

RADIO TEST REPORT – 403700-1R1TRFWL

Type of assessment: Final product testing

Applicant:

Ring LLC

Model:

5AT3S2

FCC ID:

2AEUP5AT3S2

Specifications:

- FCC 47 CFR Part 15 Subpart C, §15.247
- RSS-247, Issue 2, Feb 2017, Section 5

Date of issue: January 29, 2021

Mark Libbrecht, EMC/RF Specialist

Tested by

Alvin Liu, EMC/RF Specialist

Tested by

Andrey Adelberg, Senior EMC/RF Specialist Reviewed by Product name (type): Contact Sensor

IC Registration number: 20271-5AT3S2

Signature

Signature Andrey Adelberg

Signature

Lab locations

Company name	Nemko Canada In	с.		
Facilities	Cambridge site:			
	1-130 Saltsman Drive			
	Cambridge, Ontar	io		
	Canada			
	N3E 0B2			
	Tel: +1 519 650 4811			
Test site registration	Organization	Recognition numbers and location		
	FCC/ISED	CA0101 (Cambridge)		
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table of C	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Technical information	9
5.5	EUT setup details	9
Section 6	Summary of test results	. 12
6.1	Testing location	. 12
6.2	Testing period	. 12
6.3	Sample information	. 12
6.4	FCC Part 15 Subpart C, general requirements test results	. 12
6.5	FCC Part 15 Subpart C, intentional radiators test results for frequency hopping spread spectrum systems	. 12
6.6	FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)	. 13
6.7	ISED RSS-Gen, Issue 5, test results	. 13
6.8	ISED RSS-247, Issue 2, test results for frequency hopping spread spectrum systems (FHSS)	. 13
6.9	ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)	. 14
Section 7	Test equipment	. 15
7.1	Test equipment list	. 15
Section 8	Testing data	. 16
8.1	FCC 15.31(e) Variation of power source	. 16
8.2	FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies	. 17
8.3	FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement	. 19
8.4	FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements, 900 MHz operation	. 20
8.5	FCC 15.247(b) and RSS-247 5.4(a) Transmitter output power and e.i.r.p. requirements for FHSS 900 MHz	. 38
8.6	FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems	. 42
8.7	FCC 15.247(b) and RSS-247 5.4(d) Transmitter output power and e.i.r.p. requirements for DTS in 900 MHz	. 44
8.8	FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions	. 46
8.9	FCC 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices	. 64

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–585 MHz
RSS-247, Issue 2, Feb 2017, Section 5	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area
	Network (LE-LAN) Devices

1.2 Test methods

558074 D01 15.247 Meas Guidance v05r02 (April 2, 2019)	Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
DA 00-705, Released March 30, 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-102, Issue 5, March 19, 2015	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	January 28, 2021	Original report issued
1RTRF	January 29, 2021	Update battery information section 2.2 and 5.4

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

Power setting = 13.0 dBm used for all measurements

The EUT will be powered by 2 × CR 2032, 3.0 V_{DC} Batteries in normal operation. For testing purposes only 1 × 3.0 V_{DC} battery was required to power the EUT in combination with the external Laptop.

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

Nèmko

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

	Table 4.1-1: Measurement uncertainty calculations	for Radio
--	---	-----------

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 5 Information provided by the applicant

5.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Ring LLC
Applicant address	1523 26th St, Santa Monica, CA 90404, USA
Manufacture name	Leedarson Lighting Co.,Ltd.
Manufacture address	Xingtai industrial zone,Changtai, Zhangzhou Fujian.

5.3 EUT information

Product name	Contact Sensor
Model	5AT3S2
Model variant(s)	None
Serial number	G7Q1D202018505QN (Radiated), G7Q1D2020113000M (Conducted)
Part number	None
Operating conditions	Firmware revision V1.15
Product description and theory	When activated, the contact sensor will send a message to the Base Station that the door has been opened. It can also
of operation	be placed on a window frame and window to achieve the same function.

5.4 Technical information

emko

Applicant IC company number	20271
IC UPN number	5AT3S2
All used IC test site(s) Reg. number	24676
RSS number and Issue number	RSS-247 Issue 2, Feb 2017
Category of Wideband Data	Frequency Hopping Spread Spectrum (FHSS) equipment
Transmission equipment	Other types of Wideband Data Transmission equipment (e.g. DSSS, OFDM, etc.).
Frequency band	902–928 MHz
Frequency Min (MHz)	902.2 (50 kbps, FHSS), 902.4 (150 kbps, FHSS), 902.5 (250 kbps, FHSS), 912 (DTS)
Frequency Max (MHz)	927.8 (50 kbps, FHSS), 927.6 (150 kbps, FHSS), 927.5 (250 kbps, FHSS), 920 (DTS)
RF power Max (W), Conducted	50 kbps, FHSS: 0.0135 (11.3 dBm) @ 927.8 MHz
	150 kbps, FHSS: 0.0138 (11.4 dBm) @ 927.6 MHz
	250 kbps, FHSS: 0.0135 (11.3 dBm) @ 927.5 MHz
	DTS: 0.0126 (11.0 dBm) @ 920 MHz
Field strength, dBµV/m @ 3 m	N/A
Measured BW (kHz), 99% OBW	50 kbps, FHSS: 88.0 @ 915.2 MHz
	150 kbps, FHSS: 317.2 @ 927.6 MHz
	250 kbps, FHSS: 386.7 @ 927.5 MHz
	DTS: 933.5 @ 912 MHz
Type of modulation	Equipment class DSS: (FSK FHSS)
	Equipment class DXX: DSSS-OQPSK
Emission classification	F1D, W7D
Transmitter spurious, dBµV/m @ 3 m	50 kbps, FHSS: 51.3 dBμV/m (Average) @ 1.8044 GHz
	150 kbps, FHSS: 44.4 dBμV/m (Average) @ 1.8552 GHz
	250 kbps, FHSS: 42.5 dBμV/m (Average) @ 1.855 GHz
	DTS: 64.1 dBµV/m (Average) @ 1.84 GHz
Power supply requirements	Battery: 2 × 3.0 V _{DC}
Antenna information	IFA Antenna
	Peak gain = −1 dBi

5.5 EUT setup details

5.5.1 EUT Exercise and monitoring

Methods used to exercise the EUT and all relevant ports:

- EUT set to transmit at 100% duty cycle throughout testing

Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:

– None

The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 None

Monitoring details:

- Program and monitor EUT via external laptop using Terra Terminal V4.102

5.6 EUT setup details, continued

5.5.2 EUT test configuration

Table 5.5-1: EUT sub assemblies			
Description	Brand name	Model, Part number, Serial number, Revision level	
3.0 VDC Battery	Duracell	MN: DL/CR 2032, SN: None	
	Table 5.5-2:	EUT interface ports	
Description			Qty.
Flying leads			4
	Table 5.5-3:	Support equipment	
Description	Brand name	Model, Part number, Serial number, Revision level	
Laptop	Dell Latitude	MN: E6420, SN: FA002705	
	Table 5.5-4 : In	ter-connection cables	

Cable description	From	То	Length (m)
USB – flying leads	EUT	Laptop	>1

5.6 EUT setup details, continued

5.5.2 EUT test configuration, continued

Figure 5.5-1: Radiated testing block diagram

Section 6 Summary of test results

6.1 Testing location

Test location (s)	Cambridge		
6.2 Testing period			
Test start date	October 7, 2020	Test end date	January 5, 2021
6.3 Sample informatio	n		
Receipt date	October 6, 2020	Nemko sample ID number(s)	1,2

6.4 FCC Part 15 Subpart C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: EUT is an AC powered device.

6.5 FCC Part 15 Subpart C, intentional radiators test results for frequency hopping spread spectrum systems

Table 6.5-1: FCC 15.247 results for FHSS

Part	Test description	Verdict
§15.247(a)(1)(i)	Requirements for operation in the 902–928 MHz band	Pass
§15.247(a)(1)(ii)	Requirements for operation in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Requirements for operation in the 2400–2483.5 MHz band	Not applicable
§15.247(b)(1)	Maximum peak output power in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power in the 902–928 MHz band	Pass
§15.247I(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247I(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable
§15.247(i)	Radiofrequency radiation exposure evaluation	Pass

6.6 FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)

Table 6.6-1: FCC 15.247 results for DTS

Part	Test description	Verdict
§15.247(a)(2)	Minimum 6 dB bandwidth	Pass
§15.247(b)(3)	Maximum peak output power in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247I(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247I(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247I	Power spectral density	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable
§15.247(i)	Radiofrequency radiation exposure evaluation	Not applicable

6.7 ISED RSS-Gen, Issue 5, test results

Table 6.7-1: RSS-Gen results

Part	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Pass
RSS-102, 252	Exemption Limits for Routine Evaluation — RF Exposure Evaluation	Pass

Notes: ¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

EUT is an AC powered device.

Nèmko

6.8 ISED RSS-247, Issue 2, test results for frequency hopping spread spectrum systems (FHSS)

Table 6.8-1: RSS-247 results for FHSS

Part	Test description	Verdict
5.1 (a)	Bandwidth of a frequency hopping channel	Pass
5.1 (b)	Minimum channel spacing	Pass
5.1 (c)	Systems operating in the 902–928 MHz band	Pass
5.1 (d)	Systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (e)	Systems operating in the 5725–5850 MHz band	Not applicable
5.3	Hybrid Systems	
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	
5.4 (a)	Systems operating in the 902–928 MHz band	Pass
5.4 (b)	Systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (c)	Systems operating in the 5725–5850 MHz	Not applicable
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Unwanted emissions	Pass

6.9 ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)

Table 6.9-1: RSS-247 results for DTS

Part	Test description	Verdict
5.2 (a)	Minimum 6 dB bandwidth	Pass
5.2 (b)	Maximum power spectral density	Pass
5.3	Hybrid Systems	
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	
5.4 (d)	Systems employing digital modulation techniques	Pass
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Unwanted emissions	Pass

Section 7 Test equipment

7.1 Test equipment list

Nemko

Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	Apr. 10/21
Flush mount turntable	SUNAR	FM2022	FA003006	_	NCR
Controller	SUNAR	SC110V	FA002976	-	NCR
Antenna mast	SUNAR	TLT2	FA003007	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	Nov. 12/21
Spectrum analyzer	Rohde & Schwarz	FSW43	FA002971	1 year	Nov. 13/21
Horn antenna (1–18 GHz)	ETS Lindgren	3117	FA002911	1 year	Mar. 11/21
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002956	1 year	Mar. 26/21
Bilog antenna (30–2000 MHz)	SUNAR	JB1	FA003010	1 year	Mar. 17/21
50 Ω coax cable	Huber + Suhner	None	FA003047	1 year	Mar. 30/21
50 Ω coax cable	Huber + Suhner	None	FA003044	1 year	Apr. 7/21
Notch filter 902-928 MHz	Microwave circuits	N03916M1	FA003032	1 year	Apr. 9/21

Note: NCR - no calibration required

Section 8 Testing data

8.1 FCC 15.31(e) Variation of power source

8.1.1 References, definitions and limits

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	October 16, 2020

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices, where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

8.1.4 Test data

EUT Power requirements:	\Box AC	\Box DC	⊠ Battery
If EUT is an AC or a DC powered, was the noticeable output power variation observed?	□ YES	□ NO	🖾 N/A
If EUT is battery operated, was the testing performed using fresh batteries?	🛛 YES	□ NO	🗆 N/A
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	\Box YES	\Box NO	⊠ N/A

8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

8.2.1 References, definitions and limits

FCC:

Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

ISED:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Note: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	October 16, 2020

8.2.3 Observations, settings and special notes

Per ANSI C63.10 Subclause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

Per ANSI C63.10 Subclause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Testing data FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2.4 Test data

Table 8.2-2: Test channels selection, DTS						
Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Bit rate, kbps	Low channel, MHz	High channel, MHz	
902	928	26	100	912	920	
Note: Long range DTS is limited	to 2 channels of operation					
		Table 8.2-3: Test char	nnels selection, FHSS			

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Bit Rate, kbps	Low channel, MHz	Mid channel, MHz	High channel, MHz
902	928	26	50	902.2	915.2	927.8
902	928	26	150	902.4	914.8	927.6
902	928	26	250	902.5	915.0	927.5

8.3 FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement

8.3.1 References, definitions and limits

FCC:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

FCC 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict		Pass					
Tested by		Mark Libbrecht		Test dat	e	October 16, 2020	
				_			
8.3.3	Observations, setting	s and special notes					
None							
Hone							
8.3.4	Test data						
Must the EL	JT be professionally install	ed?	□ YES	⊠ NO			
Does the EUT have detachable antenna(s)?		□ YES	🛛 NO				
I	f detachable, is the antenr	a connector(s) non-standard?	□ YES		⊠ N/A		
Table 8.3-1. Antenna information							

Antenna type	Manufacturer	Model number	Maximum gain	Connector type
IFA Antenna	Jucheng	N/A	-1 dBi	N/A

8.4 FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements, 900 MHz operation

8.4.1 References, definitions and limits

FCC:

- (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy shall not be greater than 0.4 second second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
- (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Table 8.4-1: Summary of the basic requirements

P _{max-pk} ≤ 1 W	P _{max-pk} ≤ 0.25 W
N _{ch} ≥ 50	$25 \le N_{ch} < 50$
$\Delta f \ge MAX \{ 25 \text{ kHz}, BW_{20 \text{ dB}} \}$	$\Delta f \ge MAX \{ 25 \text{ kHz}, BW_{20 \text{ dB}} \}$
BW _{20 dB} ≤ 250 kHz	250 kHz < BW _{20 dB} ≤ 500 kHz
$t_{ch} \leq 0.4 \text{ s}$ for T = 20 s	$t_{ch} \leq 0.4 \; s$ for T = 10 s

Note: t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth; Δf = hopping channel carrier frequency separation

ISED:

- a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- c) For FHSs in the band 902–928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

5.3 Hybrid systems

Hybrid systems employ a combination of both frequency hopping and digital transmission techniques and shall comply with the following:

a. With the digital transmission operation of the hybrid system turned off, the frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

8.4.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	October 9, 2020

8.4.3 Observations, settings and special notes

Carrier frequency separation was tested per ANSI C63.10 subclause 7.8.2. Spectrum analyser settings:

Resolution bandwidth	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
Video bandwidth	≥RBW
Frequency span	Wide enough to capture the peaks of two adjacent channels
Detector mode	Peak
Trace mode	Max Hold

Number of hopping frequencies was tested per ANSI C63.10 subclause 7.8.3. Spectrum analyser settings:

Resolution bandwidth	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
Video bandwidth	≥RBW
Frequency span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Detector mode	Peak
Trace mode	Max Hold

Time of occupancy (dwell time) was tested per ANSI C63.10 subclause 7.8.4. Spectrum analyser settings:

Resolution bandwidth	shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
Video bandwidth	≥ RBW
Frequency span	Zero span, centered on a hopping channel.
Detector mode	Peak
Trace mode	Max Hold

20 dB bandwidth was tested per ANSI C63.10 subclause 6.9.2. Spectrum analyser settings:

Resolution bandwidth	\geq 1–5% of the 20 dB bandwidth
Video bandwidth	≥RBW
Frequency span	approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

8.4.4 Test data, 50 kbps

Table 8.4-2: 20 dB bandwidth results, 50 kbps				
Frequency, MHz	20 dB bandwidth, kHz	Max 20 dB bandwidth limit, kHz	Margin, kHz	
902.2	102.5	500	397.5	
915.2	101.9	500	398.1	
927.8	102.6	500	397.4	

14:26:49 08.01.2021

Figure 8.4-1: 20 dB bandwidth on low channel, 50 kbps

Figure 8.4-2: 20 dB bandwidth on mid channel, 50 kbps

14:31:49 08.01.2021

Figure 8.4-3: 20 dB bandwidth on high channel, 50 kbps

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 50 kbps

Table 8.4-3: 99%	occupied b	andwidth r	esults. 5	50 kb	<i>ps</i>
					~~

Frequency, MHz	99% occupied bandwidth, kHz
902.2	86.3
915.2	88.0
927.8	86.0

Note: there is no 99% occupied bandwidth limit in the standard's requirements, the measurement results provided for information purposes only.

14:28:13 08.01.2021

Figure 8.4-4: 99% OBW on low channel, 50 kbps

Figure 8.4-5: 99% OBW on mid channel, 50 kbps

14:31:09 08.01.2021

Figure 8.4-6: 99% OBW bandwidth on high channel, 50 kbps

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 50 kbps

13:11:50 11.01.2021

Figure 8.4-7: Carrier frequency separation

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 50 kbps

Table 8.4-5: Average time of occupancy results, 50 kbps

13:17:40 11.01.2021

Figure 8.4-8: Dwell time

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 50 kbps

Number of hopping frequencies	Minimum limit	Margin
128	50	78

Note: 20 dB bandwidth < 250 kHz, Minimum limit = 50 hopping frequencies

13:07:33 11.01.2021

Figure 8.4-9: Number of hopping frequencies = 128

Specification

Section 8Testing dataTest nameFCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 50 kbps

2 Marke	er Peak List				
No	X-Value	Y-Value	No	X-Value	Y-Value
1	902.173000 MHz	10.705 dBm	66	915.210000 MHz	11.010 dBm
Z	902.413000 MHz	10.722 dBm	67	915.360000 MHz	11.028 dBm
3	902.562000 MHz	10.717 dBm	68	915.629000 MHz	11.011 dBm
4	902.832000 MHz	10.724 dBm	69	915.779000 MHz	11.036 dBm
5	902.982000 MHz	10.726 dBm	70	916.019000 MHz	11.008 dBm
6	903.222000 MHz	10.719 dBm	71	916.169000 MHz	11.046 dBm
7	903.372000 MHz	10.736 dBm	72	916.379000 MHz	11.013 dBm
8	903 611000 MHz	10.718 dBm	73	916 618000 MHz	11.049 dBm
ā	903 761000 MHz	10.744 dBm	74	916 768000 MHz	11.079 dBm
10	904.031000 MHz	10.720 dBm	75	917 008000 MHz	11.053 dBm
11	904 211000 MHz	10.759 dBm	76	917 158000 MHz	10.988 dBm
12	904 361000 MHz	10.720 dBm	77	017 428000 MHz	11.004 dBm
13	904 630000 MHz	10.766 dBm	78	917 577000 MHz	10 991 dBm
14		10.750 dBm	70	917 817000 MHz	11.010 dBm
15	905 020000 MHz	10.785 dBm	80	917 967000 MHz	10.999 dBm
16	905 1 20000 MHz	10.768 dBm	81	918 207000 MHz	11.012 dBm
17	905 410000 MHz	10.700 dBm	87	918 357000 MHz	11.012 dBm
18	905, \$10000 MHz	10.795 dBm	82	918 626000 MHz	11.013 dBm
10	005 820000 MHz	10.905 dBm	94	019 776000 MHT	11.025 dBm
20	005 070000 MHz	10.000 dBm	05	010.016000 MHz	11.017 dBm
20	905.319000 MHz	10.015 dBm	20	010,166000 MH-	11.027 dBm
22	900, 219000 MHZ	10.922 dBm	00	010 406000 MHz	11.037 dBm
22	906 609000 MHZ	10.832 dBm	89	010 555000 MHz	11.020 dBm
23	005 759000 MHz	10.022 GBm	00	919,555000 MHz	11.049 GBm
24	906.738000 MHZ	10.049 000	09	919.825000 MHZ	11.023 000
20	907.028000 MHZ	10.823 dBm	90	919.973000 MHZ	11.004 dBm
20	907/208000 MILE	10.007 dBm	91	920.185000 MHZ	11.034 0Dm
20	907.338000 MFIZ	10.032 dBm	92	920,423000 MILE	11.003 ODm
28	907.627000 MHz	10.877 dBm	93	920.574000 MHZ	11.061 dBm
23	907.777000 MHZ	10.850 dBm	94	920.814000 MHZ	11.098 dBm
30	908.017000 MHZ	10.892 dBm	95	920,964000 MHZ	
31	908.167000 MHZ	10.881 dBm	90	921.204000 MHz	
32	908.407000 MHz	10.894 GBM	97	921.384000 MHZ	
33	908.556000 MHz	10.886 dBm	98	921.623000 MHz	11.12/ dBm
34	908.826000 MHZ	10.899 dBm	99	921.773000 MHZ	11.136 dBm
35	908.976000 MHZ	10.906 dBm	100	922.013000 MHz	11.133 dBm
30	909.216000 MHz	10.900 dBm	101	922.163000 MHz	11.153 dBm
37	909.300000 MHZ	10.913 dBm	102	922,403000 MHZ	11.137 dBm
30	909,605000 MHZ	10.894 dBm	103	922,562000 MIHZ	11.168 dBm
39	909.755000 MHz	10.918 dBm	104	922.822000 MHz	11.137 dBm
40	910.025000 MHz	10.886 dBm	105	923.032000 MHz	11.1/8 dBm
41	910.205000 MHz	10.920 dBm	100	923.182000 MHZ	11.148 dBm
42	910.385000 MHZ	10.889 dBm	107	923,422000 MIHZ	11,189 dBm
43	910.624000 MHz	10.922 dBm	108	923,571000 MHz	11.1/3 dBm
44	910.774000 MHz	10.900 dBm	109	923.811000 MHz	11.195 dBm
45	911.014000 MHZ	10.924 dBm	110	923.901000 MHZ	11.185 dBm
40	911.164000 MHZ	10.907 dBm	111	924.231000 MHZ	11.200 dBm
47	911,404000 MHz	10.926 dBm	112	924.381000 MHz	11.196 dBm
48	911.583000 MHz	10.919 dBm	113	924.620000 MHz	11.198 dBm
49	911.823000 MHz	10.928 dBm	114	924.770000 MHz	11.205 dBm
50	911.973000 MHz	10.933 dBm	115	925.010000 MHz	11.190 dBm
51	912.213000 MHz	10.930 dBm	116	925.160000 MHz	11.209 dBm
52	912.363000 MHz	10.944 dBm	11/	925.430000 MHz	11.193 dBm
53	912.602000 MHz	10.929 dBm	118	925.579000 MHz	11.214 dBm
54	912.782000 MHz	10.956 dBm	119	925.819000 MHz	11.179 dBm
55	913.022000 MHz	10.928 dBm	120	925,969000 MHz	11.220 dBm
56	913.232000 MHz	10.969 dBm	121	926,179000 MHz	11.186 dBm
57	913.382000 MHz	10.937 dBm	122	926,359000 MHz	11.229 dBm
58	913.621000 MHz	10.984 dBm	123	926, 568000 MHz	11.212 dBm
59	913.771000 MHz	10.957 dBm	124	926,808000 MHz	11.239 dBm
60	914.011000 MHz	10.996 dBm	125	926,958000 MHz	11.222 dBm
61	914.161000 MHz	10.985 dBm	126	927.228000 MHz	11.246 dBm
62	914.431000 MHz	11.007 dBm	127	927.378000 MHz	11.247 dBm
63	914.580000 MHz	11.003 dBm	128	927.617000 MHz	11.250 dBm
64	914.820000 MHz	11.008 dBm	129	927.767000 MHz	11.256 dBm
65	914.970000 MHz	11.016 dBm			
1					

Figure 8.4-10: List of hopping frequencies

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

8.4.5 Test data, 150 kbps

Table 8.4-7: 20 dB bandwidth results, 150 kbps			
Frequency, MHz	20 dB bandwidth, kHz	Max 20 dB bandwidth limit, kHz	Margin, kHz
902.4	354.9	500	145.1
914.8	353.3	500	146.7
027.6	2/0 7	500	150.2

14:34:30 08.01.2021

Figure 8.4-11: 20 dB bandwidth on low channel, 150 kbps

14:36:30 08.01.2021

Figure 8.4-13: 20 dB bandwidth on high channel, 150 kbps

Span 1.0 MH

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 150 kbps

Table 8.4-8: 99% occupied bandwidth results, 150 kbps

Frequency, MHz	99% occupied bandwidth, kHz
902.4	316.1
914.8	314.1
927.6	317.2

Note: there is no 99% occupied bandwidth limit in the standard's requirements, the measurement results provided for information purposes only.

14:34:54 08.01.2021

Figure 8.4-14: 99% OBW on low channel, 150 kbps

Figure 8.4-15: 99% OBW on mid channel, 150 kbps

14:37:40 08.01.2021

Figure 8.4-16: 99% OBW bandwidth on high channel, 150 kbps

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 150 kbps

Figure 8.4-17: Carrier frequency separation

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 150 kbps

12:43:58 11.01.2021

MultiView 🍍 O	ccupancy	y 🔸 🗙 Seperatio	on 🔸 🗙 Ch	annels X		•
Ref Level 30.00 dBr	m Offset	20.3 dB • RBW 50 kHz				
Att 19 d	ib swt	1.2 ms 🖷 VBW 300 kHz	Mode Sweep			
2 Marker Peak List					-	
No	X-Value		Y-Value	No	X-Value	Y-Value
1 90	J2.293000 I	MHz 10	.607 dBm	33	915.300000 MHz	10.913 dBm
2 90	12.8920001	MHZ IU	1.572 dBm	34	915.689000 MHz	10.926 dBm
3 90	13.262000 F	MH2 10	1.000 dbm	33	916.079000 MHz	10.925 dBm
5 90	14 091000 1	MH2 11	1.595 dBm	37	916 888000 MHz	10.921 dbm
6 90	14.481000	MHz 10	1.642 dBm	38	917.278000 MHz	10.900 dBm
7 90	14.900000 I	MHz 10	.661 dBm	39	917.697000 MHz	10.896 dBm
8 90	05.290000 M	MHz 10	.673 dBm	40	918.087000 MHz	10.903 dBm
9 90	05.679000 1	MHz 10	.695 dBm	41	918.506000 MHz	10.891 dBm
10 90	06.099000 1	MHz 10	1.699 dBm	42	918.896000 MHz	10.902 dBm
11 90	06.489000 M	MHz 10	1,703 dBm	43	919.286000 MHz	10.933 dBm
12 90	06.878000	MHz 10	1.733 dBm	44	919.705000 MHz	10.945 dBm
13 90	07.298000 ľ	MHz 10	.742 dBm	45	920.095000 MHz	10.949 dBm
14 90	07.687000	MHz 10	.750 dBm	46	920.485000 MHz	10.966 dBm
15 90	18.0770001	MHZ 10	.779 dBm	47	920,904000 MHz	10.984 dBm
16 90	18.4970001	MHZ 10	.777 dBm	48	921,294000 MHZ	10.997 dBm
12 90	0.0000000	MH2 10	791 UDITI	49	921.003000 MHz	11.015 dBm
10 90	19.3060001	MH2 10	1.765 dBm	51	922.103000 MHz	11.051 dBm
20 91	0.0850001	MHz 10	792 dBm	52	922.882000 MHz	11.063 dBm
21 91	0.504000	MHz 10	.796 dBm	53	923.302000 MHz	11.071 dBm
22 91	0.894000 1	MHz 10	.812 dBm	54	923,691000 MHz	11.076 dBm
23 91	1.284000	MHz 10	.783 dBm	55	924.081000 MHz	11.065 dBm
24 91	1.703000 1	MHz 10	.820 dBm	56	924.500000 MHz	11.086 dBm
25 91	12.093000 I	MHz 10	.821 dBm	57	924.890000 MHz	11.097 dBm
26 91	2.483000	MHz 10	.827 dBm	58	925.280000 MHz	11.083 dBm
27 91	2.902000	MHz 10	.840 dBm	59	925.699000 MHz	11.101 dBm
28 91	3.292000 1	MHZ 10	1.855 dBm	60	926.089000 MHz	11.091 dBm
29 91	3.501000 1	MHZ 10	.821 dBm	61	926.479000 MHZ	11.115 dBm
30 91	4.101000 /	MHZ IU	1.876 dBm	62	920.088000 MHZ	11.036 dBm
32 91	4.9910001	MH7 10	1901 UDIT	64	927.677000 MHz	11.122 dbm
52 91	4.0000001	10	1050 0011	04	527.077000 MHZ	11.12/ JDIII
					Moasuring	11.01.2021
¥.					Measuring	12:44:14

12:44:14 11.01.2021

Figure 8.4-19: List of hopping frequencies

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 150 kbps

	Table 8.4-11: Average time of o	ccupancy results, 150 kbps		
Dwell time of each pulse, ms	Number of pulses within period	Total dwell time within period, ms	Limit, ms	Margin, ms
63 5 315 400 85				85
Note: 20 dB bandwidth > 250 kHz, therefore Measurement Period is 10 s				

× Seperation × MultiView Soccupancy × Channels Ref Level 30.00 dBm ─ Offset 20.3 dB ● RBW 300 kHz SGL Att 19 dB 👄 SWT 10 s **VBW** 1 MHz TRG:VID 1 Zero Span **D**1Pk Max 20 dBm 0 dBm-RG 7.000 dBm -) dBm -10 dBm -20 dBm -30 dBm -40 dBm 50 dBm 114 -60 dBm-CF 914.8 MHz 10001 pts 1.0 s/ 2 Marker Table Type Ref X-Value Y-Valu Eunction Function Result Y-Value 11.03 dBm -0.09 dB 11.03 dBm -0.09 dB 11.02 dBm -0.08 dB 11.02 dBm x-value 0.0 s 62.0 ms 2.716 s 63.0 ms 3.158 s M1 1 D2 M1 MЗ D4 M5 ΜЗ D6 M5 63.0 ms 4.926 s 63.0 ms 8.969 s 11.02 dBm -0.09 dB Μ7 D8 Μ7 -0.09 dB -0.09 dB M9 D10 М9 63.0 ms 11.01.2021 13:04:36 Ready

13:04:37 11.01.2021

Figure 8.4-20: Dwell time

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

8.4.1 Test data, 250 kbps

Table 8.4-12:20 dB bandwidth results, 250 kbps			
Frequency, MHz	20 dB bandwidth, kHz	Max 20 dB bandwidth limit, kHz	Margin, kHz
902.5	409.3	500	90.7
915.0	408.5	500	91.5
927.5	406.2	500	93.8

Figure 8.4-21: 20 dB bandwidth on low channel, 250 kbps

14:40:41 08.01.2021

14:42:48 08.01.2021

Figure 8.4-22: 20 dB bandwidth on mid channel, 250 kbps

14:44:39 08.01.2021

Figure 8.4-23: 20 dB bandwidth on high channel, 250 kbps

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 250 kbps

100100.713.33700000000000000000000000000
--

Frequency, MHz	99% occupied bandwidth, kHz
902.5	383.2
915.0	378.3
927.5	386.7

Note: there is no 99% occupied bandwidth limit in the standard's requirements, the measurement results provided for information purposes only.

14:39:38 08.01.2021

14:41:40 08.01.2021

Figure 8.4-25: 99% OBW on mid channel, 250 kbps

14:43:59 08.01.2021

Figure 8.4-26: 99% OBW bandwidth on high channel, 250 kbps

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 250 kbps

Carrier frequency separation, kHz	Minimum limit, kHz	Margin, kHz
493.9	409.3	84.6

Note: Minimum limit = 25 kHz or the 20 dB BW whichever is greater

12:31:26 11.01.2021

Figure 8.4-27: Carrier frequency separation

Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 250 kbps

12:30:15 11.01.2021

No X-Value V-Value No X-Value V-33 1 902.383000 MHz 10.668 dBm 27 915.390000 MHz 10.964 2 902.832000 MHz 10.668 dBm 28 915.599000 MHz 10.964 3 903.40200 MHz 10.669 dBm 29 916.539000 MHz 10.964 4 903.88100 MHz 10.679 dBm 29 916.539000 MHz 10.955 5 904.39100 MHz 10.679 dBm 31 917.539000 MHz 10.855 7 905.380000 MHz 10.718 dBm 31 917.539000 MHz 10.856 7 905.380000 MHz 10.777 dBm 33 918.387000 MHz 10.975 9 905.380000 MHz 10.777 dBm 34 918.387000 MHz 10.977 10 906.399000 MHz 10.777 dBm 35 919.405000 MHz 10.977 11 907.388000 MHz 10.777 dBm 35 919.435000 MHz 10.971 12 907.388000 MHz 10.827 dBm 35 919.435000 MHz	alue
16 909.905000 MHz 10.867 dBm 42 922.862000 MHz 11.127 17 910.385000 MHz 10.867 dBm 43 923.661000 MHz 11.041 18 910.984000 MHz 10.885 dBm 44 923.661000 MHz 11.142 19 911.404000 MHz 10.872 dBm 45 924.381000 MHz 11.150 20 911.883000 MHz 10.872 dBm 45 924.381000 MHz 11.044 21 912.392000 MHz 10.902 dBm 47 925.400000 MHz 11.042 21 912.392000 MHz 10.902 dBm 47 925.400000 MHz 10.902 23 913.382000 MHz 10.872 dBm 49 926.389000 MHz 10.904 23 913.382000 MHz 10.976 dBm 49 926.389000 MHz 11.962 24 913.382000 MHz 10.975 dBm 49 926.389000 MHz 11.162 24 913.491000 MHz 10.995 dBm 50 926.389000 MHz 11.121 25 914.401000 MHz 10.996 dBm 51 <t< th=""><th>- dBm - d</th></t<>	- dBm - d

12:30:35 11.01.2021

Figure 8.4-29: List of hopping frequencies

Section 8 Test name Specification Testing data FCC 15.247(a)(1) and RSS-247 5.1 Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data continued, 250 kbps

Table 8.4-16: Average time of occupancy results, 250 kbps

Dwell time of each puls	time of each pulse, ms Number of pulses within period Total dwell t 63 2				n period, ms	Limit, ms	Margin, ms
63						400	274
Note: 20 dB bandwidth > 250	kHz, therefore Measur	ement Period is 10 s					
MultiView 🌯 Occup	oancy 🗙 Sepe	eration X Chann	nels X				-
Ref Level 29.60 dBm C	Offset 20.3 dB ● RBW 3	00 kHz					SGL
Att 19 dB = 5 TRG:VID	GWT 10s VBW	1 MHz					
1 Zero Span							o 1Pk Max
20 dBm							
92 010 dBm							
TRG 8.600 dB	3m —					1	

 CF 915.0 MHz
 10001 pts

 2 Marker Table
 10001 pts

 Type
 Ref
 Trc
 X-Value
 Y-Value
 Function
 Function Result

 M1
 1
 0.0 s
 11.02 dBm
 Function
 Function Result

 D2
 M1
 1
 62.0 ms
 -0.12 dB
 Function
 Function Result

 M3
 1
 8.903 s
 11.02 dBm
 Function
 Function Result

 D4
 M3
 1
 63.0 ms
 -0.12 dB
 Function
 Function Result

12:32:33 11.01.2021

Figure 8.4-30: Dwell time

. 14

A.

Ready

att the s

1.0 s/

11.01.202 12:32:32

8.5 FCC 15.247(b) and RSS-247 5.4(a) Transmitter output power and e.i.r.p. requirements for FHSS 900 MHz

8.5.1 References, definitions and limits

FCC:

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (2) For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts
- for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
 (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED:

For FHSs operating in the band 902–928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

8.5.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	November 30, 2020

8.5.3 Observations, settings and special notes

Conducted output power was tested per ANSI C63.10 subclause 7.8.5. The hopping shall be disabled for this test. Spectrum analyser settings: EUT utilizes > 50 hopping frequencies for all modulations

Resolution bandwidth	> 20 dB bandwidth of the emission being measured
Video bandwidth	≥RBW
Frequency span	approximately 5 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data, 50 kbps

	Table 8.5-1: Out	put power	and EIRP	results,	50 kbps
--	------------------	-----------	----------	----------	---------

Frequency,	Output power,	Output power					
MHz	dBm	limit, dBm	Margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB
902.2	10.9	30.0	19.1	-1.0	9.9	36.0	26.1
915.2	11.1	30.0	18.9	-1.0	10.1	36.0	25.9
927.8	11.3	30.0	18.7	-1.0	10.3	36.0	25.7

EIRP = Output power + Antenna gain

Figure 8.5-1: Output power on low channel, 50 kbps

Figure 8.5-2: Output power on mid channel, 50 kbps

Figure 8.5-3: Output power on high channel, 50 kbps

8.5.1 Test data, 150 kbps

Output power,	Output power					
dBm	limit, dBm	Margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB
10.9	30.0	19.1	-1.0	9.9	36.0	26.1
11.1	30.0	18.9	-1.0	10.1	36.0	25.9
11.4	30.0	18.6	-1.0	10.4	36.0	25.6
	Output power, dBm 10.9 11.1 11.4	Output power, dBm Output power limit, dBm 10.9 30.0 11.1 30.0 11.4 30.0	Output power, Output power dBm limit, dBm Margin, dB 10.9 30.0 19.1 11.1 30.0 18.9 11.4 30.0 18.6	Output power, Output power dBm limit, dBm Margin, dB Antenna gain, dBi 10.9 30.0 19.1 -1.0 11.1 30.0 18.9 -1.0 11.4 30.0 18.6 -1.0	Output power, dBm Output power Margin, dB Antenna gain, dBi EIRP, dBm 10.9 30.0 19.1 -1.0 9.9 11.1 30.0 18.9 -1.0 10.1 11.4 30.0 18.6 -1.0 10.4	Output power, Output power dBm limit, dBm Margin, dB Antenna gain, dBi EIRP, dBm EIRP limit, dBm 10.9 30.0 19.1 -1.0 9.9 36.0 11.1 30.0 18.9 -1.0 10.1 36.0 11.4 30.0 18.6 -1.0 10.4 36.0

EIRP = Output power + Antenna gain

Figure 8.5-4: Output power on low channel, 150 kbps

Figure 8.5-5: Output power on mid channel, 150 kbps

14:38:51 08.01.2021

Figure 8.5-6: Output power on high channel, 150 kbps

8.5.1 Test data, 250 kbps

Table 8.5-3: Output powe	r and EIRP results,	250 kbps
--------------------------	---------------------	----------

Frequency,	Output power,	Output power					
MHz	dBm	limit, dBm	Margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB
902.5	10.9	30.0	19.1	-1.0	9.9	36.0	26.1
915.0	11.1	30.0	18.9	-1.0	10.1	36.0	25.9
927.5	11.3	30.0	18.7	-1.0	10.3	36.0	25.7

EIRP = Output power + Antenna gain

	Peak Perver	A 190	<u>^</u>	445.020	• 40 DW	X 20 40 DW	<u> </u>			
KerLevel 3	19 dB	SWT 8.3	20.3 1 US (~6.9)	ns) VBW SU	UKHZ 2 MHz Mode /	with FFT				
Frequency	Sweep									0 1Pk Max
									M1[1] 91:	11.12 dBr 5.1060900 MH
) d8m										
							41 ¥			
) dBm										
d8m										
LO dBm-	-									
o dBm	-									
10 dBm	_									
40 dBm										
0. d0m										
ou ubm										
					1		1			
o dem-										
					1		1			
915.0 MH	łz			10001	ots	1	00.0 kHz/	1		Span 1.0 MH
								Measuring		40 08.01.202

Figure 8.5-7: Output power on low channel, 250 kbps

Figure 8.5-8: Output power on mid channel, 250 kbps

MaltiView 💻	Peak Power	×	PSD 🔶 🗙	99% 08W	6 do ovr	20 60 0117	× ×			•
Ref Level 3	29.40 dBm	Offset	20.	3 dB 🖷 RBW 50) kHz					
Att	19 dB	SWT	8.31 µs (~6.9	ms) VBW 2	MHz Mode A	ito FFT				o chi tana
Trrequenc	y Sweep							1	M1[1]	11-33 dBm
									92	7.6155900 MHz
20 dBm					-					
							MI			
10 d8m		-	_				•			
-										
0 d8m-	_									
-10 dBm	_									
-22 dbm										
-20 08m										
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm				-	-					+
	_									
CF 927.5 M	Hz			10001 g	ts	10	JU.U KH2/			Span 1.0 MHz
	9							Measuring		12:32:30

12:32:30 12.01.2021

Figure 8.5-9: Output power on high channel, 250 kbps

8.6 FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems

8.6.1 References, definitions and limits

FCC:

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

ISED:

The minimum 6 dB bandwidth shall be 500 kHz.

RSS-GEN, Section 6.7:

6 dB bandwidth is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

8.6.2 Test summary

Verdict	Pass		
Tested by	Alvin Liu	Test date	November 11, 2020

8.6.3 Observations, settings and special notes

The test was performed as per KDB 558074, section 8.2 with reference to ANSI C63.10 subclause 11.8. Spectrum analyser settings:

Resolution bandwidth	6 dB BW: 100 kHz; 99% OBW: 1–5% of OBW
Video bandwidth	≥3 × RBW
Frequency span	1 – 5 × OBW
Detector mode	Peak
Trace mode	Max Hold

8.6.4 Test data

Table 8.6-1: 6 dB bandwidth results, Z-Wave Long Range							
Modulation	Frequency, MHz	6 dB bandwidth, kHz	Minimum limit, kHz	Margin, kHz			
DSSS-OQPSK	912.0	639.7	500	139.7			
DSSS-OQPSK	920.0	640.5	500	140.5			

09:24:17 21.10.2020

Figure 8.6-2: 6 dB bandwidth on 920 MHz channel, Z-Wave Long Range

Table 8 6-2. 99%	occunied	handwidth	results	7-Wave	Long	Rana
TUDIE 0.0-2. 33/0	occupieu	bunuwiutn	i couito,	, z-vvuve	LUIIG	inunge

Frequency, MHz	99% occupied bandwidth, kHz		
912.0	933.5		
920.0	933.3		

Note: there is no 99% occupied bandwidth limit in the standard's requirements, the measurement results provided for information purposes only.

Figure 8.6-3: 99% OBW on 912 MHz channel, Z-Wave Long Range

Figure 8.6-4: 99% OBW on 920 MHz channel, Z-Wave Long Range

Figure 8.6-1: 6 dB bandwidth on 912 MHz channel, Z-Wave Long Range

8.7 FCC 15.247(b) and RSS-247 5.4(d) Transmitter output power and e.i.r.p. requirements for DTS in 900 MHz

8.7.1 References, definitions and limits

FCC:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
 - (3) For systems using digital modulation in the 902–928 MHz band: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

ISED:

d. For DTSs employing digital modulation techniques operating in the 902–928 MHz band, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

8.7.2 Test summary

Verdict	Pass		
Tested by	Alvin Liu	Test date	November 11, 2020

8.7.3 Observations, settings and special notes

The test was performed as per KDB 558074, section 8.3 with reference to ANSI C63.10 subclause 11.9.1 (peak power) using method RBW≥DTS bandwidth (Maximum peak conducted output power). Spectrum analyser settings:

Resolution bandwidth	≥OBW
Video bandwidth	≥3 × RBW
Frequency span	2 – 5 × OBW
Detector mode	Peak
Trace mode	Max Hold

8.7.4 Test data

Table 8.7-1: Output power and EIRP results (antenna port measurement)

	Conducted						
Frequency,	output	Output power	Output power	Antenna gain,	EIRP,	EIRP limit,	EIRP margin,
MHz	power, dBm	limit, dBm	margin, dB	dBi	dBm	dBm	dB
912	10.9	30.0	19.1	-1.0	9.9	36.0	26.1
920	11.0	30.0	19.0	-1.0	10.0	36.0	26.0

Note: EIRP [dBm] = Conducted output power [dBm] + Antenna gain [dBi]

Figure 8.7-1: Output power on 912 MHz channel

 with we will be an weight with the weig

Figure 8.7-2: Output power on 920 MHz channel

8.8 FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions

8.8.1 References, definitions and limits

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

ISED:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.8-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBµV/m	
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Table 8.8-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025–8.5
2.1735-2.1905	16.42–16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677–5.683	73–74.6	2200–2300	15.35–16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260–3267	31.2–31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125-167.17	3345.8–3358	
8.41425-8.41475	167.72–173.2	3500–4400	Abovo 28 6
12.29–12.293	240–285	4500–5150	Above 58.0
12.51975-12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in Table 8.8-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.8-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322–335.4	3600-4400	Above 38.6
13.36–13.41			

8.8.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	October 20, 2020

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

8.8.3 Observations, settings and special notes

As part of the current assessment, the test range of 9 kHz to 10th harmonic has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.

EUT was set to transmit with 100 % duty cycle.

Radiated measurements were performed at a distance of 3 m.

DTS emissions in non-restricted frequency bands test was performed as per KDB 558074, section 8.5 with reference to ANSI C63.10 subclause 11.11. Since fundamental power was tested using the maximum peak conducted output power procedure to demonstrate compliance, the spurious emissions limit is -20 dBc/100 kHz.

DTS emissions in restricted frequency bands test was performed as per KDB 558074, section 8.6 with reference to ANSI C63.10 subclause 11.12. DTS band-edge emission measurements test was performed as per KDB 558074, section 8.7 with reference to ANSI C63.10 subclause 11.13.

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for conducted spurious emissions measurements:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

8.8.4 Test data

12:28:23 12.01.2021

Figure 8.8-1: Conducted Band-edge on low channel, FSK 50kbps

Figure 8.8-3: Conducted Low Band-edge on hopping, FSK 50kbps

12:30:15 12.01.2021

Figure 8.8-2: Conducted Band-edge on high channel, FSK 50kbps

15:58:25 08.01.2021

Figure 8.8-4: Conducted High Band-edge on hopping, FSK 50kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

 Nummer
 Numer
 Numer
 Numer</th

15:37:20 22.10.2020

Figure 8.8-7: Conducted spurious emissions on high channel, FSK 50kbps

Figure 8.8-6: Conducted spurious emissions on mid channel, FSK 50kbps

15:59:37 08.01.2021

Figure 8.8-8: Conducted spurious emissions on Hopping, FSK 50kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Figure 8.8-9: Radiated spurious emissions 30 MHz – 1 GHz on low channel, FSK 50kbps

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits +

Figure 8.8-10: Radiated spurious emissions 30 MHz – 1 GHz on mid channel, FSK 50kbps

Figure 8.8-11: Radiated spurious emissions 30 MHz - 1 GHz on high channel, FSK 50kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

NEX 403700 1-10 GHz low channel 50 kbps

Figure 8.8-12: Radiated spurious emissions 1 – 10 GHz on low channel, FSK 50kbps

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-13: Radiated spurious emissions 1 – 10 GHz on mid channel, FSK 50kbps

Figure 8.8-14: Radiated spurious emissions 1 – 10 GHz on high channel, FSK 50kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Figure 8.8-15: Conducted Band-edge on low channel, FSK 150kbps

Figure 8.8-17: Conducted Low Band-edge on Hopping, FSK 150kbps

15:41:38 08.01.2021

Figure 8.8-16: Conducted Band-edge on high channel, FSK 150kbps

16:11:31 08.01.2021

Figure 8.8-18: Conducted High Band-edge on Hopping, FSK 150kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

15:50:46 08.01.2021

Figure 8.8-21: Conducted spurious emissions on high channel, FSK 150kbps

Figure 8.8-20: Conducted spurious emissions on mid channel, FSK 150kbps

16:01:34 08.01.2021

Figure 8.8-22: Conducted spurious emissions on Hopping, FSK 150kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits .

Figure 8.8-23: Radiated spurious emissions 30 MHz – 1 GHz on low channel, FSK 150kbps

NEX 403700 30-1000 MHz mid channel 150 kbps Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits .

٠

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-26: Radiated spurious emissions 1 – 10 GHz on low channel, FSK 150kbps

Figure 8.8-27: Radiated spurious emissions 1 – 10 GHz on mid channel, FSK 150kbps

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Figure 8.8-29: Conducted Band-edge on low channel, FSK 250kbps

16:14:48 08.01.2021

Figure 8.8-31: Conducted Low Band-edge on hopping, FSK 250kbps

14:46:22 08.01.2021

Figure 8.8-30: Conducted Band-edge on high channel, FSK 250kbps

16:12:58 08.01.2021

Figure 8.8-32: Conducted High Band-edge on hopping, FSK 250kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

15:34:05 08.01.2021

Figure 8.8-33: Conducted spurious emissions on low channel, FSK 250kbps

CHICAGO CONTROLL

Figure 8.8-35: Conducted spurious emissions on high channel, FSK 250kbps

Figure 8.8-34: Conducted spurious emissions on mid channel, FSK 250kbps

16:20:41 08.01.2021

Figure 8.8-36: Conducted spurious emissions on hopping, FSK 250kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits

Figure 8.8-37: Radiated spurious emissions 30 MHz – 1 GHz on low channel, FSK 250kbps

NEX 403700 30-1000 MHz mid channel 250 kbps Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits +

+

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits

Figure 8.8-39: Radiated spurious emissions 30 MHz – 1 GHz on high channel, FSK 250kbps

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-40: Radiated spurious emissions 1 – 10 GHz on low channel, FSK 250kbps

Figure 8.8-41: Radiated spurious emissions 1 – 10 GHz on mid channel, FSK 250kbps

Preview Result 1-PK+ Critical_Freqs PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

10:14:19 22.01.2021

Figure 8.8-43: Conducted Band-edge on 912 MHz channel, Z-Wave Long Range

Figure 8.8-45: Conducted spurious emissions on 912 MHz channel, Z-Wave Long Range

10:15:22 22.01.2021

Figure 8.8-44: Conducted Band-edge on 920 MHz channel, Z-Wave Long Range

Figure 8.8-46: Conducted spurious emissions on 920 MHz channel, Z-Wave Long Range

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

NEX 403700 30-1000 MHz Long range low channel

Preview Result 1-PK+ Critical_Freqs PK+

FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits

Figure 8.8-47: Radiated spurious emissions 30 MHz - 1 GHz, on 912 MHz channel, Z-Wave Long Range

NEX 403700 30-1000 MHz Long range High channel

Preview Result 1-PK+ Critical_Freqs PK+

FCC 15.209 and RSS-Gen Restricted bands quasi-peak limits

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

NEX 403700 1-10 GHz long range low channel Preview Result 1-PK+ Critical_Freqs PK+

FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-49: Radiated spurious emissions 1 - 10 GHz, on 912 MHz channel, Z-Wave Long Range

NEX 403700 1-10 GHz long range high channel

- Preview Result 1-PK+ Critical_Freqs PK+

FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-50: Radiated spurious emissions 1 - 10 GHz, on 920 MHz channel, Z-Wave Long Range

8.9 FCC 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices

8.9.1 References, definitions and limits

FCC:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

ISED:

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

5.3 Hybrid systems

Hybrid systems employ a combination of both frequency hopping and digital transmission techniques and shall comply with the following: With the frequency hopping turned off, the digital transmission operation shall comply with the power spectral density requirements for digital modulation systems set out in of section 5.2(b) or section 6.2.4 for hybrid devices operating in the band 5725–5850 MHz.

8.9.2 Test summary

Verdict	Pass		
Tested by	Alvin Liu	Test date	October 20, 2020

8.9.3 Observations, settings and special notes

Power spectral density test was performed as per KDB 558074, section 8.4 with reference to ANSI C63.10 subclause 11.10. The test was performed using method PKPSD (peak PSD). Spectrum analyser settings:

Resolution bandwidth:	3 kHz
Video bandwidth:	≥3 × RBW
Frequency span:	1.5 times the DTS BW (Peak)
Detector mode:	Peak
Trace mode:	Max Hold

Testing data FCC Clause 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices FCC Part 15 Subpart C and RSS-247, Issue 2

8.9.4 Test data

Frequency, MHz	PSD, dBm/3 kHz	PSD limit, dBm/3 kHz	Margin, dB
912	-1.2	8.0	9.2
920	-1.1	8.0	9.1

Table 8.9-1: PSD results (antenna port measurement)

Figure 8.9-1: PSD on 912 MHz channel, Z-Wave Long Range

Figure 8.9-2: PSD on 920 MHz channel, Z-Wave Long Range

End of Test Report