

FCC Measurement/Technical Report on

LoRaWAN 86x/9xx Expansion card CG2132

FCC ID: NCM-CG2132

IC: 2734A-CG2132

Test Report Reference: MDE_OPTION_2101_FCC_04

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-12140-01-01
D-PL-12140-01-02
D-PL-12140-01-03

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11

40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	10
4	Test object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	12
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups	12
4.6	Operating Modes / Test Channels	13
4.7	Product labelling	13
5	Test Results	14
5.1	Occupied Bandwidth (6 dB)	14
5.2	Occupied Bandwidth (99%)	17
5.3	Peak Power Output	20
5.4	Spurious RF Conducted Emissions	24
5.5	Transmitter Spurious Radiated Emissions	27
5.6	Band Edge Compliance Conducted	38
5.7	Power Density	42
5.8	Channel Separation Dwell Time	46
5.9 5.10	Number of Hopping Frequencies	49 52
6	Test Equipment	55
	• •	
7	Antenna Factors, Cable Loss and Sample Calculations LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	58
7.1 7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	58 59
7.2	Antenna R&S HL562 (30 MHz – 1 GHz)	60
7.3 7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	61
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	62
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	63
8	Measurement Uncertainties	64
9	Photo Report	65

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-20 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (including Hybrid Mode) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 2: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	17 (a) (2)		
Occupied Bandwidth (6 dB) The measurement was performed accordance ANSI C63.10, chapter 11.8.1	ording to		Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (HYBRID), high	S01_AA01	2022-06-22	Performed	Performed
Lora (HYBRID), low	S01_AA01	2022-06-22	Performed	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS	-Gen & IC TRC	C-43; Ch. 6.7	& Ch. 8
Occupied Bandwidth (99%) The measurement was performed accordance (1988) ANSI C63.10, chapter 6.9.3	ording to		Final Resu	ilt
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (HYBRID), high	S01_AA01	2022-06-15	Performed	Performed
Lora (HYBRID), low	S01_AA01	2022-06-15	Performed	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	47 (b) (3)		
Peak Power Output The measurement was performed according to the control of the c	ording to		Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (HYBRID), high	S01_AA01	2022-06-15	Passed	Passed
Lora (HYBRID), low	S01_AA01	2022-06-15	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	47 (d)		
Spurious RF Conducted Emissions The measurement was performed accordance ANSI C63.10, chapter 11.11	ording to		Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (HYBRID), high	S01_AA01	2022-06-15	Passed	Passed
· · · · · · · · · · · · · · · · · · ·				

S01_AA01

2022-06-15

Passed

Lora (HYBRID), low

Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	7 (d)		
Transmitter Spurious Radiated Emission The measurement was performed accordance ANSI C63.10, chapter 6.4, 6.5, 6.6.5			Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC
Lora (HYBRID), high, 1 GHz - 10 GHz	S02_AA01	2022-06-23	Passed	Passed
Lora (HYBRID), high, 30 MHz - 1 GHz	S02_AA01	2202-06-22	Passed	Passed
Lora (HYBRID), high, 9 kHz - 30 MHz	S02_AA01	2022-06-10	Passed	Passed
Lora (HYBRID), low, 1 GHz - 10 GHz	S02_AA01	2022-06-23	Passed	Passed
Lora (HYBRID), low, 30 MHz - 1 GHz	S02_AA01	2202-06-22	Passed	Passed
Lora (HYBRID), low, 9 kHz - 30 MHz	S02_AA01	2022-06-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	7 (d)		
Band Edge Compliance Conducted The measurement was performed according ANSI C63.10, chapter 11.11	ding to		Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Lora (HYBRID), hopping, high	S01_AA01	2022-06-22	Passed	Passed
Lora (HYBRID), hopping, low	S01_AA01	2022-06-22	Passed	Passed
Lora (HYBRID), high, high	S01_AA01	2022-06-16	Passed	Passed
Lora (HYBRID), low, low	S01_AA01	2022-06-16	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	7 (e)		
Power Density The measurement was performed accordance ANSI C63.10, chapter 11.10.2	rding to		Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (HYBRID), high	S01_AA01	2022-06-15	Passed	Passed
Lora (HYBRID), low	S01_AA01	2022-06-15	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.24	7 (a) (1)		
Channel Separation The measurement was performed accordance ANSI C63.10, chapter 7.82	rding to		Final Resu	ılt
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (HYBRID), hopping	S01_AA01	2022-06-24	Performed	Performed

TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04

47 CFR CHAPTER I FCC PART 15 § 15.247 (a) (1) (i) (ii) (iii) Subpart C §15.247

Dwell Time

The measurement was performed according to Final Result

ANSI C63.10, chapter 7.8.4

OP-Mode Setup Date FCC IC

Radio Technology, Operating Frequency
Lora (HYBRID), hopping S01_AA01 2022-06-24 Passed Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (a) (1) (i) (ii) (iii) Subpart C §15.247

Number of Hopping Frequencies

The measurement was performed according to Final Result

ANSI C63.10, chapter 7.8.3

OP-Mode Setup Date FCC IC Radio Technology, Operating Frequency

Lora (HYBRID), hopping S01_AA01 2022-06-24 Performed Performed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2022-07-22		valid	

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Daniel Gall

(responsible for testing and report)
B.Sc. Mohamad Fraitat

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Daniel Gall

Report Template Version: 2021-09-09

3.2 PROJECT DATA

Responsible for testing and report: B.Sc. Mohamad Fraitat

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2022-07-22

Testing Period: 2022-06-10 to 2202-06-24

3.3 APPLICANT DATA

Company Name: Option (Crescent NV)

Address: Geldenaaksebaan 329

3001 Leuven Belgium

Contact Person: Mr. Pieter Poncelet

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	LoRaWAN receiver
Product name	LoRaWAN 86x/9xx Expansion card
Туре	CG2132
Declared EUT data by	the supplier
Voltage Type	DC (Powered by Host Device)
Voltage Level	DC: 3.4 V
Antenna / Gain	External / 1 dBi
Tested Modulation Type	FSK
General product description	LoRaWAN 86x/9xx Expansion card is a member of the CloudGate family expansion cards providing LoRaWAN capabilities to the gateways. The EUT is attached to the host device (CloudGate LTE WW - CG0124) via a Card Edge Connector with 36 pins.
Specific product description for the EUT	The EUT is a LoRaWAN receiver in the 900 MHz band. Relevant for this report is the HYBRID mode with 125 kHz bandwidth and as Downstream with only 8 channels starting at 903.9 MHz to 905.3 MHz during established communication. A typical application is a Smart Metering use case where the sensor data are sent to the gateway via LoRa link.
EUT ports (connected cables during testing):	Enclosure, antenna, AC from host device, LAN from host device
Tested datarates	Data rate settings SF 5 to 12 are supported by the test software, but only SF 9 is applicable for the tested HYBRID mode.
Special software used for testing	The local TX test modes were set using the "LoraGateway_SX1302_Testprogram" software provided by the applicant. For the hopping mode the application "LuvitRED", on the web-interface of the host device, was used.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
EUT A	DE1234019aa01	Radiated and Conducted	
		Sample	
Sample Parameter	r Value		
Serial No.	LW2LM63002		
HW Version	Rev 2.0		
SW Version	N/A		
Comment	the Lora Expansion card is installed in CloudGate LTE WW (Model: CG0124, Serialnumber: KW4AM4C790)		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 1	GlobTek, GTM96180-1817.9-5.9, -, -, 903272130/20	ACDC Adapter from host device
AUX 2	Pulse Larsen Antenna, 868-928MHz Swivel Type dipole antenna, W1063, -, -	External Antenna

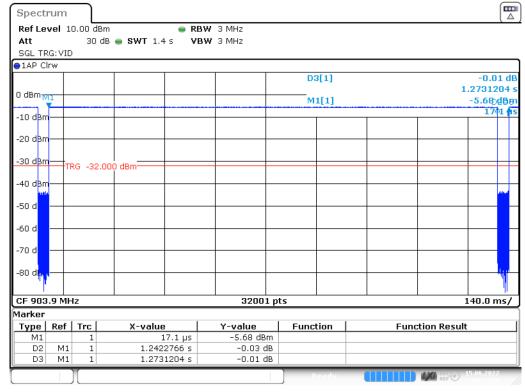
4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A + AUX 1	Conducted Setup
S02_AA01	EUT A + AUX 1 + AUX 2	Radiated Setup with external Antenna

TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04 Page 12 of 65

4.6 OPERATING MODES / TEST CHANNELS


This chapter describes the operating modes of the EUTs used for testing.

LoRaWAN
900 MHz ISM Band
Test Channels:
Channel:
Frequency [MHz]

Hybrid 125 kHz 903.9 – 905.3 MHz			
low	mid	high	
8	-	15	
903.9	-	905.3	

Remark: The mid Channel was not tested, because the lowest and the highest channel are less than 2 MHz apart. The Output Power was set to 21 dBm (PWID 8 and PA State "ON").

Duty Cycle:

Date: 15.JUN.2022 14:34:29

98 % Duty Cycle

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (6 DB)

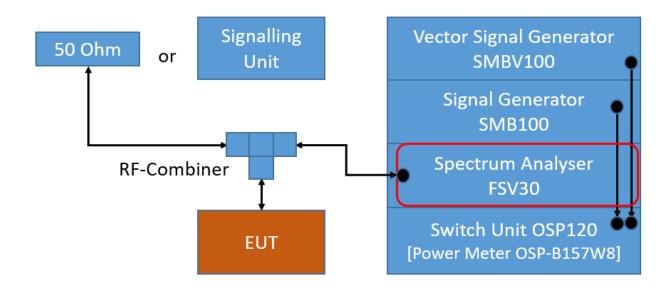
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.8.1

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.


The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

See measurement plots.

Radio Lab; Spurious RF Conducted Emissions

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

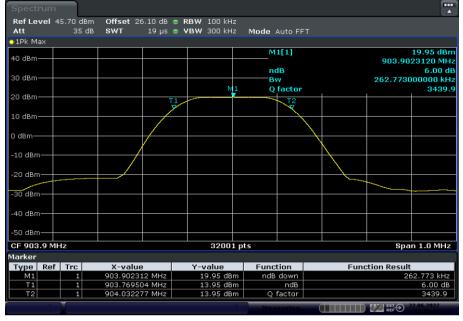
KDB 557074 D01 10. b) 3)

There is no requirement for this type of hybrid system to comply with the 500 kHz minimum bandwidth normally associated with a DTS device.

5.1.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 1010 hPa
Humidity: 38 %

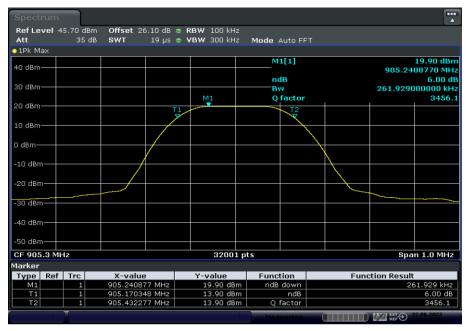
LoRaWAN; Hybrid; 125 kHz;


1760 bps

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
900 MHz Band	8	903.9	0.263	-	-
	15	905.3	0.262	-	-

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Lora (HYBRID), Operating Frequency = low (S01_AA01)

Date: 22.JUN.2022 10:59:22

Radio Technology = Lora (HYBRID), Operating Frequency = high (S01_AA01)

Date: 22.JUN.2022 10:55:49

5.1.5 TEST EQUIPMENT USED

- Radio Lab

5.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

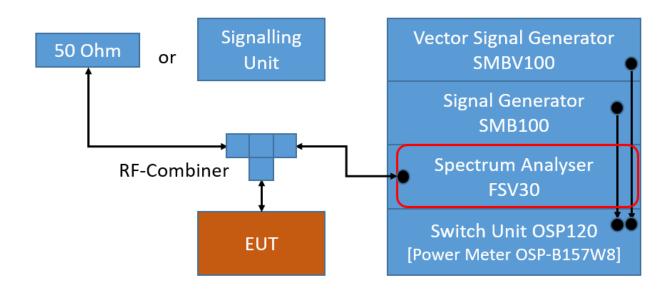
ANSI C63.10, chapter 6.9.3

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

Resolution Bandwidth (RBW): 1 to 5 % of the OBW

Video Bandwidth (VBW): ≥ 3 times the RBW

• Span: 1.5 to 5 times the OBW

Trace: MaxholdSweeps: Till stableSweeptime: AutoDetector: Peak

Radio Lab; Spurious RF Conducted Emissions

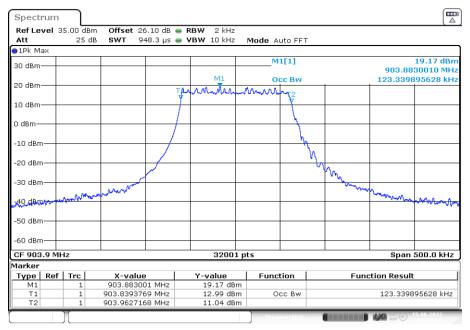
TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04

5.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.2.3 TEST PROTOCOL

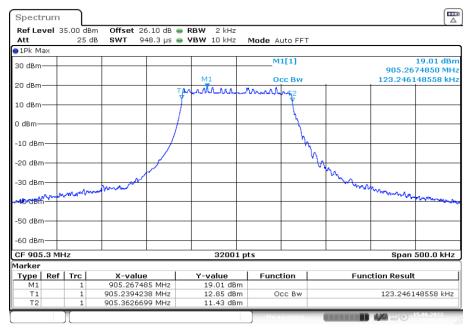
Ambient temperature: 24 °C
Air Pressure: 1010 hPa
Humidity: 38 %


LoRaWAN; Hybrid; 125 kHz; 1760 bps

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
900 MHz Band	8	903.9	0.12
	15	905.3	0.12

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Lora (HYBRID), Operating Frequency = low (S01_AA01)

Date: 15.JUN.2022 15:30:26

Radio Technology = Lora (HYBRID), Operating Frequency = high (S01_AA01)

Date: 15.JUN.2022 15:38:21

5.2.5 TEST EQUIPMENT USED

- Radio Lab

5.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

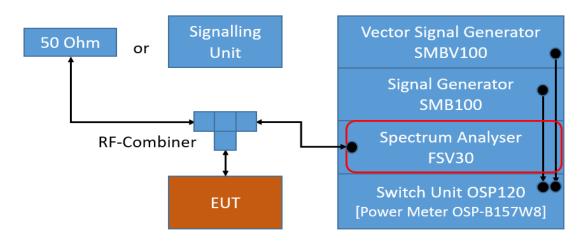
The test was performed according to:

ANSI C63.10, chapter 11.9.1.3

5.3.1 TEST DESCRIPTION

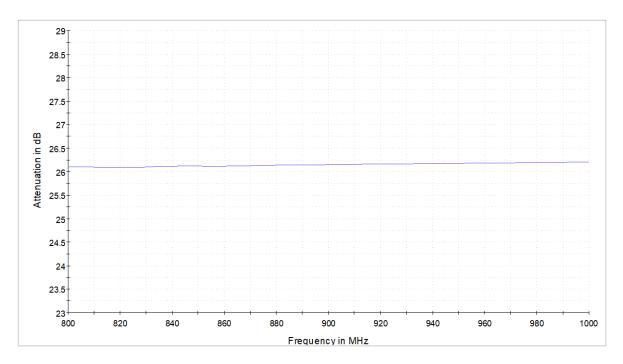
DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.


Maximum conducted average output power:

Analyser settings:

Resolution Bandwidth (RBW): 1-5 % of OBW
 Video Bandwidth (VBW): ≥ 3 times RBW


Span: ≥ 2 x Span / RBW
 Trace: Average Power
 Sweeps: 1000

Sweeptime: AutoDetector: RMS

Radio Lab; Spurious RF Conducted Emissions

Attenuation of the measurement path to Analyser

5.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

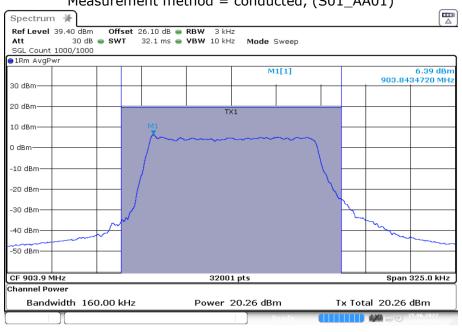
Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

5.3.3 TEST PROTOCOL

23 °C Ambient temperature: Air Pressure: 1021 hPa Humidity: LoRaWAN; Hybrid; 125 kHz; 32 %

1760 bps

Mode	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
LoRaWAN; Hybrid; 125 kHz; 5470 bps	8	903.9	20.3	30.0	9.6	20.4
LoRaWAN; Hybrid; 125 kHz; 5470 bps	15	905.3	20.2	30.0	9.7	20.3


Remark:

Results include duty cycle correction.
Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = low, Measurement method = conducted, (S01_AA01)

Date: 15.JUN.2022 14:23:37

Radio Technology = Lora (HYBRID), Operating Frequency = high, Measurement method = conducted, (S01 AA01)

Date: 15.JUN.2022 14:48:11

5.3.5 TEST EQUIPMENT USED

- Radio Lab

5.4 SPURIOUS RF CONDUCTED EMISSIONS

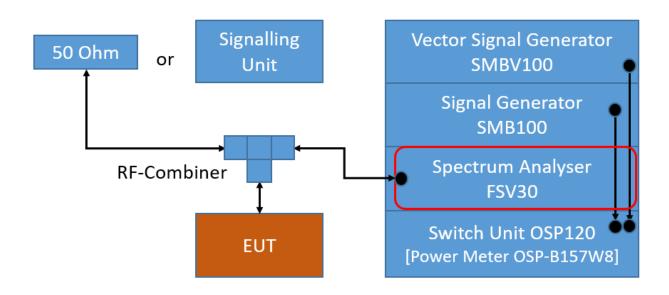
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.11

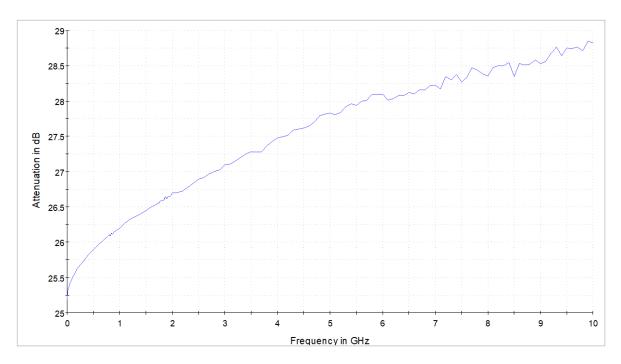
5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Frequency range: 30 – 10000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz


Trace: MaxholdSweeps: Till StableSweep Time: AutoDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

Radio Lab; Spurious RF Conducted Emissions

Attenuation of the measurement path

5.4.2 TEST REQUIREMENTS / LIMITS

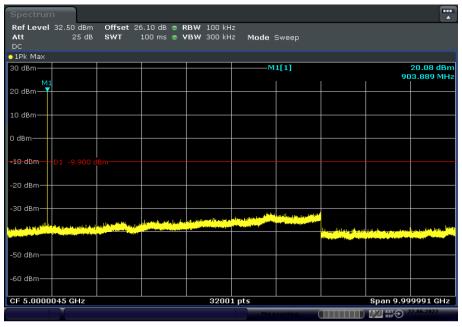
FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

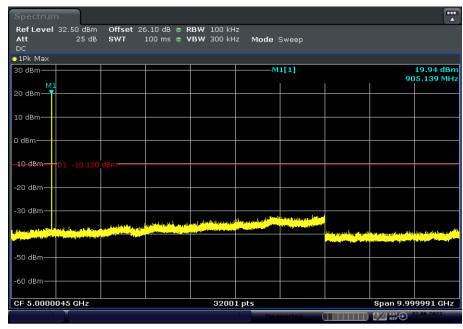
5.4.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1021 hPa
Humidity: 32 %

LoRaWAN; Hybrid; 125 kHz; 1760 bps


Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
8	903.9	-	-	PEAK	100	20.1	-9.9	1
15	905.3	=	=	PEAK	100	19.9	-10.1	-

Remark: Please see next sub-clause for the measurement plot.


5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = low (S01_AA01)

Date: 22.JUN.2022 11:21:40

Radio Technology = Lora (HYBRID), Operating Frequency = high (S01_AA01)

Date: 22.JUN.2022 11:25:17

5.4.5 TEST EQUIPMENT USED

- Radio Lab

5.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

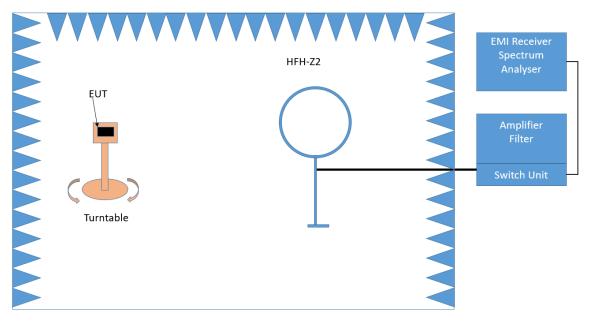
ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04

Step 1: pre measurement

Anechoic chamber

Antenna distance: 3 mAntenna height: 1 mDetector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

IF-Bandwidth: 0.2 kHz and 9 kHz

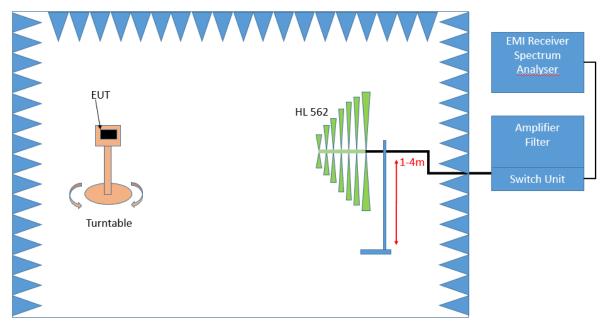
• Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

Detector: Quasi-Peak (9 kHz - 150 kHz, Peak / Average 150 kHz- 30 MHz)


Frequency range: 0.009 – 30 MHz

• Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

• Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

- Frequency steps: 30 kHz - IF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

- Height variation range: 1 - 4 m - Height variation step size: 1.5 m - Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms - Turntable angle range: 360 ° - Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

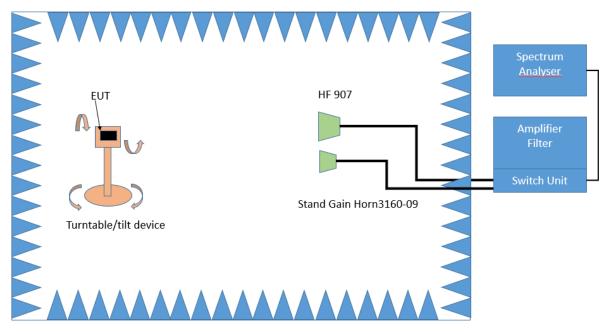
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.5.3 TEST PROTOCOL

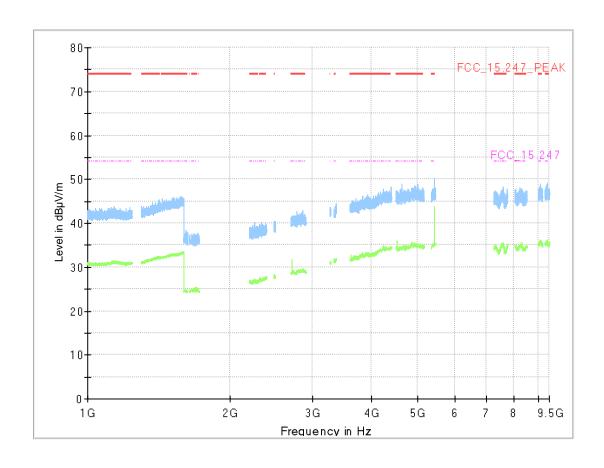
Ambient temperature: 24-26 °C
Air Pressure: 1001-1008 hPa
Humidity: 37-44 %

LoRaWAN; Hybrid; 125 kHz; 1760 bps Applied duty cycle correction (AV): 0 dB

Ch. No	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
8	903.9	-	-	PEAK	1000	-	i	RB
15	905.3	-	-	PEAK	1000	-	-	RB

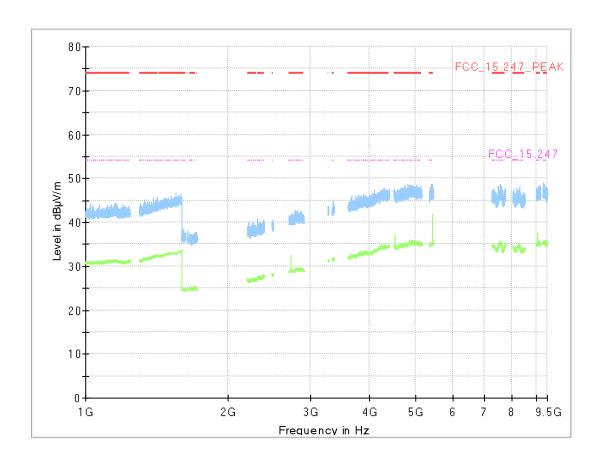
Remark: Since no restricted band exists next to the 900 MHz band, the radiated band edge results are included in the results of this test case.

Due to the long transmission length, the AV value represents the value of continuous transmission.

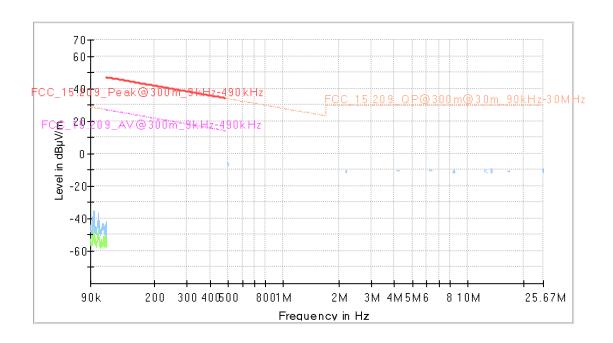

Duty Cycle correction is not performed.

Please see next sub-clause for the measurement plot.

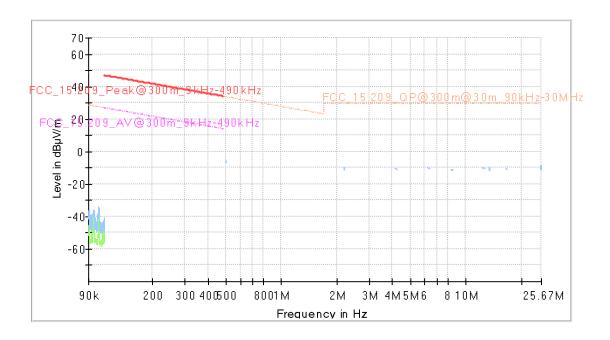
5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Lora (HYBRID), Operating Frequency = low, Measurement range = 1 GHz - 10 GHz (S02_AA01)

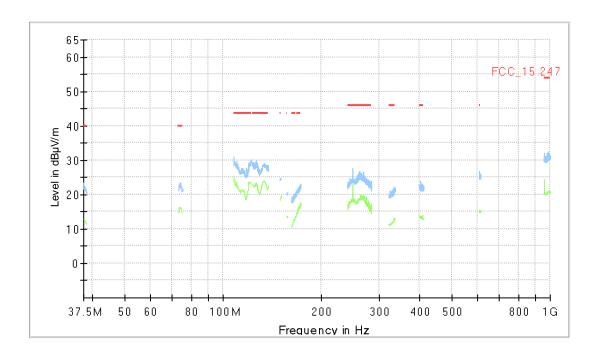
Fr	equency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)


Radio Technology = Lora (HYBRID), Operating Frequency = high, Measurement range = 1 GHz - 10 GHz (S02_AA01)

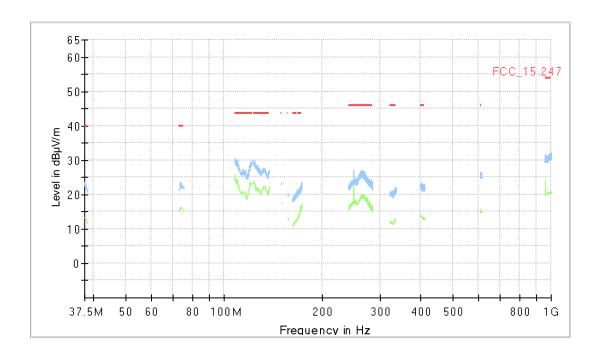
Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)


Radio Technology = Lora (HYBRID), Operating Frequency = high, Measurement range = 9 kHz - 30 MHz (S02_AA01)

Frequency (MHz)	MaxPeak (dBμV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)


Radio Technology = Lora (HYBRID), Operating Frequency = low, Measurement range = 9 kHz - 30 MHz (S02_AA01)

Frequency (MHz)	MaxPeak (dBμV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)


Radio Technology = Lora (HYBRID), Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S02_AA01)

Frequency (MHz)	QuasiPeak (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Radio Technology = Lora (HYBRID), Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S02_AA01)

Final_Result

Frequency (MHz)	QuasiPeak (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

5.5.5 TEST EQUIPMENT USED

- Radiated Emissions FAR
- Radiated Emissions SAC up to 1 GHz
- Radiated Emissions SAC H-Field

5.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.11

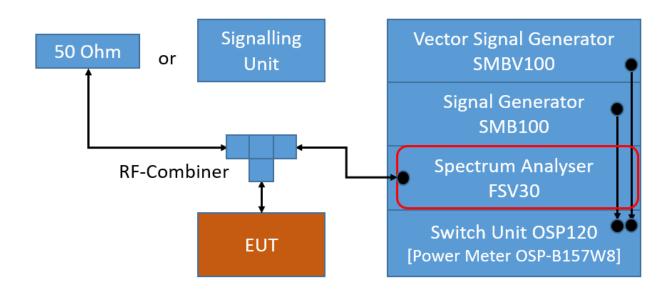
5.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

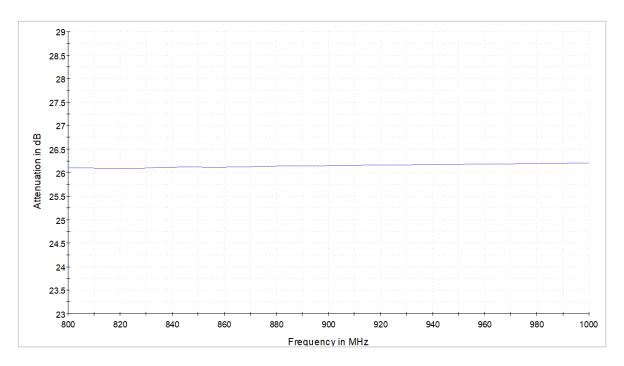
Analyser settings:

Measured range: 898.0 MHz to 932.0 MHz


Detector: Peak

Resolution Bandwidth (RBW): 100 kHz

Video Bandwidth (VBW): 200 kHz


• Video Bandwidth (VBW): 300 kHz

Sweeptime: AutoSweeps: Till stableTrace: Maxhold

Radio Lab; Spurious RF Conducted Emissions

Attenuation of the measurement path

5.6.2 TEST REQUIREMENTS / LIMITS

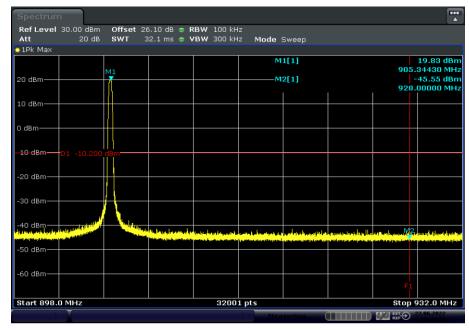
FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

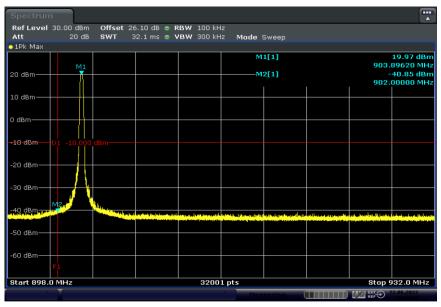
5.6.3 TEST PROTOCOL


LoRaWAN; Hybrid 125 kHz; 5470 bps

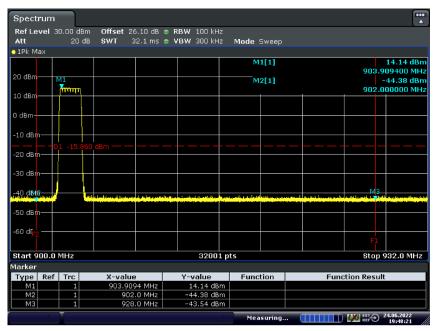
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
8	903.9	902.0	-40.9	PEAK	100	20.0	-10.0	30.9
15	905.3	928.0	-45.6	PEAK	100	19.8	-10.2	35.4
hopping	hopping	902.0	-44.4	PEAK	100	14.1	-15.9	28.5
hopping	hopping	928.0	-43.5	PEAK	100	14.1	-15.9	27.6

Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Lora (HYBRID), Operating Frequency = high, Band Edge = high (S01_AA01)

Date: 22.JUN.2022 10:44:28



Radio Technology = Lora (HYBRID), Operating Frequency = low, Band Edge = low (S01_AA01)

Date: 22.JUN.2022 10:41:06

Radio Technology = Lora (HYBRID), Operating Frequency = hopping, Band Edge = low & high (S01_AA01)

Date: 24.JUN.2022 19:48:21

5.6.5 TEST EQUIPMENT USED

- Radio Lab

5.7 POWER DENSITY

Standard FCC Part 15 Subpart C

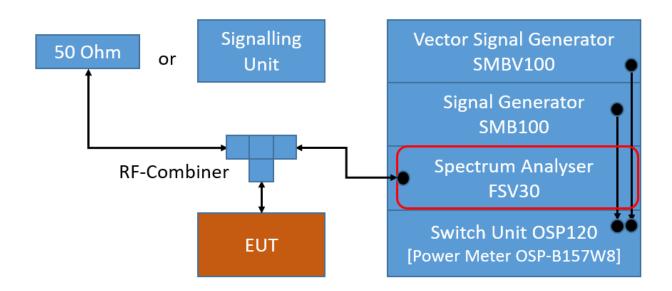
The test was performed according to:

ANSI C63.10, chapter 11.10.2

5.7.1 TEST DESCRIPTION

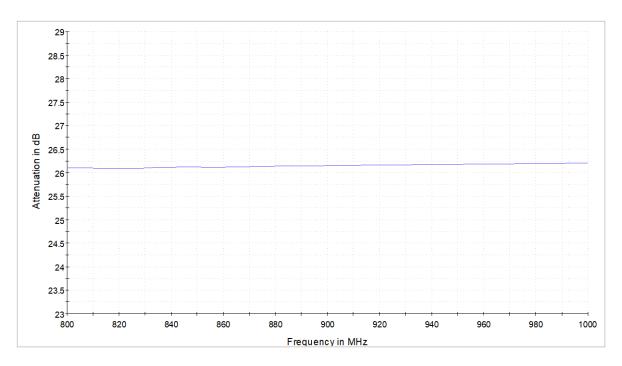
The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:


Resolution Bandwidth (RBW): 3 kHz
 Video Bandwidth (VBW): ≥ 3 times RBW
 Sweep Points: ≥ 2 times span / RBW

Trace: Average PowerSweeps: Till stableSweeptime: AutoDetector: RMS

Radio Lab; Spurious RF Conducted Emissions

Attenuation of the measurement path

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

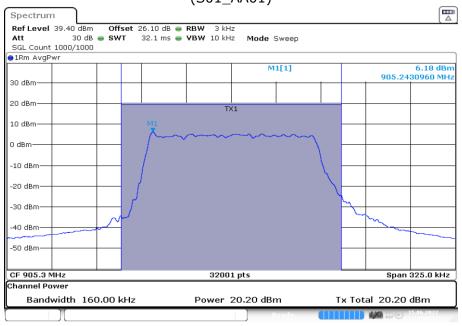
...

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

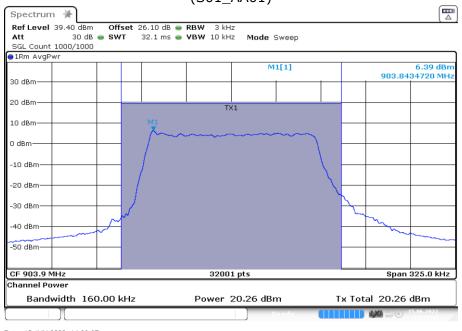
5.7.3 TEST PROTOCOL

Ambient temperature: 24 °C Air Pressure: 1010 hPa Humidity: 38 %

LoRaWAN; Hybrid; 125 kHz; 1760 bps


Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	Used RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
900 MHz Band	8	903.9	6.5	3.0	8.0	1.5
	15	905.3	6.3	3.0	8.0	1.7

Remark: Please see next sub-clause for the measurement plot.


5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = low (S01_AA01)

Date: 15.JUN.2022 14:48:11

Radio Technology = Lora (HYBRID), Operating Frequency = high (S01_AA01)

Date: 15.JUN.2022 14:23:37

5.7.5 TEST EQUIPMENT USED

- Radio Lab

5.8 CHANNEL SEPARATION

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 7.8.2

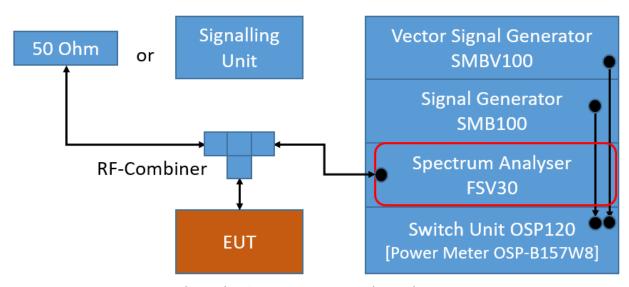
5.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the channel separation measurement. The channel separation is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Detector: PeakTrace: MaxholdSpan: appr. 3 x OBW


• Centre Frequency: approximate mid of two channels

• Resolution Bandwidth (RBW): appr. 30 % of channel spacing

• Video Bandwidth (VBW): ≥ RBW

Sweep Time: AutoSweeps: Till stable

The technology depending measurement parameters can be found in the measurement plot.

Radio Lab; Spurious RF Conducted Emissions

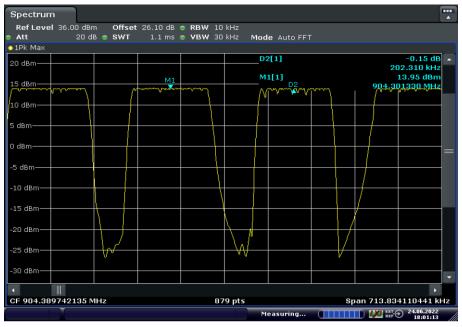
5.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.8.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1007 hPa
Humidity: 36 %


Radio Technology	Channel Separation [MHz]	Limit [MHz]	Margin to Limit [MHz]
LoRaWAN; Hybrid; 125 kHz; 5470 bps	202.300	1	-

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = hopping (S01_AA01)

Date: 24.JUN.2022 18:01:14

5.8.5 TEST EQUIPMENT USED

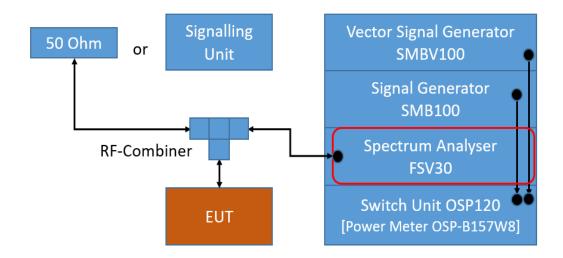
- Radio Lab

5.9 DWELL TIME

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 7.8.4


5.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurement. The dwell time is independent of the modulation pattern.

The EUT is set to its maximum dwell time.

The dwell time is measured by spectrum analyser.

In addition to the dwell time from single burst length, measured dwell time summing up all measured bursts lengths is given in the result table.

Radio Lab; Spurious RF Conducted Emissions

5.9.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

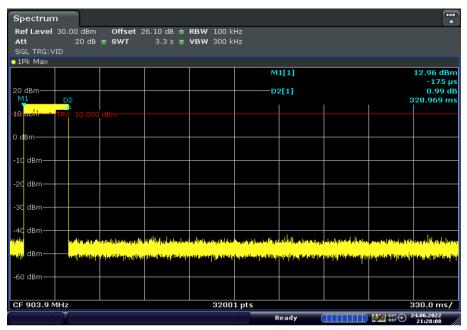
...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

5.9.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1007 hPa
Humidity: 36 %


Radio Technology	Time Slot Length [ms]	Dwell Time [ms]	Limit [s]	Margin to Limit [ms]
LoRaWAN; Hybrid; 125 kHz; 5470 bps	328.969	328.969	0.4	71.031

Remark: Please see next sub-clause for the measurement plot.

5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = hopping (S01_AA01)

Date: 24.JUN.2022 21:28:08

Number of dwells in 3.2 s (8 channels x 400 ms)

5.9.5 TEST EQUIPMENT USED

- Radio Lab

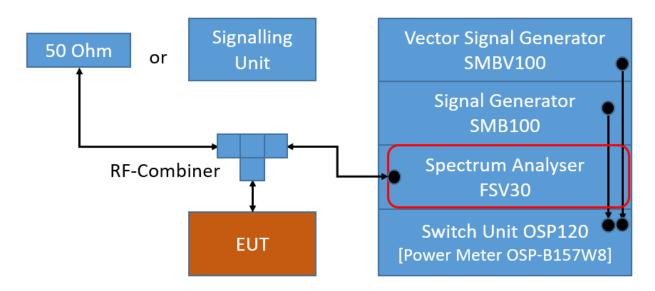
5.10 NUMBER OF HOPPING FREQUENCIES

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 7.8.3

5.10.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Detector: PeakTrace: Maxhold
- Frequency span: Frequency band of operation
- Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is smaller)
- Video Bandwidth (VBW): 3 x RBW
- Sweep Time: Auto
- Sweeps: Till stable (min. 300, max. 15000)

The technology depending measurement parameters can be found in the measurement plot.

Radio Lab; Spurious RF Conducted Emissions

5.10.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

For the band: 2400 - 2483.5 MHz

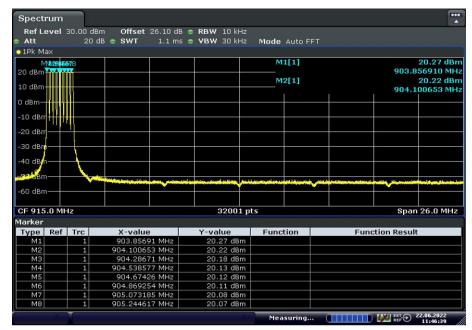
FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.10.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 1010 hPa
Humidity: 38 %

Radio Technology	Number of Hopping Frequencies	Limit	Margin to Limit
LoRaWAN: Hybrid: 125 kHz: 5470 bps	8	-	-


Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04

5.10.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = hopping (S01_AA01)

Date: 22.JUN.2022 11:46:40

5.10.5 TEST EQUIPMENT USED

- Radio Lab

6 TEST EQUIPMENT

1 Radiated Emissions FAR Radiated Emissions in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
1.2		Broadband Amplifier 100 MHz - 18 GHz	Miteq			
1.3		Filter	Trilithic	9942012		
1.4	kg ,	Antenna Mast		-		
1.5	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2021-04	2023-04
1.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383		
1.7	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.8	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2021-06	2023-06
1.9	3160-09		EMCO Elektronic GmbH	00083069		
1.10	8SS	Filter	Wainwright Instruments GmbH	09		
1.11	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.12	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.13	HL 562 ULTRALOG		Rohde & Schwarz GmbH & Co. KG	100609	2022-06	2025-06
1.14	3160-10		EMCO Elektronic GmbH	00086675		
1.15	VLFX-650+	Low Pass Filter DC650 MHz	Mini-Circuits	15542		
1.16	-1.2-KK	High Pass Filter	Trilithic	200035008		
1.17	Opus 20 THI (8120.00)		Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2020-10	2022-10
1.18	TD1.5-10kg	EUT Tilt Device (Rohacell)		TD1.5- 10kg/024/37907 09		
1.19	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.20	AFS42- 00101800-25-S- 42	Broadband	Miteq	2035324		
1.21	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2021-09	2024-09

2 Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	Opus10 TPR (8253.00)	. 55	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
2.2	ESW44	•	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
_		SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
2.4	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
		Amplifier with	Spitzenberger & Spies GmbH & Co. KG	B6278		
2.6	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.7	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01

Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
3.2	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
3.3	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
3.4	HL 562 ULTRALOG	_	Rohde & Schwarz GmbH & Co. KG	830547/003		
3.5	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
3.6	EP 1200/B, NA/B1	AC Source, Amplifier with	Spitzenberger & Spies GmbH & Co. KG	B6278		
3.7	DS 420S		HD GmbH	420/573/99		
3.8	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		

TEST REPORT REFERENCE: MDE_OPTION_2101_FCC_04

4 Radio Lab Conducted Radio Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	1575	Broadband Resistive Power Divider DC to 40 GHz	API Weinschel, Inc.	4070		
4.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2022-06	2024-06
4.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383		
4.4	SMP03	Signal Generator 2 GHz - 27 GHz	Rohde & Schwarz	833680/003		
4.5	Temperature Chamber KWP 120/70	Chamber Weiss 01	Weiss	59226012190010		2024-05
4.6	FSIQ26		Rohde & Schwarz GmbH & Co. KG	840061/005	2021-07	2023-07
4.7	SMB100A	Signal Generator 100 kHz - 40 GHz	Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2022-11
4.8	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
4.9	EX520	Digital Multimeter 07	Extech Instruments Corp	06110393		
4.10	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2022-05	2024-05
4.11	A8455-4	4 Way Power Divider (SMA)		-		
4.12	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7482	2021-09	2023-09
4.13	SMIQ 03B	Vector Signal Generator	Rohde & Schwarz	100583		
4.14	FSU26	Spectrum Analyser (20 Hz to 26.5 GHz)	Rohde & Schwarz GmbH & Co. KG	100136		
4.15	Temperature Chamber VT 4002	Temperature Chamber Vötsch 05	Vötsch	58566080550010	2022-05	2024-05

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Erroquoney	Corr
Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	 11.2
30	11.3

LISN insertion loss ESH3- Z5	cable loss (incl. 10 dB atten- uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

		<u>′</u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m)$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 \text{ m})$

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

	<u> </u>			
		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF	
Frequency	EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Eroguanav	AF EMCO 3160-10	Corr.
Frequency		
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

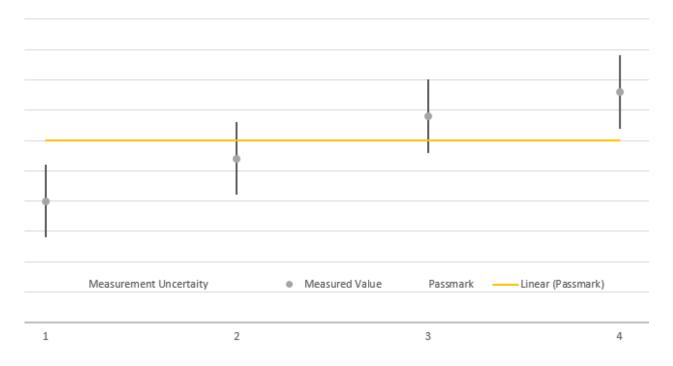
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according to the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.