

Appendix A. Measurement Test Result

Test Result are shown as below.

DASY8 Module WPT Measurement Report

Device under test	Tool info	Scan info
<i>Info:</i> P24070624	DASY software version: DASY8 Module WPT 2.6.0.5002	Center location: x: 790.00 μm, y: -51.01 mm, z: 85.14 mm
Serial number: P01_Front Face_with Touch Pen_0mm_511k	Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000225, 2024/06/06	Dimensions: x: 256.0 mm, y: 256.7 mm, z: 36.4 mm
Scenario: not set	Software version: 2.0.63, backend: 2.2.22	Resolution: x: 7.33 mm, y: 7.33 mm, z: 7.33 mm
		Completed on: 2024/08/01

Measurement results

Maximum H-field [RMS]: MAGNITUDE: 878.23 mA/m

x: 130.76 mA/m, y: 850.82 mA/m, z: 174.05 mA/m

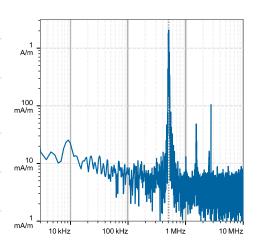
Maximum H-field location relative to DUT: **x:** 3.67 mm, **y:** -33.00 mm, **z:** 8.50 mm

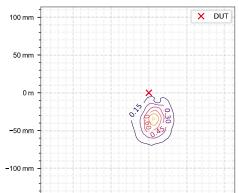
Maximum E-field [RMS]: MAGNITUDE: 2.05 V/m

x: 13.78 mV/m, y: 80.23 mV/m, z: 2.05 V/m

Maximum E-field location relative to DUT:

x: 7.33 mm, y: 0.00 m, z: 0.00 m


Distance to -20.0 dB boundary:


23.19 mm

Offset relative to DUT:

x: 0.00 m, **y**: 0.00 m, **z**: 1.00 mm

H-field magnitude [RMS] at maximum location

-100 mm

H-field magnitude [RMS] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency $(f = 510.57 \text{ kHz}, \sigma = 0.750 \text{ S/m}, \text{ tissue density} = 1,000 \text{ kg/m}^3)$

	-	dent fields мs]	Pe	ak E _{ind} [V/m,	RMS]	Peak J _{ind} [A/m ² , <i>кмs</i>]	psSAR	[mW/kg]	H-field extent			Warnings
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	Sign	Vector potential	Boundary effect
0.00	1.95	2.05	0.0432	0.0448	0.045	0.0254	5.67e-4	2.07e-4	31.9	20%	37%	11%

Compliance evaluation (Field values at the peak frequency) (f=510.57 kHz, total field evaluation, coverage evaluation)

	<u> 1</u>	CNIRP 2	010/202	0		ICNIR	P 1998			IEEE	2019			FC	CC			HC C	ode 6	
	RL	RMS]	BR [RMS]	RL [RMS]	BR [RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL [RMS]	BR [RMS]
Distanc	cepH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pJ_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[A/m ²]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg	ı] [A/m]	[V/m]	[V/m]	[mW/kg]
0.00	1.95	2.05	0.228	2.07e- 4	1.95	2.05	0.0256	2.07e- 4	1.95	2.05	0.131	2.07e- 4	1.95	2.05	N/A	5.67e- 4	1.95	2.05	0.335	5.67e- 4
Coverage	factors: w	Eind, cube av	= [5.28],	W _{E_{ind, local}}	= [7.46], v	V E _{ind, line ave}	g. = [2.91]													

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation)

		ICN	NRP 20	010/20	20			CNIR	1998				IEEE	2019				FC	C				нс с	ode 6		
		R	L		В	R	R	L	В	₹		EF	RL		DF	₹L	MF	PE	В	R		R	L		ВІ	₹
Dist [mm	ance ۱] pH	inc	pEi	nc	pE _{ind}	psSA	√R ^{pH} inc	pE _{inc}	pJ _{ind}	psSA	R pH	inc	pEi	inc	pE _{ind}	psSA	√R ^{pH} inc	pE _{inc}	pE _{ind}	psSA	R pHi	inc	рE	inc	pE _{ind}	psSAR
	NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
0.00	0.09	0.20	2.88	2.23	<0.0	1<0.0	11.36	2.75	0.05	<0.0	10.01	0.03	0.39	11.5	<0.0	1<0.0	11.19	1.04	N/A	<0.0	10.02	1.36	2.88	33.4	<0.0	1<0.01

Coverage factors: $w_{E_{ind, \text{ cube avg.}}} = [5.28], w_{E_{ind, \text{ local}}} = [7.46], w_{E_{ind, \text{ line avg.}}} = [2.91]$

DASY8 Module WPT Measurement Report

Device under test	Tool info	Scan info
Info: P24070624	DASY software version: DASY8 Module WPT 2.6.0.5002	Center location: x: 780.00 μm, y: -50.80 mm, z: 79.53 mm
Serial number: Front Face_stand by_0mm	Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000225, 2024/06/06	Dimensions: x: 256.0 mm, y: 256.9 mm, z: 37.0 mm
Scenario: not set	Software version: 2.0.63, backend: 2.2.22	Resolution: x: 7.33 mm, y: 7.33 mm, z: 7.33 mm
		Completed on: 2024/08/01

Measurement results

Maximum H-field [RMS]: MAGNITUDE: 231.03 mA/m

x: 139.20 mA/m, y: 31.50 mA/m, z: 181.68 mA/m

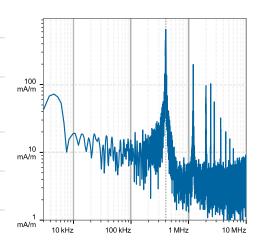
Maximum H-field location relative to DUT: x: 40.33 mm, y: -91.67 mm, z: 8.50 mm

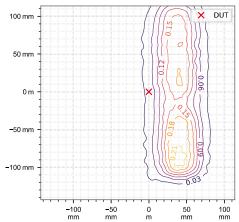
Maximum E-field [RMS]: MAGNITUDE: 1.16 V/m

x: 163.84 mV/m, y: 1.06 V/m, z: 449.57 mV/m

Maximum E-field location relative to DUT: x: 44.00 mm, y: -73.33 mm, z: 14.67 mm

Distance to -20.0 dB boundary:


36.67 mm


Offset relative to DUT:

x: 0.00 m, **y**: 0.00 m, **z**: 1.00 mm

H-field magnitude [RMS] at maximum location

H-field magnitude [RMS] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency $(f = 421.31 \text{ kHz}, \sigma = 0.750 \text{ S/m}, \text{ tissue density} = 1,000 \text{ kg/m}^3)$

		dent fields мs]	Pe	ak E _{ind} [V/m,	RMS]	Peak J _{ind} [A/m ² , <i>км</i> s]	psSAR	[mW/kg]	H-field extent			Warnings
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	Sign	Vector potential	Boundary effect
0.00	0.480	0.143	0.0101	0.0109	0.0101	6.08e-3	4.08e-5	2 . 68e-5	80.5	77%	370%	100%

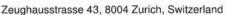
Compliance evaluation (Field values at the peak frequency) (f=421.31 kHz, total field evaluation, coverage evaluation)

	10	ONIRP 2	010/2020	0		ICNIR	⊃ 1998			IEEE	2019			FC	C			HC C	ode 6	
	RL [RMS]	BR [RMS]	RL [RMS]	BR [RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL [RMS]	BR [/	ямѕ]
Distan	cepH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pJ_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[A/m ²]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg]
0.00	0.480	0.143	0.0607	, 2.68e- 5	0.480	0.143	6.09e- 3	2.68e- 5	0.480	0.143	0.0327	, 2.68e- 5	0.480	0.143	N/A	4.08e- 5	0.480	0.143	0.0924	4.08e- 5
Coverage	factors: w	E _{ind, cube avç}	g. = [6.01],	W _{Eind, local}	= [8.49], v	E _{ind, line avg}	g. = [3.22]													

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation)

			ICN	NRP 20	010/20	20			ICNIRI	P 1998				IEEE	2019				FC	C				HC C	ode 6		
			R	L		В	R	R	L	В	R		El	RL		DF	₹L	MF	PE	В	R		R	L		BF	₹
Dis [mr		nce pH _i	inc	pΕ _i	nc	pE _{ind}	psSA	.RPH _{inc}	pE _{inc}	pJ _{ind}	psSA	R p⊦	l _{inc}	рE	inc	pE _{ind}	psSA	√R ^{pH} inc	pE _{inc}	pE _{ind}	psSA	R pH	inc	рE	inc	pE _{ind}	psSAR
		NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
0.00	ם	0.02	0.04	0.97	1.17	<0.0	1<0.0	10.28	0.95	0.02	<0.0	1<0.0	1<0.0	10.13	5.0	<0.0	1<0.0	10.29	0.75	N/A	<0.0	1<0.0	10.28	0.97	7.43	<0.01	I<0.01

Coverage factors: $w_{E_{ind, cube avg.}} = [6.01]$, $w_{E_{ind, local}} = [8.49]$, $w_{E_{ind, line avg.}} = [3.22]$



Appendix C. Calibration Certificate for Probe and Dipole

The SPEAG calibration certificates are shown as follows.

Calibration Laboratory of

Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

B.V. ADT Taoyuan City Certificate No.

MAGPy-8H3D-3078

CALIBRATION CERTIFICATE

Object MAGPy-8H3D+E3DV2 SN:3078

MAGPy-DASV2 SN:3070

Calibration procedure(s) QA CAL-46.v1

Calibration Procedure for MAGPy-8H3D+E3D

Near-field Electric and Magnetic Field Sensor System

Calibration date June 06, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Oscilloscope	SN: 112135	25-Sep-23 (No. 17A1162175)	Sep-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Network Analyzer E5061B	SN: MY49810822	In house check: Nov-23	In house check: Nov-24
TEM Cell	SN: S6029i	In house check: Nov-23	In house check: Nov-24
Plate Capacitor	SN: 6028i	In house check: Nov-23	In house check: Nov-24
Resonator (160kHz)	SN: 6030i	In house check: Nov-23	In house check: Nov-24

Name Function Signature

Calibrated by Aidonia Georgiadou Laboratory Engineer

Technical Manager

Issued: June 06, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: MAGPy-8H3D-3078 Page 1 of 26

Sven Kühn

Report No.: SFCHRE-WTW-P24070624

Approved by

Calibration Laboratory of Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

MAGPy-8H3D-E3D Magnetic Amplitude and Gradient Probe - Eight H-field Sensors, Single E-field sensor

MAGPy-DAS Magnetic Amplitude and Gradient Data Acquisition System

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2013, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", November 2013

Methods Applied and Interpretation of Parameters

- · Calibration has been performed after the adjustment of the device.
- Linearity: Calibration of the linearity of the field reading over the specified dynamic range at 161,75 kHz. Influence of offset voltage is included in this measurement.
- Frequency response: Calibration of the field reading over the specified frequency range from 3.0 kHz to 10.0 MHz.
- Receiving Pattern: Assessed for H-field polarizations θ , and $\phi = 0^{\circ} ... 360^{\circ}$; $\theta = 90^{\circ}$, and $\phi = 0^{\circ} ... 360^{\circ}$; for the XYZ sensors (in TEM-Cell at 4 kHz, 40 kHz, 400 kHz and 4 MHz).
- Receiving Pattern: Assessed for E-field polarizations ϑ, and φ = 0°...360°; ϑ = 90°, and φ = 0°...360°; for the XYZ sensor (in parallel plate capacitor at 4 kHz, 40 kHz, 400 kHz and 4 MHz).

Calibration Uncertainty

The calibration uncertainty is 0.7dB for the H-field readings and 1.06dB for the E-field readings. The calibration uncertainty is specified over the frequency range from 3.0kHz to 10.0MHz and a dynamic range from 0.1 A/m to 3200 A/m and from 0.08 V/m to 2000 V/m respectively.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: MAGPy-8H3D-3078 Page 2 of 26

Measurement Conditions

Unit Type	MAGPy-8H3D+E3DV2 (SP MGY 303 AA)	3078
	MAGPy-DASV2 (SE UMS 303 AC)	3070
	MAGPy FPGA Board	WP000225
Adjustment Date	Last MAGPy Adjustment	June 06, 2024
Firmware SW Version	MAGPy Firmware	Ver. 1.00
Backend SW Version	MAGPy Backend	Ver. 1.0.2
Calibration SW Version	MAGACAP	Ver. 1.0

Dynamic Range

Dynamic Range, H-field, Channel 0

H-fie	ld/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	
x	У	z	x	У	z	x	y	Z	Tolerance/(dB
0.370	0.360	0.350	0.380	0.390	0.370	0.23	0.70	0.48	±1.00
0.510	0.490	0.480	0.500	0.510	0.500	-0.17	0.35	0.35	±1.00
0.700	0.670	0.660	0.680	0.660	0.660	-0.25	-0.13	0.00	±1.00
0.910	0.880	0.860	0.890	0.880	0.860	-0.19	0.00	0.00	±1.00
1.23	1.19	1.17	1.23	1.20	1.16	0.00	0.07	-0.07	±1.00
1.69	1.63	1.60	1.70	1.62	1.61	0.05	-0.05	0.05	±1.00
2.25	2.17	2.13	2.26	2.18	2.14	0.04	0.04	0.04	±0.20
3.01	2.90	2.85	3.00	2.90	2.85	-0.03	0.00	0.00	±0.20
4.08	3.95	3.87	4.09	3.96	3.88	0.02	0.02	0.02	±0.20
5.52	5.34	5.23	5.53	5.35	5.24	0.02	0.02	0.02	±0.20
7.43	7.18	7.04	7.43	7.20	7.05	0.00	0.02	0.01	±0.20
9.92	9.59	9.41	9.93	9.61	9.41	0.01	0.02	0.00	±0.20
13,4	13.0	12.7	13.4	13.0	12.7	0.00	0.00	0.00	±0.20
18.1	17.5	17.1	18.0	17.5	17.1	-0.05	0.00	0.00	±0.20
24.4	23.6	23.1	24.4	23.7	23.2	0.00	0.04	0.04	±0.20
32.5	31.5	30.9	32.7	31.7	31.1	0.05	0.05	0.06	±0.20
44.0	42.6	41.7	44.1	42.9	41.9	0.02	0.06	0.04	±0.20
59.4	57.8	56.5	59.8	58.1	56.8	0.06	0.04	0.05	±0.20
81.9	79.4	77.7	81.5	79.1	77.5	-0.04	-0.03	-0.02	±0.20
107	104	102	107	104	101	0.00	0.00	-0.09	±0.20
147	143	140	147	142	139	0.00	-0.06	-0.06	±0.20
205	199	194	204	198	194	-0.04	-0.04	0.00	±0.20
284	275	269	285	271	270	0.03	-0.13	0.03	±0.20
421	408	399	413	403	392	-0.17	-0.11	-0.15	±0.20
582	565	553	576	562	547	-0.09	-0.05	-0.09	±0.20
872	847	827	873	851	828	0.01	0.04	0.01	±0.20
1330	1290	1260	1340	1310	1270	0.07	0.13	0.07	±0.30
1810	1760	1720	1860	1810	1760	0.24	0.24	0.20	±0.30
2980	2890	2820	3090	3010	2930	0.31	0.35	0.33	±0.40
3640	3520	3440	3790	3690	3590	0.35	0.41	0.37	±0.50

SPEAG H-field linearity tolerance criteria1:

±1.0dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

^{±0.3}dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

 $[\]pm 0.5 dB$ for applied H-fields $\geq 3000 \, A/m$

¹Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	Automorphism (A
x	У	z	x	У	Z	x	У	Z	Tolerance/(dB
0.380	0.360	0.360	0.400	0.390	0.380	0.45	0.70	0.47	±1.00
0.510	0.490	0.490	0.530	0.530	0.510	0.33	0.68	0.35	±1.00
0.710	0.680	0.670	0.700	0.690	0.700	-0.12	0.13	0.38	±1.00
0.920	0.880	0.880	0.920	0.880	0.890	0.00	0.00	0.10	±1.00
1.25	1.20	1.19	1.24	1.19	1.18	-0.07	-0.07	-0.07	±1.00
1.71	1.64	1.63	1.70	1.65	1.63	-0.05	0.05	0.00	±1.00
2.28	2.19	2.18	2.28	2.20	2.19	0.00	0.04	0.04	±0.20
3.05	2.93	2.91	3.04	2.96	2.90	-0.03	0.09	-0.03	±0.20
4.13	3.98	3.95	4.15	4.02	3.96	0.04	0.09	0.02	±0.20
5.59	5.38	5.35	5.61	5.41	5.35	0.03	0.05	0.00	±0.20
7.52	7.24	7.20	7.53	7.27	7.20	0.01	0.04	0.00	±0.20
10.0	9.67	9.61	10.1	9.70	9.60	0.09	0.03	-0.01	±0.20
13.6	13.1	13.0	13.6	13.1	13.0	0.00	0.00	0.00	±0.20
18.3	17.6	17.5	18.3	17.7	17.6	0.00	0.05	0.05	±0.20
24.7	23.8	23.6	24.7	23.9	23.7	0.00	0.04	0.04	±0.20
32.9	31.8	31.6	33.1	32.0	31.7	0.05	0.05	0.03	±0.20
44.5	43.0	42.6	44.7	43.2	42.8	0.04	0.04	0.04	±0.20
60.2	58.2	57.7	60.6	58.5	58.0	0.06	0.04	0.05	±0.20
82.9	80.0	79.4	82.5	79.8	79.1	-0.04	-0.02	-0.03	±0.20
109	105	104	108	104	104	-0.08	-0.08	0.00	±0.20
149	144	143	149	144	142	0.00	0.00	-0.06	±0.20
207	200	198	206	200	198	-0.04	0.00	0.00	±0.20
287	278	275	288	273	276	0.03	-0.16	0.03	±0.20
426	412	408	418	407	401	-0,16	-0.11	-0.15	±0.20
590	570	565	582	566	558	-0.12	-0.06	-0.11	±0.20
883	854	845	883	858	845	0.00	0.04	0.00	±0.20
1340	1300	1280	1360	1320	1300	0.13	0.13	0.13	±0.30
1840	1770	1750	1880	1830	1800	0.19	0.29	0.24	±0.30
3010	2910	2880	3120	3030	2990	0.31	0.35	0.33	±0.50
3680	3550	3520	3830	3720	3670	0.35	0.41	0.36	±0.50

- ±1.0dB for applied H-fields < 2.0 A/m
- ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
- $\pm 0.4 dB$ for applied H-fields $\geq 2000 \, A/m$ and $< 3000 \, A/m$
- $\pm 0.5 dB$ for applied H-fields $\geq 3000 A/m$

¹Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	
x	У	z	x	У	Z	x	У	Z	Tolerance/(dB)
0,370	0.360	0.360	0.390	0.390	0.390	0.46	0.70	0.70	±1.00
0.500	0.490	0.500	0.530	0.510	0.520	0.51	0.35	0.34	±1.00
0.690	0.680	0.680	0.710	0.680	0.690	0.25	0.00	0.13	±1.00
0.900	0.890	0.890	0.900	0.890	0.880	0.00	0.00	-0.10	±1.00
1.22	1.20	1.20	1.21	1.21	1.19	-0.07	0.07	-0.07	±1.00
1.67	1.65	1.65	1.67	1.64	1.65	0.00	-0.05	0.00	±1.00
2.23	2.19	2.19	2.26	2.21	2.20	0.12	0.08	0.04	±0.20
2.98	2.93	2.94	2.99	2.95	2.95	0.03	0.06	0.03	±0.20
4.05	3.99	3.99	4.06	4.02	3.99	0.02	0.07	0.00	±0.20
5.47	5.39	5.39	5,49	5.41	5.39	0.03	0.03	0.00	±0.20
7.37	7.26	7.26	7.40	7.27	7.25	0.04	0.01	-0.01	±0.20
9.83	9.69	9.69	9.91	9.72	9.70	0.07	0.03	0.01	±0.20
13.3	13.1	13.1	13.4	13.2	13.1	0.07	0.07	0.00	±0.20
17.9	17.7	17.6	18.0	17.7	17.6	0.05	0.00	0.00	±0.20
24.2	23.9	23.8	24.2	23.9	23.8	0.00	0.00	0.00	±0.20
32.2	31.9	31.8	32.4	32.1	32.0	0.05	0.05	0.05	±0.20
43.6	43.1	42.9	43.8	43.3	43.1	0.04	0.04	0.04	±0.20
58.9	58.3	58.1	59.3	58.7	58.5	0.06	0.06	0.06	±0.20
81.2	80.2	80.1	80.8	79.9	79.8	-0.04	-0.03	-0.03	±0.20
106	105	105	106	105	104	0.00	0.00	-0.08	±0.20
146	144	144	146	144	144	0.00	0.00	0.00	±0.20
203	201	200	202	200	199	-0.04	-0.04	-0.04	±0.20
281	278	277	282	274	279	0.03	-0.13	0.06	±0.20
417	413	411	410	407	404	-0.15	-0.13	-0.15	±0.20
577	571	569	570	568	563	-0.11	-0.05	-0.09	±0.20
865	856	852	864	860	852	-0.01	0.04	0.00	±0.20
1310	1300	1290	1330	1320	1310	0.13	0.13	0.13	±0.30
1800	1780	1770	1840	1830	1810	0.19	0.24	0.19	±0.30
2950	2920	2900	3060	3040	3010	0.32	0.35	0.32	±0.40
3600	3560	3550	3750	3720	3700	0.35	0.38	0.36	±0.50

 $[\]pm 1.0$ dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

 $[\]pm 0.3$ dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(5-71-000 E	
x	у	Z	x	у	Z	x	У	Z	Tolerance/(dB)
0.370	0.360	0.360	0.400	0.390	0.380	0.68	0.70	0.47	±1.00
0.500	0.490	0.490	0.520	0.520	0.520	0.34	0.52	0.52	±1.00
0.690	0.680	0.670	0.680	0.690	0.690	-0.13	0.13	0.26	±1.00
0.900	0.880	0.880	0.900	0.880	0.870	0.00	0.00	-0.10	±1.00
1.22	1.20	1.19	1.22	1.20	1.19	0.00	0.00	0.00	±1.00
1.67	1.64	1.63	1.68	1.65	1.63	0.05	0.05	0.00	±1.00
2.23	2.19	2.17	2.23	2.18	2.17	0.00	-0.04	0.00	±0.20
2.98	2.93	2,90	2.97	2.93	2.90	-0.03	0.00	0.00	±0.20
4.04	3.98	3.94	4.03	3.98	3.93	-0.02	0.00	-0.02	±0.20
5.46	5.39	5.33	5.44	5.39	5.33	-0.03	0.00	0.00	±0.20
7.35	7.25	7.17	7.33	7.25	7.19	-0.02	0.00	0.02	±0.20
9.81	9.68	9.58	9.82	9.67	9.64	0.01	-0.01	0.05	±0.20
13.3	13.1	12.9	13.3	13.1	13.0	0.00	0.00	0.07	±0.20
17.9	17.6	17.4	17.9	17.6	17.5	0.00	0.00	0.05	±0.20
24.1	23.8	23.5	24.1	23.9	23.6	0.00	0.04	0.04	±0.20
32.2	31.8	31.4	32.4	32.0	31.6	0.05	0.05	0.06	±0.20
43.5	43.0	42.4	43.7	43.2	42.6	0.04	0.04	0.04	±0.20
58.8	58.3	57.5	59.2	58.6	57.8	0.06	0.04	0.05	±0.20
81.0	80.1	79.1	80.7	79.8	78.8	-0.03	-0.03	-0.03	±0.20
106	105	104	106	105	103	0.00	0.00	-0.08	±0.20
146	144	142	145	144	142	-0.06	0.00	0.00	±0.20
203	201	198	202	200	197	-0.04	-0.04	-0.04	±0.20
281	278	274	282	273	275	0.03	-0.16	0.03	±0.20
416	412	406	409	407	399	-0.15	-0.11	-0.15	±0.20
576	570	562	569	566	556	-0.11	-0.06	-0.09	±0.20
863	854	842	863	858	842	0.00	0.04	0.00	±0.20
1310	1300	1280	1330	1320	1300	0.13	0.13	0.13	±0.30
1790	1770	1750	1840	1820	1790	0.24	0.24	0.20	±0.30
2950	2910	2870	3050	3020	2980	0.29	0.32	0.33	±0.40
3600	3550	3500	3750	3680	3650	0.35	0.31	0.36	±0.50

^{±1.0}dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

 $[\]pm 0.3$ dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	ference/(dB)	
x	y	z	x	y	Z	x	у	Z	Tolerance/(dB
0.370	0.370	0.370	0.390	0.380	0.380	0.46	0.23	0.23	±1.00
0.500	0.500	0.500	0.520	0.490	0.510	0.34	-0.18	0.17	±1.00
0.680	0.690	0.680	0.700	0.680	0.690	0.25	-0.13	0.13	±1.00
0.890	0.900	0.890	0.890	0.900	0.900	0.00	0.00	0.10	±1.00
1.21	1.22	1.20	1.22	1.24	1.22	0.07	0.14	0.14	±1.00
1.65	1.67	1.65	1.69	1.69	1.67	0.21	0.10	0.10	±1.00
2.20	2.23	2.20	2.22	2.24	2.22	0.08	0.04	0.08	±0.20
2.95	2.98	2.94	2.98	3.00	2.96	0.09	0.06	0.06	±0.20
4.00	4.05	3.99	4.04	4.06	4.01	0.09	0.02	0.04	±0.20
5.41	5.48	5.40	5.44	5.50	5.41	0.05	0.03	0.02	±0.20
7.28	7.38	7.27	7.30	7.39	7.27	0.02	0.01	0.00	±0.20
9.72	9.85	9.71	9.75	9.87	9.71	0.03	0.02	0.00	±0.20
13.1	13.3	13.1	13.2	13.4	13.1	0.07	0.07	0.00	±0.20
17.7	18.0	17.7	17.7	18.0	17.7	0.00	0.00	0.00	±0.20
23.9	24.3	23.9	23.9	24.3	23.9	0.00	0.00	0.00	±0.20
31.9	32.4	31.9	32.0	32.6	32.0	0.03	0.05	0.03	±0.20
43.1	43.8	43.0	43.3	44.0	43.2	0.04	0.04	0.04	±0.20
58.2	59.3	58.2	58.7	59.7	58.5	0.07	0.06	0.04	±0.20
80.3	81.6	80.2	79.9	81.3	79.9	-0.04	-0.03	-0.03	±0.20
105	107	105	105	106	105	0.00	-0.08	0.00	±0.20
145	147	144	144	146	144	-0.06	-0.06	0.00	±0.20
201	204	200	200	204	200	-0.04	0.00	0.00	±0.20
278	283	278	279	278	279	0.03	-0.15	0.03	±0.20
412	420	412	405	414	405	-0.15	-0.12	-0.15	±0.20
571	581	570	564	577	564	-0.11	-0.06	-0.09	±0.20
855	870	853	855	874	854	0.00	0.04	0.01	±0.20
1300	1320	1300	1320	1350	1320	0.13	0.20	0.13	±0.30
1780	1810	1770	1820	1860	1820	0.19	0.24	0.24	±0.30
2920	2970	2910	3030	3090	3020	0.32	0.34	0.32	±0.40
3560	3620	3550	3710	3790	3700	0.36	0.40	0.36	±0.50

 $[\]pm 1.0$ dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

 $[\]pm 0.3$ dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

 $[\]pm 0.4 dB$ for applied H-fields $\geq 2000 \, A/m$ and $< 3000 \, A/m$

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ding	Diff	erence/(
x	у	Z	x	У	Z	x	У	Z	Tolerance/(dB
0.370	0.370	0.370	0.380	0.390	0.390	0.23	0.46	0.46	±1.00
0.510	0.510	0.510	0.490	0.530	0.530	-0.35	0.33	0.33	±1.00
0.690	0.700	0.700	0.690	0.690	0.710	0.00	-0.12	0.12	±1.00
0.900	0.910	0.910	0.910	0.900	0.910	0.10	-0.10	0.00	±1.00
1.23	1.23	1.23	1.24	1.23	1.23	0.07	0.00	0.00	±1.00
1.68	1.69	1.69	1.70	1.71	1.70	0.10	0.10	0.05	±1.00
2.24	2.25	2.25	2.25	2.25	2.25	0.04	0.00	0.00	±0.20
3.00	3.01	3.01	3.01	3.01	3.00	0.03	0.00	-0.03	±0.20
4.07	4.08	4.08	4.08	4.10	4.09	0.02	0.04	0.02	±0.20
5.50	5.53	5.52	5.52	5.55	5.53	0.03	0.03	0.02	±0.20
7.40	7.44	7.43	7.41	7.46	7.44	0.01	0.02	0.01	±0.20
9.88	9.93	9.93	9.90	9.96	9.94	0.02	0.03	0.01	±0.20
13.3	13.4	13.4	13.4	13.5	13.4	0.07	0.06	0.00	±0.20
18.0	18.1	18.1	18.0	18.1	18.1	0.00	0.00	0.00	±0.20
24.3	24.5	24.4	24.3	24.5	24.4	0.00	0.00	0.00	±0.20
32.4	32.6	32.6	32.6	32.8	32.7	0.05	0.05	0.03	±0.20
43.8	44.1	44.0	44.0	44.3	44.2	0.04	0.04	0.04	±0.20
59.2	59.8	59.6	59.6	60.1	59.9	0.06	0.04	0.04	±0.20
81.6	82.2	82.0	81.2	82.0	81.7	-0.04	-0.02	-0.03	±0.20
107	108	107	106	107	107	-0.08	-0.08	0.00	±0.20
147	148	148	146	148	147	-0.06	0.00	-0.06	±0.20
204	206	205	203	205	204	-0.04	-0.04	-0.04	±0.20
283	285	284	284	280	285	0.03	-0.15	0.03	±0.20
419	423	421	412	418	414	-0.15	-0.10	-0.15	±0.20
580	585	583	573	582	577	-0.11	-0.04	-0.09	±0.20
869	877	873	869	882	873	0.00	0.05	0.00	±0.20
1320	1330	1330	1340	1360	1350	0.13	0.19	0.13	±0.30
1810	1820	1810	1850	1880	1860	0.19	0.28	0.24	±0.30
2970	2990	2970	3080	3120	3090	0.32	0.37	0.34	±0.40
3620	3650	3630	3780	3820	3790	0.38	0.40	0.37	±0.50

^{±1.0}dB for applied H-fields < 2.0 A/m

 $[\]pm 0.2 dB$ for applied H-fields $\geq 2.0 \, \text{A/m}$ and $< 1000 \, \text{A/m}$

 $[\]pm 0.3 dB$ for applied H-fields $\geq 1000 \, A/m$ and $< 2000 \, A/m$

 $[\]pm 0.4 dB$ for applied H-fields $\geq 2000 \, A/m$ and $< 3000 \, A/m$

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	The man of
x	у	z	x	у	Z	x	У	Z	Tolerance/(dB)
0.380	0.370	0.370	0.390	0.390	0.380	0.23	0.46	0.23	±1.00
0.510	0.500	0.500	0.520	0.520	0.510	0.17	0.34	0.17	±1,00
0.700	0.690	0.690	0.690	0.700	0.680	-0.12	0.12	-0.13	±1.00
0.920	0.900	0.900	0.920	0.910	0.890	0.00	0.10	-0.10	±1.00
1.24	1.22	1.22	1.26	1.25	1.21	0.14	0.21	-0.07	±1.00
1.70	1.68	1.67	1.71	1.70	1.67	0.05	0.10	0.00	±1.00
2.27	2.24	2.23	2.29	2.27	2.23	0.08	0.12	0.00	±0.20
3.04	2.99	2.98	3.05	3.02	2.98	0.03	0.09	0.00	±0.20
4.12	4.06	4.05	4.13	4.08	4.04	0.02	0.04	-0.02	±0.20
5.57	5.50	5.47	5.59	5.52	5.47	0.03	0.03	0.00	±0.20
7.50	7.40	7.37	7.55	7.41	7.36	0.06	0.01	-0.01	±0.20
10.0	9.88	9.84	10.1	9.90	9.84	0.09	0.02	0.00	±0.20
13.5	13.3	13.3	13.6	13.4	13.3	0.06	0.07	0.00	±0.20
18.2	18.0	17.9	18.3	18.0	17.9	0.05	0.00	0.00	±0.20
24.6	24.3	24.2	24.6	24.4	24.2	0.00	0.04	0.00	±0.20
32.8	32.5	32.3	33.0	32.6	32.5	0.05	0.03	0.05	±0.20
44.4	43.9	43.6	44.6	44.1	43.8	0.04	0.04	0.04	±0.20
60.0	59.5	59.0	60.4	59.8	59.4	0.06	0.04	0.06	±0.20
82.7	81.8	81.3	82.3	81.5	81.0	-0.04	-0.03	-0.03	±0.20
108	107	106	108	107	106	0.00	0.00	0.00	±0.20
149	147	146	148	147	146	-0.06	0.00	0.00	±0.20
207	205	203	206	204	202	-0.04	-0.04	-0.04	±0.20
286	284	282	288	279	283	0.06	-0.15	0.03	±0.20
425	421	417	417	415	410	-0.17	-0.12	-0.15	±0.20
588	582	578	581	579	571	-0.10	-0.04	-0.11	±0.20
880	872	865	880	876	865	0.00	0.04	0.00	±0.20
1340	1330	1310	1360	1350	1330	0.13	0.13	0.13	±0.30
1830	1810	1800	1870	1860	1840	0.19	0.24	0.19	±0.30
3010	2970	2950	3120	3100	3060	0.31	0.37	0.32	±0.50
3670	3630	3600	3820	3790	3750	0.35	0.37	0.35	±0.50

SPEAG H-field linearity tolerance criteria1:

±1.0dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

 $[\]pm 0.3$ dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	
x	у	2	x	У	z	x	У	Z	Tolerance/(dB)
0.380	0.370	0.360	0.400	0.390	0.370	0.45	0.46	0.24	±1.00
0.510	0.500	0.480	0.540	0.530	0.500	0.50	0.51	0.35	±1.00
0.700	0.690	0.660	0.720	0.700	0.680	0.24	0.12	0.26	±1.00
0.910	0.900	0.870	0.920	0.910	0.870	0.09	0.10	0.00	±1.00
1.23	1.22	1.17	1.25	1.22	1.18	0.14	0.00	0.07	±1.00
1.69	1.68	1.61	1.71	1.69	1.62	0.10	0.05	0.05	±1.00
2.26	2.23	2.14	2.27	2.25	2.17	0.04	0.08	0.12	±0.20
3.02	2.99	2.86	3.04	3.00	2.88	0.06	0.03	0.06	±0.20
4.10	4.06	3.89	4.10	4.07	3.89	0.00	0.02	0.00	±0.20
5.54	5.50	5.26	5.55	5.52	5.26	0.02	0.03	0.00	±0,20
7.46	7.39	7.08	7.45	7.43	7.07	-0.01	0.05	-0.01	±0.20
9.95	9.88	9.46	9.96	9.91	9,45	0.01	0.03	-0.01	±0.20
13.4	13.3	12.8	13.4	13.4	12.8	0.00	0.07	0.00	±0.20
18.1	18.0	17.2	18.1	18.1	17.2	0.00	0.05	0.00	±0.20
24.5	24.3	23.2	24.5	24.4	23.3	0.00	0.04	0.04	±0.20
32.6	32.5	31.0	32.8	32.6	31.2	0.05	0.03	0.06	±0.20
44.1	43.9	41.9	44.3	44.1	42.1	0.04	0.04	0.04	±0.20
59.6	59.4	56.7	60.0	59.8	57.1	0.06	0.06	0.06	±0.20
82.2	81.7	78.1	81.8	81.5	77.8	-0.04	-0.02	-0.03	±0.20
108	107	102	107	107	102	-0.08	0.00	0.00	±0.20
148	147	141	147	147	140	-0.06	0.00	-0.06	±0.20
205	205	195	205	204	195	0.00	-0.04	0.00	±0.20
285	284	271	286	279	272	0.03	-0.15	0.03	±0.20
422	420	401	415	415	394	-0.15	-0.10	-0.15	±0.20
584	582	555	577	578	549	-0.10	-0.06	-0.09	±0.20
875	872	831	875	876	831	0.00	0.04	0.00	±0.20
1330	1320	1260	1350	1350	1280	0.13	0.20	0.14	±0.30
1820	1810	1730	1860	1860	1770	0.19	0.24	0.20	±0.30
2990	2970	2830	3100	3090	2940	0.31	0.34	0.33	±0.40
3650	3620	3460	3800	3790	3600	0.35	0.40	0.34	±0.50

^{±1.0}dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

 $[\]pm 0.3$ dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

E-fie	Id/(V/m) App	olied	E-fie	ld/(V/m) Rea	ding	Diff	ference/(dB)	Tol	erance/(d	B)
X	y	z	x	у	Z	x	у	Z	x	y	2
0.320	0.200	0.080	0.320	0.200	0.090	0.00	0.00	1.02	±5.00	±5.00	±5.00
0.430	0.270	0.110	0.440	0.280	0.150	0.20	0.32	2.69	±5.00	±5.00	±5.00
0.590	0.370	0.150	0.610	0.370	0.160	0.29	0.00	0.56	±5.00	±5.00	±5.00
0.770	0.480	0.190	0.780	0.490	0.220	0.11	0.18	1.27	±5.00	±5.00	±5.00
1.04	0.650	0.260	1.05	0.650	0.250	0.08	0.00	-0.34	±5.00	±5.00	±5.00
1.43	0.900	0.360	1.44	0.910	0.380	0.06	0.10	0.47	±5.00	±5.00	±5.00
1.91	1.20	0.480	1.93	1.20	0.480	0.09	0.00	0.00	±5.00	±5.00	±5.00
2.55	1.60	0.640	2.56	1.60	0.640	0.03	0.00	0.00	±1.00	±5.00	±5.00
3.46	2.18	0.870	3.49	2.16	0.880	0.07	-0.08	0.10	±1.00	±1.00	±5.00
4.68	2.94	1.17	4.71	2.93	1.16	0.06	-0.03	-0.07	±1.00	±1.00	±5.00
6.30	3.96	1.58	6.34	3.96	1.55	0.05	0.00	-0.17	±1.00	±1.00	±5.00
8.42	5.29	2.11	8.44	5.25	2.05	0.02	-0.07	-0.25	±1.00	±1.00	±1.00
11.4	7.15	2.85	11.4	7.10	2.80	0.00	-0.06	-0.15	±1.00	±1.00	±1.00
15.3	9.64	3.84	15.4	9.60	3.78	0.06	-0.04	-0.14	±1.00	±1.00	±1.00
20.7	13.0	5.19	20.8	12.9	5.08	0.04	-0.07	-0.19	±1.00	±1.00	±1.00
27.7	17.4	6.92	27.9	17.4	6.84	0.06	0.00	-0.10	±1.00	±1.00	±1.00
37.4	23.5	9.35	37.7	23.5	9.24	0.07	0.00	-0.10	±1.00	±1.00	±1.00
50.7	31.8	12.7	51.1	31.8	12.6	0.07	0.00	-0.07	±1.00	±1.00	±1.0
69.7	43.8	17.4	69.6	43.4	17.0	-0.01	-0.08	-0.20	±1.00	±1.00	±1.0
91.3	57.4	22.8	91.2	56.8	22.4	-0.01	-0.09	-0.15	±1.00	±1.00	±1.0
125	78.8	31.4	125	78.1	30.8	0.00	-0.08	-0.17	±1.00	±1.00	±1.0
174	110	43.6	174	109	42.8	0.00	-0.08	-0.16	±1.00	±1.00	±1.0
242	152	60.4	244	152	59.8	0.07	0.00	-0.09	±1.00	±1.00	±1.00
358	225	89.5	347	216	89.0	-0.27	-0.35	-0.05	±1.00	±1.00	±1.0
496	312	124	484	301	124	-0.21	-0.31	0.00	±1.00	±1.00	±1.00
743	467	186	735	457	188	-0.09	-0.19	0.09	±1.00	±1.00	±1.00
1130	710	282	1130	704	290	0.00	-0.07	0.24	±1.00	±1.00	±1.00
1540	970	386	1570	973	401	0.17	0.03	0.33	±1.00	±1.00	±1.00
2530	1590	633	2610	1620	637	0.27	0.16	0.05	±1.00	±1.00	±1.00
3090	1940	773	3200	1980	782	0.30	0.18	0.10	±1.00	±1.00	±1.00

SPEAG E-field linearity tolerance criteria 1 ; $\pm 5.0\,\mathrm{dB}$ for applied E-field < 2V/m

^{±1.0}dB for applied E-field ≥ 2V/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

Frequency Response

Frequency Response, H-field, Channel 0

	H-field	d/(A/m) Ap	plied	H-field	I/(A/m) Rea	ading	Diff	erence/(dB)	
f/(Hz)	X	У	Z	x	у	Z	X	У	Z	Tolerance/(dB
3000	1.47	1.47	1.47	1.47	1.46	1.47	0.00	-0.06	0.00	±0.3
3200	1.47	1.47	1.47	1.47	1.45	1.48	0.00	-0.12	0.06	±0.3
4000	1.46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.45	1.44	1.45	0.00	-0.06	0.00	±0.3
6600	1.44	1.44	1.43	1.44	1.43	1.43	0.00	-0.06	0.00	±0.3
8200	1.43	1.42	1.42	1.42	1.43	1.43	-0.06	0.06	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.30	4.22	4.18	0.08	0.06	-0.02	±0,3
13400	4.26	4.21	4.21	4.26	4.21	4.22	0.00	0.00	0.02	±0,3
17000	4.26	4.21	4,21	4.27	4.22	4.21	0.02	0.02	0.00	±0.3
21400	4,29	4.24	4.23	4.29	4.25	4.23	0.00	0.02	0.00	±0.3
27200	4.29	4.24	4.23	4.30	4.24	4.23	0.02	0.00	0.00	±0.3
34400	4.29	4.25	4.24	4.29	4.25	4.25	0.00	0.00	0.02	±0.3
40000	4.27	4.24	4.24	4.29	4.25	4,25	0.04	0.02	0.02	±0.3
43600	4.27	4.24	4.23	4.29	4.23	4.24	0.04	-0.02	0.02	±0,3
55400	4.26	4.23	4.22	4.27	4.23	4.23	0.02	0.00	0.02	±0.3
70000	4.25	4.22	4.21	4.26	4.22	4.22	0.02	0.00	0.02	±0.3
88800	4.23	4.20	4.20	4.24	4.21	4.20	0.02	0.02	0.00	±0.3
112400	4.22	4.19	4.19	4.23	4.20	4.20	0.02	0.02	0.02	±0.3
142400	4.20	4.17	4.17	4.21	4.18	4.17	0.02	0.02	0.00	±0.3
161750	4.18	4.16	4.15	4.19	4.16	4.15	0.02	0.00	0.00	±0.3
180400	4.17	4.15	4.14	4.18	4.15	4,15	0.02	0.00	0.02	±0.3
228400	4.14	4.11	4.11	4.15	4.12	4.11	0.02	0.02	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.08	0.02	0.00	0.00	±0.3
366400	4.06	4.04	4.04	4.07	4.04	4.04	0.02	0.00	0.00	±0.3
400 000	4.04	4.02	4.02	4.05	4.03	4.02	0.02	0.02	0.00	±0.3
464000	4.01	3.99	3.99	4.02	4.00	3.99	0.02	0.02	0.00	±0.3
587800	3.97	3.95	3.95	3.97	3.95	3.95	0.00	0.00	0.00	±0.3
744200	3.92	3.90	3.90	3.92	3.91	3.90	0.00	0.02	0.00	±0.3
942600	3.90	3.89	3.89	3.91	3.89	3.89	0.02	0.00	0.00	±0.3
1193600	3.88	3.87	3.87	3.89	3.87	3.87	0.02	0.00	0.00	±0.3
1511600	3.87	3.86	3.86	3.88	3.87	3.86	0.02	0.02	0.00	±0.3
1914400	3.85	3.84	3.84	3.86	3.84	3.84	0.02	0.00	0.00	±0.3
2424400	3.84	3.83	3.83	3.84	3.81	3.83	0.00	-0.05	0.00	±0.3
3070200	3.81	3.79	3.79	3.81	3.80	3.79	0.00	0.02	0.00	±0.3
3888000	3.76	3.74	3.74	3.77	3.71	3.74	0.02	-0.07	0.00	±0.3
4000000	3.75	3.73	3.73	3.76	3.72	3.73	0.02	-0.02	0.00	±0.3
4923800	3.68	3.67	3.67	3.69	3.67	3.67	0.02	0.00	0.00	±0.3
6235400	3.58	3.57	3.57	3.58	3.57	3.57	0.00	0.00	0.00	±0.3
7896400	3.43	3.42	3.42	3.44	3.41	3.42	0.03	-0.03	0.00	±0.3
10000000	3.29	3.28	3.28	3.31	3.29	3.23	0.05	0.03	-0.13	±0.3

¹ Calibration uncertainty not taken into account (shared risk 50%).

	H-field	d/(A/m) Ap	plied	H-field	1/(A/m) Rea	ading	Diff	erence/(dB)	A
f/(Hz)	x	У	Z	X	У	Z	X	У	Z	Tolerance/(dB)
3000	1.47	1.47	1.47	1.46	1.47	1.47	-0.06	0.00	0.00	±0.3
3200	1.47	1.47	1.47	1.46	1.45	1.48	-0.06	-0.12	0.06	±0.3
4000	1.46	1.46	1.46	1.47	1,47	1.46	0.06	0.06	0.00	±0.3
5200	1.45	1.45	1.45	1.47	1.45	1.45	0.12	0.00	0.00	±0.3
6600	1.44	1.44	1.43	1.43	1.43	1.43	-0.06	-0.06	0.00	±0.3
8200	1.43	1.42	1.42	1.42	1.43	1.43	-0.06	0.06	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.27	4.22	4.20	0.02	0.06	0.02	±0.3
13400	4.26	4.21	4.21	4.26	4.22	4.20	0.00	0.02	-0.02	±0.3
17000	4.26	4.21	4.21	4.27	4.22	4.21	0.02	0.02	0,00	±0.3
21400	4.29	4.24	4.23	4.29	4.23	4.24	0.00	-0.02	0.02	±0.3
27200	4.29	4.24	4.23	4.30	4.26	4.23	0.02	0.04	0.00	±0.3
34400	4.29	4.25	4.24	4.30	4.26	4.25	0.02	0.02	0.02	±0.3
40000	4.27	4.24	4.24	4.29	4.25	4.25	0.04	0.02	0.02	±0.3
43600	4.27	4.24	4.23	4.27	4.24	4.23	0.00	0.00	0.00	±0.3
55400	4.26	4.23	4.22	4.27	4.24	4.22	0.02	0.02	0.00	±0.3
70000	4.25	4.22	4.21	4.27	4.23	4.22	0.04	0.02	0.02	±0.3
88800	4.23	4.20	4.20	4.25	4.21	4.20	0.04	0.02	0.00	±0.3
112400	4.22	4.19	4.19	4.24	4.20	4.19	0.04	0.02	0.00	±0.3
142400	4.20	4.17	4.17	4.22	4.18	4.18	0.04	0.02	0.02	±0.3
161750	4.18	4.16	4.15	4.20	4.16	4.16	0.04	0.00	0.02	±0.3
180400	4.17	4.15	4.14	4.18	4.15	4.14	0.02	0.00	0.00	±0.3
228400	4.14	4.11	4.11	4.15	4.12	4.11	0.02	0.02	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.07	0.02	0.00	-0.02	±0.3
366400	4.06	4.04	4.04	4.07	4.04	4.04	0.02	0.00	0.00	±0.3
400000	4.04	4.02	4.02	4.05	4.02	4.02	0.02	0.00	0.00	±0.3
464000	4.01	3.99	3.99	4.02	3.99	3.99	0.02	0.00	0.00	±0.3
587800	3.97	3.95	3.95	3.98	3.95	3.94	0.02	0.00	-0.02	±0.3
744200	3.92	3.90	3.90	3.92	3.90	3.90	0.00	0.00	0.00	±0.3
942600	3.90	3.89	3.89	3.91	3.89	3.89	0.02	0.00	0.00	±0.3
1193600	3.88	3.87	3.87	3.89	3.87	3.87	0.02	0.00	0.00	±0.3
1511600	3.87	3.86	3.86	3.88	3.86	3.86	0.02	0.00	0.00	±0.3
1914400	3.85	3.84	3.84	3.87	3.85	3.84	0.05	0.02	0.00	±0.3
2424400	3.84	3.83	3.83	3.85	3.83	3.83	0.02	0.00	0.00	±0.3
3070200	3.81	3.79	3.79	3.82	3.79	3.78	0.02	0.00	-0.02	±0.3
3888000	3.76	3.74	3.74	3.76	3.74	3.74	0.00	0.00	0.00	±0.3
4000000	3.75	3.73	3.73	3.76	3.72	3.73	0.02	-0.02	0.00	±0.3
4923800	3.68	3.67	3.67	3.70	3.67	3.66	0.05	0.00	-0.02	±0.3
6235400	3.58	3.57	3.57	3.58	3.57	3.59	0.00	0.00	0.05	±0.3
7896400	3.43	3.42	3.42	3.44	3.42	3.41	0.03	0.00	-0.03	±0.3
10000000	3.29	3.28	3.28	3.31	3.27	3.26	0.05	-0.03	-0.05	±0.3

¹Calibration uncertainty not taken into account (shared risk 50%).

	H-field	d/(A/m) Ap	plied	H-field	d/(A/m) Rea	ading	Diff	ference/(dB)	
f/(Hz)	x	y	Z	x	у	Z	x	у	2	Tolerance/(dB)
3000	1.47	1.47	1.47	1.47	1.48	1.47	0.00	0.06	0.00	±0,3
3200	1.47	1.47	1.47	1.47	1.45	1.48	0.00	-0.12	0.06	±0.3
4000	1.46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.46	1.45	1.45	0.06	0.00	0.00	±0.3
6600	1.44	1.44	1.43	1.44	1.44	1.43	0.00	0.00	0.00	±0.3
8200	1.43	1.42	1.42	1.42	1.43	1.43	-0.06	0.06	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.29	4.17	4.18	0.06	-0.04	-0.02	±0.3
13400	4.26	4.21	4.21	4.27	4.21	4.19	0.02	0.00	-0.04	±0.3
17000	4.26	4.21	4.21	4.27	4.22	4.21	0.02	0.02	0.00	±0.3
21400	4.29	4.24	4.23	4.26	4.24	4.23	-0.06	0.00	0.00	±0.3
27200	4.29	4.24	4.23	4.29	4.24	4.24	0.00	0.00	0.02	±0.3
34400	4.29	4.25	4.24	4.29	4.25	4.25	0.00	0.00	0.02	±0.3
40000	4.27	4.24	4.24	4.29	4.25	4.25	0.04	0.02	0.02	±0.3
43600	4.27	4.24	4.23	4.28	4.24	4.24	0.02	0.00	0.02	±0.3
55400	4.26	4.23	4.22	4.26	4.23	4.23	0.00	0.00	0.02	±0.3
70000	4.25	4.22	4.21	4.25	4.22	4.21	0.00	0.00	0.00	±0.3
88800	4.23	4.20	4.20	4.24	4.21	4.20	0.02	0.02	0.00	±0.3
112400	4.22	4.19	4.19	4.22	4.20	4.19	0.00	0.02	0.00	±0.3
142400	4.20	4.17	4.17	4.20	4.18	4.18	0.00	0.02	0.02	±0.3
161.750	4.18	4.16	4.15	4.18	4.16	4.15	0.00	0.00	0,00	±0.3
180400	4.17	4.15	4.14	4.18	4.15	4.15	0.02	0.00	0.02	±0.3
228400	4.14	4.11	4.11	4.14	4.12	4.11	0.00	0.02	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.08	0.02	0.00	0.00	±0.3
366400	4.06	4.04	4.04	4.06	4.04	4.04	0.00	0.00	0.00	±0.3
400000	4.04	4.02	4.02	4.04	4.03	4.02	0.00	0.02	0.00	±0.3
464 000	4.01	3.99	3.99	4.02	4.00	3.99	0.02	0.02	0.00	±0.3
587800	3.97	3.95	3.95	3.97	3.95	3.95	0.00	0.00	0.00	±0,3
744200	3.92	3.90	3.90	3.92	3.91	3.90	0.00	0.02	0.00	±0.3
942600	3.90	3.89	3.89	3.91	3.90	3.89	0.02	0.02	0.00	±0.3
1193600	3.88	3.87	3.87	3.88	3.87	3.87	0.00	0.00	0.00	±0.3
1511600	3.87	3.86	3.86	3.88	3.87	3.86	0.02	0.02	0.00	±0.3
1914400	3.85	3.84	3.84	3.86	3.84	3.84	0.02	0.00	0.00	±0.3
2424400	3.84	3.83	3.83	3.84	3.82	3.83	0.00	-0.02	0.00	±0.3
3070200	3.81	3.79	3.79	3.81	3.80	3.78	0.00	0.02	-0.02	±0.3
3888000	3.76	3.74	3.74	3.76	3.73	3.74	0.00	-0.02	0.00	±0.3
4000000	3.75	3.73	3.73	3.76	3.73	3.73	0.02	0.00	0.00	±0.3
4923800	3.68	3.67	3.67	3.69	3.67	3.66	0.02	0.00	-0.02	±0.3
6235400	3.58	3.57	3.57	3.58	3.57	3.58	0.00	0.00	0.02	±0.3
7896400	3.43	3.42	3.42	3.43	3.41	3.42	0.00	-0.03	0.00	±0.3
10000000	3.29	3,28	3.28	3.27	3.28	3.24	-0.05	0.00	-0.11	±0.3

¹ Calibration uncertainty not taken into account (shared risk 50%).

3/04.	H-field	d/(A/m) Ap	plied	H-field	i/(A/m) Rea	Diff	erence/(dB)		
f/(Hz)	x	y	2	x	у	Z	X	У	Z	Tolerance/(dB
3000	1.47	1.47	1.47	1.47	1.48	1.47	0.00	0.06	0.00	±0.3
3200	1.47	1.47	1.47	1.46	1.45	1.48	-0.06	-0.12	0.06	±0.3
4000	1.46	1.46	1.46	1,46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.46	1.45	1.46	0.06	0.00	0.06	±0.3
6600	1.44	1.44	1.43	1.44	1.43	1.43	0.00	-0.06	0.00	±0.3
8200	1.43	1.42	1.42	1.41	1.43	1.43	-0.12	0.06	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.25	4.21	4.19	-0.02	0.04	0.00	±0.3
13400	4.26	4.21	4.21	4.26	4.22	4.21	0.00	0.02	0.00	±0,3
17000	4.26	4.21	4.21	4.25	4.21	4.20	-0.02	0.00	-0.02	±0.3
21400	4.29	4.24	4.23	4.29	4.24	4.25	0.00	0.00	0.04	±0.3
27200	4.29	4.24	4.23	4.31	4.24	4.23	0.04	0.00	0.00	±0.3
34400	4.29	4.25	4.24	4.30	4.25	4.25	0.02	0.00	0.02	±0.3
40000	4.27	4.24	4.24	4.30	4.25	4.25	0.06	0.02	0.02	±0.3
43600	4.27	4.24	4.23	4.27	4.24	4.25	0.00	0.00	0.04	±0.3
55400	4.26	4.23	4.22	4.27	4.23	4.23	0.02	0.00	0.02	±0.3
70000	4.25	4.22	4.21	4.25	4.22	4.22	0.00	0.00	0.02	±0.3
88800	4.23	4.20	4.20	4.25	4.22	4.20	0.04	0.04	0.00	±0.3
112400	4.22	4.19	4.19	4.23	4.21	4.19	0.02	0.04	0.00	±0.3
142400	4.20	4.17	4.17	4,21	4.18	4.18	0.02	0.02	0.02	±0.3
161750	4.18	4.16	4.15	4.19	4.17	4.16	0.02	0.02	0.02	±0.3
180400	4.17	4.15	4.14	4.18	4.15	4.15	0.02	0.00	0.02	±0.3
228400	4.14	4.11	4.11	4.14	4.12	4.11	0.00	0.02	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.08	0.02	0.00	0.00	±0.3
366 400	4.06	4.04	4.04	4.06	4.05	4.04	0.00	0.02	0.00	±0.3
400000	4.04	4.02	4.02	4.06	4.02	4.02	0.04	0.00	0.00	±0.3
464000	4.01	3.99	3.99	4.02	3.99	3.99	0.02	0.00	0.00	±0.3
587800	3.97	3.95	3.95	3.97	3.96	3.95	0.00	0.02	0.00	±0.3
744200	3.92	3.90	3.90	3.92	3.91	3.90	0.00	0.02	0.00	±0.3
942600	3.90	3.89	3.89	3.90	3.90	3.89	0.00	0.02	0.00	±0.3
1193600	3,88	3.87	3.87	3.88	3.87	3.87	0.00	0.00	0.00	±0.3
1511600	3.87	3.86	3.86	3,88	3.85	3,86	0.02	-0.02	0.00	±0.3
1914400	3.85	3.84	3.84	3.86	3.85	3.84	0.02	0.02	0.00	±0.3
2424400	3.84	3.83	3.83	3.85	3.84	3.82	0.02	0.02	-0.02	±0.3
3070200	3.81	3.79	3.79	3.81	3.79	3.78	0.00	0.00	-0.02	±0.3
3888000	3.76	3.74	3.74	3.76	3.75	3.74	0.00	0.02	0.00	±0.3
4000000	3.75	3.73	3.73	3.76	3.73	3.73	0.02	0.00	0.00	±0.3
4923800	3.68	3.67	3.67	3.69	3.67	3.65	0.02	0.00	-0.05	±0.3
6235400	3.58	3.57	3.57	3.58	3.56	3.57	0.00	-0.02	0.00	±0.3
7896400	3.43	3.42	3.42	3.43	3.42	3.42	0.00	0.00	0.00	±0.3
10000000	3.29	3.28	3,28	3.32	3.27	3.23	0.08	-0.03	-0.13	±0,3

¹ Calibration uncertainty not taken into account (shared risk 50%).

	H-field	d/(A/m) Ap	plied	H-field	d/(A/m) Rea	ading	Diff	erence/(3	
f/(Hz)	x	y	Z	X	У	Z	x	У	Z	Tolerance/(dB)
3000	1.47	1.47	1.47	1.47	1.48	1.46	0.00	0.06	-0.06	±0,3
3200	1.47	1.47	1.47	1.47	1.45	1.48	0,00	-0.12	0.06	±0,3
4000	1.46	1.46	1.46	1.47	1.46	1.47	0.06	0.00	0.06	±0.3
5200	1.45	1.45	1.45	1.46	1.45	1.45	0.06	0.00	0.00	±0.3
6600	1,44	1.44	1.43	1.44	1.44	1.43	0.00	0.00	0.00	±0,3
8200	1.43	1.42	1.42	1.42	1.42	1.43	-0.06	0.00	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.43	0.00	0.00	0.06	±0,3
10600	4.26	4.19	4.19	4.28	4.20	4.22	0.04	0.02 0.06	0.06	±0.3
13400	4.26	4.21	4.21	4.25	4.23	4.21	-0.02	0.04	0.00	±0.3
17000	4.26	4.21	4.21	4.26	4.22	4.22	0,00	0.02	0.02	±0,3
21400	4.29	4.24	4.23	4.27	4.24	4.24	-0.04	0.00	0.02	±0.3
27200	4.29	4.24	4,23	4.29	4.23	4.24	0.00	-0.02	0.02	±0,3
34400	4.29	4.25	4.24	4.29	4.26	4.25	0.00	0.02	0.02	±0.3
40 000	4.27	4.24	4.24	4.29	4.24	4.25	0.04	0.00	0.02	±0.3
43600	4.27	4.24	4.23	4.29	4.23	4.24	0.04	-0.02	0.02	±0.3
55400	4.26	4.23	4.22	4.27	4.22	4.22	0.02	-0.02	0.00	±0,3
70000	4.25	4.22	4.21	4.25	4.23	4.22	0.00	0.02	0.02	±0.3
88800	4.23	4.20	4.20	4.24	4.21	4.21	0.02	0.02	0.02	±0.3
112400	4.22	4.19	4.19	4.22	4.20	4.19	0.00	0.02	0.00	±0.3
142400	4.20	4.17	4.17	4.21	4.18	4.18	0.02	0.02	0.02	±0.3
161750	4.18	4.16	4.15	4.19	4.17	4.15	0.02	0.02	0.00	±0.3
180400	4.17	4.15	4.14	4.18	4.15	4.15	0.02	0.00	0.02	±0.3
228400	4.14	4.11	4.11	4.15	4.12	4.11	0.02	0.02	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.08	0.02	0.00	0.00	±0.3
366400	4.06	4.04	4.04	4.06	4.05	4.04	0.00	0.02	0.00	±0.3
400 000	4.04	4.02	4.02	4.04	4.02	4.02	0.00	0.00	0.00	±0.3
464000	4.01	3.99	3.99	4.02	3.99	3.99	0.02	0.00	0.00	±0.3
587800	3.97	3.95	3.95	3.97	3.96	3.95	0.00	0.02	0.00	±0.3
744200	3.92	3.90	3.90	3.92	3.90	3.90	0.00	0.00	0.00	±0.3
942600	3.90	3.89	3.89	3.91	3.89	3.89	0.02	0.00	0.00	±0,3
1193600	3.88	3.87	3.87	3.89	3,87	3,87	0.02	0.00	0.00	±0.3
1511600	3.87	3.86	3.86	3.88	3.86	3.86	0.02	0.00	0.00	±0.3
1914400	3.85	3.84	3.84	3.87	3.84	3.84	0.05	0.00	0.00	±0.3
2424400	3.84	3.83	3.83	3.85	3.82	3.83	0.02	-0.02	0.00	±0.3
3070200	3.81	3.79	3.79	3.81	3.79	3.78	0.00	0.00	-0.02	±0.3
3888000	3.76	3.74	3.74	3.76	3.73	3.74	0.00	-0.02	0.00	±0.3
4000000	3.75	3.73	3.73	3.75	3.72	3.73	0.00	-0.02	0.00	±0.3
4923800	3.68	3.67	3.67	3.70	3.67	3.66	0.05	0.00	-0.02	±0.3
6235400	3.58	3.57	3.57	3.58	3.57	3.60	0.00	0.00	0.07	±0.3
7896400	3.43	3.42	3.42	3.44	3.42	3.42	0.03	0.00	0.00	±0.3
10000000	3.29	3.28	3.28	3.30	3,23	3.29	0.03	-0.13	0.03	±0.3

Calibration uncertainty not taken into account (shared risk 50%).

	H-field	d/(A/m) Ap	plied	H-field	d/(A/m) Rea	ading	Diff	erence/(
f/(Hz)	x	y	Z	X	У	Z	x	У	Z	Tolerance/(dB)
3000	1.47	1.47	1.47	1.47	1.47	1.47	0.00	0.00	0.00	±0.3
3200	1.47	1.47	1.47	1.47	1.46	1.48	0,00	-0.06	0.06	±0.3
4000	1.46	1.46	1.46	1.46	1.46	1.45	0.00	0.00	-0.06	±0.3
5200	1.45	1.45	1.45	1.46	1.44	1.44	0.06	-0.06	-0.06	±0.3
6600	1.44	1.44	1.43	1.44	1.44	1.43	0.00	0.00	0.00	±0.3
8200	1.43	1.42	1.42	1.41	1.43	1.43	-0.12	0.06	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.29	4.20	4.19	0.06	0.02	0.00	±0.3
13400	4.26	4.21	4.21	4.28	4.21	4.21	0.04	0.00	0.00	±0.3
17000	4.26	4.21	4.21	4.28	4.23	4.20	0.04	0.04	-0.02	±0.3
21400	4.29	4.24	4.23	4.29	4.24	4.23	0.00	0.00	0.00	±0.3
27200	4.29	4.24	4.23	4.29	4.24	4.23	0.00	0.00	0.00	±0.3
34400	4.29	4.25	4.24	4.30	4.25	4.24	0.02	0.00	0.00	±0.3
40000	4.27	4.24	4.24	4.29	4.25	4.24	0.04	0.02	0.00	±0.3
43600	4.27	4.24	4.23	4.27	4.23	4.23	0.00	-0.02	0.00	±0.3
55400	4.26	4.23	4.22	4.27	4.22	4.23	0.02	-0.02	0.02	±0.3
70000	4.25	4.22	4.21	4.27	4.22	4.22	0.04	0.00	0.02	±0.3
88800	4.23	4.20	4.20	4.24	4.21	4.20	0.02	0.02	0.00	±0.3
112400	4.22	4.19	4.19	4.23	4.19	4.19	0.02	0.00	0.00	±0.3
142400	4.20	4.17	4.17	4.21	4.18	4.17	0.02	0.02	0.00	±0.3
161750	4.18	4.16	4.15	4.19	4.16	4.15	0.02	0.00	0.00	±0.3
180400	4.17	4.15	4.14	4.18	4.14	4.14	0.02	-0.02	0,00	±0.3
228400	4.14	4.11	4.11	4.15	4,12	4.11	0.02	0.02	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.08	0.02	0.00	0.00	±0.3
366400	4.06	4.04	4.04	4.07	4.04	4.04	0.02	0.00	0.00	±0.3
400 000	4.04	4.02	4.02	4.04	4.01	4.02	0.00	-0.02	0.00	±0.3
464000	4.01	3.99	3.99	4.02	3.99	3.99	0.02	0.00	0.00	±0.3
587800	3.97	3.95	3.95	3.98	3.95	3.95	0.02	0.00	0.00	±0.3
744200	3.92	3.90	3.90	3.92	3.90	3.90	0.00	0.00	0.00	±0.3
942600	3.90	3.89	3.89	3.91	3.89	3.89	0.02	0.00	0.00	±0.3
1193600	3.88	3.87	3.87	3.88	3.87	3.86	0.00	0.00	-0.02	±0.3
1511600	3.87	3.86	3.86	3.87	3.86	3.86	0.00	0.00	0.00	±0.3
1914400	3.85	3.84	3.84	3.88	3.84	3.84	0.07	0.00	0.00	±0.3
2424400	3.84	3.83	3.83	3.86	3.83	3.82	0.05	0.00	-0.02	±0.3
3070200		3.80	3.78	0.02	0.02	-0.02	±0.3			
3888000	3.76	3.74	3.74	3.76	3.74	3.74	0.00	0.00	0.00	±0.3
4000000	3.75	3.73	3.73	3.75	3.74	3.73	0.00	0.02	0.00	±0.3
4923800	3.68	3.67	3.67	3.70	3.66	3.66	0.05	-0.02	-0.02	±0.3
6235400	3.58	3.57	3.57	3.58	3.56	3.60	0.00	-0.02	0.07	±0.3
7896400	3.43	3.42	3.42	3.44	3.42	3.41	0.03	0.00	-0.03	±0.3
10000000	3.29	3.28	3.28	3.30	3.26	3.29	0.03	-0.05	0.03	±0.3

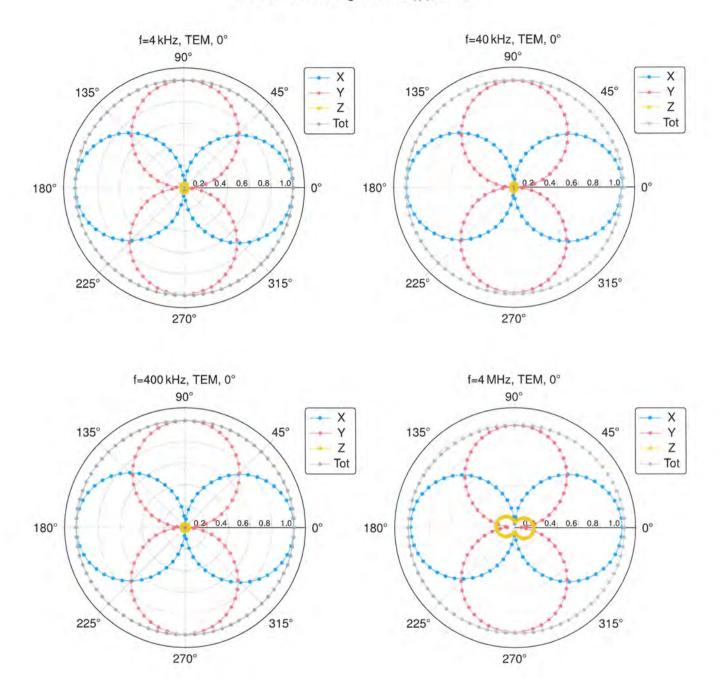
SPEAG H-field frequency response tolerance criteria 1 : $\pm 0.3 \, \text{dB}$ for applied H-fields at calibration points from 3kHz to 10MHz

¹ Calibration uncertainty not taken into account (shared risk 50%).

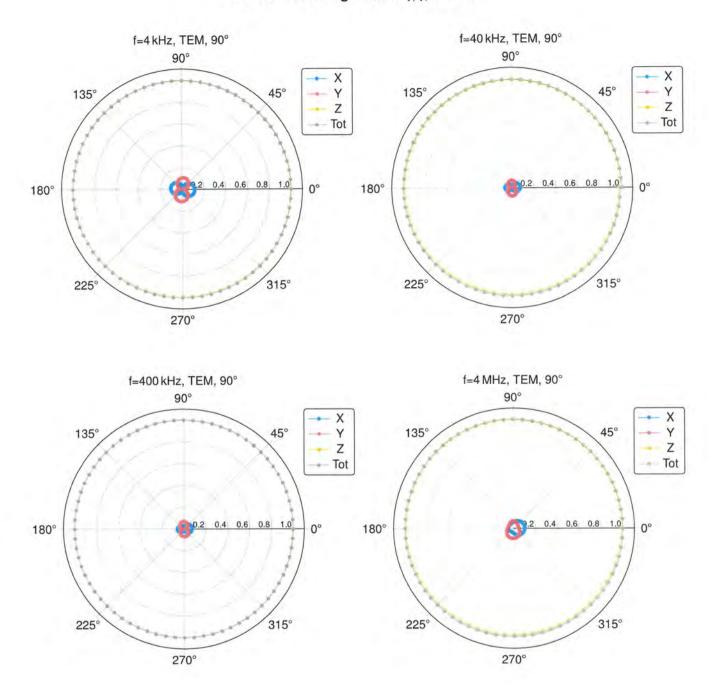
	H-field	d/(A/m) Ap	plied	H-field	I/(A/m) Rea	ading	Diff	erence/(4.04	
f/(Hz)	x	У	2	x	у	Z	X	у	Z	Tolerance/(dB
3000	1.47	1.47	1.47	1.44	1.47	1.45	-0.18	0.00	-0.12	±0.3
3200	1.47	1.47	1.47	1.47	1.45	1.47	0.00	-0.12	0.00	±0.3
4000	1.46	1.46	1.46	1.46	1.47	1.47	0.00	0.06	0.06	±0.3
5200	1.45	1.45	1.45	1.46	1.45	1.45	0.06	0.00	0.00	±0.3
6600	1.44	1.44	1.43	1.44	1.43	1.43	0.00	-0.06	0.00	±0.3
8200	1.43	1.42	1.42	1.43	1.43	1.43	0.00	0.06	0.06	±0.3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.30	4.18	4.20	0.08	-0.02	0.02	±0.3
13400	4.26	4.21	4.21	4.28	4.21	4.21	0.04	0.00	0.00	±0.3
17000	4.26	4.21	4.21	4.27	4.21	4.21	0.02	0.00	0.00	±0.3
21400	4.29	4.24	4.23	4.29	4.24	4.25	0.00	0.00	0.04	±0.3
27200	4.29	4.24	4.23	4.30	4.24	4.24	0.02	0.00	0.02	±0.3
34400	4.29	4.25	4.24	4.30	4.25	4.24	0.02	0.00	0.00	±0.3
40000	4.27	4.24	4.24	4.29	4.24	4.24	0.04	0.00	0.00	±0.3
43600	4.27	4.24	4.23	4.29	4.25	4.22	0.04	0.02	-0.02	±0.3
55400	4.26	4.23	4.22	4.27	4.23	4.22	0.02	0.00	0.00	±0.3
70000	4.25	4.22	4.21	4.27	4.22	4.21	0.04	0.00	0.00	±0.3
88800	4.23	4.20	4.20	4.25	4.20	4.21	0.04	0.00	0.02	±0.3
112400	4.22	4.19	4.19	4.23	4.20	4.20	0.02	0.02	0.02	±0.3
142400	4.20	4.17	4.17	4.22	4.17	4.18	0.04	0.00	0.02	±0.3
161750	4.18	4.16	4.15	4.20	4.16	4.15	0.04	0.00	0.00	±0,3
180400	4.17	4.15	4.14	4.18	4.16	4.14	0.02	0.02	0.00	±0.3
228 400	4.14	4.11	4.11	4.14	4.11	4.11	0.00	0.00	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.07	4.07	0.02	-0.02	-0.02	±0.3
366400	4.06	4.04	4.04	4.07	4.04	4.04	0.02	0.00	0.00	±0.3
400 000	4.04	4.02	4.02	4.04	4.02	4.01	0.00	0.00	-0.02	±0.3
464000	4.01	3.99	3.99	4.02	3.99	4.00	0.02	0.00	0.02	±0.3
587800	3.97	3.95	3.95	3.97	3.95	3.95	0.00	0.00	0.00	±0.3
744200	3.92	3.90	3.90	3.92	3.90	3.90	0.00	0.00	0.00	±0.3
942600	3.90	3.89	3.89	3.91	3.89	3.89	0.02	0.00	0.00	±0.3
1193600	3.88	3.87	3.87	3.88	3.87	3.86	0.00	0.00	-0.02	±0.3
1511600	3.87	3.86	3.86	3.87	3.87	3.86	0.00	0.02	0.00	±0.3
1914400	3.85	3.84	3.84	3.88	3.85	3.84	0.07	0.02	0.00	±0,3
2424400	3.84	3.83	3.83	3.86	3.84	3.82	0.05	0.02	-0.02	±0.3
3070200	3.81	3.79	3.79	3.81	3.80	3.77	0.00	0.02	-0.05	±0.3
3888000	3.76	3.74	3.74	3.75	3.75	3.74	-0.02	0.02	0.00	±0.3
4000000	3.75	3.73	3.73	3.76	3.75	3.73	0.02	0.05	0.00	±0.3
4923800	3.68	3.67	3.67	3.71	3.67	3.66	0.07	0.00	-0.02	±0.3
6235400	3.58	3.57	3.57	3.57	3.55	3.60	-0.02	-0.05	0.07	±0.3
7896400	3.43	3.42	3.42	3.43	3.42	3.42	0.00	0.00	0.00	±0.3
10000000	3.29	3.28	3.28	3.24	3.28	3.26	-0.13	0.00	-0.05	±0.3

¹ Calibration uncertainty not taken into account (shared risk 50%).

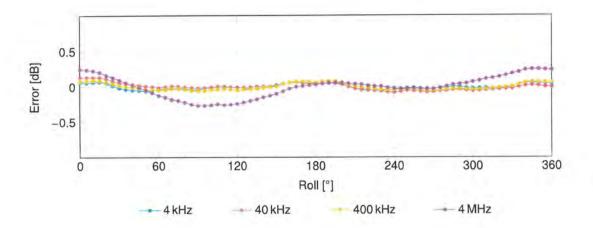
	H-field	d/(A/m) Ap	plied	H-field	d/(A/m) Rea	ading	Diff	erence/(Parker Same	
f/(Hz)	x	у	Z	X	У	Z	x	у	Z	Tolerance/(dB
3000	1.47	1.47	1.47	1.47	1.48	1.46	0.00	0.06	-0.06	±0.3
3200	1.47	1.47	1.47	1.47	1.46	1.48	0.00	-0.06	0.06	±0,3
4000	1,46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.46	1.45	1.45	0.06	0.00	0.00	±0.3
6600	1.44	1.44	1.43	1.44	1.43	1.43	0.00	-0.06	0.00	±0.3
8200	1.43	1.42	1.42	1.42	1.42	1.44	-0.06	0.00	0.12	±0,3
9000	1.42	1.42	1.42	1.42	1.42	1.42	0.00	0.00	0.00	±0.3
10600	4.26	4.19	4.19	4.25	4.19	4.17	-0.02	0.00	-0.04	±0.3
13400	4.26	4.21	4.21	4.27	4.24	4.20	0.02	0.06	-0.02	±0.3
17000	4.26	4.21	4.21	4.25	4.21	4.22	-0.02	0.00	0.02	±0.3
21400	4.29	4.24	4.23	4.29	4.25	4.23	0.00	0.02	0.00	±0.3
27200	4.29	4.24	4.23	4.30	4.24	4.24	0.02	0.00	0.02	±0.3
34400	4.29	4.25	4.24	4.30	4.25	4.25	0.02	0.00	0.02	±0.3
40 000	4.27	4.24	4.24	4.29	4.25	4.25	0.04	0.02	0.02	±0,3
43600	4.27	4.24	4.23	4.28	4.24	4.24	0.02	0.00	0.02	±0.3
55400	4.26	4.23	4.22	4.27	4.24	4.22	0.02	0.02	0.00	±0,3
70000	4.25	4.22	4.21	4.25	4.23	4.22	0.00	0.02	0.02	±0.3
88800	4.23	4.20	4.20	4.24	4.21	4.20	0.02	0.02	0.00	±0.3
112400	4.22	4.19	4.19	4.23	4.19	4.19	0.02	0.00	0.00	±0.3
142400	4.20	4.17	4.17	4.20	4.18	4.17	0.00	0.02	0.00	±0.3
161750	4.18	4.16	4.15	4.19	4.16	4.15	0.02	0.00	0.00	±0.3
180 400	4.17	4.15	4.14	4.18	4.14	4.14	0.02	-0.02	0.00	±0.3
228400	4.14	4.11	4.11	4.14	4.11	4.11	0.00	0.00	0.00	±0.3
289400	4.10	4.08	4.08	4.11	4.08	4.08	0.02	0.00	0.00	±0.3
366400	4.06	4.04	4.04	4.07	4.04	4.03	0.02	0.00	-0.02	±0.3
400 000	4.04	4.02	4.02	4.04	4.01	4.02	0.00	-0.02	0.00	±0.3
464000	4.01	3.99	3.99	4.02	3.98	3.99	0.02	-0.02	0.00	±0.3
587800	3.97	3.95	3.95	3.97	3.95	3.94	0.00	0.00	-0.02	±0.3
744200	3.92	3.90	3.90	3.93	3.91	3.89	0.02	0.02	-0.02	±0.3
942600	3.90	3.89	3.89	3.91	3.89	3.88	0.02	0.00	-0.02	±0.3
1193600	3.88	3.87	3.87	3.88	3.87	3.86	0.00	0.00	-0.02	±0.3
1511600	3.87	3.86	3.86	3.87	3.87	3.85	0.00	0.02	-0.02	±0.3
1914400	3.85	3.84	3.84	3.87	3.85	3.83	0.05	0.02	-0.02	±0.3
2424400	3.84	3.83	3.83	3.85	3.83	3.82	0.02	0.00	-0.02	±0.3
3070200	3.81	3.79	3.79	3.81	3.79	3.75	0.00	0.00	-0.09	±0.3
3888000	3.76	3.74	3.74	3.76	3.74	3.74	0.00	0.00	0.00	±0.3
4000000	3.75	3.73	3.73	3.77	3.74	3.73	0.05	0.02	0.00	±0.3
4923800	3.68	3.67	3.67	3.70	3.67	3.65	0.05	0.00	-0.05	±0.3
6235400	3.58	3.57	3.57	3.57	3.57	3.61	-0.02	0.00	0.10	±0.3
7896400	3.43	3.42	3.42	3.44	3.42	3.41	0.03	0.00	-0.03	±0.3
10000000	3.29	3.28	3.28	3.25	3.26	3.31	-0.11	-0.05	0.08	±0.3

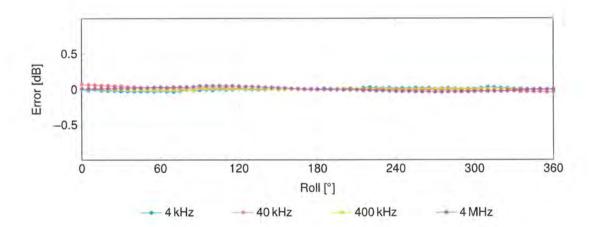

¹ Calibration uncertainty not taken into account (shared risk 50%).

-e- A-5	E-fi	ield/(V/m) /	Applied	E-fi	eld/(V/m) F	Reading	Diff	erence/(Commence	
f/(Hz)	x	У	Z	x	У	Z	x	У	Z	Tolerance/(dB)
3000	169	169	172	169	169	172	0.00	0.00	0.00	±0.3
3200	167	167	162	168	167	164	0.05	0.00	0.11	±0.3
4000	175	175	170	175	175	170	0.00	0.00	0.00	±0.3
5200	165	165	163	165	166	162	0.00	0.05	-0.05	±0.3
6600	163	163	160	163	163	161	0.00	0.00	0.05	±0.3
8200	162	162	159	161	162	158	-0.05	0.00	-0.05	±0.3
9000	163	163	164	163	163	163	0.00	0.00	-0.05	±0.3
10600	166	166	159	166	166	159	0.00	0.00	0.00	±0.3
13400	163	163	162	163	164	162	0.00	0.05	0.00	±0.3
17000	161	161	163	161	161	163	0.00	0.00	0.00	±0.3
21400	157	157	158	157	157	158	0.00	0.00	0.00	±0.3
27200	158	158	157	158	158	157	0.00	0.00	0.00	±0.3
34400	162	162	159	162	162	159	0.00	0.00	0.00	±0.3
40000	161	161	161	161	161	161	0.00	0.00	0.00	±0,3
43600	162	162	160	162	162	160	0.00	0.00	0.00	±0.3
55400	161	161	159	161	161	159	0.00	0.00	0.00	±0.3
70000	162	162	160	162	162	159	0.00	0.00	-0,05	±0.3
88800	161	161	160	161	161	160	0.00	0.00	0.00	±0.3
112400	161	161	160	161	161	160	0.00	0.00	0.00	±0.3
142400	162	162	160	162	162	160	0.00	0.00	0.00	±0.3
161750	163	163	162	163	163	162	0.00	0.00	0.00	±0.3
180400	164	164	162	164	164	162	0.00	0.00	0.00	±0.3
228400	165	165	163	165	165	163	0.00	0.00	0.00	±0.3
289400	166	166	164	165	166	164	-0.05	0.00	0.00	±0.3
366 400	166	166	165	166	166	164	0.00	0.00	-0.05	±0.3
400000	167	167	165	167	167	165	0.00	0.00	0.00	±0.3
464000	168	168	166	168	168	166	0.00	0.00	0.00	±0.3
587800	169	169	167	169	169	167	0.00	0.00	0.00	±0.3
744200	169	169	167	169	169	167	0.00	0.00	0.00	±0.3
942600	170	170	168	170	170	168	0.00	0.00	0.00	±0.3
1193600	171	171	169	171	171	169	0.00	0.00	0.00	±0.3
1511600	170	170	169	170	170	168	0.00	0.00	-0.05	±0.3
1914400	170	170	168	170	170	168	0.00	0,00	0.00	±0.3
2424400	170	170	168	170	170	168	0.00	0.00	0.00	±0.3
3070200	171	171	169	170	170	169	-0.05	-0.05	0.00	±0.3
3888000	171	171	169	171	171	169	0.00	0.00	0.00	±0.3
4000000	171	171	169	171	171	169	0.00	0.00	0.00	±0.3
4923800	172	172	170	172	172	170	0.00	0.00	0.00	±0.3
6235400	174	174	172	174	174	172	0.00	0.00	0.00	±0.3
7896400	180	180	179	180	180	178	0.00	0.00	-0.05	±0.3
10000000	201	201	199	200	201	199	-0.04	0.00	0.00	±0.3

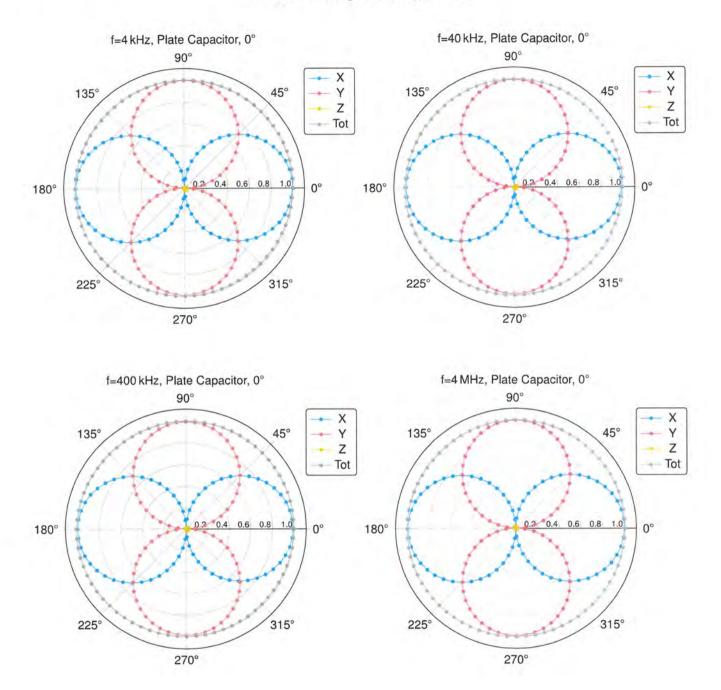

¹ Calibration uncertainty not taken into account (shared risk 50%).

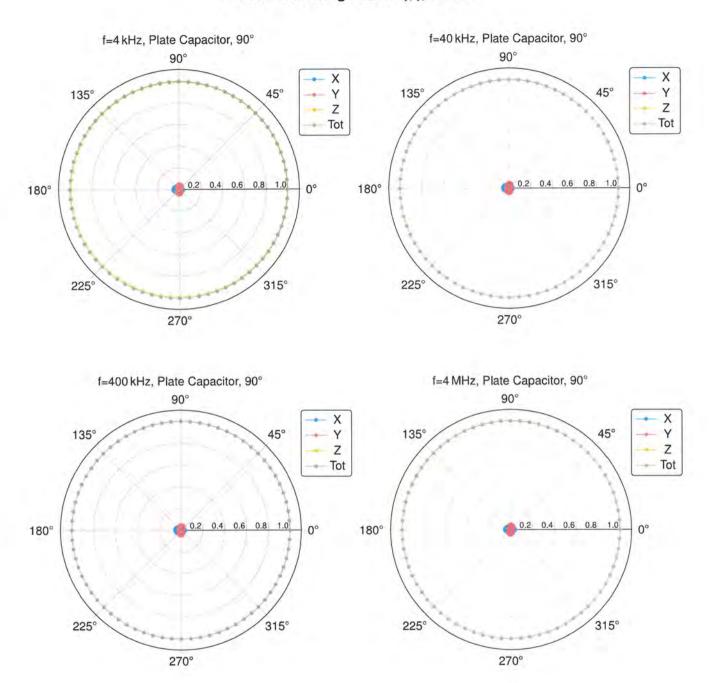
Isotropy H-Field


H-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$

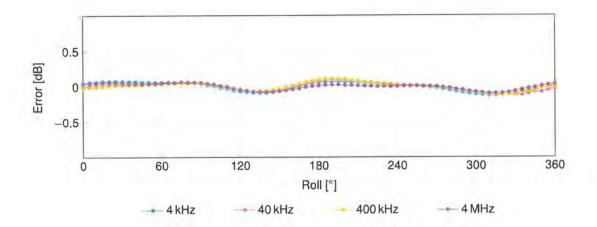

H-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

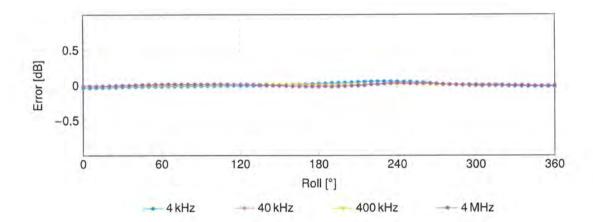
H-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$


H-Field Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$


SPEAG axial deviation from the ideal response tolerance for H-field: $\pm 0.6 \, dB$

Isotropy E-Field


E-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$


E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

E-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$

E-Field Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

SPEAG axial deviation from the ideal response tolerance for E-field: ±0.8dB

Appendix D. System Verification

The measuring results for system check are shown as below.

DASY8 Module WPT Measurement Report

Device under test	Tool info	Scan info
Info:	DASY software version:	Center location:
V-Coil50/400	DASY8 Module WPT 2.6.0.5002	x: 12.15 mm, y: -58.35 mm, z: 35.89 mm
Serial number:	Probe model, serial no. and configuration date:	Dimensions:
1050	MAGPy-8H3D+E3Dv2, WP000225, 2024/06/06	x : 168.6 mm, y : 168.3 mm, z : 36.7 mm
Scenario:	Software version:	Resolution:
not set	2.0.63, backend: 2.2.22	x : 7.33 mm, y : 7.33 mm, z : 7.33 mm
		Completed on:
		2024/08/01

Measurement results

Maximum H-field [RMS]: MAGNITUDE: 123.59 A/m

x: 20.00 A/m, y: 20.51 A/m, z: 120.23 A/m

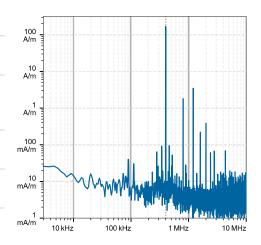
Maximum H-field location relative to DUT: x: -3.67 mm, y: -3.67 mm, z: 8.50 mm

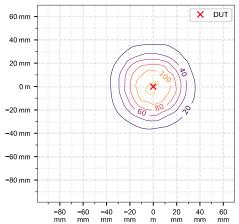
Maximum E-field [RMS]: MAGNITUDE: 46.44 V/m

x: 23.01 V/m, y: 11.35 V/m, z: 38.71 V/m

Maximum E-field location relative to DUT: x: 7.33 mm, y: -29.33 mm, z: 0.00 m

Distance to -20.0 dB boundary:


39.49 mm


Offset relative to DUT:

x: 0.00 m, **y**: 0.00 m, **z**: 1.00 mm

H-field magnitude [RMS] at maximum location

H-field magnitude [RMS] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency $(f = 400.00 \text{ kHz}, \sigma = 0.750 \text{ S/m}, \text{ tissue density} = 1,000 \text{ kg/m}^3)$

	_	dent fields мs]	Pe	ak E _{ind} [V/m,	RMS]	Peak J _{ind} [A/m ² , кмs]	psSAR	[mW/kg]	H-field extent			Warnings
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	Sign	Vector potential	Boundary effect
0.00	248	46.4	3.90	4.00	4.01	2.47	5.96	2.97	39.3	6%	11%	18%
2.00	217	43.3	3.33	3.43	3.43	2.09	4.35	2.21	39.6	6%	11%	20%

Compliance evaluation (Field values at the peak frequency) (f=400.00 kHz, total field evaluation, coverage evaluation)

		ICNIRP 2010/2020					ICNIR	P 1998			IEEE	2019			FC	CC		HC Code 6				
		RL [RMS]		BR [RMS]		RL [RMS]		BR [RMS]		ERL	ERL [RMS]		DRL [RMS]		[RMS]	BR [RMS]		RL [RMS]		BR	[RMS]	
Dist	ance ^p	H _{inc}	pE_{inc}	pE_{ind}	psSAR	рН _{іпс}	pE_{inc}	pJ_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	
[mn	n] [/	A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	$[A/m^2]$	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg	j] [A/m]	[V/m]	[V/m]	[mW/kg]	
0.00	2	248	46.4	21.0	2.97	248	46.4	2.47	2.97	248	46.4	11.8	2.97	248	46.4	N/A	5.96	248	46.4	30.4	5.96	
2.00	2	217	43.3	18.0	2.21	217	43.3	2.10	2.21	217	43.3	10.1	2.21	217	43.3	N/A	4.35	217	43.3	26.1	4.35	

Coverage factors: $w_{E_{ind, \, \text{cube avg.}}} = [5.39, \, 5.39], \, w_{E_{ind, \, \text{local}}} = [7.61, \, 7.62], \, w_{E_{ind, \, \text{line avg.}}} = [2.95, \, 2.95]$

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation)

		ICNIRP 2010/2020						ICNIRP 1998					IEEE	2019			FCC				HC Code 6					
		R	L		ВІ	₹	F	₹L	BR			ERL			DRL		MPE		BR			F	RL.		BR	
Dis	tance n] pH	inc	pΕ _{ii}	nc	pE _{ind}	psSA	R ^{pH} ind	pE _{inc}	pJ _{ind}	psSA	R pH	inc	pΕ _i	nc	pE _{ind}	psSA	R ^{pH} inc	pE _{inc}	pE _{ind}	psSA	R pH	inc	рE	inc	pE _{ind}	psSAR
	NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
0.00	11.8	20.2	123.0	27.8	0.41	<0.0	1136.	0216.	04.16	<0.0	11.52	2.72	16.6	94.8	0.16	<0.0	1152.0	0120.	N/A	<0.0	12.75	136.	0123.0	0334.	00.58	<0.01
2.00	10.3	17.7	115.0	25.9	0.35	<0.0	1119.	0201.	03.62	<0.0	11.33	2.38	15.5	88.3	0.13	<0.0	1133.0	0112.0	N/A	<0.0	12.41	119.	0 115.0	312.	00.50	<0.01

Coverage factors: $w_{E_{ind, \, cube \, avg.}} = [5.39, \, 5.39], \, w_{E_{ind, \, local}} = [7.61, \, 7.62], \, w_{E_{ind, \, line \, avg.}} = [2.95, \, 2.95]$