SAR TEST REPORT For # Meizhou Guo Wei Electronics Co., Ltd. AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China. FCC ID: 2ARRB-AM24PU IC: 20353-AM24PU | Report Type: Original Report | Product Type: Digital Audio Baby Monitor | | • | |------------------------------|---|--|--------------| | Report Number: | SZ1210224-04874E-SA | | | | Report Date: | 2021-06-24 | | | | Reviewed By: | Seven Liang SAR Engineer | | Seven Litary | | Prepared By: | Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn | | | Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*". BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. | Area Compliance La | aboratories Corp. (Shenz | zhen) Report No.: SZ1210 | 224-04874E-SA | | | | |-----------------------------|---|--|---------------|--|--|--| | Attestation of Test Results | | | | | | | | | EUT Description | Digital Audio Baby Monitor | | | | | | | Tested Model | AM24NPU | | | | | | | Multiple Model | AM24PU, AM23PU, AM23NPU | | | | | | EUT
Information | FCC ID | 2ARRB-AM24PU | | | | | | | IC | 20353-AM24PU | | | | | | | Serial Number | SZ1210224-04874E-SA-S1 | | | | | | | Test Date | 2021/02/27 to 2021/06/22 | | | | | | MO | DE | Max. SAR Level(s) Reported(W/kg) | Limit (W/kg) | | | | | DECT | 1g Body SAR | 0.03 | 1.6 | | | | | DECI | 1g Face-up SAR | 0.01 | 1.0 | | | | | | FCC 47 CFR part 2. Radiofrequency radiate | 1093 tion exposure evaluation: portable devices | | | | | | | IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques | | | | | | | Applicable | RSS-102 Issue 5 Mar
Radio Frequency (RF)
Frequency Bands). | rch 2015) Exposure Compliance of Radio communication Appa | aratus (All | | | | | Standards | IEC 62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) | | | | | | | | KDB 648474 D04 Ha
KDB 865664 D01 SA | neral RF Exposure Guidance v06.
ndset SAR v01r03.
R measurement 100 MHz to 6 GHz v01r04
Exposure Reporting v01r02 | | | | | Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated. 2 of 73 SAR Test Report # TABLE OF CONTENTS | DOCUMENT REVISION HISTORY | 4# | |---|-----| | EUT DESCRIPTION | 5# | | TECHNICAL SPECIFICATION | 5# | | REFERENCE, STANDARDS, AND GUIDELINES | 6# | | SAR LIMITS | 7# | | FACILITIES | 8# | | DESCRIPTION OF TEST SYSTEM | 9# | | EQUIPMENT LIST AND CALIBRATION | 16# | | EQUIPMENTS LIST & CALIBRATION INFORMATION | 16# | | SAR MEASUREMENT SYSTEM VERIFICATION | 17# | | Liquid Verification | | | System Accuracy Verification | | | EUT TEST STRATEGY AND METHODOLOGY | | | TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS | | | TEST DISTANCE FOR SAR EVALUATION | | | | | | CONDUCTED OUTPUT POWER MEASUREMENT PROVISION APPLICABLE | | | TEST PROCEDURE | | | MAXIMUM TARGET AVERAGE OUTPUT POWER | 23# | | TEST RESULTS: | ••• | | DECT: | | | ANTENNAS LOCATION | | | Antenna Distance To Edge | 25# | | SAR MEASUREMENT RESULTS | 27# | | SAR TEST DATA | | | CORRECTED SAR EVALUATION | | | SAR MEASUREMENT VARIABILITY | 32# | | APPENDIX A MEASUREMENT UNCERTAINTY | | | APPENDIX B EUT TEST POSITION PHOTOS | 35# | | Liquid depth ≥ 15cm | | | BODY BACK SETUP PHOTO | ••• | | BODY LEFT SETUP PHOTOBODY RIGHT SETUP PHOTO | | | BODY TOP SETUP PHOTO | | | FACE UP SETUP PHOTO | | | APPENDIX C PROBE CALIBRATION CERTIFICATES | 38# | | APPENDIX D DIPOLE CALIBRATION CERTIFICATES | 47# | # **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | | |-----------------|---------------------|-------------------------|------------------|--| | 0 | SZ1210224-04874E-SA | Original Report | 2021-06-24 | | Report No.: SZ1210224-04874E-SA SAR Test Report 4 of 73 ### **EUT DESCRIPTION** This report has been prepared on behalf of *Meizhou Guo Wei Electronics Co., Ltd.* and their product *Digital Audio Baby Monitor*, Model: *AM24NPU*, FCC ID:2*ARRB-AM24PU*; IC: 20353-AM24PU or the EUT (Equipment under Test) as referred to in the rest of this report. Report No.: SZ1210224-04874E-SA * Notes: This series products model: AM24PU, AM23PU, AM23NPU are identical schematics Model AM24NPU was selected for fully testing, the detailed information can be referred to the attached declaration which was stated and guaranteed by the manufacturer. *All measurement and test data in this report was gathered from production sample serial number: SZ1210224-04874E-SA-S1 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2021/02/24. #### **Technical Specification** | Product Type | Portable | |------------------------|------------------------------| | Exposure Category: | Population / Uncontrolled | | Antenna Type(s): | Internal Antenna | | Body-Worn Accessories: | None | | Modulation: | GFSK | | Frequency Band: | DECT: 1921.536-1928.448 MHz; | | Conducted RF Power: | Peak power: 19.37 dBm; | | Power Source: | Rechargeable Battery | | Normal Operation: | Body- Support and Face-up | SAR Test Report 5 of 73 ### REFERENCE, STANDARDS, AND GUIDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. Report No.: SZ1210224-04874E-SA This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. #### CE: The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test
configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. SAR Test Report 6 of 73 #### **SAR Limits** #### FCC&IC Limit Report No.: SZ1210224-04874E-SA | | SAR (W/kg) | | | |--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | Spatial Peak (averaged over any 1 g of tissue) | 1.60 | 8.0 | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | #### **CE Limit** | | SAR (W/kg) | | | |--|-----------------------|---------------------|--| | EXPOSURE LIMITS | (General Population / | (Occupational / | | | EM OSCILE LIMITS | Uncontrolled Exposure | Controlled Exposure | | | | Environment) | Environment) | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | Spatial Peak
(averaged over any 10 g of
tissue) | 2.0 | 10 | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC&IC) & 2 W/kg (CE) applied to the EUT. SAR Test Report 7 of 73 ### **FACILITIES** The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China. The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221. Report No.: SZ1210224-04874E-SA The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023. SAR Test Report 8 of 73 # **DESCRIPTION OF TEST SYSTEM** These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter: ### **DASY6 System Description** The DASY6 system for performing compliance tests consists of the following items: SAR Test Report 9 of 73 - A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running Win7 professional operating system and the DASY52 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### **DASY6 Measurement Server** The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board. Report No.: SZ1210224-04874E-SA The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server. #### **Data Acquisition Electronics** The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. SAR Test Report 10 of 73 #### **EX3DV4 E-Field Probes** | Frequency | 10 MHz to > 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | |------------------|---| | Directivity | ± 0.3 dB in TSL (rotation around probe axis)
± 0.5 dB in TSL (rotation normal to probe axis) | | Dynamic
Range | 10 μ W/g to > 100 mW/g
Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g) | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | #### **SAM Twin Phantom** The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms). When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY6 platform is used to mount the Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required. In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids: Report No.: SZ1210224-04874E-SA Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation. DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week). Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom. SAR Test Report 11 of 73 #### **ELI Phantom** The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standard IEC 62209-2 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom can be used with the following tissue simulating liquids: - Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the
system is not in use to prevent changes in liquid parameters due to water evaporation. - DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week). - Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the ELI phantom. The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from St aubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchrony motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided Report No.: SZ1210224-04874E-SA SAR Test Report 12 of 73 | Calibration Frequency | Frequency Range(MHz) | | Conversion Factor | | | |-----------------------|----------------------|------|-------------------|------|------| | Point(MHz) | From | To | X | Y | Z | | 750 Head | 650 | 850 | 9.92 | 9.92 | 9.92 | | 900 Head | 850 | 1000 | 9.4 | 9.4 | 9.4 | | 1750 Head | 1650 | 1850 | 8.21 | 8.21 | 8.21 | | 1900 Head | 1850 | 2000 | 7.95 | 7.95 | 7.95 | | 2300 Head | 2200 | 2400 | 7.53 | 7.53 | 7.53 | | 2450 Head | 2400 | 2550 | 7.15 | 7.15 | 7.15 | | 2600 Head | 2550 | 2700 | 7.04 | 7.04 | 7.04 | | 5200 Head | 5090 | 5250 | 5.2 | 5.2 | 5.2 | | 5300 Head | 5250 | 5410 | 4.96 | 4.96 | 4.96 | | 5600 Head | 5490 | 5700 | 4.55 | 4.55 | 4.55 | | 5800 Head | 5700 | 5910 | 4.65 | 4.65 | 4.65 | Report No.: SZ1210224-04874E-SA Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7441 Calibrated: 2021/02/23 | Calibration Frequency | Frequency Range(MHz) | | Conversion Factor | | | |-----------------------|----------------------|------|-------------------|-------|-------| | Point(MHz) | From | To | X | Y | Z | | 750 Head | 650 | 850 | 10.28 | 10.28 | 10.28 | | 900 Head | 850 | 1000 | 9.80 | 9.80 | 9.80 | | 1450 Head | 1350 | 1550 | 8.61 | 8.61 | 8.61 | | 1750 Head | 1650 | 1850 | 8.39 | 8.39 | 8.39 | | 1900 Head | 1850 | 1950 | 8.02 | 8.02 | 8.02 | | 2000 Head | 1950 | 2100 | 8.07 | 8.07 | 8.07 | | 2300 Head | 2200 | 2400 | 7.92 | 7.92 | 7.92 | | 2450 Head | 2400 | 2550 | 7.63 | 7.63 | 7.63 | | 2600 Head | 2550 | 2700 | 7.33 | 7.33 | 7.33 | | 3300 Head | 3200 | 3400 | 7.21 | 7.21 | 7.21 | | 3500 Head | 3400 | 3600 | 6.96 | 6.96 | 6.96 | | 3700 Head | 3600 | 3800 | 6.65 | 6.65 | 6.65 | | 3900 Head | 3800 | 4000 | 6.66 | 6.66 | 6.66 | | 4400 Head | 4300 | 4500 | 6.45 | 6.45 | 6.45 | | 4600 Head | 4500 | 4700 | 6.30 | 6.30 | 6.30 | | 4800 Head | 4700 | 4900 | 6.24 | 6.24 | 6.24 | | 4950 Head | 4900 | 5050 | 5.95 | 5.95 | 5.95 | #### **Area Scans** Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments. Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging. SAR Test Report 13 of 73 #### **Zoom Scan (Cube Scan Averaging)** The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm. Report No.: SZ1210224-04874E-SA When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis. SAR Test Report 14 of 73 ### **Tissue Dielectric Parameters for Head and Body Phantoms** The head tissue dielectric parameters recommended by the IEC 62209-1:2016 ### Recommended Tissue Dielectric Parameters for Head and Body Table A.3 - Dielectric properties of the head tissue-equivalent liquid Report No.: SZ1210224-04874E-SA | Frequency | Relative permittivity | Conductivity (a) | |-----------|-----------------------|------------------| | MHZ | ε_{t} | S/m | | 300 | 45,3 | 0,87 | | 450 | 43,5 | 0,87 | | 750 | 41,9 | 0,89 | | 835 | 41,5 | 0,90 | | 900 | 41,5 | 0.97 | | 1 450 | 40,5 | 1,20 | | 1 500 | 40,4 | 1,23 | | 1 640 | 40.2 | 1,31 | | 1 750 | 40,1 | 1,37 | | 1 800 | 40,0 | 1,40 | | 1 900 | 40,0 | 1,40 | | 2 000 | 40,0 | 1,40 | | 2 100 | 39,8 | 1,49 | | 2 300 | 39,5 | 1,67 | | 2 450 | 39,2 | 1.80 | | 2 600 | 39,0 | 1,96 | | 3 000 | 38,5 | 2,40 | | 3 500 | 37,9 | 2,91 | | 4 000 | 37,4 | 3,43 | | 4 500 | 36,8 | 3,94 | | 5 000 | 36,2 | 4,45 | | 5 200 | 36,0 | 4,66 | | 5 400 | 35,8 | 4,86 | | 5 600 | 35,5 | 5,07 | | 5 800 | 35,3 | 5,27 | | 6 000 | 35,1 | 5,48 | NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz. SAR Test Report 15 of 73 # **EQUIPMENT LIST AND CALIBRATION** # **Equipments List & Calibration Information** | Equipment | Model | S/N | Calibration
Date | Calibration
Due Date | |---------------------------------------|-----------------|---------------|---------------------|-------------------------| | DASY5 Test Software | DASY52 52.10.2 | N/A | NCR | NCR | | DASY6 Measurement Server | DASY6 6.0.31 | N/A | NCR | NCR | | Data Acquisition Electronics | DAE4 | 1562 | 2020/03/03 | 2021/03/02 | | Data Acquisition Electronics | DAE4 | 1562 | 2021/01/19 | 2022/01/18 | | E-Field Probe | EX3DV4 | 7522 | 2020/04/01 | 2021/03/31 | | E-Field Probe | EX3DV4 | 7441 | 2021/02/23 | 2022/02/22 | | Mounting Device | MD4HHTV5 | SD 000 H01 KA | NCR | NCR | | SAM Twin Phantom | SAM-Twin V8.0 | 1962 | NCR | NCR | | Dipole, 1900MHz | D1900V2 | 5d231 | 2020/01/14 | 2023/01/13 | | Tissue Liquid Head | HBBL600-10000V6 | 180622-2 | Each Time | / | | Network Analyzer | 8753D | 3410A08288 | 2020/07/31 | 2021/07/30 | | Dielectric Assessment Kit | DAK-3.5 | 1248 | NCR | NCR | | MXG Analog Signal Generator | N5181A | MY48180408 | 2020/07/31 | 2021/07/30 | | USB wideband power sensor | U2021XA | MY54250003 | 2020/07/31 | 2021/07/30 | | Power Amplifier | 5S1G4 | 71377 | NCR | NCR | | Directional Coupler | Oct-42 | 3307 | NCR | NCR | | Attenuator | 6dB | 773-6 | NCR | NCR | | Digital Radio Communication
Tester | CMD60 | 830553/018 | 2020/07/31 | 2021/07/30 | Report No.: SZ1210224-04874E-SA SAR Test Report 16 of 73 # SAR MEASUREMENT SYSTEM VERIFICATION ### **Liquid Verification** Report No.: SZ1210224-04874E-SA Liquid Verification Setup Block Diagram ### **Liquid Verification Results** | Frequency | Liquid | Liquid
Parameter | | Targe | t Value | Delta
(%) | | Tolerance | |-----------|--------------------|---------------------|-------------|----------------|-------------|--------------------------|--------------|-----------| | (MHz) | Туре | $\epsilon_{ m r}$ | O'
(S/m) | ε _r | O'
(S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 1900 | Tissue Liquid Head | 39.668 | 1.367 | 40.0 | 1.40 | -0.83 | -2.36 | ±5 | | 1921.536 | Tissue Liquid Head | 39.939 | 1.385 | 40.0 | 1.40 | -0.15 | -1.07 | ±5 | | 1924.992 | Tissue Liquid Head | 39.862 | 1.389 | 40.0 | 1.40 | -0.34 | -0.79 | ±5 | | 1928.448 | Tissue Liquid Head | 40.076 | 1.409 | 40.0 | 1.40 | 0.19 | 0.64 | ±5 | ^{*}Liquid Verification above was performed on 2021/02/27. | Frequency | Liquid | Liquid
Parameter | | Targe | t Value | Delta
(%) | | Tolerance | |-----------|--------------------|---------------------|-------------|----------------|-------------|-------------------------|--------------|-----------| | (MHz) | Туре | $\epsilon_{\rm r}$ | O'
(S/m) | ε _r | O'
(S/m) | $\Delta\epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 1900 | Tissue Liquid Head | 39.59 | 1.365 | 40.0 | 1.40 | -1.02 | -2.5 | ±5 | | 1921.536 | Tissue Liquid Head | 40.027 | 1.386 | 40.0 | 1.40 | 0.07 | -1 | ±5 | | 1924.992 | Tissue Liquid Head | 39.94 | 1.388 | 40.0 | 1.40 | -0.15 | -0.86 | ±5 | | 1928.448 | Tissue Liquid Head | 39.975 | 1.41 | 40.0 | 1.40 | -0.06 | 0.71 | ±5 | ^{*}Liquid Verification above was performed on 2021/06/22. SAR Test Report 17 of 73 #### **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR
plots files. Report No.: SZ1210224-04874E-SA The spacing distances in the System Verification Setup Block Diagram is given by the following: - a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$ - b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $1~000 \text{ MHz} < f \le 3~000 \text{ MHz}$; - c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3000 \text{ MHz} < f \le 6000 \text{ MHz}$. ### **System Verification Setup Block Diagram** #### **System Accuracy Check Results** | Date | Frequency
Band
(MHz) | Liquid
Type | Input
Power
(mW) | S | asured
SAR
V/kg) | Normalized
to 1W
(W/kg) | Target
Value
(W/Kg) | Delta
(%) | Tolerance (%) | |------------|----------------------------|----------------|------------------------|----|------------------------|-------------------------------|---------------------------|--------------|---------------| | 2021/02/27 | 1900 | Head | 100 | 1g | 4.08 | 40.8 | 40.3 | 1.241 | ±10 | | 2021/06/22 | 1900 | Head | 100 | 1g | 4.05 | 40.5 | 40.3 | -0.496 | ±10 | ^{*}The SAR values above are normalized to 1 Watt forward power. SAR Test Report 18 of 73 #### SAR SYSTEM VALIDATION DATA #### System Performance 1900 MHz Head(2021/02/27) #### DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d231 Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.367$ S/m; $\varepsilon_r = 39.668$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7522; ConvF(7.95, 7.95, 7.95) @ 1900 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 3/3/2020 Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 • Measurement SW: DASY52, Version 52.10 (2); Head 1900MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.73 W/kg Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Report No.: SZ1210224-04874E-SA Reference Value = 54.65 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.32 W/kg SAR(1 g) = 4.08 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 4.39 W/kg 0 dB = 4.39 W/kg = 6.42 dBW/kg SAR Test Report 19 of 73 #### System Performance 1900 MHz Head (2021/06/22) #### DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d231 Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f=1900 MHz; $\sigma=1.365$ S/m; $\epsilon_r=39.59$; $\rho=1000$ kg/m³ Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7522; ConvF(7.95, 7.95, 7.95) @ 1900 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 3/3/2020 Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 • Measurement SW: DASY52, Version 52.10 (2); Head 1900MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.57 W/kg Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.26 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 7.01 W/kg SAR(1 g) = 4.05 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 4.57 W/kg 0 dB = 4.57 W/kg = 6.60 dBW/kg SAR Test Report 20 of 73 #### EUT TEST STRATEGY AND METHODOLOGY ## Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Report No.: SZ1210224-04874E-SA Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. Figure 5 - Test positions for body-worn devices #### **Test Distance for SAR Evaluation** For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm. SAR Test Report 21 of 73 #### **SAR Evaluation Procedure** The evaluation was performed with the following procedure: Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. Report No.: SZ1210224-04874E-SA - Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. SAR Test Report 22 of 73 # CONDUCTED OUTPUT POWER MEASUREMENT ## **Provision Applicable** The measured peak output power should be greater and within 5% than EMI measurement. #### **Test Procedure** The RF output of the transmitter was connected to the input of the EMI Test Receiver through Connector. Report No.: SZ1210224-04874E-SA # **Maximum Target Average Output Power** | Max Target Power(dBm) | | | | | | | | |-----------------------|---------|----------------|------|--|--|--|--| | Mada/Dand | Channel | | | | | | | | Mode/Band | Low | Middle | High | | | | | | DECT | 19.6 | 19.6 19.6 19.6 | | | | | | SAR Test Report 23 of 73 #### **Test Results:** #### **DECT:** | Mode | Frequency
(MHz) | RF Output Peak
Power (dBm) | RF Output Peak
Power (W) | | |------|--------------------|-------------------------------|-----------------------------|--| | DECT | 1921.536 | 19.37 | 0.086 | | | | 1924.992 | 19.32 | 0.086 | | | | 1928.448 | 19.33 | 0.086 | | Report No.: SZ1210224-04874E-SA #### Note: - 1. Rohde & Schwarz Radio Communication Tester (CMD60) was used for the measurement of DECT peak output power. - 2. Duty Cycle=1/24 (From Radio report) - 3. The EUT belongs to a low duty cycle device. - 4. Per KDB 447498 D01, 1 Channel shall be tested; the middle channel was selected to test: $$N_{\rm c} = Round \left\{ \left[100 \left(f_{\rm high} - f_{\rm low} \right) / f_{\rm c} \right]^{0.5} \times \left(f_{\rm c} / 100 \right)^{0.2} \right\},\,$$ where f_{high} is the highest frequency in the band and f_{low} , is the lowest f_c is the center frequency in the band. SAR Test Report 24 of 73 # **Antennas Location** Right ## Antenna Distance To Edge | Ant | Antenna Distance To Edge(mm) | | | | | | | | |------------------------------------|------------------------------|--|--|--|--|--|--|--| | Antenna Back Left Right Bottom Top | | | | | | | | | | DECT <5 <5 <5 87 <5 | | | | | | | | | SAR Test Report 25 of 73 #### Standalone SAR test exclusion for the EUT Edge considerations (RSS-102 issue 5) | Antenna | Frequency
(MHz) | Conducted P _{avg} (dBm) | Conducted P _{avg} (mW) | Test Exclusion
Distance(mm) | |---------|--------------------|----------------------------------|---------------------------------|--------------------------------| | DECT | 1928.448 | 19.6 | 91.201 | 43.26 | Report No.: SZ1210224-04874E-SA #### Note: - 1. When the operating frequency of the device is between two frequencies located in Appendix A of Per RSS-102 issue 5, linear interpolation shall be applied for the
applicable separation distance. - 2. When the Test Exclusion Distance is farther than 50mm and less than 200mm, testing for each edge is required. | Test exclusion result | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Antenna Back Left Right Bottom Top | | | | | | | | | | DECT Required Required Exclusion Required | | | | | | | | | #### Note 1: **Required:** Per RSS-102 issue 5: The distance to Edge is less than **Test Exclusion Distance**, test is required. **Exclusion:** Per RSS-102 issue 5: The distance to Edge is more than **Test Exclusion Distance**, test is not required. #### Note 2 Because the standard of IC is more strict than that of FCC required, So we use the standard of IC to evaluate. SAR Test Report 26 of 73 ## SAR MEASUREMENT RESULTS This page summarizes the results of the performed dosimetric evaluation. #### **SAR Test Data** #### **Environmental Conditions** | Temperature: | 21.8-22.8 ℃ | 21.5-22.3 ℃ | |--------------------|-------------|-------------| | Relative Humidity: | 42-56 % | 41-55 % | | ATM Pressure: | 101.3 kPa | 101.2 kPa | | Test Date: | 2021/02/27 | 2021/06/22 | Testing was performed by Seven Liang, Young Wang. ### ANT0: | EUT | Емадианах | Test | Max.
Meas. | Max.
Rated | 1g S | AR (W/Kg | g), Limited | =1.6W/kg | g | |-------------------|--------------------|------|---------------|---------------|------------------|--------------|---------------|----------------|------| | Position | Frequency
(MHz) | Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Correct
SAR | Plot | | | 1921.536 | GFSK | / | / | / | / | / | / | / | | Body Back (0mm) | 1924.992 | GFSK | 19.32 | 19.6 | 1.067 | 0.025 | 0.03 | 0.03 | 1# | | (* :::::) | 1928.448 | GFSK | / | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | / | | Body Left (0mm) | 1924.992 | GFSK | 19.32 | 19.6 | 1.067 | 0.020 | 0.02 | 0.02 | 2# | | (* :::::) | 1928.448 | GFSK | / | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | / | | Body Right (0mm) | 1924.992 | GFSK | 19.32 | 19.6 | 1.067 | < 0.01 | 0.01 | 0.01 | / | | (* :::::) | 1928.448 | GFSK | / | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | / | | Body Top
(0mm) | 1924.992 | GFSK | 19.32 | 19.6 | 1.067 | 0.026 | 0.03 | 0.03 | 3# | | (viiiii) | 1928.448 | GFSK | / | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | / | | Face up (0mm) | 1924.992 | GFSK | 19.32 | 19.6 | 1.067 | 0.003 | 0.01 | 0.01 | / | | (came) | 1928.448 | GFSK | / | / | / | / | / | / | / | Report No.: SZ1210224-04874E-SA #### Note - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance. - 3. For modes that peak SAR is too low to evaluate, a SAR value 0.01 W/kg is considered as their Scaled SAR. SAR Test Report 27 of 73 #### **Corrected SAR Evaluation** 62209-2 © IEC:2010 **- 89 -** # Annex F (normative) #### SAR correction for deviations of complex permittivity from targets #### F.2 SAR correction formula From [13] and [14], a linear relationship was found between the percent change in SAR (denoted ΔSAR) and the percent change in the permittivity and conductivity from the target values in Table 1 (denoted $\Delta \varepsilon_r$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [48] and Bit-Babik et al. [2]. The relationship is given by: $$\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma \tag{F.1}$$ Report No.: SZ1210224-04874E-SA where $c_{\epsilon} = \partial(\Delta \text{SAR})/\partial(\Delta \epsilon)$ is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power; $c_{\sigma} = \partial(\Delta SAR)/\partial(\Delta \sigma)$ is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power. The values of c_{ϵ} and c_{σ} have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR c_{ϵ} and c_{σ} are given by $$c_{\rm g} = -7.854 \times 10^{-4} \, f^3 + 9.402 \times 10^{-3} \, f^2 - 2.742 \times 10^{-2} \, f - 0.2026$$ (F.2) $$c_{\sigma} = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.782 9$$ (F.3) where f is the frequency in GHz. For the 10 g averaged SAR, the variables c_{ε} and c_{σ} are given by: $$c_{\varepsilon} = 3,456 \times 10^{-3} \, f^3 - 3,531 \times 10^{-2} \, f^2 + 7,675 \times 10^{-2} \, f - 0,186 \, 0$$ (F.4) $$c_{\sigma} = 4,479 \times 10^{-3} f^3 - 1,586 \times 10^{-2} f^2 - 0,197 \ 2f + 0,771 \ 7$$ (F.5) | Calibrate Date | Liquid Type | Frequency
(MHz) | $\mathbf{C}_{\mathbf{\epsilon}}$ | $\triangle \epsilon_{ m r}$ | C_{δ} | Δ_{δ} | △SAR | |----------------|-------------|--------------------|----------------------------------|-----------------------------|--------------|-------------------|-------| | | 1900 | 1900 | -0.226 | -0.83 | 0.594 | -2.36 | | | 2021/02/27 | 2021/02/27 | 1921.536 | 1921.536 | -0.226 | -0.15 | 0.590 | -1.07 | | 2021/02/27 | Head | 1924.992 | 1924.992 | -0.226 | -0.34 | 0.589 | -0.79 | | | | 1928.448 | 1928.448 | -0.226 | 0.19 | 0.589 | 0.64 | | 2021/06/22 | Head | 1924.992 | 1924.992 | -0.226 | -0.34 | 0.589 | -0.79 | SAR Test Report 28 of 73 #### **SAT Test Plots:** #### Plot 1# #### DUT: Digital Audio Baby Monitor; Type: AM24NPU; Serial: SZ1210224-04874E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.389$ S/m; $\varepsilon_r = 39.862$; $\rho = 1000$ kg/m³ Report No.: SZ1210224-04874E-SA Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 3/3/2020 Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 Measurement SW: DASY52, Version 52.10 (2); Body Back/DECT Mid/Area Scan (81x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0239 W/kg Body Back/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.704 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.0500 W/kg SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.013 W/kg Maximum value of SAR (measured) = 0.0271 W/kg 0 dB = 0.0271 W/kg = -15.67 dBW/kg SAR Test Report 29 of 73 ### DUT: Digital Audio Baby Monitor; Type: AM24NPU; Serial: SZ1210224-04874E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.389 \text{ S/m}$; $\varepsilon_r = 39.862$; $\rho = 1000 \text{ kg/m}^3$ Report No.: SZ1210224-04874E-SA Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 3/3/2020 • Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 • Measurement SW: DASY52, Version 52.10 (2); Body Left 3/DECT Mid/Area Scan (81x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0203 W/kg Body Left 3/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.835 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.0450 W/kg SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.010 W/kg Maximum value of SAR (measured) = 0.0204 W/kg 0 dB = 0.0204 W/kg = -16.90 dBW/kg SAR Test Report 30 of 73 #### DUT: Digital Audio Baby Monitor; Type: AM24NPU; Serial: SZ1210224-04874E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.389$ S/m; $\varepsilon_r = 39.862$; $\rho = 1000$ kg/m³ Report No.: SZ1210224-04874E-SA Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 3/3/2020 • Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 • Measurement SW: DASY52, Version 52.10 (2); #### Body Top 2/DECT Mid/Area Scan (81x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0159 W/kg #### Body Top 2/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.721 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.0700 W/kg #### SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0304 W/kg 0 dB = 0.0304 W/kg = -15.17 dBW/kg SAR Test Report 31 of 73 ## **SAR Measurement Variability** In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results Report No.: SZ1210224-04874E-SA - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or
repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is ≥ 1.20 . Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. #### The Highest Measured SAR Configuration in Each Frequency Band ### **Body** | SAR probe | Frequency | E (MII-) | EUT D - ::: | Meas. SA | Largest to
Smallest
SAR Ratio | | |-------------------|-----------------|----------|--------------|----------|-------------------------------------|---| | calibration point | Band Freq.(MHz) | | EUT Position | Original | | | | / | / | / | / | / | / | / | #### Note: - 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20. - 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required. - 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.. SAR Test Report 32 of 73 # APPENDIX A MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test Report No.: SZ1210224-04874E-SA | Source of uncertainty | Tolerance/
uncertainty
± % | Probability distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | | | | |--|----------------------------------|--------------------------|------------|-------------|--------------|---------------------------------------|--|--|--|--|--| | Measurement system | | | | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | Probe positioner mech. Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | | | | | Probe positioning with respect to phantom shell | 6.7 | R | $\sqrt{3}$ | 1 | 1 | 3.9 | 3.9 | | | | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | | | | | Test sample | e related | | | | | | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | | | | | Device holder uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | | | Phantom and set-up | | | | | | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | | | | | Liquid conductivity target) | 5.0 | R | √3 | 0.64 | 0.43 | 1.8 | 1.2 | | | | | | Liquid conductivity meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | | | | Liquid permittivity target) | 5.0 | R | √3 | 0.6 | 0.49 | 1.7 | 1.4 | | | | | | Liquid permittivity meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.0 | | | | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.3 | 23.9 | | | | | SAR Test Report 33 of 73 Report No.: SZ1210224-04874E-SA | • | | | | | | | | | | | | |--|----------------------------------|--------------------------|------------|-------------|-----------------|---------------------------------------|--|--|--|--|--| | Source of uncertainty | Tolerance/
uncertainty
± % | Probability distribution | Divisor | ci
(1 g) | ci
(10
g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | | | | | Measurement system | | | | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | | Modulation Response | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | | RF ambient conditions – noise | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | | | | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | | Probe positioner mech.
Restrictions | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | | | | | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | | | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | | | | | Test sample | related | | | | • | | | | | | Device holder Uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | | | | | Power scaling | 4.5 | R | √3 | 1 | 1 | 2.6 | 2.6 | | | | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | | | Phantom and set-up | | | | | | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | | | | | Algorithm for correcting SAR for deviations in permittivity and conductivity | 1.9 | N | 1 | 1 | 0.84 | 1.1 | 0.9 | | | | | | Liquid conductivity (meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | | | | Liquid permittivity (meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | | | | Temp. unc Conductivity | 1.7 | R | √3 | 0.78 | 0.71 | 0.8 | 0.7 | | | | | | Temp. unc Permittivity | 0.3 | R | √3 | 0.23 | 0.26 | 0.0 | 0.0 | | | | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.1 | | | | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.5 | 24.2 | | | | | SAR Test Report 34 of 73 # APPENDIX B EUT TEST POSITION PHOTOS Report No.: SZ1210224-04874E-SA Liquid depth ≥ 15cm Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 # **Body Back Setup Photo** SAR Test Report 35 of 73 Report No.: SZ1210224-04874E-SA **Body Right Setup Photo** SAR Test Report 36 of 73 ## **Body Top Setup Photo** **Face up Setup Photo** SAR Test Report 37 of 73 #### APPENDIX C PROBE CALIBRATION CERTIFICATES In Collaboration with e **CNAS L0570** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Certificate No: Z20-60085 Report No.: SZ1210224-04874E-SA #### **CALIBRATION CERTIFICAT** BACL Object EX3DV4 - SN: 7522 Calibration Procedure(s) Client FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: April 01, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
--|-----------------------|--|-----------------------| | Power Meter NRP2 | 101919 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101547 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101548 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Reference 10dBAttenuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 | SN 7307 | 24-May-19(SPEAG, No.EX3-7307_May1 | 9/2) May-20 | | DAE4 | SN 1525 | 26-Aug-19(SPEAG, No.DAE4-1525_Aug | 19) Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 18-Jun-19(CTTL, No.J19X05127) | Jun-20 | | The same of sa | and the second second | | | | | Na | me | Function | Signature | |------------------|---------|------------|--|-----------------------| | Network Analyzer | E5071C | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | SignalGenerator | MG3700A | 6201052605 | 18-Jun-19(CTTL, No.J19X05127) | Jun-20 | | Secondary Standa | irus | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: April 03, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60085 Page 1 of 9 # Lin Hao # # # # SAR Test Report 38 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### Glossary: # TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Report No.: SZ1210224-04874E-SA θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60085 Page 2 of 9 SAR Test Report 39 of 73 # # # # # ## # # # # # # # # # # # ## # # ############ # # # # # Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7522 Report No.: SZ1210224-04874E-SA #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.43 | 0.44 | 0.51 | ±10.0% | | DCP(mV) ^B | 99.1 | 99.3 | 102.4 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|----------------| | 0 CW | cw | X | 0.0 | 0.0 | 1.0 | 0.00 | 149.8 | ±2.7% | | | | Υ | 0.0 | 0.0 | 1.0 | | 153.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 174.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z20-60085 Page 3 of 9 SAR Test Report 40 of 73 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # Report No.: SZ1210224-04874E-SA In Collaboration with ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7522 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.92 | 9.92 | 9.92 | 0.40 | 0.75 | ±12.1% | | 900 | 41.5 | 0.97 | 9.40 | 9.40 | 9.40 | 0.13 | 1.95 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.21 | 8.21 | 8.21 | 0.22 | 1.08 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.95 | 7.95 | 7.95 | 0.21 | 1.22 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.53 |
7.53 | 7.53 | 0.44 | 0.81 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.15 | 7.15 | 7.15 | 0.48 | 0.79 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.04 | 7.04 | 7.04 | 0.59 | 0.72 | ±12.1% | | 5200 | 36.0 | 4.66 | 5.20 | 5.20 | 5.20 | 0.45 | 1.75 | ±13.3% | | 5300 | 35.9 | 4.76 | 4.96 | 4.96 | 4.96 | 0.45 | 1.75 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.55 | 4.55 | 4.55 | 0.45 | 1.60 | ±13.3% | | 5800 | 35.3 | 5.27 | 4.65 | 4.65 | 4.65 | 0.45 | 1.65 | ±13.3% | ^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Certificate No:Z20-60085 Page 4 of 9 **SAR Test Report** 41 of 73 F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. GAIpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # # # # # # # # # # # # # # # # # # ## ## # # # # # # # # # # # # # # # # # Report No.: SZ1210224-04874E-SA In Collaboration with S P E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60085 Page 5 of 9 SAR Test Report 42 of 73 # # # # ## # # # # # # # # # # # ### # # ## # # # # # # # # # # # # # Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60085 Page 6 of 9 SAR Test Report 43 of 73 # # ## Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60085 Page 7 of 9 SAR Test Report 44 of 73 # # ## # # ## # # # # # # # # ## # # # # # # # # # # # # # ## # # # # # # # # Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.com ## **Conversion Factor Assessment** #### f=750 MHz,WGLS R9(H_convF) ### f=1750 MHz,WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No:Z20-60085 Page 8 of 9 SAR Test Report 45 of 73 # # # # # # Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7522 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 31.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60085 Page 9 of 9 SAR Test Report 46 of 73 #### APPENDIX D DIPOLE CALIBRATION CERTIFICATES # Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn Certificate No: Z21-60025 Report No.: SZ1210224-04874E-SA #### **CALIBRATION CERTIFICATE** BACL Client Object EX3DV4 - SN: 7441 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: February 23, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. #### Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101547 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101548 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Reference 10dBAttenuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 | SN 7307 | 29-May-20(SPEAG, No.EX3-7307_May20 |) May-21 | | DAE4 | SN 1555 | 25-Aug-20(SPEAG, No.DAE4-1555_Aug2 | 0) Aug-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | cheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | Network Analyzer E5071C | MY46110673 | 21-Jan-21(CTTL, No.J20X00515) | Jan-22 | | N | lame | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | A Some | | Reviewed by: | Lin Hao | SAR Test Engineer | 林的 | | Approved by: | Qi Dianyuan | SAR Project Leader | 20/ | Issued: February 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 22 Certificate No: Z21-60025 SAR Test Report 47 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chma Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hap://www.chinattl.cn #### Glossary: tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvE DCP diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters CF A.B.C.D Polarization Φ Φ rotation around probe axis Polarization 9 8 rotation around an axs that is in the plane normal to probe axis (at measurement center), Report No.: SZ1210224-04874E-SA θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z; DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a
field of low gradients realized using a flat phantom exposed by a patch antenna - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60025 Page 2 of 22 **SAR Test Report** 48 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7441 Report No.: SZ1210224-04874E-SA #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.39 | 0.45 | 0.38 | ±10.0% | | DCP(mV) ⁸ | 93.1 | 100.5 | 104.6 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | dB./hΛ | С | D
dB | VR
mV | Max
Dev. | Max
Unc ⁶
(k=2) | |-----------|---|-----|---------|--------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 139.3 | ±2.4% | ±4.7% | | | | Y | 0.0 | 0.0 | 1.0 | 100 | 153.1 | - | - | | | | Z | 0.0 | 0.0 | 1.0 | | 141.0 | | | | 10352-AAA | Pulse Waveform (200Hz, 10%) | X | 4.04 | 73.52 | 15.23 | | 60 | ±2.5% | ±9.6% | | | | Y | 15.00 | 89.17 | 21.61 | 10.00 | 60 | | 1.00 | | | | Z | 2.42 | 64.53 | 9.92 | | 60 | | | | 10353-AAA | Pulse Waveform (200Hz, 20%) | X | 2.98 | 73.02 | 13.42 | | 80 | ±3.6% | ±9.69 | | | | . Y | 15.00 | 89.50 | 20.53 | 6.99 | 80 | 12.50 | 500.00 | | | | Z | 1.65 | 63.70 | 8.48 | | 80 | | | | 10354-AAA | Pulse Waveform (200Hz, 40%) | X | 0.41 | 60.19 | 5.48 | | 95 | ±4.4% | ±9.6% | | | | Y | 15.00 | 91.13 | 19.76 | 3.98 | 95 | | | | | | Z | 0.82 | 61.75 | 6.50 | | 95 | | | | 10355-AAA | Pulse Waveform (200Hz, 60%) | X | 0.30 | 60.00 | 2.65 | 2.22 | 120 | ±4.2% | ±9.6% | | | | Y | 15.00 | 91.47 | 18.41 | | 120 | | | | | | Z | 0.37 | 60.00 | 4.77 | | 120 | | | | 10387-AAA | QPSK Waveform, 1 MHz | X | 1.44 | 64.79 | 13.45 | | 150 | ±5.8% | ±9.6% | | | | Y | 1.91 | 66.78 | 15.83 | 1.00 | 150 | | | | | | Z | 1.64 | 66.60 | 14.97 | | 150 | | | | 10388-AAA | QPSK Waveform, 10 MHz | X | 2.07 | 67.05 | 14.84 | | 150 | ±2.1% | ±9.6% | | | | Y | 2.63 | 70.15 | 16.62 | 0.00 | 150 | | | | | Carried State of the Control | Z | 2.25 | 68.71 | 15.88 | | 150 | | | | 10396-AAA | 64-QAM Waveform, 100 kHz | X | 3.84 | 74.23 | 20.85 | | 150 | ±1.7% | ±9.6% | | | | Y | 3.92 | 75.03 | 21.44 | 3.01 | 150 | | | | | | Z | 3.30 | 74.68 | 21.41 | | 150 | | | | 10414-AAA | WLAN CCDF, 64-QAM, 40MHz | X | 4.94 | 65.78 | 15.89 | | 150 | ±3.2% | ±9.6% | | | | Y | 5.15 | 66.05 | 15.81 | 0.00 | 150 | | | | | | Z | 4.80 | 65.71 | 15.51 | | 150 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z21-60025 Page 3 of 22 SAR Test Report 49 of 73 ^h The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Numerical linearization parameter: uncertainty not required. Eurocralarily is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7441 Report No.: SZ1210224-04874E-SA #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V-2 | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | Т6 | |---|----------|----------|----------|--------------|--------------------------|----------|-----------|-----------|------| | X | 46.12 | 390.20 | 44.09 | 1.81 | 0.10 | 5.10 | 0.50 | 0.70 | 1.02 | | Y | 68.53 | 519.82 | 36.61 | 21.71 | 0.08 | 5.10 | 0.33 | 0.53 | 1.02 | | Z | 44.97 | 331,90 | 34.82 | 11.23 | 0.05 | 4.98 | 1.08 | 0.17 | 1.02 | #### Other Probe Parameters | Sensor Arrangement | | Triangular | |-----------------------------------|-------------------|------------| | Connector Angle (°) | | 102.1 | | Mechanical Surface Detection Mod | ie | enabled | | Optical Surface Detection Mode | | disable | | Probe Overall Length | | 337mm | | Probe Body Diameter | | 10mm | | Tip Length | | 9mm | | Tip Diameter | | 2.5mm | | Probe Tip to Sensor X Calibration | Point | 1mm | | Probe Tip to Sensor Y Calibration | Point | 1mm | | Probe Tip to Sensor Z Calibration | Point | 1mm | | Recommended Measurement Dista | ance from Surface | 1.4mm | Certificate No:Z21-60025 Page 4 of 22 SAR Test Report 50 of 73 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441 Report No.: SZ1210224-04874E-SA #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | GonvF X | GonvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.28 | 10.28 | 10.28 | 0.40 | 0.80 | ±12.1% | | 900 | 41.5 | 0.97 | 9.80 | 9.80 | 9.80 | 0.16 | 1.32 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.61 | 8.61 | 8.61 | 0.18 | 1.04 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.39 | 8.39 | 8.39 | 0.22 | 1.15 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.02 | 8.02 | 8.02 | 0.23 | 1.14 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.07 | 8.07 | 8.07 | 0.19 | 1.21 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.92 | 7.92 | 7.92 | 0.65 | 0.65 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.63 | 7.63 | 7.63 | 0.44 | 0.84 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.33 | 7.33 | 7.33 | 0.52 | 0.75 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.21 | 7.21 | 7.21 | 0.49 | 0.91 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.96 | 6.96 | 6.96 | 0.46 | 0.95 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.65 | 6.65 | 6.65 | 0.47 | 1.02 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.66 | 6.66 | 6.66 | 0.40 | 1.25 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.45 | 6.45 | 6.45 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.30 | 6.30 | 6.30 | 0.45 | 1.25 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.24 | 6.24 | 6.24 | 0.40 | 1.40 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.95 | 5.95 | 5.95 | 0.45 | 1.30 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z21-60025 Page 5 of 22 SAR Test Report 51 of 73 FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Report No.:
SZ1210224-04874E-SA Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60025 Page 6 of 22 SAR Test Report 52 of 73 ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Report No.: SZ1210224-04874E-SA Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60025 Page 7 of 22 SAR Test Report 53 of 73 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z21-60025 Page 8 of 22 SAR Test Report 54 of 73 #### **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF) Report No.: SZ1210224-04874E-SA ## Deviation from Isotropy in Liquid Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60025 Page 9 of 22 SAR Test Report 55 of 73 Report No.: SZ1210224-04874E-SA #### Appendix: Modulation Calibration Parameters | UID | Rev | Communication System Name | Group | PAR
(dB) | UncE
(k=2) | |-------|-----|---|-----------|-------------|---------------| | 0 | | CW | CW | 0.00 | ±4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ±9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ±9.6% | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ±9.69 | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FOD (TDMA, GMSK, TN 0) | GSM | 9.57 | ±9.69 | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FOD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ±9.69 | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 9 | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FOD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 9 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 9 | | 0030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 9 | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ±9.69 | | 0032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 9 | | 10033 | CAA | IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 9 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 0035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 9 | | 0036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 % | | 0037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 9 | | 0038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 % | | 0039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 % | | 0042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 9 | | 0044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 9 | | 0048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 9 | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 9 | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | I 9.6 7 | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 9 | | 0000 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 9 | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 0062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 9 | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 9 | | 10064 | CAD | JEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.69 | | 0065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 9 | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 9 | | 0067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 9 | | 0068 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 9 | | 0069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 9 | | 0071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 0074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 9 | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 9 | | 0076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 0077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 9 | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 9 | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | 2 9.6 9 | | 0097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 % | | 0098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | | 0099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | | 0100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 9 | Certificate No:Z21-60025 Page 10 of 22 SAR Test Report 56 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax; +86-10-62304633-2504 E-mail: cttl@chinattl.cont Http://www.chinattl.cn | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6% | |----------------|-----|--|---------|-------|---------| | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ± 9.8 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ±9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 8.44 | ±9.6% | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6% | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6% | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz. 18-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6% | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ±9.6% | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6% | | 10156 | CAF | LTE-FDD (SC FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.8% | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6,58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ±9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | | | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz. QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz. 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz. 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177
10178 | CAE |
LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz. 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 8.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAL | ITE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Report No.: SZ1210224-04874E-SA Certificate No:Z21-60025 Page 11 of 22 SAR Test Report 57 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Http://www.chinattl.cn | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | |-------|-----|--|--|-------|--------------------| | 10188 | CAC | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FOD | 0.52 | ± 9.0 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | EEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6 % | | 10195 | CAE | EEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | EEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | EEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 % | | 10198 | CAF | EEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ±9.6 % | | 10220 | AAF | EEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10221 | CAC | EEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | (EEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | EEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | EEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz. 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ± 9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, OPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | GAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz. 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QFSR) | LTE-TOD | 9.91 | | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 10.09 | ± 9.6 %
± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 4F5K) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10253 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 04-QAM) | | 9,20 | ±9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 50% RB, 13 MHz, QPSA) | LTE-TDD | | | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz. 16-QAM) | A CONTRACTOR OF THE PARTY TH | 9.96 | ± 9.6 % | | 10257 | CAD | | LTE-TDD | 10.08 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 % | | | | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | 19.6% | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 % | Certificate No:Z21-60025 Page 12 of 22 SAR Test Report 58 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: crtl@chinattl.com Http://www.chinattl.cn | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ± 9.6 % | |-------|-----|--|-----------|----------|----------| | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ±9.6% | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8,10) | WCDMA | 4.87 | ± 9.8 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ±9.6% | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ±9.6% | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3,91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ±9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6% | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ±9.6% | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802.16e
WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ± 9.6 % | | 10307 | AAB | JEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WiMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WIMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WIMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WiMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | AAD | IDEN 1:6 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 98pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5,10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ± 9.6 % | | 10402 | AAA | IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | | 10406 | AAD | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD | 7.82 | ± 9.6 % | | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.8 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43,3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 % | | 10424 | | the second second second second second second | 7.767 0.7 | 201.7.45 | - 0.0 10 | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | Certificate No:Z21-60025 Page 13 of 22 SAR Test Report 59 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China-Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ±9.6% | |-------|-----|---|----------|-------|---------| | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ±9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 % | | 10434 | AAG | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ±9.6% | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6% | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ±9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ±9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ±9.6 % | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9.6 % | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | B.25 | ± 9.6 % | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.5 % | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10469 | AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10473 | AAA | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10477 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | 19.6 % | | 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.18 | ± 9.6 % | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ± 9.6 % | | 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.59 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ±9.6 % | | 10487 | AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.60 | ± 9.6 % | | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.70 | ± 9.6 % | | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ±9.6 % | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | Certificate No:Z21-60025 Page 14 of 22 SAR Test Report 60 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn | 10503 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | |-------|-----|---|---------|------|---------| | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF |
LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, U., Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ±9.6 % | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, U. Sub) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ±9.6% | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, U. Sub) | LTE TDD | 8.42 | ± 9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz; 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps. 99pc db) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAF | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAE | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 10538 | AAF | IEEE 802.11ac WIFI (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAA | IEEE 802,11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10542 | AAA | IEEE 802.11ac WIFI (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ±9.6% | | 10547 | AAC | IEEE 802.11ac WIFI (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ±9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFI (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8,47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ±9.6% | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8,61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ±9.6 % | | 10581 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ±9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | Certificate No:Z21-60025 Page 15 of 22 SAR Test Report 61 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | |-------|-----|---|------|------|---------| | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ±9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ±9.6% | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ±9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ±9.6% | | 10579 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ±9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ±9.6% | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10584 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10585 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ±9.6 % | | 10590 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10592 | AAA | IEEE 802,11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ±9.6% | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10596 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 10599 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ±9.6% | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10602 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10603 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | | 10604 | AAA | JEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ±9.6 % | | 10605 | AAA | IEEE 802,11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ±9.6 % | | 10609 | AAC | JEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WIFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ±9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ±9.6 % | | 10619 | AAC | IEEE 802,11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8,87 | ± 9.6 % | |
10621 | AAC | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8,82 | ± 9.6 % | | 10624 | AAC | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | Certificate No:Z21-60025 Page 16 of 22 SAR Test Report 62 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | |-------|-----|---|-----------|-------|---------| | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ±9.6 % | | 10627 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFI (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10631 | AAC | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ±9.6 % | | 10632 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10633 | AAC | IEEE 802.11ac WIFI (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.85 | ±9.6 % | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WIFi (160MHz, MCS8, 90pc dc) | WLAN | 9.06 | ±9.6 % | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10644 | AAC | EEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ±9.6 % | | 10645 | AAC | EEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10646 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2.7) | LTE-TDD | 11.96 | ± 9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TOD | 11.96 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ± 9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Glipping 44%) | LTE-TOD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ±9.6 % | | 10680 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ± 9.6 % | | 10661 | AAG | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ± 9.6 % | | 10662 | AAC | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ± 9.6 % | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2.19 | ± 9.6 % | | 10671 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8,90 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MGS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11 ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.26 | ± 0.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | Certificate No:Z21-60025 Page 17 of 22 SAR Test Report 63 of 73 Report No.: SZ1210224-04874E-SA In Collaboration with S P C S G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | |-------|-----|--|------|------|---------| | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ±9.6% | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ±9.6% | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ±9.6% | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.58 | ± 9.8 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ±9.6% | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ±9.6% | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ±9.6% | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±96% | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ±96% | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAC | EEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ±9.6 % | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ±9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | EEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | EEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | EEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | EEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10728 | AAC | EEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | | 10729 | AAC | EEE 802 11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | EEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | EEE 802 11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | EEE 802 11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | EEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | EEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | EEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | EEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | EEE 802 11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | EEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | |
10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 % | Certificate No:Z21-60025 Page 18 of 22 SAR Test Report 64 of 73 Add: No.51 Xueyuan Road, Haidian District, Betjing, 100191, China Tel: *86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.com | 10755 | AAC | EEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | |-------|------|--|--------------------------------|------|--------------------| | 10750 | AAC | EEE 802.11ax (180MHz, MC31, 99pc dc) | WLAN | 8.77 | ± 9.0 % | | 10757 | AAC | EEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAC | EEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10759 | AAC | EEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAC | EEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ±9.6 % | | 10761 | AAC | EEE 802.11ax (160MHz, MCS6, 99pc dg) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | EEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAC | EEE 802 11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10764 | AAC | EEE 802 11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10765 | AAC | EEE 802 11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | EEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ±9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10778 | AAC | 5G NR (CP-0FDM, 50% RB, 20 MHz, QPSK, 15 KHz) | | 8.34 | | | 10779 | AAC | SC ND (CD OFDM FOR DD OF MH- ODOK 15 MHz) | 5G NR FR1 TDD | | ± 9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 % | | | | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB; 5 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB; 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10785 | AAG | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10787 | AAC | | | 8.35 | | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB; 25 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB; 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | | | | 10790 | AAC | | | 8.37 | ±9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 %
± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 % | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 1080B | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, CPSK, 30 KHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10022 | WWIT | T and late of the Tong to South Strate and KHS) | DG NK FK I TDD | 0.41 | 2 9.0 % | Certificate No:Z21-60025 Page 19 of 22 SAR Test Report 65 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.co | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | |--|-----|--|---------------|------|---------| | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | | | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | | | - | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ±9.6 % | | | | 5G NR
(CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7,75 | ±9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 % | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ±9.6% | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ±9.6% | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6% | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | AAD | 5G NR (CP-0FDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | | | | | 10863 | AAD | | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | | | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8,41 | ±9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ±9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ±9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ±9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, B4QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ±9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.8 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7,95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | | | 10883 | AAD | | | | ±9.6 % | | | | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 18QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | and the state of t | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | +96% | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ±9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ±9.6% | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.8 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ±9,6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.8 % | Report No.: SZ1210224-04874E-SA Certificate No:Z21-60025 Page 20 of 22 SAR Test Report 66 of 73 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | |-------|------|--|---------------|------|---------| | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.8 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ±9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ±9.6 % | | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAB | 5G NR (DFT-8-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC. | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR
FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | 19.6% | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ±9.6% | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | Certificate No:Z21-60025 Page 21 of 22 SAR Test Report 67 of 73 Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 F-mailt: cttl@chinattl.com Http://www.chinnttl.cn | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8,61 | ± 9.6 % | |-------|-----|---|---------------|-------|---------| | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6% | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ±9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6% | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ±9.6% | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ±9.6% | Report No.: SZ1210224-04874E-SA Certificate No:Z21-60025 Page 22 of 22 # SAR Test Report 68 of 73 E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the aquate of the field value. # SAR Test Report Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL USA Certificate No: D1900V2-5d231_Jan20 #### CALIBRATION CERTIFICATE Object D1900V2 - SN:5d231 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 14, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN; 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | UA | | Approved by: | Katja Pokovic | Technical Manager | ALLE. | Issued: January 15, 2020 69 of 73 This calibration certificate shall not be reproduced except in full without written approval of the laboratory, Certificate No: D1900V2-5d231_Jan20 Page 1 of 6 # with the Control # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Report No.: SZ1210224-04874E-SA Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.4 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d231_Jan20 Page 3 of 6 # SAR Test Report 70 of 73 ## # # ## # # # # # ## ## # # # ## #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5 Ω + 4.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.9 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.200 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1900V2-5d231_Jan20 Page 4 of 6 SAR Test Report 71 of 73 Report No.: SZ1210224-04874E-SA # # ## # # # # # # # # # # # # ## # # # # #### **DASY5 Validation Report for Head TSL** Date: 14.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d231 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 41.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.6, 8.6, 8.6) @ 1900 MHz; Calibrated: 31.12.2019 -
Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - · Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.7 W/kg #### SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 53.9% Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: D1900V2-5d231_Jan20 Page 5 of 6 SAR Test Report 72 of 73 ############# ## #### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d231_Jan20 Page 6 of 6 ***** END OF REPORT ***** SAR Test Report 73 of 73