

TEST REPORT

FCC ID: 2ADZH-BWD02

Product: BW BT SPT IN-EAR

Model No.: BWD19AAH01

Additional Model No.: BWD19AAH02, BWD19AAH03, AAABLK100002891,

AAAAQU100002891 Trade Mark: Blackweb

Report No.: TCT191112E013

Issued Date: Nov. 29, 2019

Issued for:

Dongguan Siyoto Electronics Co., Ltd.
No.15, 16, 17, Seven street of north Qiaodong, Guangdong Dongguan
Dongjiang, China

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. Test Certification	3
2. Test Result Summary	4
3. EUT Description	5
4. General Information	6
4.1. Test environment and mode	6
4.2. Description of Support Units	
5. Facilities and Accreditations	7
5.1. Facilities	7
5.2. Location	
5.3. Measurement Uncertainty	7
6. Test Results and Measurement Data	8
6.1. Antenna requirement	
6.2. Conducted Emission	9
6.3. Conducted Output Power	
6.4. 20dB Occupy Bandwidth	
6.5. Carrier Frequencies Separation	
6.6. Hopping Channel Number	
6.7. Dwell Time	
6.8. Pseudorandom Frequency Hopping Sequence	36
6.9. Conducted Band Edge Measurement	
6.10.Conducted Spurious Emission Measurement	41
6.11.Radiated Spurious Emission Measurement	45
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

TESTING CENTRE TECHNOLOGY Report No.: TCT191112E013

1. Test Certification

Product:	BW BT SPT IN-EAR
Model No.:	BWD19AAH01
Additional Model:	BWD19AAH02, BWD19AAH03, AAABLK100002891, AAAAQU100002891
Trade Mark:	Blackweb
Applicant:	Dongguan Siyoto Electronics Co., Ltd.
Address:	No.15, 16, 17, Seven street of north Qiaodong, Guangdong Dongguan Dongjiang, China
Manufacturer:	Dongguan Siyoto Electronics Co., Ltd.
Address:	No.15, 16, 17, Seven street of north Qiaodong, Guangdong Dongguan Dongjiang, China
Date of Test:	Nov. 13, 2019 – Nov. 28, 2019
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Laron Mo	Date:	Nov. 28, 2019
Reviewed By:	Aaron Mo Beryl Than	Date:	Nov. 29, 2019
Approved By:	Beryl Zhao Tomsin	Date:	Nov. 29, 2019

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product Name:	BW BT SPT IN-EAR
Model :	BWD19AAH01
Additional Model:	BWD19AAH02, BWD19AAH03, AAABLK100002891, AAAAQU100002891
Trade Mark:	Blackweb
Bluetooth version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Ceramic Antenna
Antenna Gain:	2dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V
Remark:	All models above are identical in interior structure, electrical circuits and components, just colors are different for the marketing requirement.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK

Operatio	ni i roquono	y caerro	i onamoni	J. O. O.	1177 DQ1 O	11, 02. 0.	_
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
D	Characl O C	0.70	N - K 1	11 f O	FOL -/4 D		NDOI/

Remark: Channel 0, 39 &78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

RE TECHNOLOGY Report No.: TCT191112E013

4. General Information

4.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	25.0 °C	25.0 °C		
Humidity:	55 % RH	55 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test Mode:				
Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery				

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1) /	9 1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

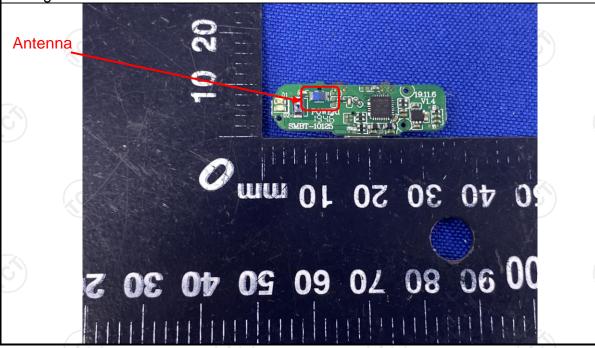
Report No.: TCT191112E013

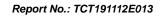
6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is ceramic antenna which permanently attached, and the best case gain of the antenna is 2dBi.

6.2. Conducted Emission

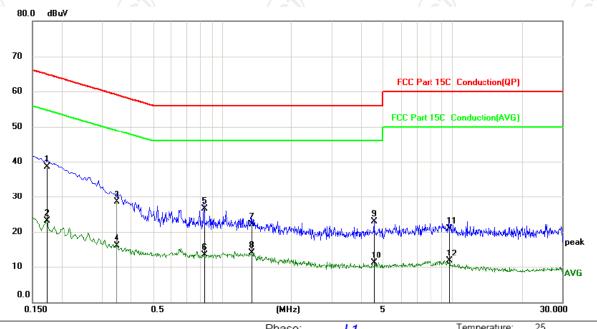
6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	Ke		
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
Limits:	Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50				
Test Setup:	Reference Plane 40cm 80cm Filter AC power EMI Receiver Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height-0.8m				
Test Mode:	Refer to item 4.1	Refer to item 4.1			
Test Procedure:	1. The E.U.T is conne impedance stabilize provides a 500hm/5 measuring equipment. 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10:2013 of the conducted interface.	cation network 50uH coupling in nt. ces are also conne SN that provides with 50ohm terr diagram of the line are checkence. In order to fi e positions of equ must be changed	(L.I.S.N.). This appedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum alpment and all of according to		
	PASS				

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Test Receiver	R&S	ESPI	101402	Jul. 29, 2020	
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2020	
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site	riiase.	LI	remperature. 2.
Limit: FCC Part 15C Conduction(QP)	Power:		Humidity: 55 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1725	28.45	10.12	38.57	64.84	-26.27	QP	
2	0.1725	13.05	10.12	23.17	54.84	-31.67	AVG	
3	0.3480	18.36	10.13	28.49	59.01	-30.52	QP	
4	0.3480	5.89	10.13	16.02	49.01	-32.99	AVG	
5	0.8340	16.32	10.12	26.44	56.00	-29.56	QP	
6	0.8340	3.40	10.12	13.52	46.00	-32.48	AVG	
7	1.3425	12.01	10.12	22.13	56.00	-33.87	QP	
8	1.3425	4.00	10.12	14.12	46.00	-31.88	AVG	
9	4.5690	12.74	10.13	22.87	56.00	-33.13	QP	
10	4.5690	0.88	10.13	11.01	46.00	-34.99	AVG	
11	9.6674	10.75	10.15	20.90	60.00	-39.10	QP	
12	9.6674	1.65	10.15	11.80	50.00	-38.20	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

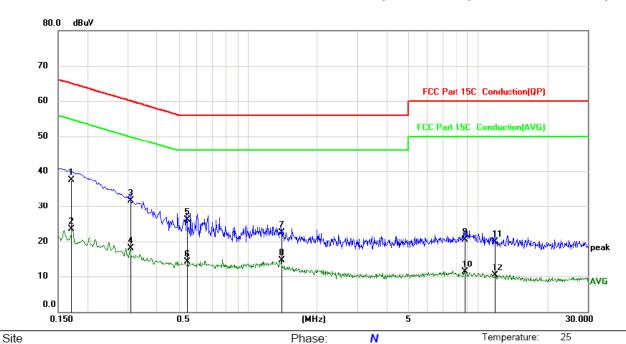
Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Over (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

Q.P. =Quasi-Peak

AVG =average


Any value more than 10dB below limit have not been specifically reported.

Report No.: TCT191112E013

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

C Part 15	C Conduct	ion(QP)		Pow	er:			Humidity:	55 %
Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
0.1712	27.45	10.12	37.57	64.90	-27.33	QP			
0.1712	13.48	10.12	23.60	54.90	-31.30	AVG			
0.3075	21.56	10.13	31.69	60.04	-28.35	QP			
0.3075	7.96	10.13	18.09	50.04	-31.95	AVG			
0.5415	15.94	10.13	26.07	56.00	-29.93	QP			
0.5415	4.10	10.13	14.23	46.00	-31.77	AVG			
1.3965	12.33	10.12	22.45	56.00	-33.55	QP			
1.3965	4.62	10.12	14.74	46.00	-31.26	AVG			
8.7405	10.42	10.14	20.56	60.00	-39.44	QP			
8.7405	1.26	10.14	11.40	50.00	-38.60	AVG			
11.7915	9.78	10.16	19.94	60.00	-40.06	QP			
11.7915	0.22	10.16	10.38	50.00	-39.62	AVG			
	Freq. MHz 0.1712 0.1712 0.3075 0.3075 0.5415 0.5415 1.3965 1.3965 8.7405	Freq. Reading Level MHz dBuV 0.1712 27.45 0.1712 13.48 0.3075 21.56 0.3075 7.96 0.5415 15.94 0.5415 4.10 1.3965 12.33 1.3965 4.62 8.7405 10.42 8.7405 1.26 11.7915 9.78	Freq. Level Factor MHz dBuV dB 0.1712 27.45 10.12 0.1712 13.48 10.12 0.3075 21.56 10.13 0.3075 7.96 10.13 0.5415 15.94 10.13 0.5415 4.10 10.13 1.3965 12.33 10.12 8.7405 10.42 10.14 8.7405 1.26 10.14 11.7915 9.78 10.16	Freq. Reading Level Correct Factor Measurement MHz dBuV dB dBuV 0.1712 27.45 10.12 37.57 0.1712 13.48 10.12 23.60 0.3075 21.56 10.13 31.69 0.3075 7.96 10.13 18.09 0.5415 15.94 10.13 26.07 0.5415 4.10 10.13 14.23 1.3965 12.33 10.12 22.45 1.3965 4.62 10.12 14.74 8.7405 10.42 10.14 20.56 8.7405 1.26 10.14 11.40 11.7915 9.78 10.16 19.94	Freq. Reading Level Correct Factor Measurement Limit MHz dBuV dB dBuV dBuV 0.1712 27.45 10.12 37.57 64.90 0.1712 13.48 10.12 23.60 54.90 0.3075 21.56 10.13 31.69 60.04 0.3075 7.96 10.13 18.09 50.04 0.5415 15.94 10.13 26.07 56.00 0.5415 4.10 10.13 14.23 46.00 1.3965 12.33 10.12 22.45 56.00 1.3965 4.62 10.12 14.74 46.00 8.7405 10.42 10.14 20.56 60.00 8.7405 1.26 10.14 11.40 50.00 11.7915 9.78 10.16 19.94 60.00	Freq. Reading Level Correct Factor Measurement Measurement Limit Over MHz dBuV dB dBuV dBuV dB 0.1712 27.45 10.12 37.57 64.90 -27.33 0.1712 13.48 10.12 23.60 54.90 -31.30 0.3075 21.56 10.13 31.69 60.04 -28.35 0.3075 7.96 10.13 18.09 50.04 -31.95 0.5415 15.94 10.13 26.07 56.00 -29.93 0.5415 4.10 10.13 14.23 46.00 -31.77 1.3965 12.33 10.12 22.45 56.00 -33.55 1.3965 4.62 10.12 14.74 46.00 -31.26 8.7405 10.42 10.14 20.56 60.00 -39.44 8.7405 1.26 10.14 11.40 50.00 -38.60 11.7915 9.78 10.16 19.94 60.00 </td <td>Freq. Reading Level Correct Factor Measurement Measurement Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1712 27.45 10.12 37.57 64.90 -27.33 QP 0.1712 13.48 10.12 23.60 54.90 -31.30 AVG 0.3075 21.56 10.13 31.69 60.04 -28.35 QP 0.3075 7.96 10.13 18.09 50.04 -31.95 AVG 0.5415 15.94 10.13 26.07 56.00 -29.93 QP 0.5415 4.10 10.13 14.23 46.00 -31.77 AVG 1.3965 12.33 10.12 22.45 56.00 -33.55 QP 1.3965 4.62 10.12 14.74 46.00 -31.26 AVG 8.7405 10.42 10.14 20.56 60.00 -39.44 QP 8.7405 1.26 10</td> <td>Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV dB Detector Comment 0.1712 27.45 10.12 37.57 64.90 -27.33 QP 0.1712 13.48 10.12 23.60 54.90 -31.30 AVG 0.3075 21.56 10.13 31.69 60.04 -28.35 QP 0.3075 7.96 10.13 18.09 50.04 -31.95 AVG 0.5415 15.94 10.13 26.07 56.00 -29.93 QP 0.5415 4.10 10.13 14.23 46.00 -31.77 AVG 1.3965 12.33 10.12 22.45 56.00 -33.55 QP 1.3965 4.62 10.12 14.74 46.00 -31.26 AVG 8.7405 10.42 10.14 20.56 60.00 -39.44 QP 8.7405 1.26 10.14</td> <td>Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 0.1712 27.45 10.12 37.57 64.90 -27.33 QP 0.1712 13.48 10.12 23.60 54.90 -31.30 AVG 0.3075 21.56 10.13 31.69 60.04 -28.35 QP 0.3075 7.96 10.13 18.09 50.04 -31.95 AVG 0.5415 15.94 10.13 26.07 56.00 -29.93 QP 0.5415 4.10 10.13 14.23 46.00 -31.77 AVG 1.3965 12.33 10.12 22.45 56.00 -33.55 QP 1.3965 4.62 10.12 14.74 46.00 -31.26 AVG 8.7405 10.42 10.14 20.56 60.00 -39.44 QP 8.7405 1.26</td>	Freq. Reading Level Correct Factor Measurement Measurement Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1712 27.45 10.12 37.57 64.90 -27.33 QP 0.1712 13.48 10.12 23.60 54.90 -31.30 AVG 0.3075 21.56 10.13 31.69 60.04 -28.35 QP 0.3075 7.96 10.13 18.09 50.04 -31.95 AVG 0.5415 15.94 10.13 26.07 56.00 -29.93 QP 0.5415 4.10 10.13 14.23 46.00 -31.77 AVG 1.3965 12.33 10.12 22.45 56.00 -33.55 QP 1.3965 4.62 10.12 14.74 46.00 -31.26 AVG 8.7405 10.42 10.14 20.56 60.00 -39.44 QP 8.7405 1.26 10	Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV dB Detector Comment 0.1712 27.45 10.12 37.57 64.90 -27.33 QP 0.1712 13.48 10.12 23.60 54.90 -31.30 AVG 0.3075 21.56 10.13 31.69 60.04 -28.35 QP 0.3075 7.96 10.13 18.09 50.04 -31.95 AVG 0.5415 15.94 10.13 26.07 56.00 -29.93 QP 0.5415 4.10 10.13 14.23 46.00 -31.77 AVG 1.3965 12.33 10.12 22.45 56.00 -33.55 QP 1.3965 4.62 10.12 14.74 46.00 -31.26 AVG 8.7405 10.42 10.14 20.56 60.00 -39.44 QP 8.7405 1.26 10.14	Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 0.1712 27.45 10.12 37.57 64.90 -27.33 QP 0.1712 13.48 10.12 23.60 54.90 -31.30 AVG 0.3075 21.56 10.13 31.69 60.04 -28.35 QP 0.3075 7.96 10.13 18.09 50.04 -31.95 AVG 0.5415 15.94 10.13 26.07 56.00 -29.93 QP 0.5415 4.10 10.13 14.23 46.00 -31.77 AVG 1.3965 12.33 10.12 22.45 56.00 -33.55 QP 1.3965 4.62 10.12 14.74 46.00 -31.26 AVG 8.7405 10.42 10.14 20.56 60.00 -39.44 QP 8.7405 1.26

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Over (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Section 15.247 (b) The maximum peak conducted outpower of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.				
Test Result:	PASS				

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	TCT	RE-06	N/A	Sep. 11, 2020
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

ING CENTRE TECHNOLOGY Report No.: TCT191112E013

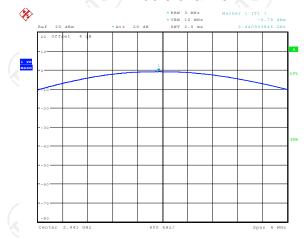
GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-0.48	30.00	PASS			
Middle	-0.79	30.00	PASS			
Highest	-1.30	30.00	PASS			

Pi/4DQPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	1.32	21.00	PASS
Middle	1.18	21.00	PASS
Highest	0.83	21.00	PASS

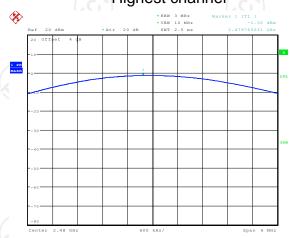
8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	1.62	21.00	PASS		
Middle	1.44	21.00	PASS		
Highest	1.14	21.00	PASS		

Test plots as follows:

Page 14 of 67



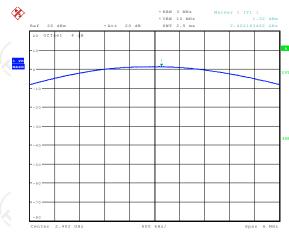
Lowest channel


Date: 20.NOV.2019 13:55:55

Middle channel

Date: 20.NOV.2019 13:58:46

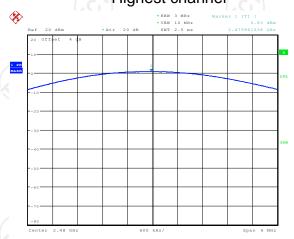
Highest channel



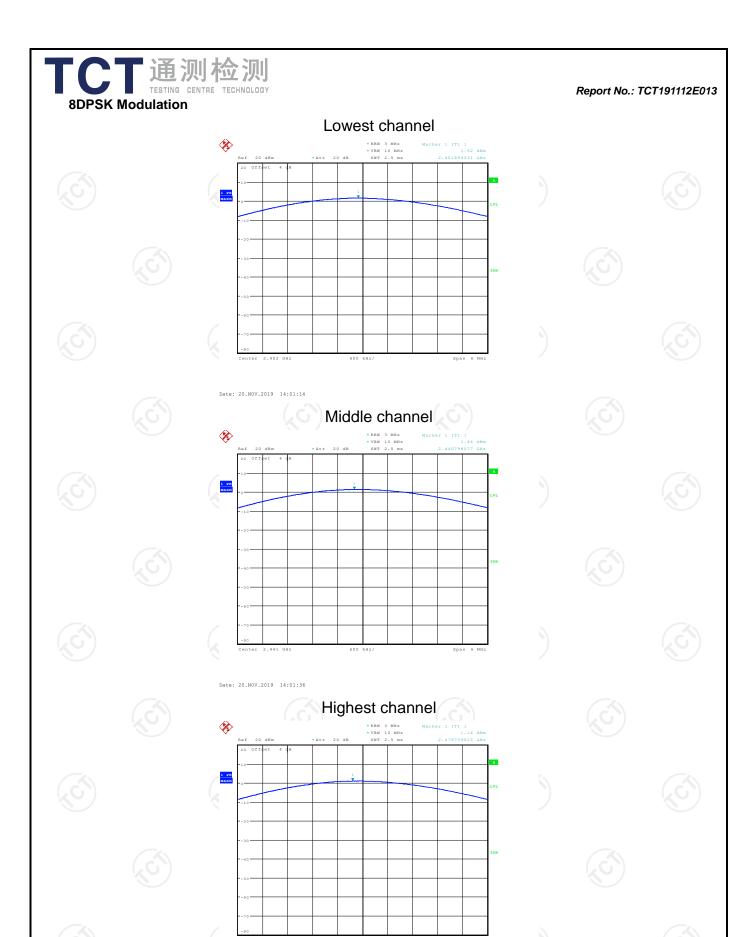
Date: 20.NOV.2019 13:59:10

Report No.: TCT191112E013

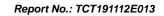
Lowest channel



Middle channel



Date: 20.NOV.2019 14:00:34


Highest channel

Date: 20.NOV.2019 14:00:14

Date: 20.NOV.2019 14:01:59

6.4. 20dB Occupy Bandwidth

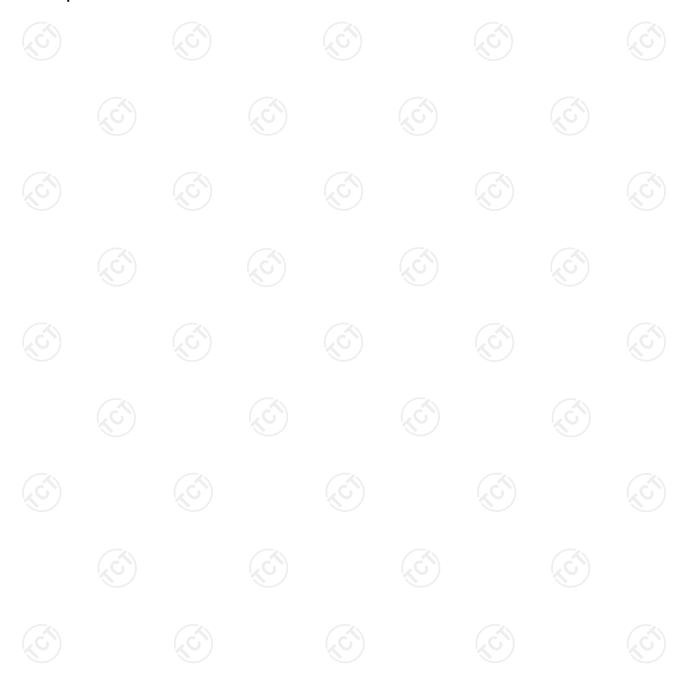
6.4.1. Test Specification

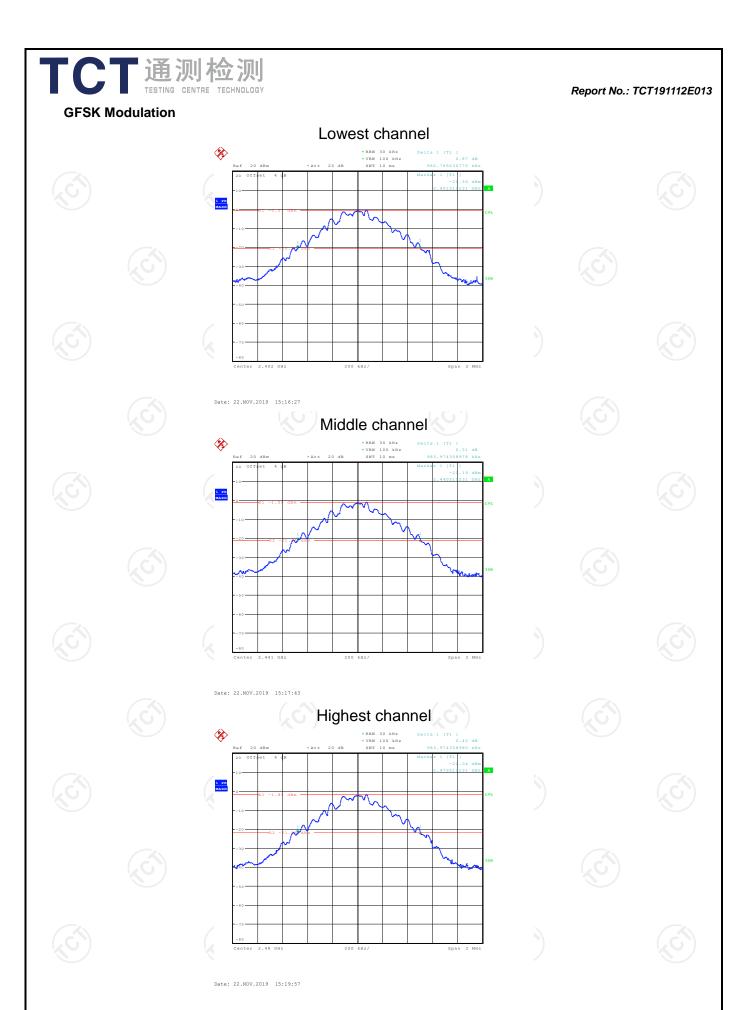
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	N/A	(01)			
Test Setup:	Spectrum Analyzer	EUT			
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrul analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 200 Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1% RB ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = maken bold. 				
Test Result:	4. Measure and record the results in the test report. PASS				

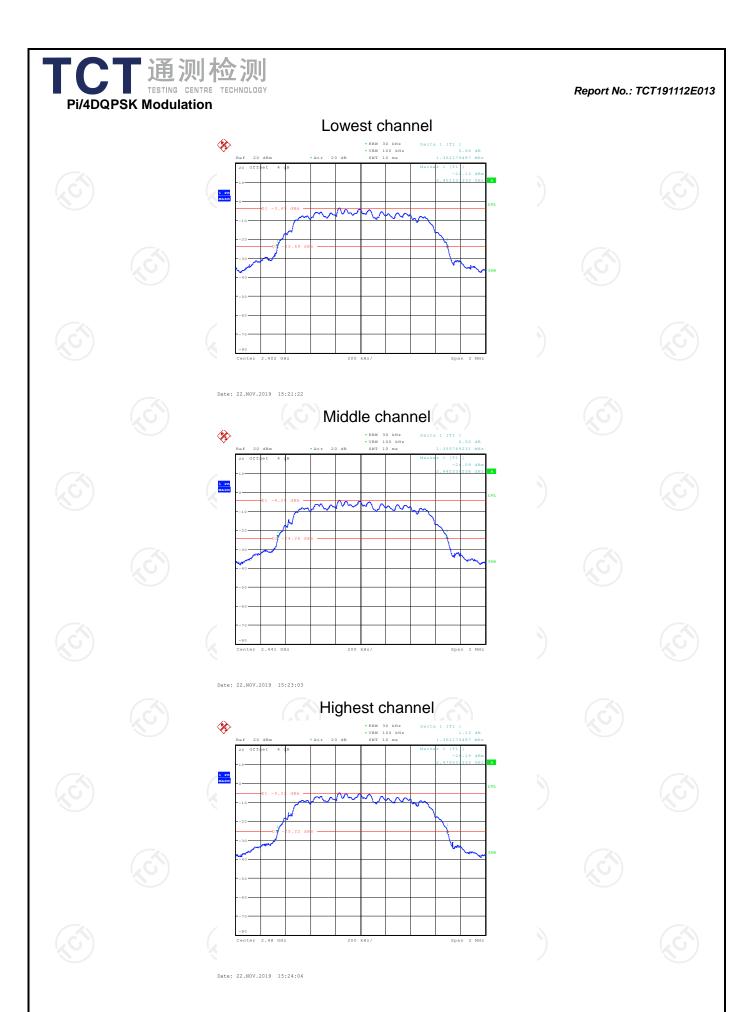
6.4.2. Test Instruments

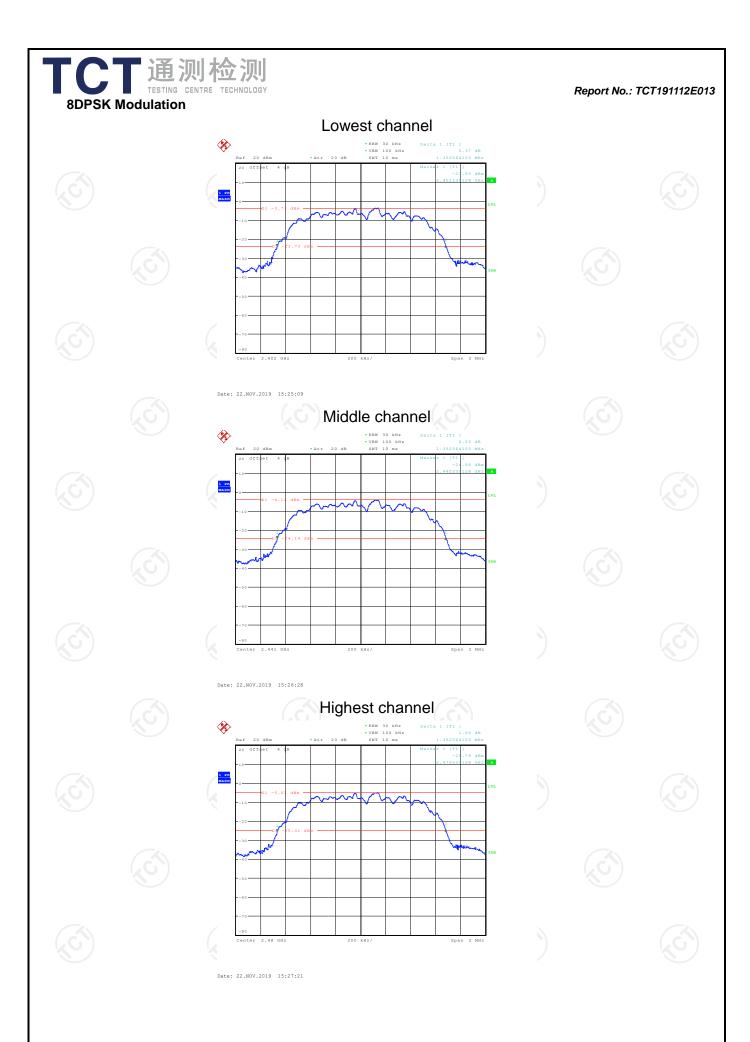
Equipment Manufacturer		Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 18 of 67




6.4.3. Test data


Test channel	20dB Occupy Bandwidth (kHz)				
rest channel	GFSK	π/4-DQPSK	8DPSK	Conclusion	
Lowest	980.77	1362.18	1352.56	PASS	
Middle	983.97	1355.77	1352.56	PASS	
Highest	983.97	1362.18	1352.56	PASS	
			7		

Test plots as follows:

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

6.5.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
	RF cable (9kHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2020
	Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5.3. Test data

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000.00	983.97	PASS	
Middle	996.79	983.97	PASS	
Highest	1000.00	983.97	PASS	

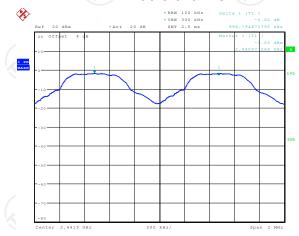
	Pi/4 DQPSK	mode	
Test channel	Carrier Frequencies Separation (kHz)		
Lowest	983.97	908.12	PASS
Middle	1009.62	908.12	PASS
Highest	1000.00	908.12	PASS

. 4 4 1			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1003.21	901.71	PASS
Middle	1000.00	901.71	PASS
Highest	1000.00	901.71	PASS

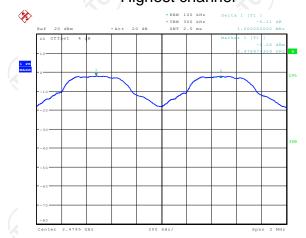
Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)		
GFSK	983.97	983.97		
π/4-DQPSK	1362.18	908.12		
8DPSK	1352.56	901.71		

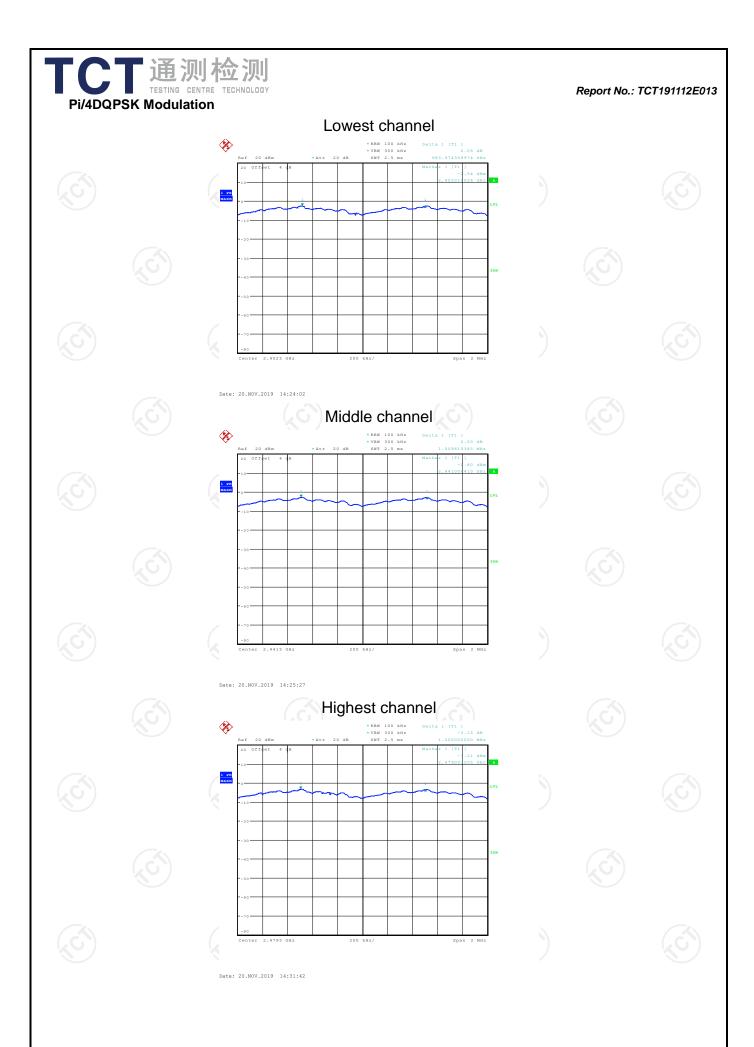

Test plots as follows:

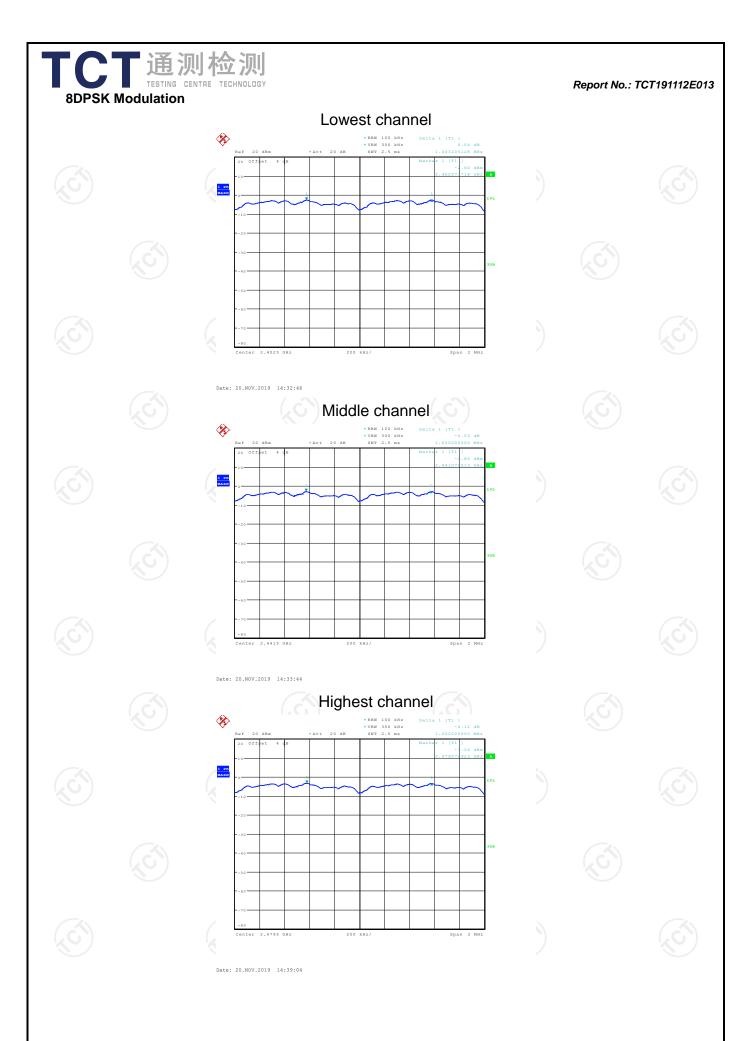

GFSK Modulation

Lowest channel


Date: 20.NOV.2019 14:16:35

Middle channel


Date: 20.NOV.2019 14:20:38


Highest channel

Date: 20.NOV.2019 14:22:54

Report No.: TCT191112E013

6.6. Hopping Channel Number

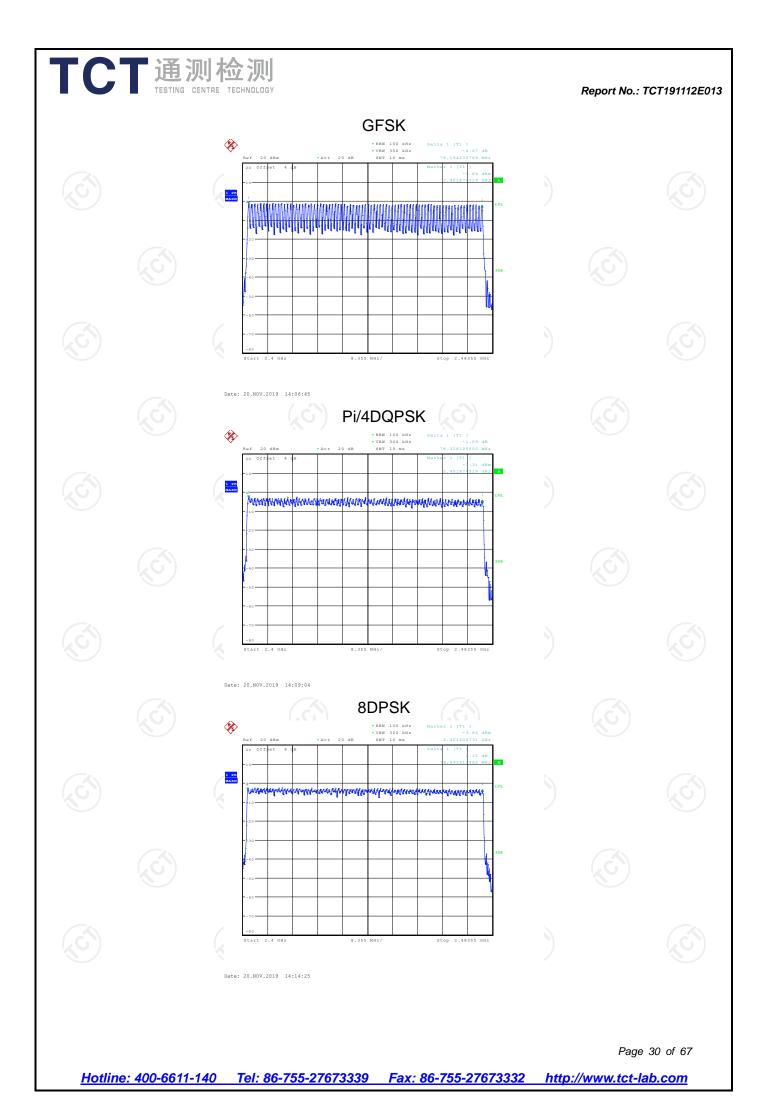
6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	requency hopping systems in the 2400-2483.5 MHz and shall use at least 15 channels. Pectrum Analyzer Opping mode The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function.
Test Setup:	
Test Mode:	Hopping mode
Test Procedure:	path loss was compensated to the results for each measurement.2. Set to the maximum power setting and enable the
Test Result:	PASS
1 7 1	

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020	
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020	
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.6.3. Test data

Report No.: TCT191112E013

Mode	Hopping channel numbers	Limit	Result
GFSK, Pi/4DQPSK, 8DPSK	79	15	PASS

Test plots as follows:

6.7. Dwell Time

6.7.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)
KDB 558074 D01 v05r02
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spectrum Analyzer EUT
Hopping mode
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
PASS

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	TCT	RE-06	N/A	Sep. 11, 2020
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

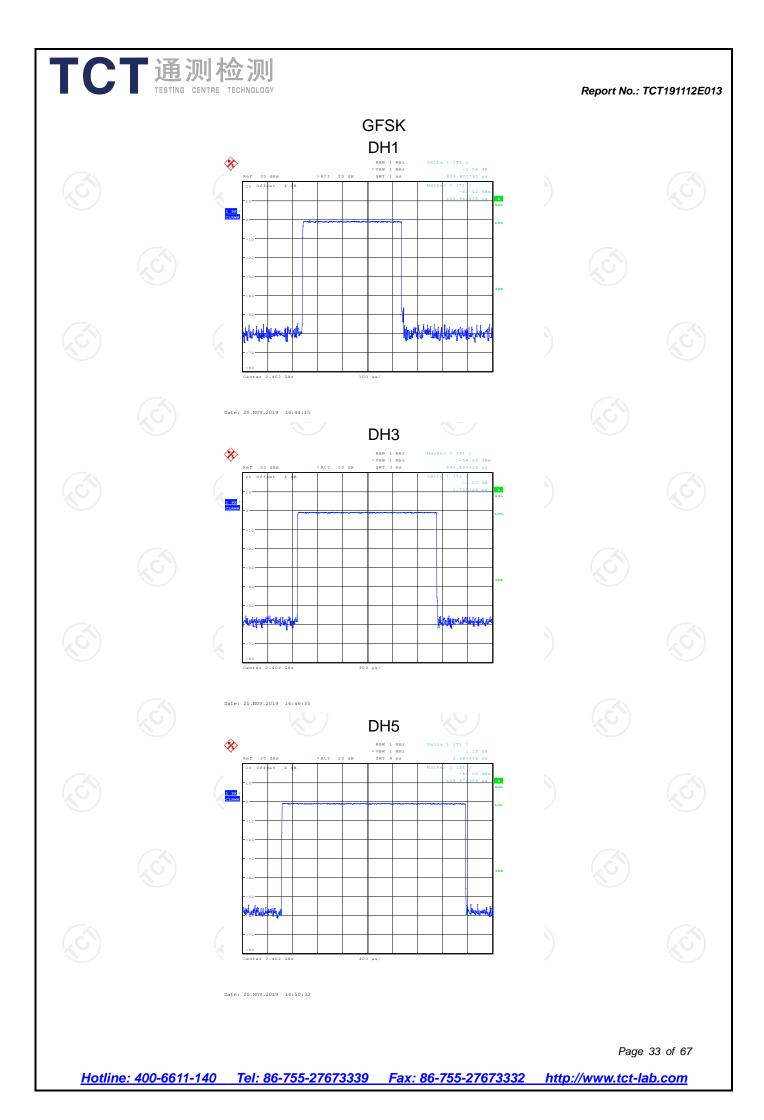
6.7.3. Test Data

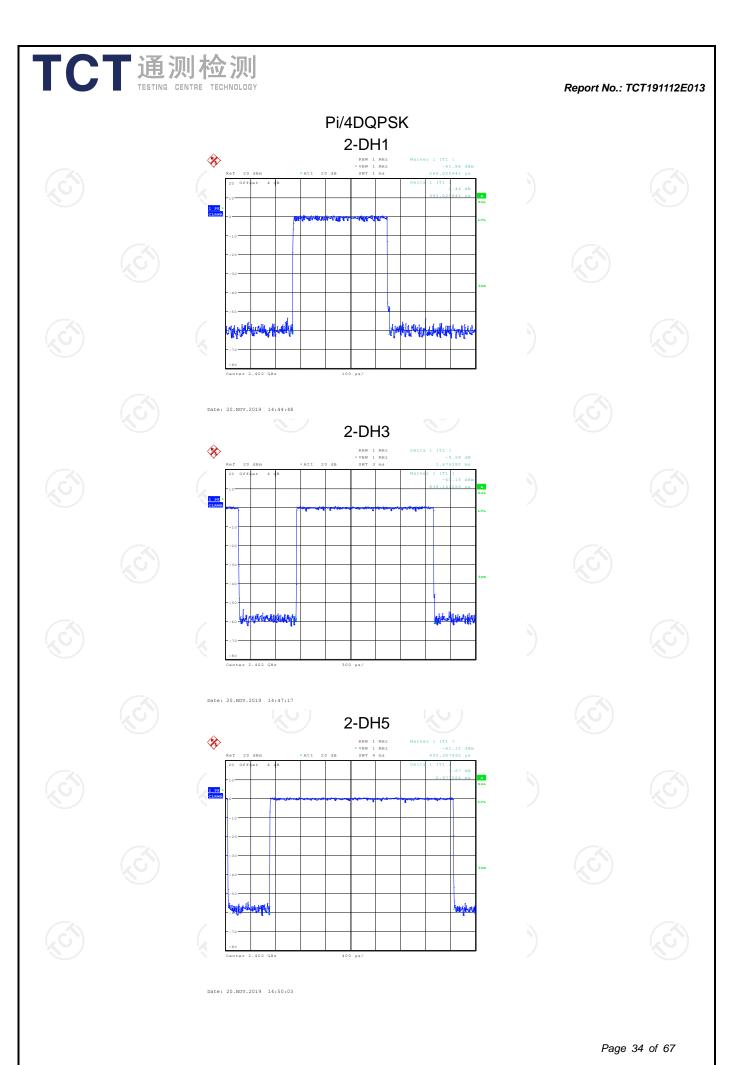
Report No.: TCT191112E013

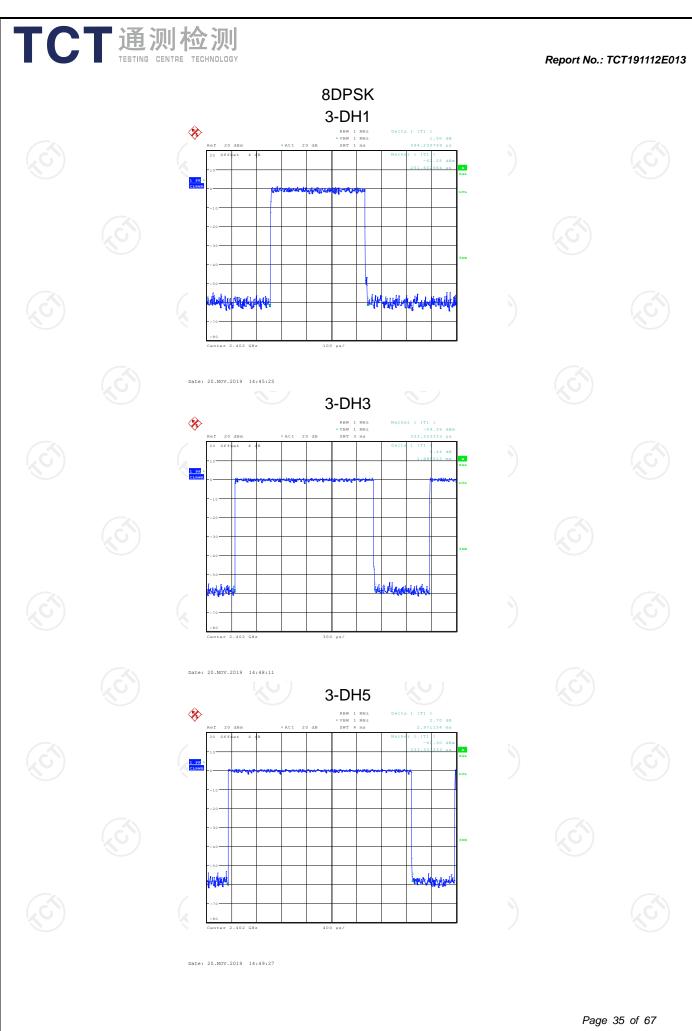
Mode	Packet	Hops Over Occupancy Time (hops)	Package Transfer Time (ms)	Dwell time (second)	Limit (second)	Result
GFSK	DH1	320	0.420	0.139	0.4	PASS
GFSK	DH3	160	1.705	0.269	0.4	PASS
GFSK	DH5	106.67	2.984	0.317	0.4	PASS
Pi/4 DQPSK	2-DH1	320	0.391	0.134	0.4	PASS
Pi/4 DQPSK	2-DH3	160	1.676	0.270	0.4	PASS
Pi/4 DQPSK	2-DH5	106.67	2.978	0.317	0.4	PASS
8DPSK	3-DH1	320	0.394	0.134	0.4	PASS
8DPSK	3-DH3	160	1.696	0.273	0.4	PASS
8DPSK	3-DH5	106.67	2.971	0.321	0.4	PASS

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

For DH1, With channel hopping rate (1600/2/79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600/2/79) \times (0.4 \times 79) = 320$ hops


For DH3, With channel hopping rate (1600/4/79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600/4/79) \times (0.4 \times 79) = 160$ hops


For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops

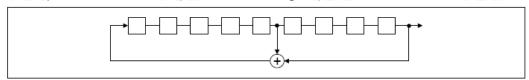

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

6.8. Pseudorandom Frequency Hopping Sequence

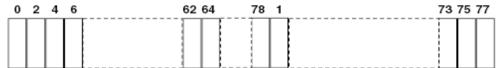
Test Requirement: FCC Pa

FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

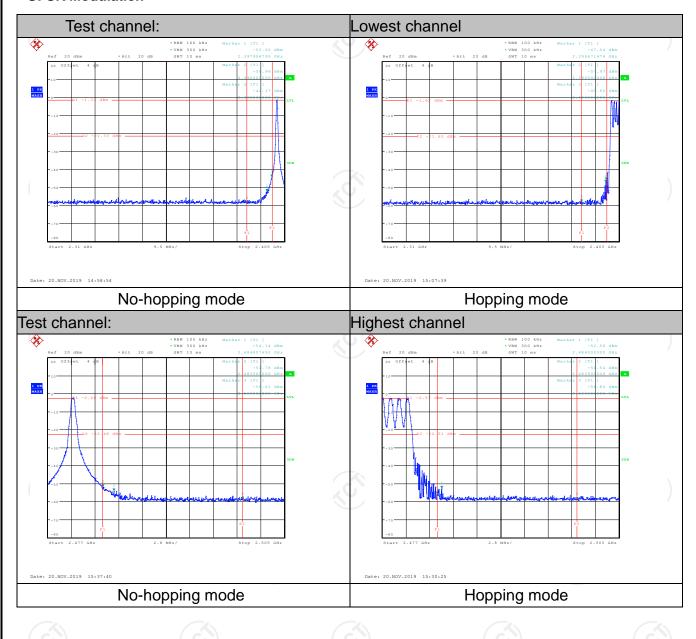
6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

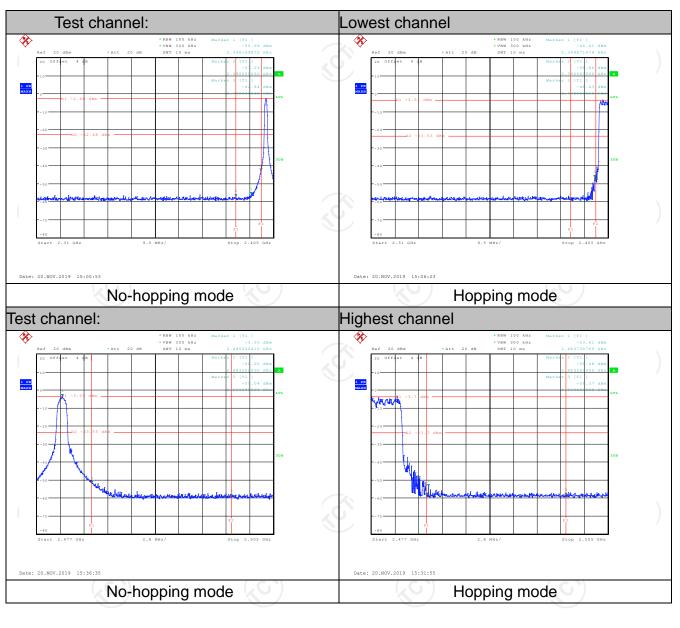
6.9.2. Test Instruments

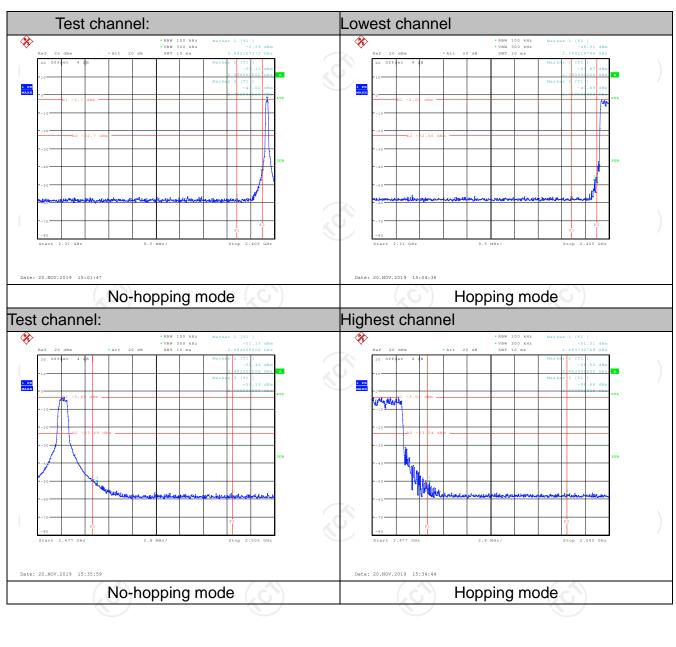
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.9.3. Test Data

Report No.: TCT191112E013


GFSK Modulation


Pi/4DQPSK Modulation

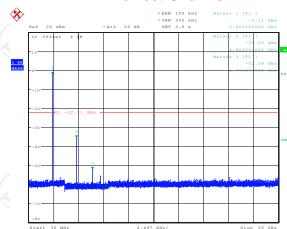
8DPSK Modulation

6.10. Conducted Spurious Emission Measurement

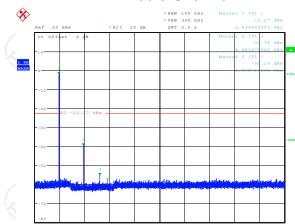
6.10.1. Test Specification

A) / A)	/ ^ / ^ / ^ / ^ / / / / / / / / / / / /				
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fain the restricted bands must also comply with the radiated emission limits. Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded				
Limit:	radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the				
Test Setup:					
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. 				
Test Result:	PASS				

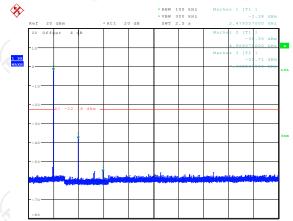
6.10.2. Test Instruments

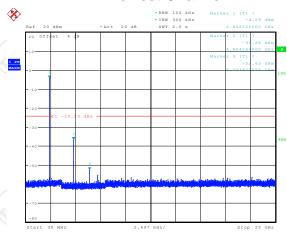

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020	
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ40 200061		Sep. 11, 2020	
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020	
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

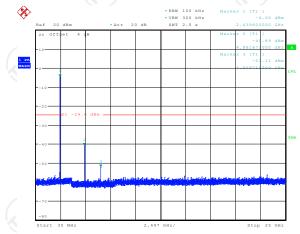


6.10.3. Test Data

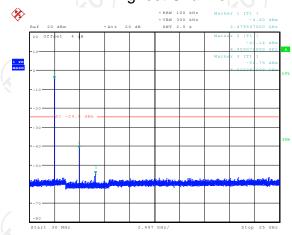

GFSK mode Lowest Channel **RAN 100 KRZ **VBM 100 KRZ **V


Highest Channel

Date: 20.NOV.2019 15:42:54



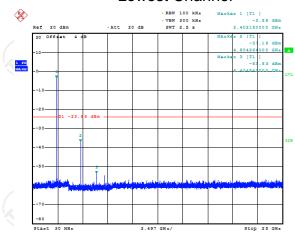
Lowest Channel


Date: 20.NOV.2019 15:47:34

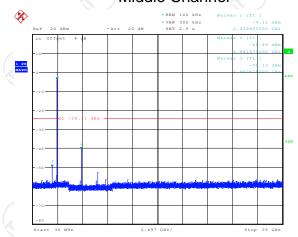
Middle Channel

Date: 20.NOV.2019 15:46:13

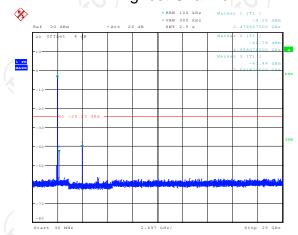
Highest Channel



Date: 20.NOV.2019 15:44:58


8DPSK mode

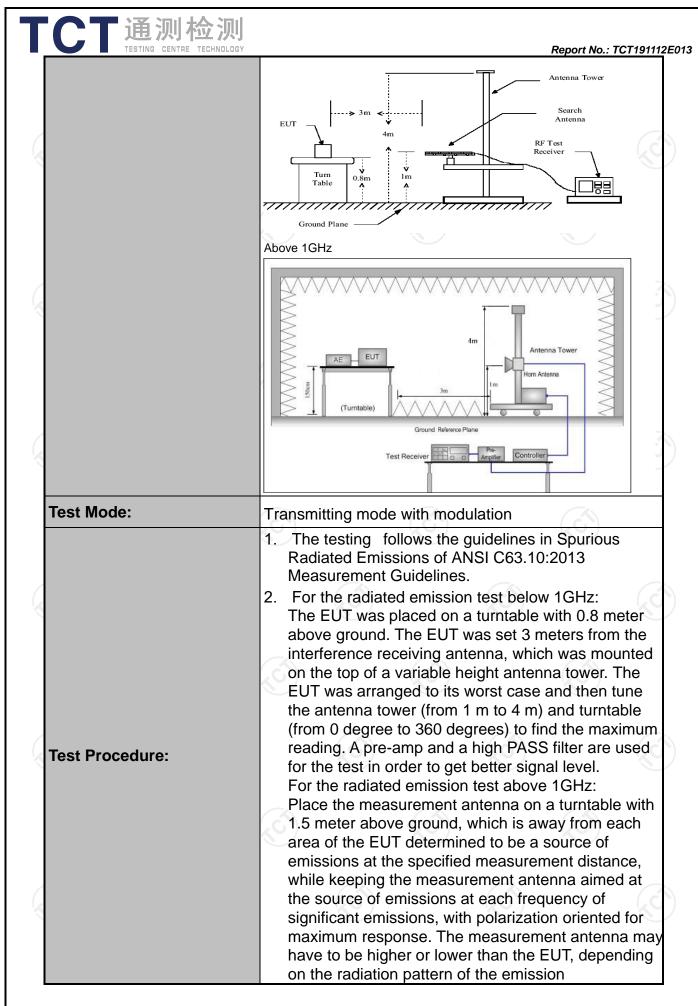
Lowest Channel


Date: 20.NOV.2019 15:48:50

Middle Channel

Date: 20.NOV.2019 15:50:53

Highest Channel


Date: 20.NOV.2019 15:53:10

6.11. Radiated Spurious Emission Measurement

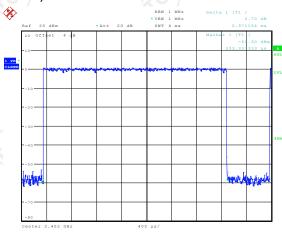
6.11.1. Test Specification

		<u> </u>	/					
Test Requirement:	FCC Part15	C Section	n 15.209	(0)		1/20		
Test Method:								
Frequency Range:	ANSI C63.10:2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz- 30MHz Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Peak 1MHz 3MHz Peak Value Above 1GHz Peak 1MHz 10Hz Average Value Field Strength (microvolts/meter) Measurement Distance (meters) 0.009-0.490 2400/F(KHz) 300 2400/F(KHz) 30 30 1.705-30 30 30 30 30 30-88 100 3 30 30 88-216 150 3 30 30 216-960 200 3 200 3 3 Above 960 500 500 500 3							
Measurement Distance:	9 kHz to 25 GHz Tee: 3 m Horizontal & Vertical Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Vali 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Vali 30MHz Quasi-peak 120KHz 300KHz Quasi-peak Vali Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 300 0.490-1.705 24000/F(KHz) 30 1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 Field Strength (microvolts/meter) Distance Detector Measurement Distance Detector Measurement Distance Detector Measurement Distance Detector Measurement Distance Detector)			
Antenna Polarization:	Horizontal &	Horizontal & Vertical						
Pagaiyar Satura	9kHz- 150kHz 150kHz-	Quasi-pe	ak 200Hz	1kHz	Quas	i-peak Value		
Receiver Setup:	30MHz-1GHz Quasi-pe Above 1GHz		1MHz	3MHz	Pe	eak Value		
Limit:	0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9	490 705 30 30 60 Figure (mic	(microvolts 2400/F(l 24000/F) 30 100 150 200 500 eld Strength crovolts/meter)	/meter) KHz) (KHz) Measure Distan (meter)	Distar ment ce	pasurement since (meters) 300 30 30 30 3 3 3 3 3 3 3 Detector		
Test setup:	EUT	Turn table	9+[Amplifier			

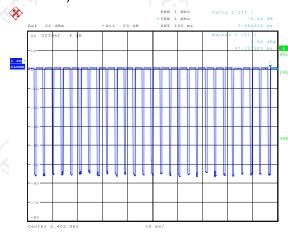
C T 通测检测	
TESTING CENTRE TECHNOLOGY	and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m
	above the ground or reference ground plane. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured;
	(2) Set RBW=120 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak (3) For average measurement: use duty cycle
	correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc.
	Average Emission Level = Peak Emission Level + 20*log(Duty cycle) Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
Test results:	PASS

6.11.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 11, 2020
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 06, 2020
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 08, 2020
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.11.3. Test Data


Duty cycle correction factor for average measurement

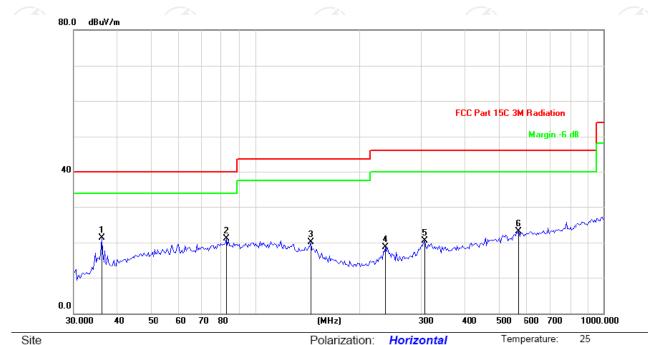
3DH5 on time (One Pulse) Plot on Channel 00

Date: 20.NOV.2019 14:49:27

3DH5 on time (Count Pulses) Plot on Channel 00

Date: 20.NOV.2019 14:52:30

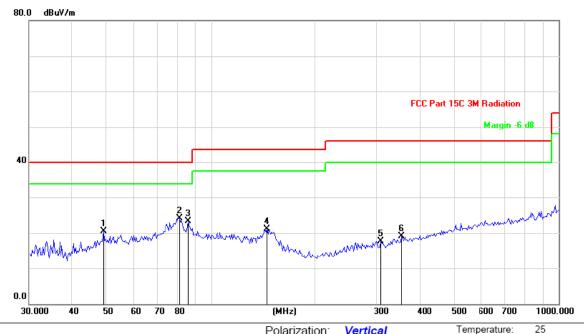
Note:


- 1. Worst case Duty cycle = on time/100 milliseconds = (2.971*27+2.885)/100=0.8310
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -1.61dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-1.61dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Please refer to following diagram for individual

Below 1GHz

Horizontal:


Limit: FCC Part 15C 3M Radiation Power: Humidity: 55 %

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	36.0139	32.32	-11.03	21.29	40.00	-18.71	peak
2		82.5257	36.23	-15.11	21.12	40.00	-18.88	peak
3		143.7760	36.23	-16.15	20.08	43.50	-23.42	peak
4		236.7928	31.59	-12.95	18.64	46.00	-27.36	peak
5		307.1053	31.21	-10.75	20.46	46.00	-25.54	peak
6		569.9688	29.70	-6.51	23.19	46.00	-22.81	peak

Vertical:

Site Polarization: Vertical Temperature: 25 Limit: FCC Part 15C 3M Radiation Power: Humidity: 55 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		49.0627	30.57	-10.10	20.47	40.00	-19.53	peak
2	*	81.3740	39.92	-15.84	24.08	40.00	-15.92	peak
3		86.0795	36.25	-12.87	23.38	40.00	-16.62	peak
4		144.7899	37.32	-16.17	21.15	43.50	-22.35	peak
5		309.2710	28.49	-10.70	17.79	46.00	-28.21	peak
6		353.4471	28.72	-9.63	19.09	46.00	-26.91	peak

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only.
- 3. Freg. = Emission frequency in MHz

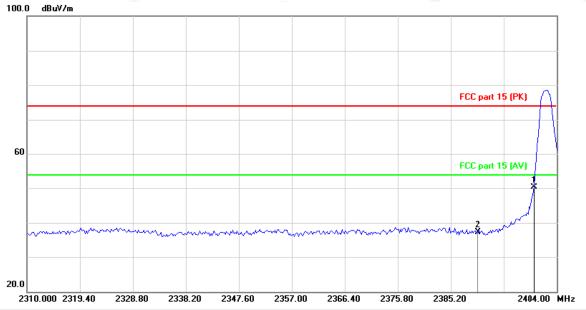
Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

 $Limit (dB\mu V/m) = Limit stated in standard$

Over (dB) = Measurement $(dB\mu V/m)$ – Limits $(dB\mu V/m)$

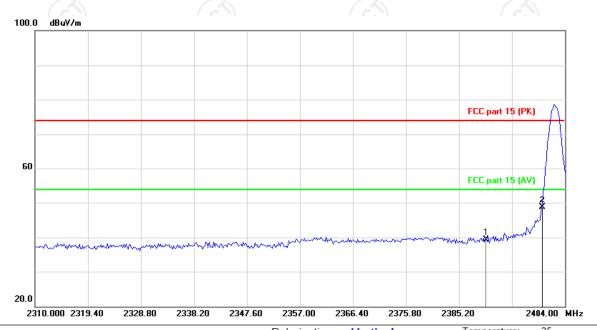
Any value more than 10dB below limit have not been specifically reported.


* is meaning the worst frequency has been tested in the test frequency range

Test Result of Radiated Spurious at Band edges

Lowest channel 2402:

Horizontal:


Power:

Site Limit: FCC part 15 (PK) Polarization: Horizontal DC 3.7V

Temperature: 25

Humidity: 55 %

Vertical:

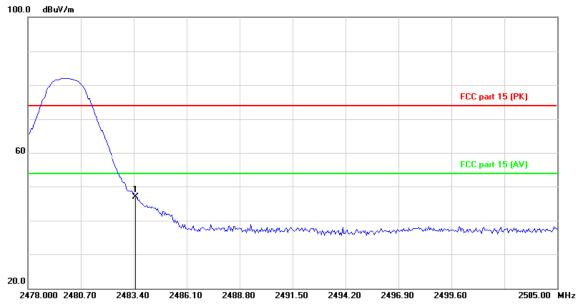
Polarization: Vertical Temperature:

Limit: FCC part 15 (PK)

Power:

DC 3.7V

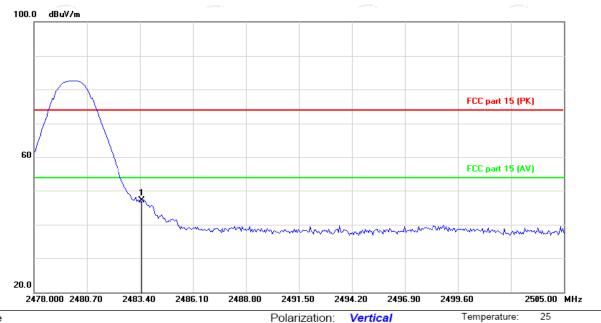
Humidity:


55 %

Frequency (MHz)	Ant. Pol. H/V	Peak (dBµV/m)	Duty cycle factor (dB/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	PK Margin (dB)	AVG Margin (dB)
2400	Н	50.30	-1.61	48.69	74	54	-23.70	-5.31
2400	V	48.69	-1.61	47.08	74	54	-25.31	-6.92

Highest channel 2480:

Horizontal:


Site Limit: FCC part 15 (PK)

Polarization: Horizontal Power: DC 3.7V

Temperature: 25

Humidity: 55 %

Vertical:

Power: DC 3.7V Humidity: 55 % Limit: FCC part 15 (PK)

Frequency (MHz)	Ant. Pol. H/V	Peak (dBµV/m)	Duty cycle factor (dB/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	PK Margin (dB)	AVG Margin (dB)
2483.5	Н	46.85	-1.61	45.24	74	54	-27.15	-8.76
2483.5	V	47.19	-1.61	45.58	74	54	-26.81	-8.42

Note: Measurements were conducted in all two modulation (GFSK, Pi/4DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

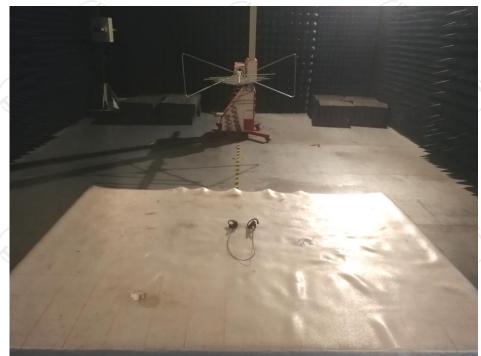
Above 1GHz

Modulation	Modulation Type: 8DPSK								
Low chann	Low channel: 2402 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.70		0.66	46.36		74	54	-7.64
7206	Η	36.48	-	9.50	45.98	-	74	54	-8.02
	Η		-			-	-		
4804	V	44.26	-170	0.66	44.92	(O)-	74	54	-9.08
7206	V	37.51		9.50	47.01		74	54	-6.99
	V								

Middle channel: 2441 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4882	Н	47.87		0.99	48.86	-	74	54	-5.14	
7323	H	38.14	-+ 6	9.87	48.01	-	74	54	-5.99	
	Н		(/	'	<i>y</i> -		` `		
4882	V	46.39		0.99	47.38		74	54	-6.62	
7323	V	38.62		9.87	48.49		74	54	-5.51	
(0)	V	(-E)		(, ((.G-)		(,C	

High channel: 2480 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	l AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4960	H	46.93		1.33	48.26		74	54	-5.74	
7440	Η	36.05		10.22	46.27		74	54	-7.73	
	Η	-								
4960	V	48.78		1.33	50.11		74	54	-3.89	
7440	V	36.51		10.22	46.73		74	54	-7.27	
	V									

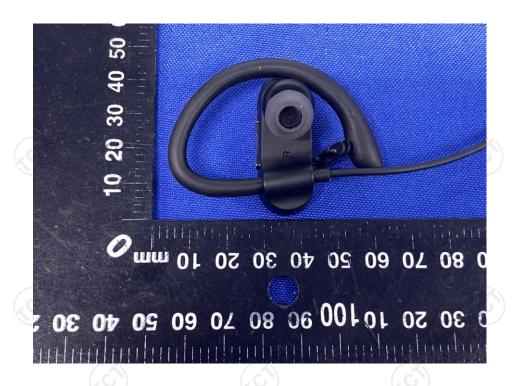
Note:


- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.
- 7. All the restriction bands are compliance with the limit of 15.209.

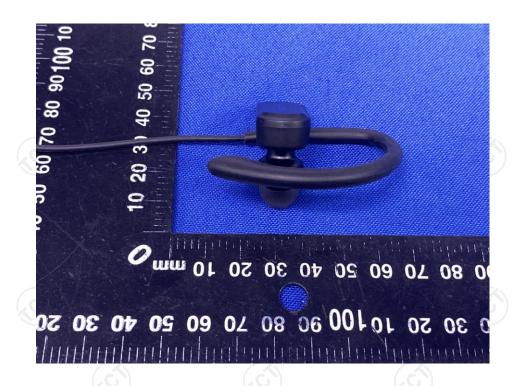
Appendix A: Photographs of Test Setup Product: BW BT SPT IN-EAR

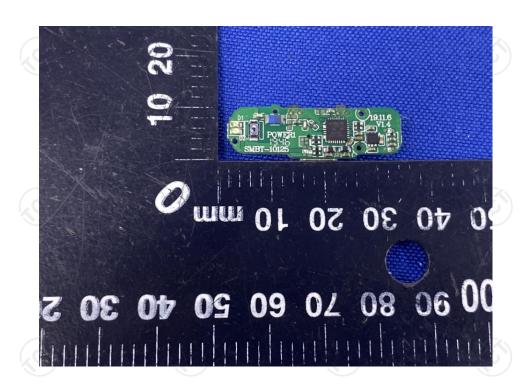
Product: BW BT SPT IN-EAR Model: BWD19AAH01 Radiated Emission

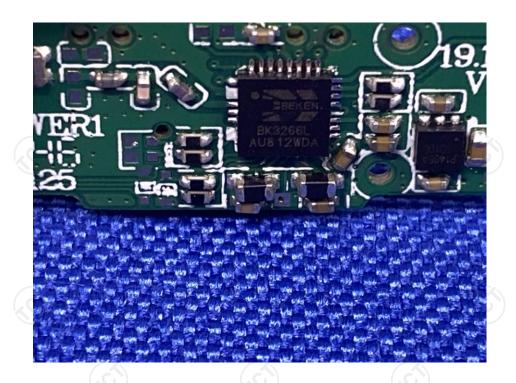
Conducted Emission

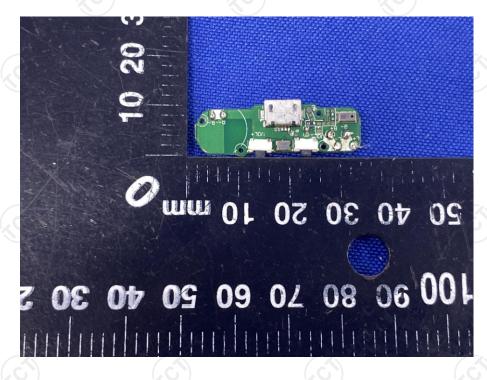


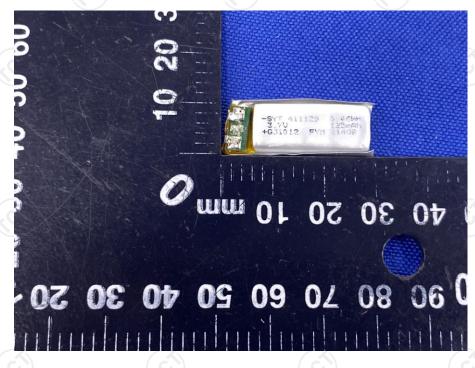
Appendix B: Photographs of EUT
Product: BW BT SPT IN-EAR
Model: BWD19AAH01
External Photos

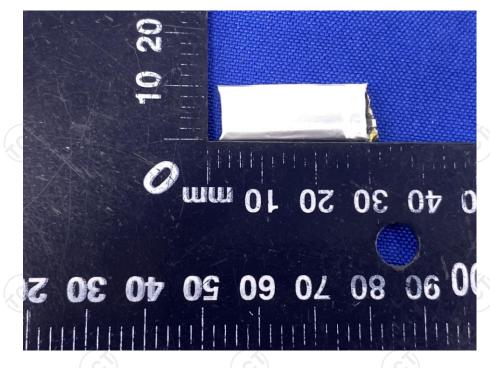







Product: BW BT SPT IN-EAR Model: BWD19AAH01 Internal Photos





*****END OF REPORT*****

