.                               | Frequency<br>(MHz) | Reading<br>(dBuV)                                                            | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |  |
| 1                                 | 4881.187           | 40.77                                                                        | 2.09             | 42.86             | 74.00             | -31.14         | peak     |  |
| 2 *                               | 4882.824           | 26.51                                                                        | 2.09             | 28.60             | 54.00             | -25.40         | AVG      |  |
|                                   |                    |                                                                              |                  |                   |                   |                | <u> </u> |  |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

| Ant. Pol.           |                                   | Vertical                                                                     |                  |                   |                   |                |          |  |  |
|---------------------|-----------------------------------|------------------------------------------------------------------------------|------------------|-------------------|-------------------|----------------|----------|--|--|
| Test Mod            | Test Mode: TX 8-DPSK Mode 2441MHz |                                                                              |                  |                   |                   |                |          |  |  |
| Remark:             |                                   | No report for the emission which more than 20 dB below the prescribed limit. |                  |                   |                   |                |          |  |  |
|                     |                                   |                                                                              |                  |                   |                   |                |          |  |  |
|                     |                                   |                                                                              |                  |                   |                   |                |          |  |  |
| No.                 | Frequency<br>(MHz)                | Reading<br>(dBuV)                                                            | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |  |  |
| 1                   | 4881.300                          | 41.14                                                                        | 2.09             | 43.23             | 74.00             | -30.77         | peak     |  |  |
| 2 *                 | 4882.876                          | 26.54                                                                        | 2.09             | 28.63             | 54.00             | -25.37         | AVG      |  |  |
|                     |                                   | · · · · ·                                                                    |                  |                   |                   |                | · /      |  |  |
|                     |                                   |                                                                              |                  |                   |                   |                |          |  |  |
| Remarks<br>I.Factor | :<br>(dB/m) = Antenn              | a Factor (dB/m                                                               | )+Cable Fac      | tor (dB)-Pre-a    | amplifier Fact    | or             |          |  |  |
|                     | value = Level -L                  | ,                                                                            |                  |                   |                   | .01            |          |  |  |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| Ant. Pol.                                                                            |                              | Horizontal        |                  |                   |                   |                |                 |  |
|--------------------------------------------------------------------------------------|------------------------------|-------------------|------------------|-------------------|-------------------|----------------|-----------------|--|
| est Mod                                                                              | Dete: TX 8-DPSK Mode 2480MHz |                   |                  |                   |                   |                |                 |  |
| Remark: No report for the emission which more than 20 dB below the prescriber limit. |                              |                   |                  |                   | rescribed         |                |                 |  |
|                                                                                      |                              |                   |                  |                   |                   |                |                 |  |
|                                                                                      |                              |                   |                  |                   |                   |                |                 |  |
|                                                                                      |                              |                   |                  |                   |                   |                |                 |  |
| No.                                                                                  | Frequency<br>(MHz)           | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector        |  |
| No.                                                                                  |                              | -                 |                  |                   |                   | -              | Detector<br>AVG |  |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

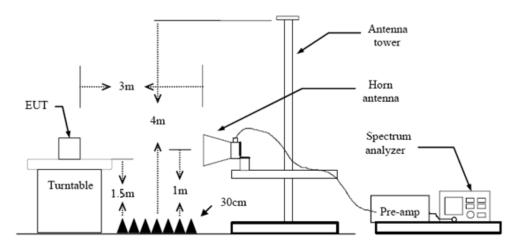
| Ant. Pol. |                    | Vertical                                                                     |                  |                   |                   |                |          |  |
|-----------|--------------------|------------------------------------------------------------------------------|------------------|-------------------|-------------------|----------------|----------|--|
| est Mo    | de:                | TX 8-DPSK Mode 2480MHz                                                       |                  |                   |                   |                |          |  |
| emark     | :                  | No report for the emission which more than 20 dB below the prescribed limit. |                  |                   |                   |                |          |  |
|           |                    |                                                                              |                  |                   |                   |                |          |  |
|           |                    |                                                                              |                  |                   |                   |                |          |  |
| No.       | Frequency<br>(MHz) | Reading<br>(dBu∀)                                                            | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |  |
| 1 *       | 4960.136           | 26.30                                                                        | 2.21             | 28.51             | 54.00             | -25.49         | AVG      |  |
| 2         | 4960.940           | 40.12                                                                        | 2.21             | 42.33             | 74.00             | -31.67         | peak     |  |

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn




### 3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

#### FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

| Restricted Frequency Band | (dBµV/m) (at 3m) |         |  |  |  |
|---------------------------|------------------|---------|--|--|--|
| (MHz)                     | Peak             | Average |  |  |  |
| 2310 ~ 2390               | 74               | 54      |  |  |  |
| 2483.5 ~ 2500             | 74               | 54      |  |  |  |

#### Test Configuration



#### Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.10 Duty Cycle.

#### Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| nt. Pol.        |         |              | Horizonta                                 |                                |                     |                         |              |                  |                   |            |          |
|-----------------|---------|--------------|-------------------------------------------|--------------------------------|---------------------|-------------------------|--------------|------------------|-------------------|------------|----------|
| est Mod         | e:      |              | GFSK Mo                                   | de 2402                        | 2MHz                |                         |              |                  |                   |            |          |
| 20.0 dBuV       | '/m     |              |                                           | 1                              |                     |                         | 1            |                  | 1                 |            | 1        |
| 0               |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| 0               |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| ,               |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| ,               |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| ,               |         |              |                                           |                                |                     |                         |              | FCC Part1        | 5 C - Above 1G    | PK         | -        |
| ,<br>,          |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
|                 |         |              |                                           |                                |                     |                         |              | FCC Part1        | 5 C - Above 1G    | AV         |          |
| )               |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| l               | -       | den mana     | an sa | ay management of the second of | mananteine          | Lawrante and the second |              | have rest months | 2                 | aunal have | •        |
|                 |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| )               |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
|                 |         |              |                                           |                                |                     |                         |              |                  |                   |            |          |
| ).0<br>2306.000 | 2316.00 | 2326.00      | 2336.00                                   | 2346.00                        | (MHz)               | 236                     | 6.00         | 2376.00 23       | 386.00 239        | 6.00 240   | <br>36.0 |
| No.             | -       | Jency<br>Hz) | Readir<br>(dBu\                           | -                              | -<br>actor<br>dB/m) |                         | vel<br>IV/m) | Limit<br>(dBuV/n | Margii<br>n) (dB) | Detect     | tor      |
| 1               | 2390    | 000.         | 22.94                                     | t 3                            | 31.31               | 54                      | .25          | 74.00            | -19.75            | 5 peal     | k        |
| 2 *             | 2390    |              | 6.16                                      |                                | 31.31               |                         | .47          | 54.00            |                   | _ ·        |          |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| Ant. Po           | 1        |               |           | Verti         | cal                    |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
|-------------------|----------|---------------|-----------|---------------|------------------------|--------------|----------|----------|--------------|--------------|------------------------------------------|--------------|----------|----------|---------------|--------|-----------|------|
| Test Mo           |          |               |           |               |                        | do (         | 2402N    | 1117     |              |              |                                          |              |          |          |               |        |           |      |
|                   | u¥/m     |               |           | 013           |                        |              | 240210   |          |              |              |                                          |              |          |          |               |        |           |      |
| 120.0 0.0         | <u></u>  |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           | 1    |
| 110               |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| 100               |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| 90                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| 80                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        | Λ         |      |
|                   |          |               |           |               |                        |              |          |          |              |              |                                          | FC           | C Part15 | C - Abo  | ve 16         | PK     | $\square$ |      |
| 70                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        | H         |      |
| 60                |          |               |           |               |                        |              |          |          |              |              |                                          | FC           | C Part15 | C-Abo    | ve 1G         | ۸V     |           |      |
| 50                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          | ×        |               |        |           |      |
| 40                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          | 2        |               |        |           |      |
| 30                | andoren  | high-train-th | rennet me | en standerent | hard the second states | the straight | - Marcan | monorm   | ****         | -e-september | an a | ngdersekinen | monender | mark the | an france and | www.ad | here.     |      |
|                   |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| 20                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| 10                |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| 0.0<br>2305.50    | 0 2315.5 | 50 23         | 25.50     | 233           | 5.50                   | 23           | 45.50    | (MHz     | 1            | 236          | 5.50                                     | 2375.5       | 0 238    | 5.50     | 2395          | 5.50   | 240       | 5.50 |
|                   |          |               |           |               |                        |              |          | <b>,</b> |              |              |                                          |              |          |          |               |        |           |      |
|                   |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
|                   |          |               |           |               |                        |              |          |          | _            |              |                                          |              |          |          |               |        |           |      |
|                   | Fre      | quer          | icy       | Re            | adir                   | ng           | Fa       | ctor     |              | Le           | vel                                      | L L          | .imit    | Ma       | argir         | ۱ _    |           |      |
| No.               |          | ΜНz           | -         |               | BuV                    | -            | (dE      | 8/m)     |              | (dBu         | V/m)                                     | dB)          | uV/m     |          | dB)           |        | etect     | or   |
| 1                 |          |               |           |               |                        |              |          | ,        | +            |              |                                          |              |          |          |               |        |           |      |
| 1                 |          | 90.00         |           | <u> </u>      | 8.30                   | ,            |          | .31      | $\downarrow$ | 49           |                                          | <u> </u>     | 4.00     | _        | 4.39          |        | bea       |      |
| 2 *               | 23       | 90.00         | 00        | 5             | 5.81                   |              | 31       | .31      |              | 37           | .12                                      | 5            | 4.00     | -1       | 6.88          | 3 /    | 400       | 3    |
|                   |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
|                   |          |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| Domork            | <u></u>  |               |           |               |                        |              |          |          |              |              |                                          |              |          |          |               |        |           |      |
| Remark<br>1.Facto |          | ) = An        | tenna     | Fac           | tor (d                 | B/m          | n)+Cat   | ole Fa   | act          | tor (dE      | 8)-Pre-                                  | ampli        | ifier Fa | ctor     |               |        |           |      |

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



|             | ode:<br>JuV/m               | GFSK Mode         | 2480MHz                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|-------------|-----------------------------|-------------------|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
|             | JuV/m                       |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| ЦЦ          |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| Ħ           |                             |                   |                        |                                                                                                                | FCC Part15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Above 1G P              | ĸ        |
| - 1 - 1 - 1 |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|             |                             |                   |                        |                                                                                                                | FCC Part15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Abarra 10 A               |          |
|             | 1                           |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ADOVE TU A              | ×        |
|             | 2                           |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| ~           | Warne and the second second | www.ganderich     | -marker and the second | an the second with a second the second s | where the contraction of the con | -shirtsonersteinetsteinet |          |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| .0          |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| 2476.50     | 0 2486.50 2496.5            | 0 2506.50 25      | 516.50 (MHz)           | 2536.50                                                                                                        | 2546.50 2556.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .50 2566.                 | 50 2576. |
|             |                             |                   |                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| No.         | Frequency<br>(MHz)          | Reading<br>(dBuV) | Factor<br>(dB/m)       | Level<br>(dBuV/m)                                                                                              | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Margin<br>(dB)            | Detector |
| 1           | 2483.500                    | 17.67             | 31.48                  | 49.15                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -24.85                    | peak     |
| 2 *         | 2483.500                    | 5.35              | 31.48                  | 36.83                                                                                                          | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -17.17                    | AVG      |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| nt. Pol. |                          | Y                                                                                                               | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                          |                                            |                                    |                     |
|----------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|--------------------------------------------|------------------------------------|---------------------|
| est Mod  | de:                      |                                                                                                                 | GFSK Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2480MHz                                           |                          |                                            |                                    |                     |
| 20.0 dBu | V/m                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 1                        |                                            |                                    |                     |
| 10       |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
| Ι Λ      |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          | FCC Part15 C                               | - Above 1G P                       | ĸ                   |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
| ╵┟┼╶┝    |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          | FCC Part15 C                               | - Above 16 A                       | v                   |
|          | Ļ –                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            | Abore Tu A                         |                     |
|          | 2                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
| ~        | to a menor and a more of | which which the show of the second states of the second states of the second states of the second states of the | er had so with the set of the set | nantinesisten der seinen gesten kunnel af beföret | or warden and the second | understandig of the scheme interaction and | and and and a second second second | unterent regentered |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
| )<br>).0 |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
| 2477.500 | 2487.50                  | 2497.50                                                                                                         | 2507.50 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2517.50 (MHz)                                     | 2537.50                  | 2547.50 2557.                              | .50 2567.9                         | 50 2577.9           |
| No.      |                          | uency<br>Hz)                                                                                                    | Reading<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factor<br>(dB/m)                                  |                          | Limit<br>(dBuV/m)                          | Margin<br>(dB)                     | Detector            |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |
| 1        | 2483                     | 3.500                                                                                                           | 17.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.48                                             | 49.41                    | 74.00                                      | -24.59                             | peak                |
| 2 *      | 2483                     | 3.500                                                                                                           | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.48                                             | 37.01                    | 54.00                                      | -16.99                             | AVG                 |
|          |                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                          |                                            |                                    |                     |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| nt. Pol.       |              |              | Horizontal        |                  |                    |                   |                |          |
|----------------|--------------|--------------|-------------------|------------------|--------------------|-------------------|----------------|----------|
| est Moc        | le:          | 1            | π/4-DQPSK         | Mode 2402M       | Hz                 |                   |                |          |
| 20.0 dBu\      | //m          |              |                   |                  |                    |                   |                |          |
| 10             |              |              |                   |                  |                    |                   |                |          |
| 0              |              |              |                   |                  |                    |                   |                |          |
|                |              |              |                   |                  |                    |                   |                |          |
|                |              |              |                   |                  |                    |                   | AL 10 D        |          |
|                |              |              |                   |                  |                    | FCC Part15 C      | - Above 16 Pi  |          |
|                |              |              |                   |                  |                    | FCC Part15 C      | Abarra 10 Al   |          |
|                |              |              |                   |                  |                    |                   | X              |          |
|                |              | . A          |                   |                  | - an - un demander |                   | 2              |          |
|                |              |              |                   |                  |                    |                   |                |          |
| ·              |              |              |                   |                  |                    |                   |                |          |
|                |              |              |                   |                  |                    |                   |                |          |
| .0<br>2306.000 | 2316.00      | 2326.00      | 2336.00 2         | 346.00 (MHz)     | 2366.00            | 2376.00 2386.     | .00 2396.0     | <b>.</b> |
| No.            | Frequ<br>(Mł | iency<br>Hz) | Reading<br>(dBu∀) | Factor<br>(dB/m) | Level<br>(dBuV/m)  | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| 1              | 2390         | .000         | 19.17             | 31.31            | 50.48              | 74.00             | -23.52         | peak     |
| 2 *            | 2390         | .000         | 4.59              | 31.31            | 35.90              | 54.00             | -18.10         | AVG      |
|                |              |              | 1                 | 1                | 1                  | 1                 |                |          |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| nt. Pol                                                                                                         | -                                                                                                               | Vertical      |                                  |                                                                                                                 |                    |                   |          |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------|
| est Mo                                                                                                          | de:                                                                                                             | π/4-DQPSK     | Mode 2402M                       | Hz                                                                                                              |                    |                   |          |
| 0.0 dB                                                                                                          | iV/m                                                                                                            |               |                                  |                                                                                                                 |                    |                   |          |
| o                                                                                                               |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
| 0                                                                                                               |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   | 0        |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 | FCC Part15 C       | - Above 1G P      | ĸ        |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 | ECC Part15 C       | About 1C A        |          |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 | FCC Part15 C       | X                 | Ť Ť      |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    | 2                 |          |
| an an an Anna an Anna an Anna an Anna Ann | whether the state of the second se | mantalana     | and marked all and an and an and | annan an taile an tai | an weather and the | alant hander dawy | mal the  |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
| .0                                                                                                              |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |
| 2305.500                                                                                                        | ) 2315.50 2325                                                                                                  | .50 2335.50 2 | 345.50 (MHz)                     | 2365.50                                                                                                         | 2375.50 2385       | .50 2395.         | 50 2405. |
|                                                                                                                 | Frequenc                                                                                                        | y Reading     | Factor                           | Level                                                                                                           | Limit              | Margin            |          |
| No.                                                                                                             | (MHz)                                                                                                           | (dBuV)        | (dB/m)                           |                                                                                                                 | (dBuV/m)           |                   | Detector |
| 1                                                                                                               | 2390.000                                                                                                        | ) 19.46       | 31.31                            | 50.77                                                                                                           | 74.00              | -23.23            | peak     |
| 2 *                                                                                                             | 2390.000                                                                                                        | 6.30          | 31.31                            | 37.61                                                                                                           | 54.00              | -16.39            | AVG      |
|                                                                                                                 |                                                                                                                 |               |                                  |                                                                                                                 |                    |                   |          |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| nt. Pol.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | zontal                       |                                                                                                                |                                                                                                                  |                                     |                             |          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|----------|
| est Mod   | le:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | π/4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DQPSK N                      | Mode 2480N                                                                                                     | Hz                                                                                                               |                                     |                             |          |
| 20.0 dBu\ | //m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
| o         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
| 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  | FCC Part15 C                        | - Above 1G Pl               | ĸ        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  | FCC Part15 C                        | - Above 1G A                | <u> </u> |
|           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
|           | ×<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                | and the second | - Alternation and the second second |                             |          |
|           | and a contraction of the contrac | for he for the former of the f | 824erdariadatintaskatietakat | and a second |                                                                                                                  |                                     | hallinen angelen angelen ge |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
| .0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |
| 2476.500  | 2486.50 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.50 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06.50 25                     | 16.50 (MHz)                                                                                                    | 2536.50                                                                                                          | 2546.50 2556.                       | .50 2566.                   | 50 2576. |
| No.       | Frequence<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eading<br>dBu∀)              | Factor<br>(dB/m)                                                                                               | Level<br>(dBuV/m)                                                                                                | Limit<br>(dBuV/m)                   | Margin<br>(dB)              | Detector |
| 1         | 2483.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.24                        | 31.48                                                                                                          | 45.72                                                                                                            | 74.00                               | -28.28                      | peak     |
| 2 *       | 2483.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.47                         | 31.48                                                                                                          | 36.95                                                                                                            | 54.00                               | -17.05                      | AVG      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                |                                                                                                                  |                                     |                             |          |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| nt.  | Pol.  |         |               | 1    | Verti     | cal          |      |       |                |    |               |                |                |               |               |       |                |
|------|-------|---------|---------------|------|-----------|--------------|------|-------|----------------|----|---------------|----------------|----------------|---------------|---------------|-------|----------------|
| est  | Mod   | le:     |               |      | π/4-[     | DQPS         | ΚN   | /lode | 2480           | M  | Ηz            |                |                |               |               |       |                |
| 20.0 | dBu\  | //m     |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
|      |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
|      |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
|      |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| '  - | ٨     |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
|      | Π_    |         |               |      |           |              |      |       |                |    |               |                | FC             | C Part15 C    | - Above 16    | РК    |                |
| '  - |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| '  - | 1     |         |               |      |           |              |      |       |                |    |               |                | FC             | C Part15 C    | - Above 16    | AV    |                |
| • F  | ×     |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| · /  | 2     | hermon  |               | ~    | Windowski | mande        | mana | -     | A. Junioriland |    | dan ganatraga | Nonesautración | ernes ( styles | Mandersona    | moderholeur   |       | where you want |
| -  - |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| •  - |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| -    |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
|      |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| 247  | 7.500 | 2487.50 | 249           | 7.50 | 250       | 7.50         | 25   | 17.50 | (MH            | zj | 253           | 7.50           | 2547.50        | D 2557        | .50 256       | 67.50 | 2577           |
|      |       |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |
| N    | 0.    |         | queno<br>1Hz) | зy   |           | adin<br>BuV) |      |       | actor<br>3/m)  |    |               | vel<br>V/m)    |                | imit<br>uV/m) | Margi<br>(dB) | n c   | etecto         |
| 1    |       | 248     | 3.50          | 0    | 2         | 0.21         |      | 31    | .48            |    | 51            | .69            | 74             | 4.00          | -22.3         | 1     | peak           |
| 2    | *     | 248     | 3.50          | 0    | 5         | 5.93         |      | 31    | .48            |    | 37            | .41            | 54             | 4.00          | -16.59        | 9     | AVG            |
|      |       |         |               |      |           |              |      |       |                |    |               |                |                |               | -             |       |                |
|      | arks: |         |               |      |           |              |      |       |                |    |               |                |                |               |               |       |                |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| Ant. Pol        | -                  | Horizontal             |                  |                   |                   |                |                  |
|-----------------|--------------------|------------------------|------------------|-------------------|-------------------|----------------|------------------|
| est Mo          | de:                | 8-DPSK Mod             | e 2402MHz        |                   |                   |                |                  |
| 20.0 dBu        | iV/m               |                        |                  |                   |                   |                |                  |
| 10              |                    |                        |                  |                   |                   |                |                  |
| 00              |                    |                        |                  |                   |                   |                |                  |
| 0               |                    |                        |                  |                   |                   |                |                  |
| 0               |                    |                        |                  |                   | FCC Part15 C      | About 16 Pt    | $\mathbb{A}$     |
| 0               |                    |                        |                  |                   |                   | - ADOVE TO FI  |                  |
| 0               |                    |                        |                  |                   | FCC Part15 C      | Abava 1C Al    |                  |
| 0               |                    |                        |                  |                   |                   | 1<br>X         |                  |
| 0               |                    | to color don de tour o |                  |                   |                   | 2              |                  |
| 0               |                    |                        |                  |                   |                   |                |                  |
| 0               |                    |                        |                  |                   |                   |                |                  |
| o               |                    |                        |                  |                   |                   |                |                  |
| 0.0<br>2306.000 | 2316.00 2326.0     | 00 2336.00 23          | 346.00 (MHz)     | 2366.00           | 2376.00 2386.     | 00 2396.0      | <u>)0 2406.0</u> |
| No.             | Frequency<br>(MHz) | / Reading<br>(dBu∀)    | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector         |
|                 |                    | 47.47                  | 31.31            | 48.48             | 74.00             | -25.52         | peak             |
| 1               | 2390.000           | 17.17                  | 01.01            |                   |                   |                | 1 <b>I</b>       |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



| nt. Pol.       |                                          | 1                                   | Vertical          |                                                                                                                 |                                                    |                                                |                |          |
|----------------|------------------------------------------|-------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------|----------|
| est Mod        | le:                                      |                                     | 8-DPSK M          | ode 2402MHz                                                                                                     |                                                    |                                                |                |          |
| 20.0 dBu\      | //m                                      |                                     |                   |                                                                                                                 | i i                                                |                                                | 1              |          |
| 0              |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |
| 0              |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |
| .              |                                          |                                     |                   |                                                                                                                 |                                                    | FCC D-ME C                                     | - Above 1G P   | A        |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                | - ADOVE TG P   |          |
|                |                                          |                                     |                   |                                                                                                                 |                                                    | ECC Part15 C                                   | - Above 1G A   |          |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                | 1<br>X         |          |
| Martin         | an a | and the second second second second | wannan            | Weiter and a state of the second s | ورو میروند و اور اور اور اور اور اور اور اور اور ا | energen and and and and and and and and and an | 2<br>matrix    |          |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |
| .0<br>2305.500 | 2315.50                                  | 2325.50                             | 2335.50           | 2345.50 (MHz)                                                                                                   | 2365.50                                            | 2375.50 2385                                   | .50 2395.      | 50 2405. |
| No.            |                                          | Jency<br>Hz)                        | Reading<br>(dBuV) | -                                                                                                               | Level<br>(dBuV/m)                                  | Limit<br>(dBuV/m)                              | Margin<br>(dB) | Detector |
| 1              | 2390                                     | 000.                                | 16.42             | 31.31                                                                                                           | 47.73                                              | 74.00                                          | -26.27         | peak     |
| 2 *            | 2390                                     | 000.                                | 5.28              | 31.31                                                                                                           | 36.59                                              | 54.00                                          | -17.41         | AVG      |
|                |                                          |                                     |                   |                                                                                                                 |                                                    |                                                |                |          |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



| nt. Pol.     |              | Horizontal     |                           |                                                                                                                |                       |                |               |
|--------------|--------------|----------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------|---------------|
| est Mod      | le:          | 8-DPSK Mod     | e 2480MHz                 |                                                                                                                |                       |                |               |
| 0.0 dBu\     | //m          |                |                           |                                                                                                                |                       |                |               |
|              |              |                |                           |                                                                                                                |                       |                |               |
| 0            |              |                |                           |                                                                                                                |                       |                |               |
| 0            |              |                |                           |                                                                                                                |                       |                |               |
|              |              |                |                           |                                                                                                                |                       |                |               |
|              |              |                |                           |                                                                                                                |                       |                |               |
|              |              |                |                           |                                                                                                                | FCC Part15 C          | - Above 16 P   | K             |
|              |              |                |                           |                                                                                                                |                       |                |               |
| $\downarrow$ |              |                |                           |                                                                                                                | FCC Part15 C          | - Above 1G A   | v             |
|              | 1<br>X       |                |                           |                                                                                                                |                       |                |               |
| J-L,         | 2            | manna          | , In superside the second | the second s | and the second second | when we wanted | 10pm alad war |
|              |              |                |                           |                                                                                                                |                       |                |               |
|              |              |                |                           |                                                                                                                |                       |                |               |
|              |              |                |                           |                                                                                                                |                       |                |               |
| .0           |              |                |                           |                                                                                                                |                       |                |               |
| 2476.500     | 2486.50 2496 | .50 2506.50 25 | 16.50 (MHz)               | 2536.50                                                                                                        | 2546.50 2556.         | .50 2566.      | 50 2576.      |
|              | Frequenc     | y Reading      | Factor                    | Level                                                                                                          | Limit                 | Margin         | -             |
| No.          | (MHz)        | (dBuV)         | (dB/m)                    | (dBuV/m)                                                                                                       | (dBuV/m)              | (dB)           | Detector      |
| 1            | 2483.500     | ) 13.59        | 31.48                     | 45.07                                                                                                          | 74.00                 | -28.93         | peak          |
| 2 *          | 2483.500     | ) 5.74         | 31.48                     | 37.22                                                                                                          | 54.00                 | -16.78         | AVG           |
| ~            |              |                |                           |                                                                                                                |                       |                | 1             |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



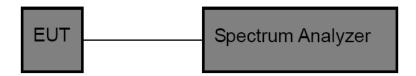
| nt.        | Pol.   |         |                     | Vertical          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|------------|--------|---------|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|----------------|------------|
| est        | Mod    | e:      |                     | 8-DPSK Mod        | le 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                  |                |            |
| 20.0       | dBu¥   | /m      | 1                   | i i               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i                                        |                                  |                |            |
| 10         |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|            |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|            |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|            | Λ      |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|            | 4      |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | FCC Part15 C                     | - Above 1G P   | ĸ          |
| '  -       |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|            |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | FCC Part15 C                     | - Above 1G A   | v          |
| 1          | X      |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
|            | 2      |         | Acres and a strange | menderstation     | And some set and a set of the set | rabal Maraya yi sugabu, murak lan wana y | vernot and a second and a second | and many many  | Hentymonia |
|            |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
| • -        |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
| •  -       |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
| 0.0<br>247 | 77.500 | 2487.50 | 2497.50             | 2507.50 2         | 517.50 (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2537.50                                  | 2547.50 2557.                    | 50 2567.5      | 50 2577.9  |
|            |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  |                |            |
| Ν          | lo.    |         | uency<br>Hz)        | Reading<br>(dBuV) | Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level<br>(dBuV/m)                        | Limit<br>(dBuV/m)                | Margin<br>(dB) | Detector   |
|            | 1      | 248     | 3.500               | 16.36             | 31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.84                                    | 74.00                            | -26.16         | peak       |
| 2          | *      | 248     | 3.500               | 5.62              | 31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.10                                    | 54.00                            | -16.90         | AVG        |
|            |        |         |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                  | -              |            |

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.




# 3.4. Band Edge and Spurious Emissions (Conducted)

## <u>Limit</u>

### FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### Test Configuration



#### **Test Procedure**

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10<sup>th</sup> harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

#### Test Mode

Please refer to the clause 2.4.

#### Test Result

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



#### Band Edge Conducted Test

| TestMode | Antenna     | ChName | Freq(MHz) | RefLevel<br>[dBm] | Result<br>[dBm] | Limit<br>[dBm] | Verdict |
|----------|-------------|--------|-----------|-------------------|-----------------|----------------|---------|
|          |             | Low    | 2402      | 4.11              | -48.54          | ≤-15.89        | PASS    |
| DH5      | Ant1        | High   | 2480      | 4.75              | -47.97          | ≤-15.26        | PASS    |
| DHD      | DH5 ANU     | Low    | Hop_2402  | 5.75              | -49.59          | ≤-14.25        | PASS    |
|          |             | High   | Hop_2480  | 6.26              | -47.86          | ≤-13.74        | PASS    |
|          | Ant1        | Low    | 2402      | 2.52              | -48.99          | ≤-17.48        | PASS    |
| 2DH5     |             | High   | 2480      | 3.11              | -48.31          | ≤-16.89        | PASS    |
|          |             | Low    | Hop_2402  | 2.92              | -48.81          | ≤-17.08        | PASS    |
|          |             | High   | Hop_2480  | 6.55              | -48.03          | ≤-13.45        | PASS    |
|          | 3DH5 Ant1 - | Low    | 2402      | 3.20              | -48.4           | ≤-16.8         | PASS    |
| 3DH5 An  |             | High   | 2480      | 2.96              | -48.05          | ≤-17.04        | PASS    |
|          |             | Low    | Hop_2402  | 6.33              | -48.81          | ≤-13.67        | PASS    |
|          |             | High   | Hop_2480  | 3.65              | -48.89          | ≤-16.35        | PASS    |

### **Conducted Spurious Emissions Test**

| TestMode | Antenna             | Freq(MHz)    | FreqRange<br>[MHz] | RefLevel<br>[dBm] | Result<br>[dBm] | Limit<br>[dBm] | Verdict |
|----------|---------------------|--------------|--------------------|-------------------|-----------------|----------------|---------|
|          |                     |              | Reference          | 3.48              | 3.48            | [ubiiij<br>    | PASS    |
|          |                     | 2402<br>2441 | 30~1000            | 3.48              | -55.1           | <br>≤-16.52    | PASS    |
|          |                     |              |                    | 3.48              |                 |                | PASS    |
|          |                     |              | 1000~26500         |                   | -41.64          | ≤-16.52<br>    |         |
| DUC      | A                   |              | Reference          | 3.52              | 3.52            |                | PASS    |
| DH5      | Ant1                |              | 30~1000            | 3.52              | -54.7           | ≤-16.48        | PASS    |
|          |                     |              | 1000~26500         | 3.52              | -41.73          | ≤-16.48        | PASS    |
|          |                     | 2480         | Reference          | 4.01              | 4.01            |                | PASS    |
|          |                     |              | 30~1000            | 4.01              | -55.11          | ≤-15.99        | PASS    |
|          |                     |              | 1000~26500         | 4.01              | -41.57          | ≤-15.99        | PASS    |
|          |                     | 2402         | Reference          | 2.39              | 2.39            |                | PASS    |
|          |                     |              | 30~1000            | 2.39              | -54.89          | ≤-17.61        | PASS    |
|          |                     |              | 1000~26500         | 2.39              | -41.69          | ≤-17.61        | PASS    |
|          |                     | 2441         | Reference          | 2.25              | 2.25            |                | PASS    |
| 2DH5     | Ant1                |              | 30~1000            | 2.25              | -54.88          | ≤-17.75        | PASS    |
|          |                     |              | 1000~26500         | 2.25              | -41.58          | ≤-17.75        | PASS    |
|          |                     | 2480         | Reference          | 3.11              | 3.11            |                | PASS    |
|          |                     |              | 30~1000            | 3.11              | -54.55          | ≤-16.89        | PASS    |
|          |                     |              | 1000~26500         | 3.11              | -41.42          | ≤-16.89        | PASS    |
|          | <del>1</del> 5 Ant1 | 2402         | Reference          | 2.43              | 2.43            |                | PASS    |
|          |                     |              | 30~1000            | 2.43              | -54.98          | ≤-17.57        | PASS    |
|          |                     |              | 1000~26500         | 2.43              | -40.85          | ≤-17.57        | PASS    |
| 3DH5     |                     | 2441         | Reference          | 2.22              | 2.22            |                | PASS    |
|          |                     |              | 30~1000            | 2.22              | -55             | ≤-17.78        | PASS    |
|          |                     |              | 1000~26500         | 2.22              | -40.96          | ≤-17.78        | PASS    |
|          |                     | 2480         | Reference          | 2.89              | 2.89            |                | PASS    |
|          |                     |              | 30~1000            | 2.89              | -54.9           | ≤-17.11        | PASS    |
|          |                     |              | 1000~26500         | 2.89              | -41.55          | ≤-17.11        | PASS    |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



Band Edge Conducted Test plot as follows:

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0H5 Ant1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low_2402                            |                                                             |                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|----------------------------------|--|
| Agilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 02:35:57 PMNov 04, 2024                                     |                                  |  |
| Center Freq 2.352500000 GHz<br>PN0: Fast →<br>IF6ain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #Avg Type: RMS<br>Avg Hold: 100/100 | TRACE 123456<br>TYPE MULTURE<br>DET PPPPP                   | Frequency                        |  |
| Ref Offset 8.57 dB<br>10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mkr5                                | 2.364 890 GHz<br>-48.538 dBm                                | Auto Tune                        |  |
| 10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Center Freq                      |  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | -15.85 dBn                                                  | 2.352500000 GHz                  |  |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Start Freq<br>2.30000000 GHz     |  |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                   | 3 $2$                                                       | 2.00000000 0112                  |  |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Let la contra la |                                     |                                                             | Stop Freq<br>2.40500000 GHz      |  |
| Start 2.30000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                            | Stop 2.40500 GHz                                            | CF Step                          |  |
| MKR MODE TRC SCL X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep 1<br>NCTION FUNCTION WIDTH    | 0.07 ms (1001 pts)<br>FUNCTION VALUE                        | 10.500000 MHz<br><u>Auto</u> Man |  |
| 1         N         1         f         2.402 060 GHz           2         N         1         f         2.400 000 GHz           3         N         1         f         2.300 000 GHz           4         N         1         f         2.310 000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.108 dBm<br>-52.214 dBm<br>-50.754 dBm<br>-51.951 dBm<br>-48.538 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                             | Freq Offset                      |  |
| 4 N 1 f 2.310 000 GHz<br>5 N 1 f 2.364 890 GHz<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -48.538 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                             | 0 Hz                             |  |
| 8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STATU                               | >                                                           |                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H5_Ant1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High_2480                           |                                                             |                                  |  |
| Agilent Spectrum Analyzer - Swept SA<br>(μ) RL RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SENSE:PULSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALIGN AUTO                          | 02:41:33 PMNov 04, 2024                                     | Frequency                        |  |
| Center Freq 2.510000000 GHz<br>PNO: Fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ⊶ Trig: Free Run<br>#Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #Avg Type: RMS<br>Avg Hold: 100/100 | TRACE 1 2 3 4 5 6<br>TYPE MUSEUM<br>DET P P P P P P         |                                  |  |
| Ref Offset 8.57 dB<br>10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mkr                                 | 4 2.529 60 GHz<br>-47.965 dBm                               | Auto Tune                        |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Center Freq                      |  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | -15.26 dBm                                                  | 2.51000000 GHz                   |  |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Start Freq<br>2.47000000 GHz     |  |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>Andreagene Jand Marshall Marsh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | adadaaa                                                     | Oten Free                        |  |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Stop Freq<br>2.55000000 GHz      |  |
| Start 2.47000 GHz<br>#Res BW 100 kHz #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sween 7                             | Stop 2.55000 GHz<br>.667 ms (1001 pts)                      | CF Step<br>8.000000 MHz          |  |
| MKR MODELTRC SCL X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NCTION FUNCTION WIDTH               |                                                             | <u>Auto</u> Man                  |  |
| 3 N 1 f 2.500 00 GHz<br>4 N 1 f 2.529 60 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.745 dBm<br>-51.681 dBm<br>-50.520 dBm<br>-47.965 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                             | Freq Offset<br>0 Hz              |  |
| 5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 3                                                           |                                  |  |
| 8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                  |  |
| <<br>MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STATU                               | s                                                           |                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5_Ant1_Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w_Hop_24                            | 02                                                          |                                  |  |
| Agilent Spectrum Analyzer - Swept SA           Image: Solution of the state of the sta | SENSE:PULSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #Avg Type: RMS                      | 03:24:58 PMNov 04, 2024<br>TRACE 1 2 3 4 5 6<br>TYPE MMMMMM | Frequency                        |  |
| IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⊶ Trig: Free Run<br>#Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Avg Hold: 100/100                   | DETPPPP                                                     | Auto Tune                        |  |
| Ref Offset 8.3 dB<br>10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WIKI5                               | 2.391 245 GHz<br>-49.591 dBm                                |                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Center Freq<br>2.352500000 GHz   |  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | -14.28 de r                                                 |                                  |  |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | Start Freq<br>2.30000000 GHz     |  |
| -500 nder Witter Strander Berlins timber Jonanne Bater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | earthangarana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | And all these and a straight of     |                                                             | Stop Freq                        |  |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | 2.405000000 GHz                  |  |
| Start 2.30000 GHz<br>#Res BW 100 kHz #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep 1                             | Stop 2.40500 GHz<br>0.07 ms (1001 pts)                      | CF Step<br>10.500000 MHz         |  |
| MKR MODE TRC SCL X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NCTION FUNCTION WIDTH               |                                                             | <u>Auto</u> Man                  |  |
| 1         1         2,100,300,112           2         N         1         f         2,400,000,6Hz           3         N         1         f         2,390,000,6Hz           4         N         1         f         2,390,000,6Hz           5         N         1         f         2,391,245,6Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.748 dBm<br>-52.387 dBm<br>-50.904 dBm<br>-52.964 dBm<br>-49.591 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                             | Freq Offset<br>0 Hz              |  |
| 6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                  |  |
| 9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                  |  |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STATU                               | s                                                           |                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                  |  |

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



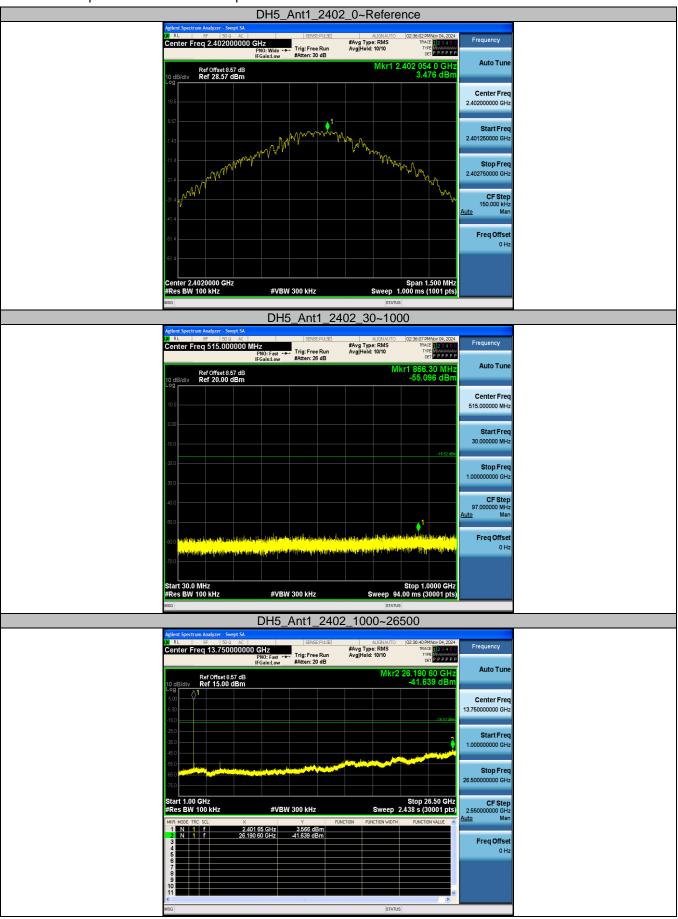


Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





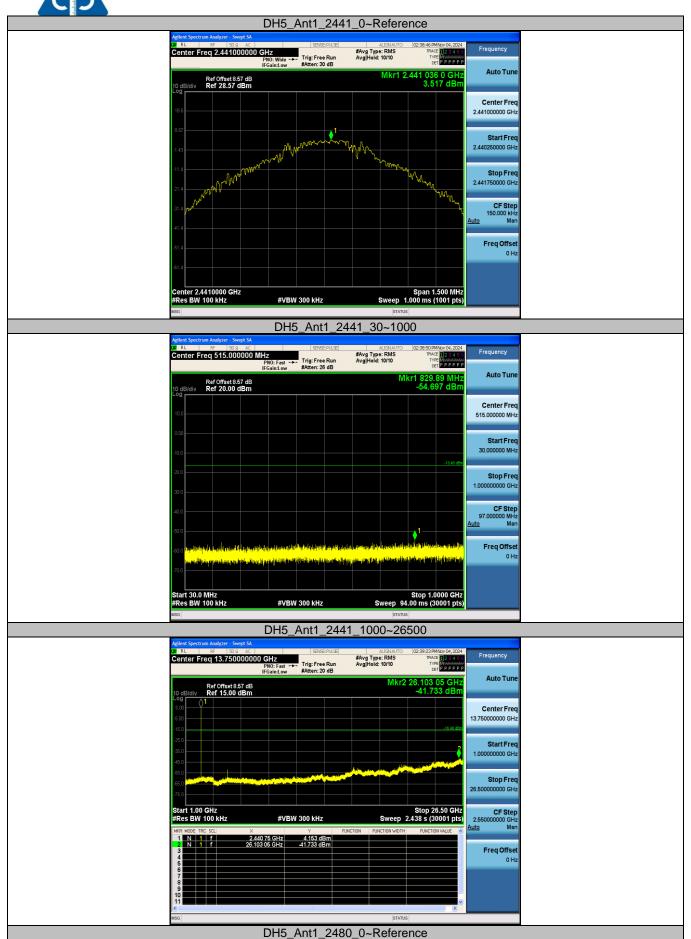
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





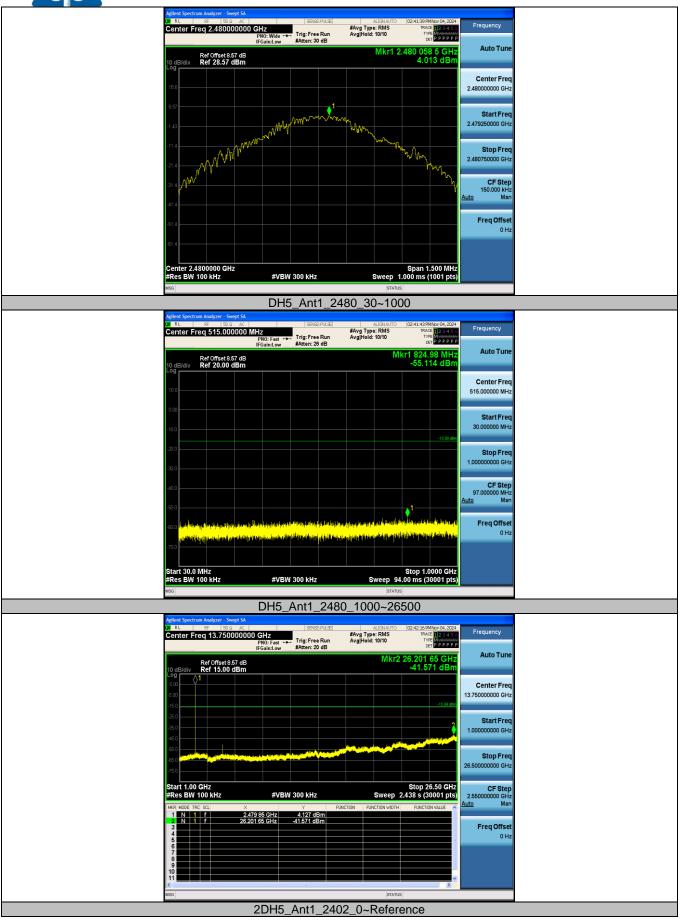

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn




Conducted Spurious Emissions Test plot as follows

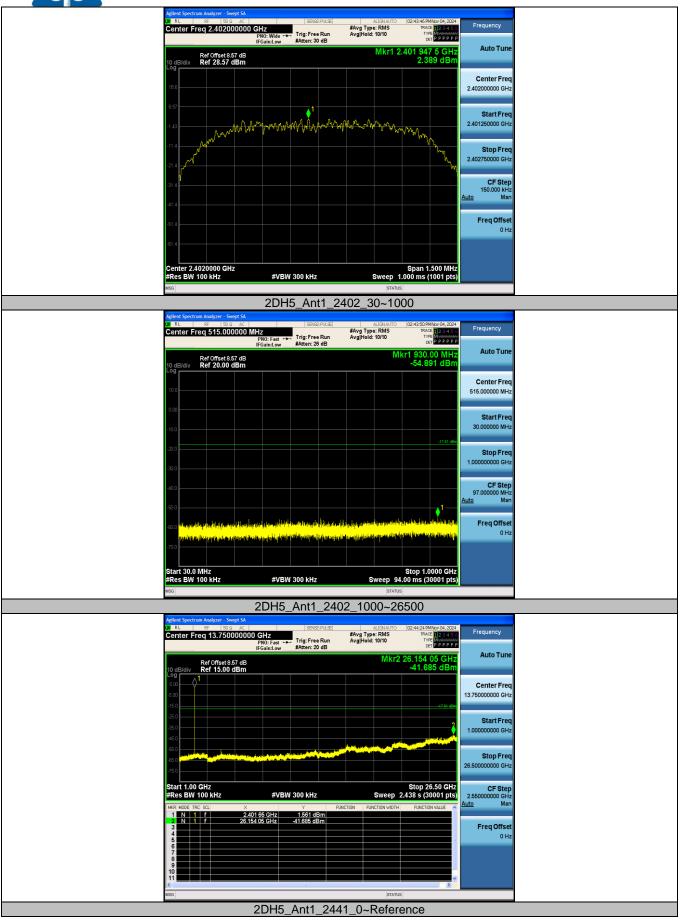


CTC Laboratories, Inc.


Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

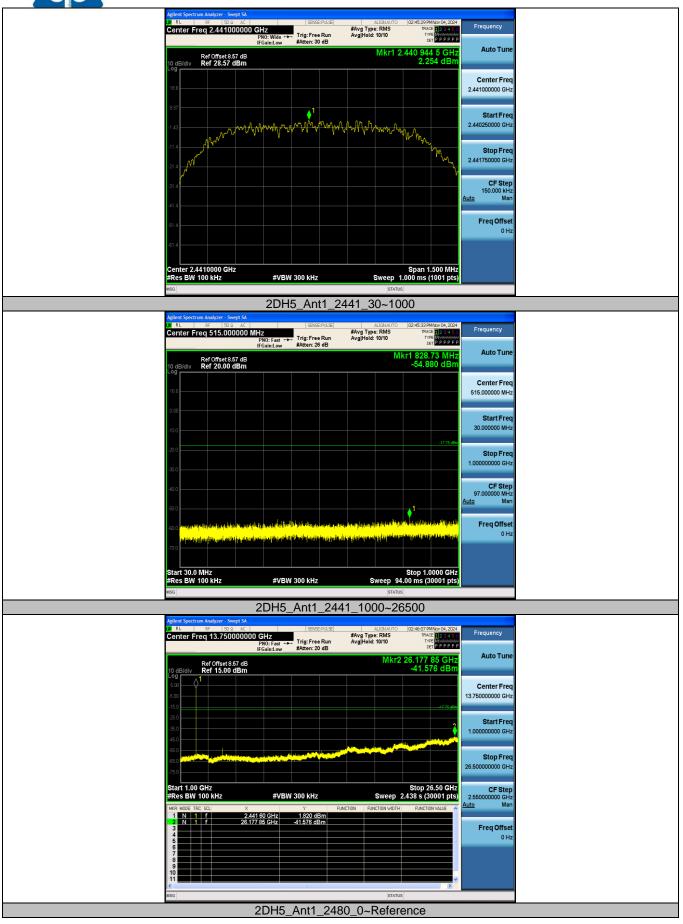





Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

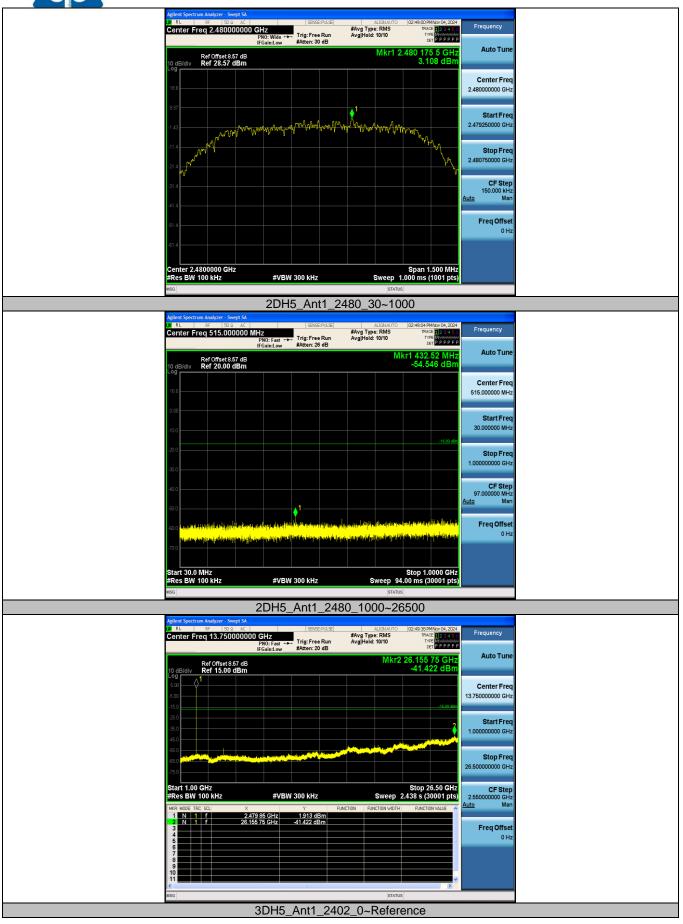





Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn






Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn





Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn