

FCC SAR TEST REPORT

S T S

A

Report No: STS1902072H02

Issued for

SOURCENEXT CORPORATION

Shiodome City Center 33F, 1-5-2 Higashi Shinbashi Minato-ku, Tokyo 105-7133, Japan

POCKETALK
POCKETALK
W1PGK
W1PG, W1PW
2AOJA-W1P
ANSI/IEEE Std. C95.1
FCC 47 CFR Part 2 (2.1093)
IEEE 1528: 2013
Body: 0.441 W/kg
Front to face:0.335 W/kg

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Pest sample.

Page 2 of 77

Report No.: STS1902072H02

Test Report Certification

••	SOURCENEXT CORPORATION
Address	Shiodome City Center 33F, 1-5-2 Higashi Shinbashi Minato-ku, Tokyo 105-7133, Japan
Manufacture's Name	JENESIS(SHENZHEN)CO.,LTD
Address:	3F,Building A,Dajiahao Plaza,Yuan 2nd Road 362,Baoan 28th disctrict,Shenzhen, China
Product description	
Product name:	POCKETALK
Trademark:	POCKETALK
Model and/or type reference :	W1PGK
Series Model:	W1PG, W1PW
Standards:	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013
measurement methods and pro- apply only to the tested sample	zhen STS Test Services Co., Ltd. in accordance with the cedures specified in KDB 865664 The test results in this report of the stated device/equipment. Other similar device/equipment same results due to production tolerance and measurement

Date of Test	
Date (s) of performance of tests	05 Mar. 2019
Date of Issue	06 Mar. 2019
Test Result	Pass

Testing Engineer	:	Aann 13u
		(Aaron Bu)
Technical Manager	:	Jason Ju APPROVAL
		(Jason Lu)
Authorized Signatory	:	Vitati
		(Vita Li)

Table of Contents

1.General Information	4
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2.Test Standards And Limits	7
3. SAR Measurement System	8
3.1 Definition Of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	13
6. SAR Evaluation Procedures	14
7. EUT Antenna Location Sketch	15
7.1 SAR test exclusion consider table	16
8. EUT Test Position	17
9. Uncertainty	18
9.1 Measurement Uncertainty	18
9.1 Measurement Uncertainty 9.2 System validation Uncertainty	18 20
9.2 System validation Uncertainty	20
9.2 System validation Uncertainty 10. Conducted Power Measurement	20 22
9.2 System validation Uncertainty10. Conducted Power Measurement10.1 Test Result	20 22 22
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power	20 22 22 29
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied	20 22 29 32
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo	20 22 29 32 34
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo 11.1 EUT Photo	20 22 29 32 34 34
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo 11.1 EUT Photo 11.2 Setup Photo	20 22 29 32 34 34 37
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo 11.1 EUT Photo 11.2 Setup Photo 12. SAR Result Summary	20 22 29 32 34 34 37 41
9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo 11.1 EUT Photo 11.2 Setup Photo 12. SAR Result Summary 12.1 Body-worn SAR	20 22 29 32 34 34 37 41 41
 9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo 11.1 EUT Photo 11.2 Setup Photo 12. SAR Result Summary 12.1 Body-worn SAR 12.2 Front to face SAR 	20 22 29 32 34 34 37 41 41 42
 9.2 System validation Uncertainty 10. Conducted Power Measurement 10.1 Test Result 10.2 Tune-up Power 10.3 SAR Test Exclusions Applied 11. EUT And Test Setup Photo 11.1 EUT Photo 11.2 Setup Photo 12. SAR Result Summary 12.1 Body-worn SAR 12.2 Front to face SAR 13. Equipment List 	20 22 29 32 34 34 37 41 41 42 46

П

Page 4 of 77

Report No.: STS1902072H02

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	15 Aug 2018	STS1806067H03	ALL	Initial Issue
00	06 Mar. 2019	STS1902072H02	ALL	Increase the 5G frequency band

Shenzhen STS Test Services Co., Ltd.

Page 5 of 77

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Equipment	POCKE	TALK					
Brand Name	POCKETALK						
Test Model No.	W1PGK						
Series Model	W1PG,	W1PG, W1PW					
FCC ID	2AOJA-	2AOJA-W1P					
Model Difference		The structure of the circuit is the same, only the name of the model is different					
Battery	Charge	oltage: 3.7V; Limit: 4.2V; /: 2200mAh					
Device Category	Portable						
Product stage	Production	on unit					
RF Exposure Environment	General	Population / Uncontrolle	ed				
Hardware Version	PT2_MB	_V1.0					
Software Version	2.0.04/0						
Frequency Range	WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6MHz LTE Band 2:1850.7~1909.3MHz WLAN 802.11b/g/n(HT20/40):2412~2462MHz WLAN 802.11a/n(HT20): 5180~5240 MHz; 5260~5320 MHz; 5500~5700 MHz; 5745~582 5 MHz; WLAN 802.11n(HT40): 5150~5250 MHz; 5250~5350 MHz; 5470~5725 MHz; 5725~5875 MHz; Bluetooth:2402~ 2480MHz						
	Band	Mode	Body Worn (W/kg)	Front to face (W/kg)			
	PCB	WCDMA Band II	0.437	0.335			
	PCB	WCDMA Band V	0.285	0140			
Max. Reported	PCB	LTE Band 2	0.441	0.260			
·	DTS	WLAN	0.084	0.067			
SAR(1g):	NII	5.2G WLAN	0.045	0.021			
(Limit:1.6W/kg)	NII	5.3G WLAN	0.107	0.244 Note			
	NII	5.6G WLAN	0.142	0.251 Note			
	NII	5.8G WLAN ^{Note}	0.203	0.101			
	DTS	Bluetooth Note	0.053	0.026			
FCC Equipment Class		d Portable Transmitter ransmission System (I					
Operating Mode:	WCDMA:16QAM/64QAM; LTE:QPSK,16QAM, 64QAM; WLAN: 802.11 a/b/g/n(HT20/40); Bluetooth: V4.0 + EDR (GFSK, π/4DQPSK, 8DPSK) ;						
SIM Card	Support	single card	· · ·				
Antenna Specification:	LTE: PIF	LTE: PIFA Antenna BT,WLAN: PIFA Antenna					
Hotspot Mode:	Support						
			Less De la Ne 400, Obre de De el F	ong Street, Bao'an District, Shenzhen, Guang			

Shenzhen STS Test Services Co., Ltd.

Page 6 of 77

Report No.: STS1902072H02

DTM Mode: Note:

5.3G front to face SAR, 5.3G front to face SAR, 5.8G SAR and Bluetooth SAR was estimated
 The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

Not Support

CNAS Registration No.: L7649

FCC Registration No.: 625569

IC Registration No.: 12108A

A2LA Certificate No.: 4338.01

Report No.: STS1902072H02

2.Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	POCKETALK and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices
8	FCC KDB 941225 D01 v03r01	SAR Measurement Procedures for 3G Devices
9	FCC KDB 941225 D05 v02r05	SAR for LTE Devices
10	FCC KDB 941225 D06 v02r01	Hotspot Mode SAR

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0
(B). Limits for Gene	ral Population/Un	controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments:**

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT

1.6 W/kg

Page 8 of 77

3. SAR Measurement System

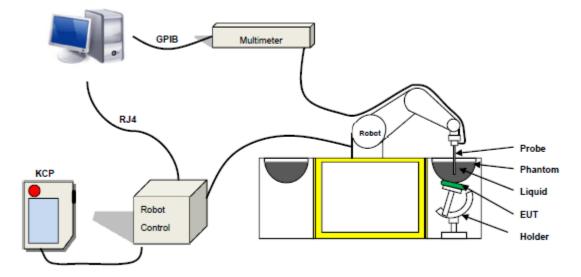
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


 $SAR = \frac{\sigma E^2}{\rho}$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Shenzhen STS Test Services Co., Ltd.

Page 9 of 77 Report No.: STS1902072H02

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 45/15 EPGO281 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 2.5 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 1mm)
- Probe linearity: 0±2.60%(0.11dB)
- Axial Isotropy: < 0.25 dB
- Spherical Isotropy: < 0.25 dB
- Calibration range: 450 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 32/14 SAM115

Figure-SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Shenzhen STS Test Services Co., Ltd.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Head Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	٤r
750	0.2	/	/	1.4	0.2	57.0	/	41.1	0.89	41.9
835	0.2	/	/	1.4	0.2	57.9	/	40.3	0.90	41.5
900	0.2	/	/	1.4	0.2	57.9	/	40.3	0.97	41.5
1800	/	44.5	/	0.3	/	/	30.45	55.2	1.4	40.0
1900	/	44.5	/	0.3	1	1	30.45	55.2	1.4	40.0
2000	/	44.5	/	0.3	1	1	/	55.2	1.4	40.0
2450	/	44.9	1	0.1	1	1	/	55.0	1.80	39.2
2600	/	45.0	1	0.1	1	1	/	54.9	1.96	39.0

Body Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	٤r
750	0.2	/	/	0.9	0.1	47.2	/	51.7	0.96	55.5
835	0.2	/	/	0.9	0.1	48.2	1	50.8	0.97	55.2
900	0.2	/	1	0.9	0.1	48.2	1	50.8	1.05	55.0
1800	/	29.4	1	0.4	1	1	30.45	70.2	1.52	53.3
1900	/	29.4	1	0.4	1	1	30.45	70.2	1.52	53.3
2000	/	29.4	1	0.4	1	1	/	70.2	1.52	53.3
2450	/	31.3	1	0.1	1	/	/	68.6	1.95	52.7
2600	/	31.7	/	0.1	/	/	/	68.2	2.16	52.3

	Tissue dielectric parameters for head and body phantoms									
Frequency	3	r	σ S/m							
	Head	Body	Head	Body						
300	45.3	58.2	0.87	0.92						
450	43.5	56.7	0.87	0.94						
900	41.5	55.0	0.97	1.05						
1450	40.5	54.0	1.20	1.30						
1800	40.0	53.3	1.40	1.52						
2450	39.2	52.7	1.80	1.95						
3000	38.5	52.0	2.40	2.73						
5800	35.3	48.2	5.27	6.00						

Shenzhen STS Test Services Co., Ltd.

Page 12 of 77

Report No.: STS1902072H02

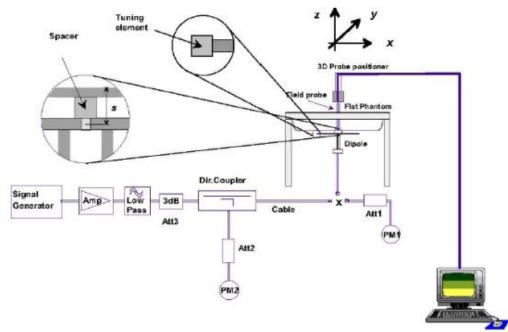
LIQUID MEASUREMENT RESULTS

Date	Ambient condition		Head Simulating Liquid		Parameters	Target	Measured	Deviation	Limited	
Date	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	T drameters	larget	Measureu	[%]	[%]	
2018-08-14	22.8	46	835 MHz	22.5	Permittivity:	41.5	40.47	-2.49	±5	
2018-08-14	22.0	40		22.0	Conductivity:	0.9	0.91	1.22	±5	
2018-08-14	22.8	46	1900 MHz	22.5	Permittivity:	40	40.93	2.33	±5	
2018-08-14	22.0	40		22.5	Conductivity:	1.4	1.38	-1.74	±5	
2018-08-15	23.5	56	2450 MHz	23.2	Permittivity:	39.2	39.59	1.01	± 5	
2018-08-15	23.5	90		23.2	Conductivity	1.8	1.76	-2.00	± 5	
2018-08-15	23.5	56	5200 MHz	23.2	Permittivity:	36.0	37.22	3.39	± 5	
2010-00-15	23.5	50	5200 MHZ	23.2	Conductivity	4.66	4.51	-3.22	± 5	

Date		oient dition	Body Simu Liquid		Parameters	Torgot	Measured	Deviation	Limited
Dale	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	Farameters	Target	Measured	[%]	[%]
2018-07-17	23.2	53	835 MHz	22.9	Permittivity:	55.2	54.05	-2.08	±5
2010-07-17	23.2	55	000 IVII 12	22.9	Conductivity:	0.97	0.94	-2.93	±5
2018-07-18	22.7	54	1900 MHz	22.4	Permittivity:	53.3	53.28	-0.04	±5
2018-07-18	22.1	54	1900 MHZ	22.4	Conductivity:	1.52	1.49	-1.97	±5
2018-07-18	22.7	54	2450 MHz	22.4	Permittivity:	52.70	54.14	2.73	± 5
2018-07-18	22.1	54	2450 10102	22.4	Conductivity	1.95	2.00	2.56	± 5
2018-07-19	23.1	50	5200 MHz	22.8	Permittivity:	49.0	49.66	1.35	± 5
2018-07-19	23.1	50	5200 MHZ	22.0	Conductivity	5.30	5.41	2.08	± 5
2019-03-05	22.6	58	5300 MHz	23.3	Permittivity:	48.70	49.20	1.03	±5
2019-03-05	22.0	56	5300 MHZ	23.3	Conductivity:	5.53	5.39	-2.53	±5
2010 02 05	22.6	50		00.0	Permittivity:	48.5	50.37	3.86	±5
2019-03-05	22.6	58	5600 MHz	23.3	Conductivity:	5.77	5.90	2.25	±5
2019-03-05	22.6	58	5800 MHz	23.3	Permittivity:	48.2	47.86	-0.71	±5
2019-03-05	22.0	50		23.3	Conductivity:	6.00	6.05	0.83	±5

Shenzhen STS Test Services Co., Ltd.

Page 13 of 77



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
835 Head	100	0.967	9.67	9.56	1.12	2018-08-14
835 Body	100	0.992	9.92	9.56	3.74	2018-07-17
1900 Head	100	4.165	41.65	39.7	4.92	2018-08-14
1900 Body	100	3.930	39.30	39.7	-1.00	2018-07-18
2450 Head	100	5.275	52.75	52.4	0.68	2018-08-15
2450 Body	100	5.302	53.02	52.4	-1.17	2018-07-18
5200 Head	100	15.421	154.21	159	-3.01	2018-08-15
5200 Body	100	15.847	158.47	159	-0.33	2018-07-19
5300 Body	100	16.79	167.9	166.4	0.90	2019-03-05
5600 Body	100	17.23	172.3	173.8	-0.86	2019-03-05
5800 Body	100	18.75	187.5	181.2	3.48	2019-03-05

Note: The tolerance limit of System validation ±10%.

Page 14 of 77

Report No.: STS1902072H02

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

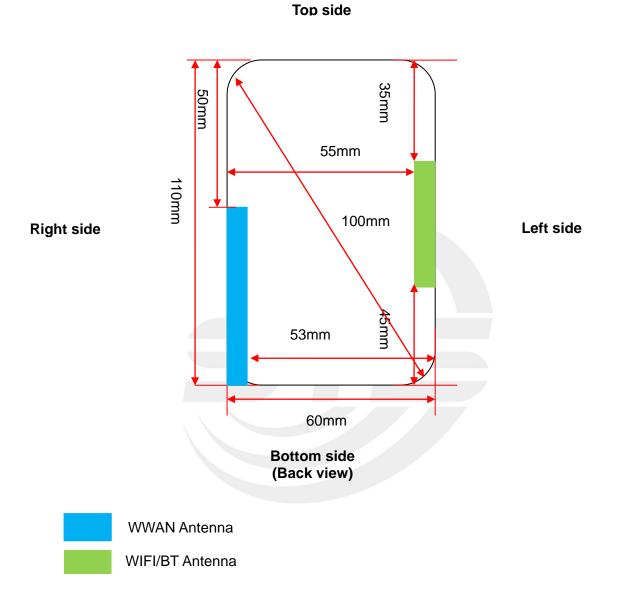
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.



Page 15 of 77

Report No.: STS1902072H02

7. EUT Antenna Location Sketch

It is a POCKETALK , support LTE/WLAN mode.

Shenzhen STS Test Services Co., Ltd.

Page 16 of 77

7.1 SAR test exclusion consider table

According with FCC KDB 447498 D01, appendix A, <SAR test exclusion thresholds for 100MHz ~ 6GHz and≤50mm>table, this device SAR test configurations consider as following:

	Test position configurations									
Band	Back	Right edge	Left edge	Top edge	Bottom edge					
WWAN	<5mm	<5mm	53mm	50mm	<5mm					
VVVVAIN	Yes	Yes	No	No	Yes					
WLAN/BT	<5mm	55mm	<5mm	35mm	45mm					
	Yes	No	Yes	No	No					

Note:

 maximum power is the source-based time-average power and represents the maximum RF output power among production units.

2. per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.

3. per KDB 447498 D01, standalone SAR test exclusion threshold is applied; if the distance of the antenna to the user is <5mm, 5mm is user to determine SAR exclusion threshold

4. per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distance ≤50mm are determined by: [(max.power of channel, including tune-up tolerance, Mw)/(min. test separation distance, mm)]*[√f(GHZ))≤3.0 for 1-g SAR and≤7.5 for10-g extremity SAR ,f(GHz) is the RF channel transmit frequency in GHz. Power and distance are rounded to the nearest mW and mm before calculation. The result is rounded to one decimal place for comparison For <50mm distance, we just calculate mW of the exclusion threshold value(3.0)to do compare</p>

5. per KDB 447498 D01, at 100 MHz to 6GHz and for test separation distances >50mm, the SAR test exclusion threshold is determined according to the following a)[threshold at 50mm in step 1]+(test separation distance -50mm)*(f (MHz)/150)]Mw, at 100 MHz to 1500 MHz
b) [threshold at 50mm in step1]+(test separation distance -50mm) *10]mW at>

1500MHz and \leq 6GHz

- Per KDB 447498 D02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/ HSUPA/DC-HSDPA output power is<0.25db higher than RMC 12.2Kbps,or reported SAR with RMC 12.2kbps setting is ≤1.2W/Kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded.
- 7. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.

Shenzhen STS Test Services Co., Ltd.

Page 17 of 77

8. EUT Test Position

This EUT was tested in Front Face and Rear Face.

8.1Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

Shenzhen STS Test Services Co., Ltd.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Mag	uenertSelem				1		L		
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	∞
3	Hemispherical isotropy	5.9	R	√3	√Cp	√C _p	2.41	2.41	∞
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
5	Linearity	4.7	R	√3	1	1	2.71	2.71	∞
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	∞
7	Readout electronics	0.5	N	1	1	1	0.50	0.50	œ
8	Response time	0	R	√3	1	1	0	0	œ
9	Integration time	1.4	R	√3	1	1	0.81	0.81	œ
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	∞
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	œ
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞
Test s	sample related								
15	Device positioning	2.6	N	1	1	1	2.6	2.6	11

Page 19 of 77

Report No.: STS1902072H02

16	Device holder	3	Ν	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	8
Phant	om and set-up								
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
19	Liquid conductivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	8
22	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Comb	ined standard	1	RSS	U	$T_C = \sqrt{\sum_{i=1}^n C_i^2 U}$	2	10.63%	10.54%	
	Expanded uncertainty $U = k U_c$, k=2					21.26%	21.08%		

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1902072H02

9.2 System validation Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff	
	Maauenert Sjelem									
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8	
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8	
3	Hemispherical isotropy	5.9	R	√3	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	8	
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8	
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8	
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8	
7	Modulation response	0	Ν	1	1	1	0	0	8	
8	Readout electronics	0.5	Ν	1	1	1	0.50	0.50	8	
9	Response time	0	R	√3	1	1	0	0	8	
10	Integration time	1.4	R	√3	1	1	0.81	0.81	8	
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8	
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8	
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8	
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8	
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8	
Dipole	9									
16	Deviation of experimental source from	4	Ν	1	1	1	4.00	4.00	8	

Shenzhen STS Test Services Co., Ltd.

Page 21 of 77

Report No.: STS1902072H02

	1	1				1			
17	Input power and SAR drit measurement	5	R	√3	1	1	2.89	2.89	8
18	Dipole Axis to liquid Distance	2	R	√3	1	1			∞
Phant	tom and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
20	Uncertainty in SAR correction for deviation(in	2.0	Ν	1	1	0.84	2	1.68	8
21	Liquid conductivity (target)	2	Ν	1	1	0.84	2.00	1.68	8
22	Liquid conductivity (temperature uncertainty)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
23	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	8
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	8
Comb	nined standard		RSS	U	$U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i}$	2	10.15%	10.05%	
Expar (P=95	nded uncertainty 5%)			$U = k U_c$,k=	2		20.29%	20.10%	

=#

10. Conducted Power Measurement

10.1 Test Result

WLAN

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	1	2412	13.63
802.11b	6	2437	14.02
	11	2462	14.22
	1	2412	9.66
802.11g	6	2437	11.72
	11	2462	10.22
	1	2412	8.85
802.11n(HT 20)	6	2437	11.07
	11	2462	9.05
	3	2422	8.12
802.11n(HT 40)	6	2437	10.22
	9	2452	8.61

5.2G WLAN

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	36	5180	8.92
802.11a	40	5200	7.78
	48	5240	7.90
	36	5180	8.85
802.11 n-HT20	40	5200	7.61
	48	5240	7.82
802.11 n-HT40	38	5190	7.11
002.1111-0140	46	5230	7.03

WLAN (5.3Gband)

Mode	Channel Number	Frequency (MHz)	Average EIRP Power (dBm)
	52	5260	8.15
802.11a	60	5300	7.41
	64	5320	7.28
	52	5260	8.04
802.11 n-HT20	60	5300	7.33
	64	5320	7.15
	54	5270	6.98
802.11 n-HT40	62	5310	6.84

Shenzhen STS Test Services Co., Ltd.

WLAN (5.6Gband)

Mode	Channel Number	Frequency (MHz)	Average EIRP Power (dBm)
	100	5500	8.26
802.11a	116	5580	7.44
	140	5700	7.18
	100	5500	7.96
802.11 n-HT20	116	5580	7.40
	140	5700	7.09
	102	5510	7.54
802.11 n-HT40	110	5550	7.06
	134	5670	7.02

WLAN (5.8Gband)

Mode	Channel Number	Frequency (MHz)	Average EIRP Power (dBm)
	149	5745	4.87
802.11a	157	5785	4.55
	165	5825	4.77
	149	5745	4.800
802.11 n-HT20	157	5785	4.500
	165	5825	4.670
802.11 n-HT40	151	5755	4.310
	159	5795	4.130

BLE

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	0	2402	0.21
GFSK(1Mbps)	39	2441	-0.46
	78	2480	-1.64
	0	2402	-1.75
π/4-DQPSK(2Mbps)	39	2441	-2.25
	78	2480	-3.17
	0	2402	-1.78
8DPSK(3Mbps)	39	2441	-2.35
	78	2480	-3.20

Page 24 of 77

Report No.: STS1902072H02

WCDMA

IA						
Band	WC	DMA Bar	nd V	W	CDMA Ban	d II
Channel	4132	4183	4233	9262	9400	9538
Frequency (MHz)	826.4	836.6	846.6	1852.4	1880.0	1907.6
AMR 12.2Kbps	23.57	23.74	23.71	20.74	20.70	21.28
RMC 12.2Kbps	23.67	23.80	23.78	20.86	20.82	21.67
HSDPA Subtest-1	22.66	22.83	22.79	19.75	19.73	20.26
HSDPA Subtest-2	22.20	22.43	22.33	19.30	19.24	19.79
HSDPA Subtest-3	21.80	22.00	21.83	18.93	18.75	19.37
HSDPA Subtest-4	21.45	21.67	21.49	18.58	18.41	18.91
HSUPA Subtest-1	22.58	22.67	22.43	19.70	19.65	19.77
HSUPA Subtest-2	21.70	21.74	21.49	18.75	18.66	18.77
HSUPA Subtest-3	21.67	21.27	21.02	18.71	18.24	18.47
HSUPA Subtest-4	21.24	20.78	20.67	18.23	17.80	18.00
HSUPA Subtest-5	19.80	19.35	19.25	16.78	16.35	16.55

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1A: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)

Note: CM=1 for $\beta c/\beta d=12/15$, $\beta hs/\beta c=24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH.

E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 25 of 77

LTE Conducted Power

General Note:

- 1. Anritsu CMW500 base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05, smaller bandwidth SAR testing is not required.

LTE Band 2

	LTE	Band 2 Maxim	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
1.4	1	0		22.08	22.05	22.19
1.4	1	2		22.07	22.03	22.15
1.4	1	5		21.94	21.91	22.02
1.4	3	0	QPSK	21.71	21.83	21.88
1.4	3	1		21.78	21.87	21.89
1.4	3	2		21.76	21.85	21.9
1.4	6	0		21.08	21.01	21.11
1.4	1	0		20.66	20.94	20.91
1.4	1	2		20.82	21.03	21.02
1.4	1	5		20.72	20.94	20.89
1.4	3	0	16-QAM	20.62	20.81	20.75
1.4	3	1		20.67	20.78	20.75
1.4	3	2		20.63	20.73	20.76
1.4	6	0		19.88	19.9	19.95
3	1	0		22.01	21.94	22.1
3	1	7		22.06	22.04	22.18
3	1	14		21.94	21.96	22.04
3	8	0	QPSK	20.99	20.96	21.05
3	8	4		21.02	21.02	21.08
3	8	7		20.96	20.99	21.03
3	15	0		20.85	20.89	20.96
3	1	0		20.89	20.97	21
3	1	7		21.01	21.13	21.07
3	1	14		20.89	20.98	20.91
3	8	0	16-QAM	19.91	20.02	20.05
3	8	4		19.94	20.03	20
3	8	7		19.93	19.99	19.96
3	15	0		19.67	19.83	19.89

LTE BAND 2

	LTE	Band 2 Maxim	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5	1	0		22.02	20.31	21.88
5	1	12		22	20.06	21.7
5	1	24		21.62	19.81	21.87
5	12	0	QPSK	19.91	18.9	19.29
5	12	6		20.72	18.95	19.34
5	12	11		20.55	18.92	19.3
5	25	0		20.77	18.88	19.26
5	1	0		20.38	19.35	19.46
5	1	12		20.24	19	19.73
5	1	24		20.26	20.28	19.47
5	12	0	16-QAM	19.68	19.41	18.21
5	12	6		19.34	19.45	18.27
5	12	11		19.36	18.61	18.28
5	25	0		18.66	17.84	18.31
10	1	0		19.93	20.49	20.58
10	1	24		19.99	20.1	20.72
10	1	49		19.78	20.05	20.34
10	25	0	QPSK	18.97	18.99	19.43
10	25	12		19.01	19	19.44
10	25	24		19.01	19.01	19.44
10	50	0		18.99	19	19.43
10	1	0		19.6	19.71	19.32
10	1	24		19.22	19.2	19.49
10	1	49		18.96	19.22	19.43
10	25	0	16-QAM	18.03	17.97	18.41
10	25	12		18.06	17.99	18.46
10	25	24		18.08	18.03	18.5
10	50	0		17.95	17.94	18.34

LTE BAND 2

	LTE	Band 2 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
15	1	0		22.09	22.07	22.21
15	1	37		21.82	21.81	21.96
15	1	74		21.58	21.53	21.74
15	36	0	QPSK	21.37	21.25	21.53
15	36	18		21.12	20.98	21.28
15	36	39		20.89	20.73	21.03
15	75	0		20.67	20.48	20.79
15	1	0		21.84	21.8	21.98
15	1	38		21.62	21.51	21.7
15	1	75		21.42	21.3	21.48
15	36	0	16-QAM	21.19	21.05	21.26
15	36	18		20.92	20.82	21.03
15	36	39		20.66	20.6	20.76
15	75	0		20.39	20.37	20.52
20	1	0		22.1	22.09	22.24
20	1	49		21.87	21.81	21.95
20	1	99		21.58	21.6	21.72
20	50	0	QPSK	21.34	21.38	21.45
20	50	24		21.11	21.17	21.17
20	50	49		20.89	20.91	20.91
20	100	0		20.6	20.68	20.65
20	1	0		21.84	21.85	21.95
20	1	49		21.62	21.62	21.71
20	1	99		21.35	21.35	21.44
20	50	0	16-QAM	21.09	21.12	21.17
20	50	24		20.83	20.86	20.97
20	50	49		20.57	20.59	20.71
20	100	0		20.37	20.42	20.44

Page 29 of 77

10.2 Tune-up Power

2.4G WLAN				
Mode	WLAN(AVG)			
IEEE 802.11b		14±1dBm		
	Low	9±1dBm		
IEEE 802.11g	Middle	11±1dBm		
	High	10±1dBm		
	Low	8±1dBm		
IEEE 802.11n(HT 20)	Middle	11±1dBm		
	High	9±1dBm		
	Low	8±1dBm		
IEEE 802.11n(HT 40)	Middle	10±1dBm		
	High	8±1dBm		

Mode 5.2G WLAN(AVG)		
IEEE 802.11a	8±1dBm	
IEEE 802.11n(HT 20)	8±1dBm	
IEEE 802.11n(HT 40)	7±1dBm	

5.3G WLAN(AVG)
8±1dBm
8±1dBm
6±1dBm

Mode	5.6G WLAN(AVG)	
IEEE 802.11a	8±1dBm	
IEEE 802.11n(HT 20)	7±1dBm	
IEEE 802.11n(HT 40)	7±1dBm	

Mode	5.8G WLAN(AVG)
IEEE 802.11a	4±1dBm
IEEE 802.11n(HT 20)	4±1dBm
IEEE 802.11n(HT 40)	4±1dBm

Page 30 of 77

р.	Т
D	

BI			
Mode	BT(AVG)		
GFSK	Low	0±1dBm	
	Middle	0±1dBm	
	High	-1±1dBm	
π/4-DQPSK	Low	-1±1dBm	
	Middle	-2±1dBm	
	High	-3±1dBm	
8DPSK	Low	-1±1dBm	
	Middle	-2±1dBm	
	High	-3±1dBm	

Mode	WCDMA Band V(AVG)	WCDMA Band II(AVG)
AMR	23±1dBm	21±1dBm
RMC	23±1dBm	21±1dBm
HSDPA Subtest-1	22±1dBm	20±1dBm
HSDPA Subtest-2	22±1dBm	19±1dBm
HSDPA Subtest-3	22±1dBm	19±1dBm
HSDPA Subtest-4	21±1dBm	18±1dBm
HSUPA Subtest-1	22±1dBm	19±1dBm
HSUPA Subtest-2	21±1dBm	18±1dBm
HSUPA Subtest-3	21±1dBm	18±1dBm
HSUPA Subtest-4	21±1dBm	18±1dBm
HSUPA Subtest-5	19±1dBm	16±1dBm

П

Shenzhen STS Test Services Co., Ltd.

Page 31 of 77 Repo

Report No.: STS1902072H02

LTE

		Mada	David O
BW[MHz]	RB Size	Mode	Band 2
1.4	1	QPSK	22±1dBm
	3		21±1dBm
1.4	6		21±1dBm
1.4	1		21±1dBm
1.4	3	16- QAM	20±1dBm
1.4	6		19±1dBm
3	1		22±1dBm
3	8	QPSK	21±1dBm
3	15		20±1dBm
3	1		21±1dBm
3	8	16- QAM	20±1dBm
3	15		19±1dBm
5	1		21.1±1dBm
5	12	QPSK	20.8±1dBm
5	25		19.8±1dBm
5	1		20±1dBm
5	12	16- QAM	19±1dBm
5	25		18±1dBm
10	1		20±1dBm
10	25	QPSK	19±1dBm
10	50		19±1dBm
10	1		19±1dBm
10	25	16- QAM	18±1dBm
10	50		18±1dBm
15	1		22±1dBm
15	36	QPSK	21±1dBm
15	75		20±1dBm
15	1	16- QAM	21±1dBm
15	36		21±1dBm
15	75		20±1dBm
20	1		22±1dBm
20	50	QPSK	21±1dBm
20	100		20±1dBm
20	1	16- QAM	21±1dBm
20	50		21±1dBm
20	100		20±1dBm

П

Shenzhen STS Test Services Co., Ltd.

Page 32 of 77

Report No.: STS1902072H02

10.3 SAR Test Exclusions Applied

Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f}(GHZ)$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- f(GHZ) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of **Bluetooth Body** (rounded to the nearest mW) and the antenna to user separation distance,

Bluetooth Body SAR was not required; $[1.259/5)^* \sqrt{2.480} = 0.40 < 3.0$.

Based on the maximum conducted power of **Bluetooth Front to face** (rounded to the nearest mW) and the antenna to user separation distance,

Bluetooth Front to face SAR was not required; $[(1.259/10)^* \sqrt{2.480}] = 0.20 < 3.0.$

Based on the maximum conducted power of **2.4 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

2.4 GHz WLAN SAR was required; $[(31.623/5)^* \sqrt{2.462}] = 9.96 > 3.0.$

Based on the maximum conducted power of **2.4 GHz WLAN Front to face** (rounded to the nearest mW) and the antenna to user separation distance,

2.4 GHz WLAN Front to face SAR was required; $[(31.623/10)^* \sqrt{2.462}] = 4.96 > 3.0$

Based on the maximum conducted power of **5.2 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN SAR was required; $[7.943/5]^* \sqrt{5.200} = 3.62 > 3.0$.

Based on the maximum conducted power of **5.2 GHz WLAN Front to face** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN Front to face SAR was not required; $[(7.943/10)^* \sqrt{5.200}] = 1.81 < 3.0$

Based on the maximum conducted power of **5.3 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN SAR was required; $[7.943/5]^* \sqrt{5.300} = 3.66 > 3.0$.

Based on the maximum conducted power of **5.3 GHz WLAN Front to face** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN Front to face SAR was not required; $[(7.943/10)^* \sqrt{5.300}] = 1.83 < 3.0$

Based on the maximum conducted power of **5.6 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN SAR was required; $[7.943/5]^* \sqrt{5.600} = 3.76 > 3.0$.

Based on the maximum conducted power of **5.6 GHz WLAN Front to face** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN Front to face SAR was not required; $[(7.943/10)^* \sqrt{5.600}] = 1.88 < 3.0$

Based on the maximum conducted power of **5.8 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN SAR was required; $[7.943/5]^* \sqrt{5.800} = 1.52 < 3.0$.

Based on the maximum conducted power of **5.8 GHz WLAN Front to face** (rounded to the nearest mW) and the antenna to user separation distance,

5.2 GHz WLAN Front to face SAR was not required; $[(7.943/10)^* \sqrt{5.800}] = 0.76 < 3.0$

Page 34 of 77

11. EUT And Test Setup Photo

11.1 EUT Photo

Shenzhen STS Test Services Co., Ltd.

Page 35 of 77 Report

Report No.: STS1902072H02

Top side

Bottom side

Report No.: STS1902072H02

Left side

Right side

Page 37 of 77


Report No.: STS1902072H02

11.2 Setup Photo

Body Front side(separation distance is 5mm)

Body Back side(separation distance is 5mm)

Page 38 of 77

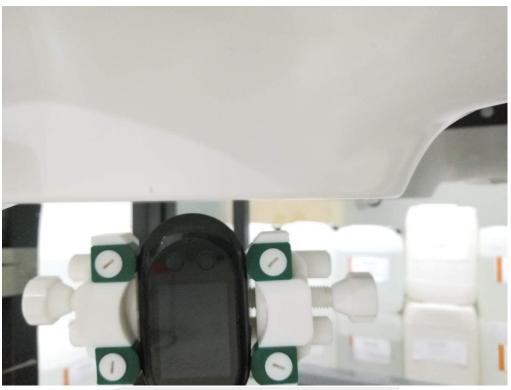
Report No.: STS1902072H02

Body left side(separation distance is 5mm)

Body right side(separation distance is 5mm)

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

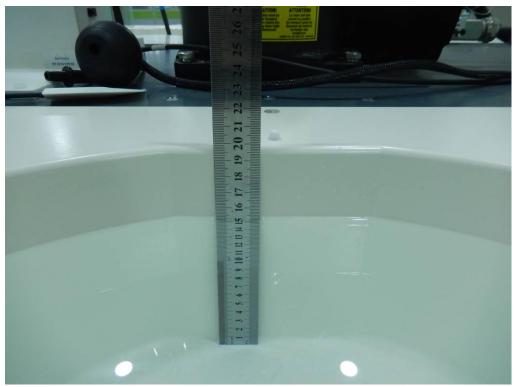
Ð

Report No.: STS1902072H02

Body Bottom side(separation distance is 5mm)

Page 39 of 77

Front to face (separation distance is 10mm)



Page 40 of 77 Re

Report No.: STS1902072H02

Liquid depth (15 cm)

Shenzhen STS Test Services Co., Ltd.

12. SAR Result Summary

12.1 Body-worn SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
		Front side	9538	0.231	2.42	22	21.28	0.273	/
WCDMA	RMC	Back side	9538	0.370	2.94	22	21.28	0.437	1
II	RIVIC	Right side	9538	0.245	-0.78	22	21.28	0.289	/
		Bottom side	9538	0.098	3.67	22	21.28	0.116	/
		Front side	4183	0.173	3.02	24	23.80	0.181	/
WCDMA	V RMC	Back side	4183	0.272	-3.76	24	23.80	0.285	2
V		Right side	4183	0.178	3.27	24	23.80	0.186	/
		Bottom side	4183	0.054	0.45	24	23.80	0.057	/

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
		Front side	11	0.037	-2.45	15	14.22	100	0.044	/
WLAN	802.11b	Back side	11	0.070	3.44	15	14.22	100	0.084	3
		Left side	11	0.068	3.72	15	14.22	100	0.081	/
		Front side	36	0.017	2.08	9	8.92	100	0.017	/
5.2G WLAN	802.11a	Back side	36	0.044	1.98	9	8.92	100	0.045	4
VVL/ (1		Left side	36	0.041	2.66	9	8.92	100	0.042	/
		Front side	52	0.036	2.49	9	8.15	100	0.044	/
WLAN 5.3 G	802.11n	Back side	52	0.088	2.09	9	8.15	100	0.107	11
0.0 0		Left side	52	0.049	-2.58	9	8.15	100	0.060	/
		Front side	100	0.051	1.22	9	8.26	100	0.060	/
WLAN 5.6 G	802.11a	Back side	100	0.120	1.62	9	8.26	100	0.142	12
0.00		Left side	100	0.076	-0.44	9	8.26	100	0.090	/

Note:

- 1. The test separation of all above table is 5mm.
- 2. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor

- Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.136 W/Kg for Body)
- 4. 3. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Page 42 of 77 Report No.: STS1902072H02

Band	BW (MHz)	Mod.	RB Size	RB offset	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max. Turn-up Power(dBm)	Meas. Output Power(dBm)	SAR	Meas. No.
			1	0	Front side	19100	0.209	1.47	23	22.21	0.251	/
			50	0	Front side	19100	0.175	-2.61	22	21.98	0.176	/
			1	0	Back Side	19100	0.368	-1.90	23	22.21	0.441	5
LTE	20M	QPSK	50	0	Back Side	19100	0.340	-1.63	22	21.98	0.342	/
Band 2	20101	QFSK	1	0	Right Side	19100	0.178	2.22	23	22.21	0.214	/
			50	0	Right Side	19100	0.152	1.38	22	21.98	0.153	/
			1	0	Bottom Side	19100	0.092	0.56	23	22.21	0.110	/
			50	0	Bottom Side	19100	0.083	-3.42	22	21.98	0.083	/

12.2 Front to face SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
WCDMA II	RMC	Front to face	9538	0.284	2.11	22	21.28	0.335	6
WCDMA V	RMC	Front to face	4183	0.134	-1.53	24	23.80	0.140	7

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WLAN	802.11b	Front to face	11	0.056	2.03	15	14.22	100	0.067	8
5.2G WLAN	802.11a	Front to face	36	0.021	1.98	9	8.92	100	0.021	9

Band	BW (MHz)	Mod.	RB Size	RB offset	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max. Turn-up Power(dBm	Meas. Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
LTE	20M	QPSK	1	0	Front to face	19100	0.217	2.08	23	22.21	0.260	10
Band 2	20101	QF OK	50	0	Front to face	19100	0.185	1.95	22	21.98	0.186	/

Note:

- 1. The test separation of all above table is 10mm.
- 2. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

- b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
 3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.031 W/Kg for Head)
- 4. 3. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission

Shenzhen STS Test Services Co., Ltd.

frequency RF signal.

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

Position	Simultaneous state
	1 WCDMA + WLAN
	2 WCDMA + 5G WLAN
Dedu	3. WCDMA + Bluetooth
Body	4. LTE + WLAN
	5 LTE + 5G WLAN
	6. LTE + Bluetooth
	1 WCDMA + WLAN
	2 WCDMA + 5G WLAN
Front to	3. WCDMA + Bluetooth
face	4. LTE + WLAN
	5 LTE + 5G WLAN
/	6. LTE + Bluetooth

NOTE:

- 1. Bluetooth and WLAN can't simultaneous transmission at the same time.
- 2. For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state.
- 3. Based upon KDB 447498 D01, BT SAR is excluded as below table.
- 4. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 5. For minimum test separation distance \leq 50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm) \cdot [\sqrt{f} (GHz) /x] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR
- 6. The reported SAR summation is calculated based on the same configuration and test position.
- 7. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
 - 5) (max. power of channel, including tune-up tolerance, mW)/(min. test
 - separation distance, mm)]·[\sqrt{f} (GHz) /x] W/kg for test separation distances \leq 50 mm;
 - Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

Estir	Estimated SAR		um Power mW	Antenna to user(mm)	Frequency(GHz)	Stand alone SAR(1g) [W/kg]
BT	Body	dBm 1	1.259	5	2.480	0.053
BT	Front to face	1	1.259	10	2.480	0.026
5.3G	Front to face	9	7.94	10	5.300	0.244
5.6G	Front to face	9	7.94	10	5.600	0.251
	Body	5	3.16	5	5.800	0.203
5.8G	Front to face	5	3.16	10	5.800	0.101

Shenzhen STS Test Services Co., Ltd.

Shenzhen STS Test Services Co., Ltd.

Page 45 of 77 Report No.: STS1902072H02

Simultaneous Mode	Position	Mode	Max. 1-g SAR (W/kg)	1-g Sum SAR (W/kg)
	Dedu	WCDMA RMC	0.437	0.521
	Body	WLAN	0.084	0.521
WCDMA + WLAN	Event to face	WCDMA RMC	0.335	0.400
	Front to face	WLAN	0.067	0.402
	Death	WCDMA RMC	0.437	0,400
WCDMA + 5.2G	Body	5.2G WLAN	0.045	0.482
WLAN	Encat to face	WCDMA RMC	0.335	0.050
	Front to face	5.2G WLAN	0.021	0.356
	6 -	WCDMA RMC	0.437	0.544
WCDMA + 5.3G	Body	5.3G WLAN	0.107	0.544
WLAN	-	WCDMA RMC	0.335	0.570
	Front to face	5.4G WLAN	0.244	0.579
	6 -	WCDMA RMC	0.437	0.570
WCDMA + 5.6G	Body	5.6G WLAN	0.142	0.579
WLAN		WCDMA RMC	0.335	
	Front to face	5.6G WLAN	0.251	0.586
		WCDMA RMC	0.437	
WCDMA + 5.8G	Body	5.8G WLAN	0.203	0.640
WLAN		WCDMA RMC	0.335	
	Front to face	5.8G WLAN	0.101	0.436
		WCDMA RMC	0.437	
	Body	Bluetooth	0.053	0.490
WCDMA + Bluetooth		WCDMA RMC	0.335	
	Front to face	Bluetooth	0.026	0.361
		LTE RMC	0.441	
	Body	WLAN	0.084	0.525
LTE + WLAN	_	LTE RMC	0.260	
	Front to face	WLAN	0.067	0.327
		LTE RMC	0.441	
	Body	5.2G WLAN	0.045	0.486
LTE + 5.2G WLAN		LTE RMC	0.260	
	Front to face	5.2G WLAN	0.021	0.281
		LTE RMC	0.441	
	Body	5.3G WLAN	0.107	0.548
LTE + 5.3G WLAN	_	LTE RMC	0.260	
	Front to face	5.3G WLAN	0.244	0.504
		LTE RMC	0.441	
	Body	5.6G WLAN	0.142	0.583
LTE + 5.6G WLAN	_	LTE RMC	0.260	
	Front to face	5.6G WLAN	0.251	0.511
		LTE RMC	0.441	
	Body	5.8G WLAN	0.203	0.644
LTE + 5.8G WLAN		LTE RMC	0.260	
	Front to face	5.8G WLAN	0.101	0.361
		LTE RMC	0.441	
	Body	Bluetooth	0.053	0.494
LTE + Bluetooth		LTE RMC	0.260	
	Front to face	Bluetooth	0.026	0.286
Simultaneous transm				

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 46 of 77

Report No.: STS1902072H02

13. Equipment List

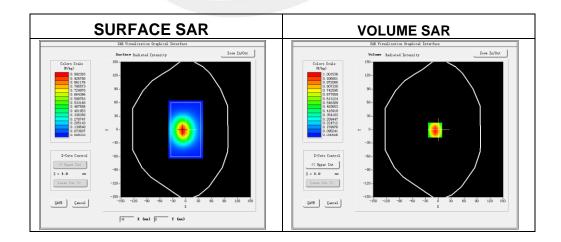
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
835MHz Dipole	MVG	SID835	SN 30/14 DIP0G835-332	2017.08.15	2020.08.14
1900MHz Dipole	MVG	SID1900	SN 30/14 DIP1G900-333	2017.08.15	2020.08.14
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2017.08.15	2020.08.14
Waveguide	SATIMO	SWG5500	SN 13/14 WGA32	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE2	SN 45/15 EPGO281	2018.04.10	2019.04.09
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2018.12.13	2019.12.12
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Network Analyzer	Agilent	8753ES	US38432810	2018.03.08	2019.03.07
Multi Meter	Keithley	Multi Meter 2000	4050073	2018.10.13	2019.10.12
Signal Generator	Agilent	N5182A	MY50140530	2018.10.16	2019.10.15
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2018.10.16	2019.10.15
Wireless Communication Test Set	R&S	CMW500	117239	2018.10.13	2019.10.12
Power Amplifier	DESAY	ZHL-42W	9638	2018.10.13	2019.10.12
Power Meter	R&S	NRP	100510	2018.10.26	2019.10.25
Power Meter	Agilent	E4418B	GB43312526	2018.10.26	2019.10.25
Power Sensor	R&S	NRP-Z11	101919	2018.10.13	2019.10.12
Power Sensor	Agilent	E9301A	MY41497725	2018.10.13	2019.10.12
9dB Attenuator	Agilent	99899	DC-18GHz	2018.05.09	2019.05.08
11dB Attenuator	Agilent	8494B	DC-18GHz	2018.05.09	2019.05.08
110dB Attenuator	Agilent	8494B	DC-18GHz	2018.05.09	2019.05.08
Directional coupler	Narda	4226-20	3305	2018.10.14	2019.10.13
hygrothermograph	MiEO	HH660	N/A	2018.10.14	2019.10.13
Thermograph	Elitech	RC-4	S/N EF7176501537	2018.10.14	2019.10.13 Street, Bao'an District, Shenzher

П

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1902072H02

Appendix A. System Validation Plots


System Performance Check Data (835MHz Head)

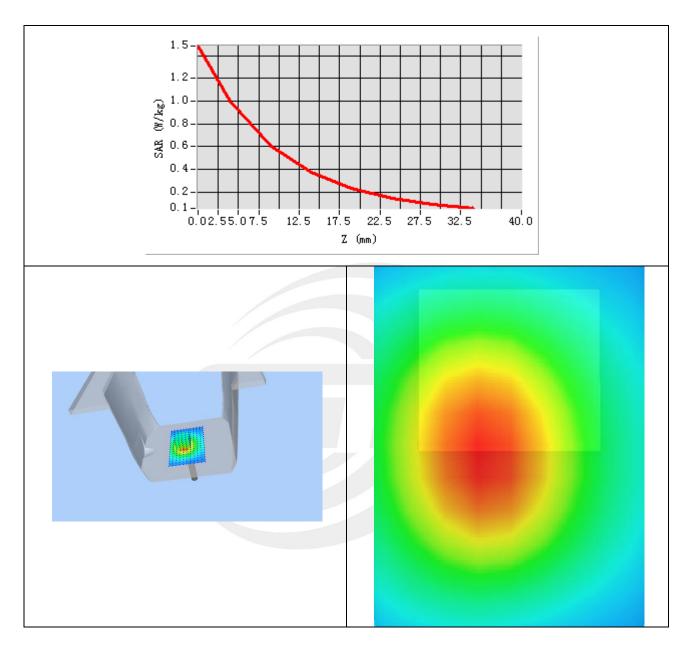
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-08-14 Measurement duration: 13 minutes 27 seconds

Experimental conditions

Phantom	Validation plane				
Device Position	_				
Band	835MHz				
Channels	-				
Signal	CW				
Frequency (MHz)	835MHz				
Relative permittivity	40.47				
Conductivity (S/m)	0.91				
Power drift (%)	0.07				
Probe	SN 14/16 EP309				
ConvF:	1.78				
Crest factor:	1:1				

Maximum location: X=-7.00, Y=-1.00

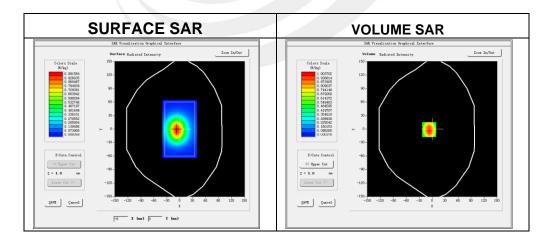

SAR 10g (W/Kg)	0.615203
SAR 1g (W/Kg)	0.967102

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1902072H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.



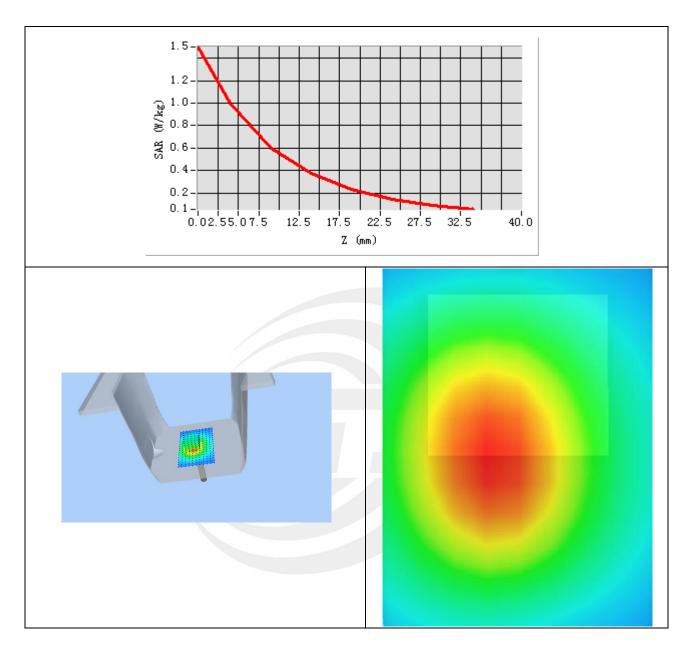
System Performance Check Data (835MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-07-17 Measurement duration: 14 minutes 13 seconds

Experimental conditions.

Probe	
Phantom	Validation plane
Device Position	-
Band	835MHz
Channels	
Signal	CW
Frequency (MHz)	835MHz
Relative permittivity	54.05
Conductivity (S/m)	0.94
Power drift (%)	-0.37
Probe	SN 45/15 EPGO281
ConvF:	1.85
Crest factor:	1:1

Maximum location: X=-7.00, Y=-1.00


SAR 10g (W/Kg)	0.635871
SAR 1g (W/Kg)	0.992145

Page 50 of 77

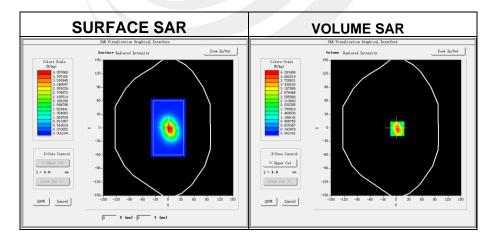
Report No.: STS1902072H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.

Page 51 of 77

Report No.: STS1902072H02

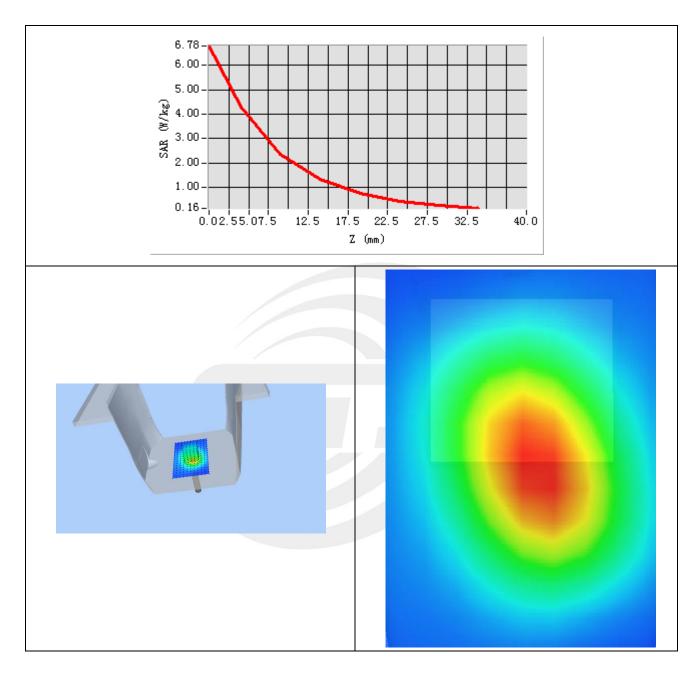


System Performance Check Data (1900MHz Head)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-08-14 Measurement duration: 14 minutes 12 seconds

Experimental conditions.

Phantom	Validation plane
Device Position	-
Band	1900MHz
Channels	-
Signal	CW
Frequency (MHz)	1900MHz
Relative permittivity	40.93
Conductivity (S/m)	1.38
Power drift (%)	0.46
Probe	SN 14/16 EP309
ConvF:	2.10
Crest factor:	1:1


Maximum location: X=3.00, Y=-2.00

SAR 10g (W/Kg)	2.102587
SAR 1g (W/Kg)	4.164821

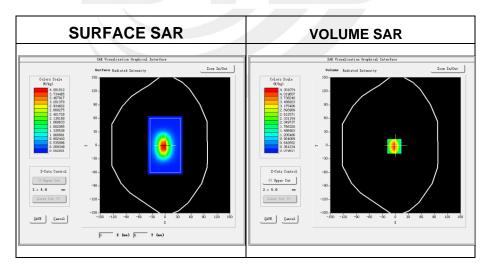
Report No.: STS1902072H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.

Page 53 of 77

Report No.: STS1902072H02



System Performance Check Data (1900MHz Body)

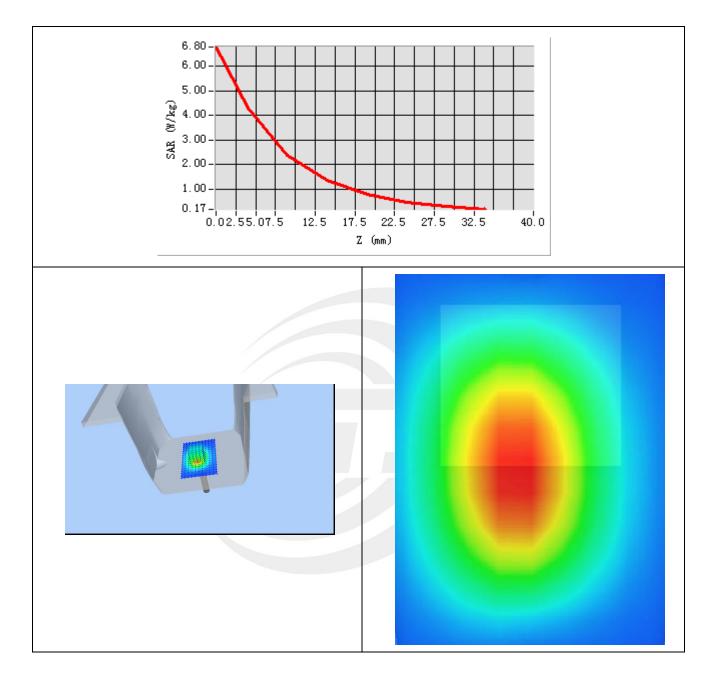
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-07-18 Measurement duration: 14 minutes 46 seconds

Experimental conditions.

Device Position	-
Band	1900MHz
Channels	-
Signal	CW
Frequency (MHz)	1900
Relative permittivity	53.28
Conductivity (S/m)	1.49
Power drift (%)	-0.31
Probe	SN 45/15 EPGO281
ConvF:	2.16
Crest factor:	1:1

Maximum location: X=-3.00, Y=-2.00

SAR Peak: 5.27 W/kg

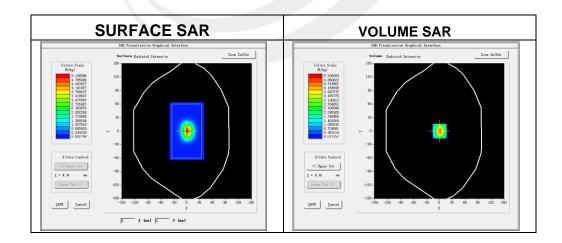

SAR 10g (W/Kg)	2.183011
SAR 1g (W/Kg)	3.930247

Page 54 of 77

Report No.: STS1902072H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.



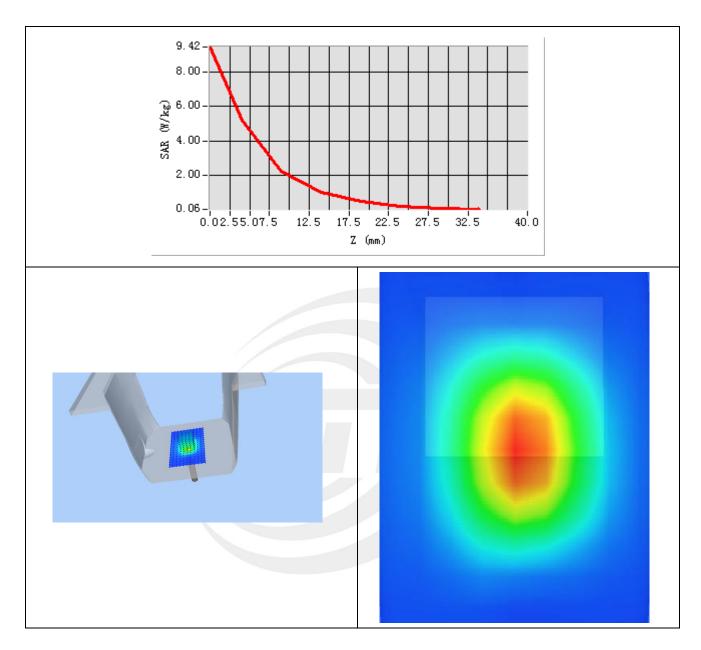
System Performance Check Data (2450MHz Head)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-08-15 Measurement duration: 13 minutes 51seconds

Experimental conditions.

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	39.59
Conductivity (S/m)	1.76
Power drift (%)	-0.38
Probe	SN 14/16 EP309
ConvF	2.21
Crest factor:	1:1

Maximum location: X=1.00, Y=0.00

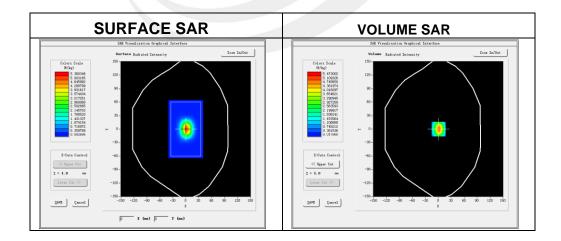

SAR 10g (W/Kg)	2.450217
SAR 1g (W/Kg)	5.274508

Page 56 of 77

Report No.: STS1902072H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.

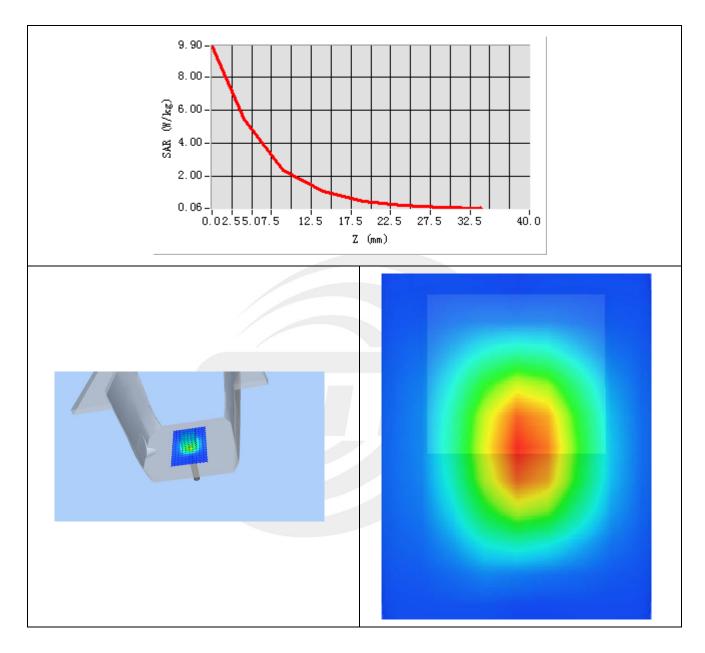


System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-08-15 Measurement duration: 14 minutes 23 seconds

Experimental conditions.

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	53.28
Conductivity (S/m)	1.49
Power drift (%)	-0.07
Probe	SN 45/15 EPGO281
ConvF	2.28
Crest factor:	1:1


Maximum location: X=1.00, Y=0.00

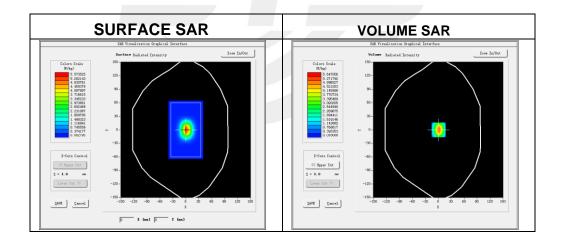
SAR 10g (W/Kg)	2.452014
SAR 1g (W/Kg)	5.302451

Report No.: STS1902072H02

Z Axis Scan

Page 59 of 77

Report No.: STS1902072H02



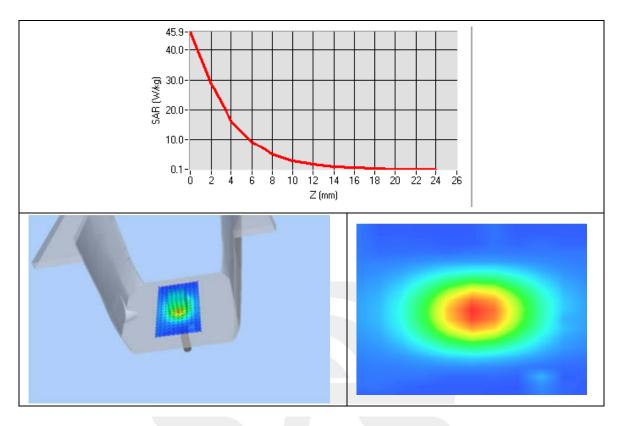
System Performance Check Data(5200MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018-07-19

Experimental conditions.

Device Position	Validation plane
Band	5200 MHz
Channels	-
Signal	CW
Frequency (MHz)	5200
Relative permittivity	49.66
Conductivity (S/m)	5.41
Power drift (%)	2.52
Probe	SN 45/15 EPGO281
ConvF	2.52
Crest factor:	1:1

Maximum location: X=7.00, Y=2.00

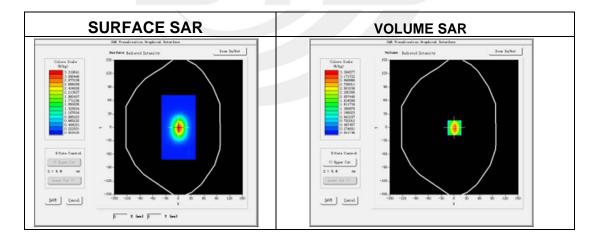

SAR 10g (W/Kg)	5.762062
SAR 1g (W/Kg)	15.847001

Page 60 of 77

Report No.: STS1902072H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.

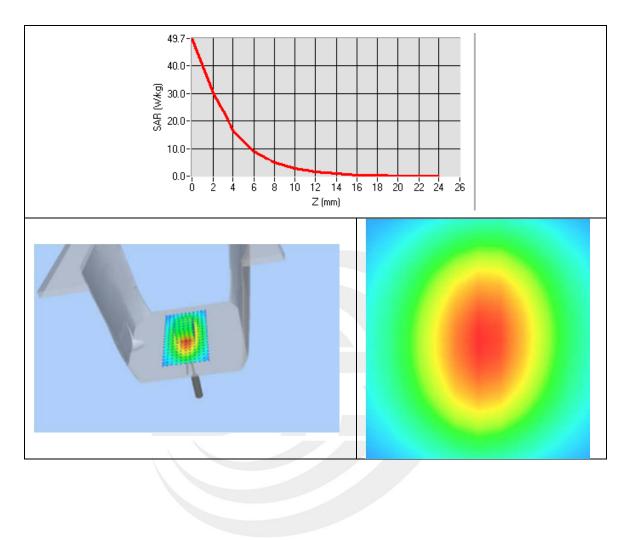


System Performance Check Data(5300MHz Body)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2019-03-05

Experimental conditions.

Device Position	Validation plane
Band	5300 MHz
Channels	-
Signal	CW
Frequency (MHz)	5300
Relative permittivity	49.20
Conductivity (S/m)	5.39
Power drift (%)	-1.77
Probe	SN 45/15 EPGO281
ConvF	2.79
Crest factor:	1:1

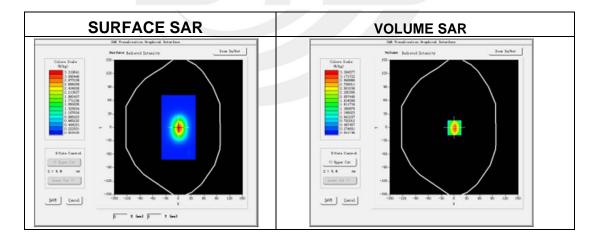


Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	5.975031
SAR 1g (W/Kg)	16.786210

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.

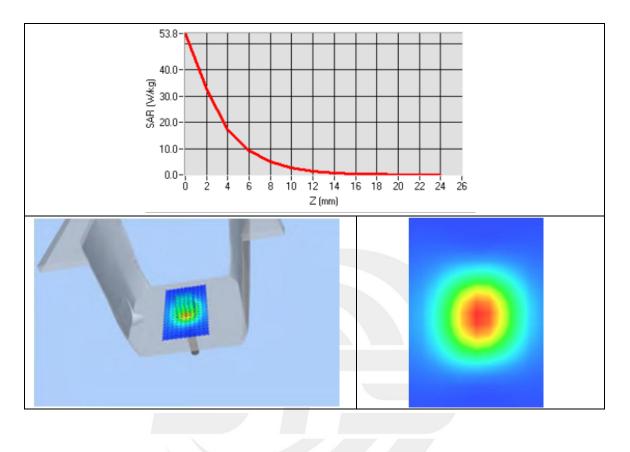


System Performance Check Data(5600MHz Body)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2019-03-05

Experimental conditions.

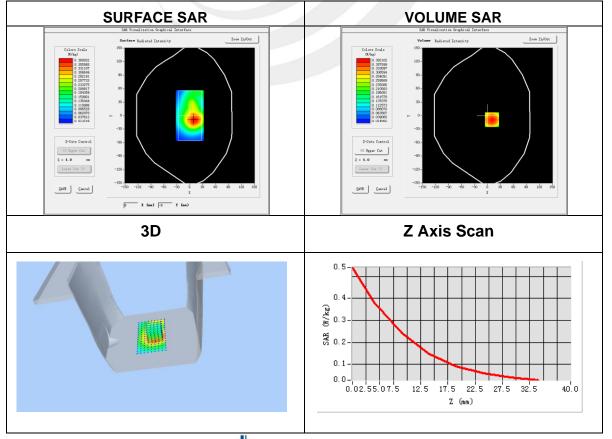
Device Position	Validation plane
Band	5600 MHz
Channels	-
Signal	CW
Frequency (MHz)	5600
Relative permittivity	50.37
Conductivity (S/m)	5.90
Power drift (%)	1.86
Probe	SN 45/15 EPGO281
ConvF	2.83
Crest factor:	1:1



Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	6.140128
SAR 1g (W/Kg)	17.232581

Z Axis Scan


Shenzhen STS Test Services Co., Ltd.

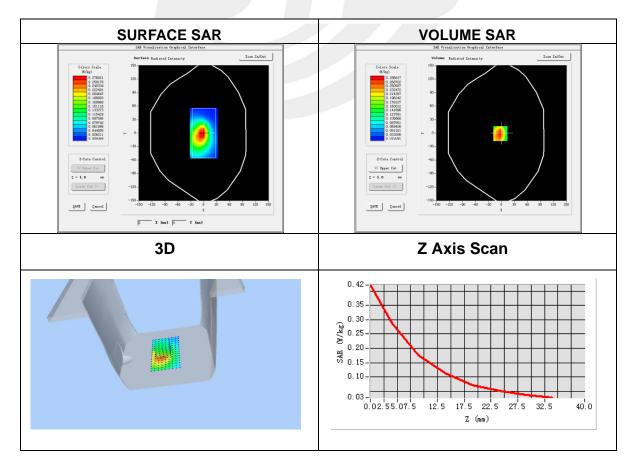
Appendix B. SAR Test Plots Plot 1: DUT: POCKETALK ; EUT Model: W1PGK

Test Date	2018-07-18	
Probe	SN 45/15 EPGO281	
ConvF	2.16	
Area Scan	dx=8mm dy=8mm, h= 5.00 mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm	
Phantom	Validation plane	
Device Position	Body back side	
Band	WCDMA II	
Channels	High	
Signal	WCDMA (Crest factor: 1.0)	
Frequency (MHz)	1907.6	
Relative permittivity (real part)	53.28	
Conductivity (S/m)	1.49	
Variation (%)	2.94	
Maximum location: X=10.00, Y=-9.00		
SAR Peak: 0.54 W/kg		
SAR 10g (W/Kg)	0.223191	
SAR 1g (W/Kg)	0.369710	

SAR 10g (W/Kg)	0.223191
SAR 1g (W/Kg)	0.369710

Shenzhen STS Test Services Co., Ltd.

Page 66 of 77


Report No.: STS1902072H02

Plot 2: DUT: POCKETALK ; EUT Model: W1PGK

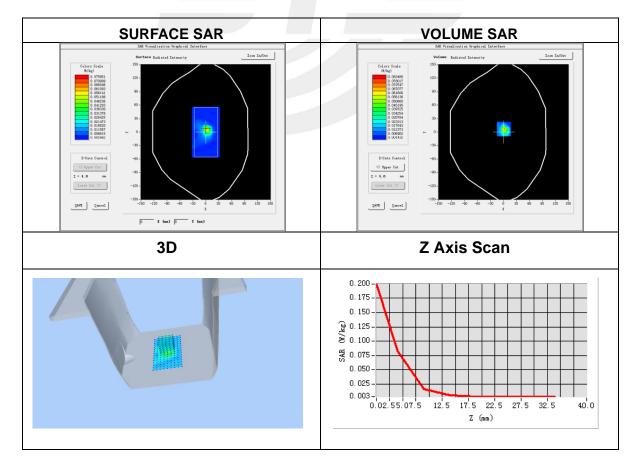
Test Date	2018-07-18
Probe	SN 45/15 EPGO281
ConvF	1.85
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back side
Band	WCDMA V
Channels	Middle
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	836.6
Relative permittivity (real part)	54.05
Conductivity (S/m)	0.94
Variation (%)	-3.76
Maximum location: X=-3.00, Y=-1.00	

SAR Peak: 0.42 W/kg

SAR 10g (W/Kg)	0.165820
SAR 1g (W/Kg)	0.271605

Shenzhen STS Test Services Co., Ltd.

Page 67 of 77


Report No.: STS1902072H02

Plot 3: DUT: POCKETALK ; EUT Model: W1PGK

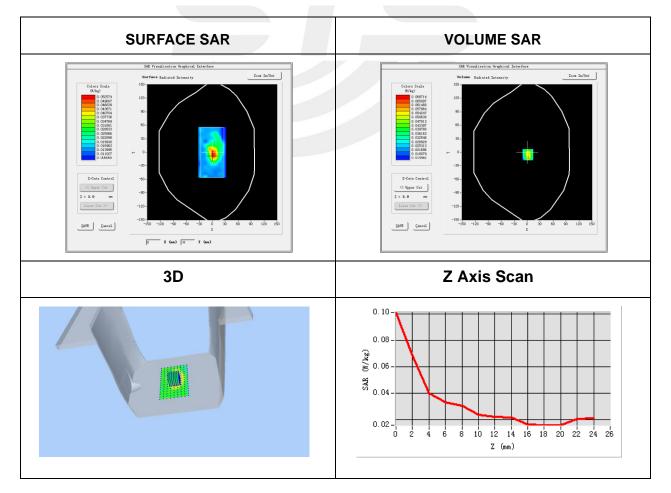
Test Date	2018-07-18
Probe	SN 45/15 EPGO281
FIDDE	3N 43/13 EF 60201
ConvF	2.28
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back side
Band	IEEE 802.11b ISM
Channels	High
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2462
Relative permittivity (real part)	54.14
Conductivity (S/m)	2.00
Variation (%)	3.44
Maximum location: X=1.00, Y=7.00	

SAR Peak: 0.19 W/kg

SAR 10g (W/Kg)	0.018384
SAR 1g (W/Kg)	0.070234

Shenzhen STS Test Services Co., Ltd.

Page 68 of 77


Report No.: STS1902072H02

Plot 4: DUT: POCKETALK ; EUT Model: W1PGK

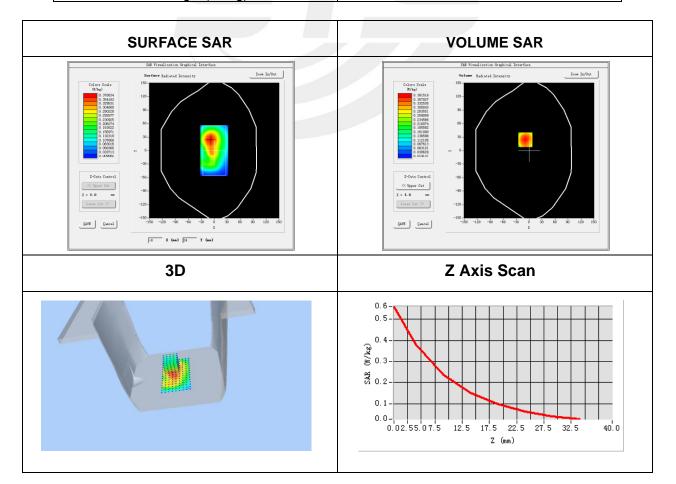
Test Date	2017-07-19
Probe	SN 45/15 EPGO281
ConvF	2.52
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back
Band	IEEE 802.11a U-NII
Channels	Low
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5180
Relative permittivity (real part)	49.66
Conductivity (S/m)	5.41
Variation (%)	1.98

Maximum location: X=2.00, Y=-5.00 SAR Peak: 0.11 W/kg

	<u> </u>
SAR 10g (W/Kg)	0.027296
SAR 1g (W/Kg)	0.043615

Shenzhen STS Test Services Co., Ltd.

Page 69 of 77


Report No.: STS1902072H02

Plot 5: DUT: POCKETALK ; EUT Model: W1PGK

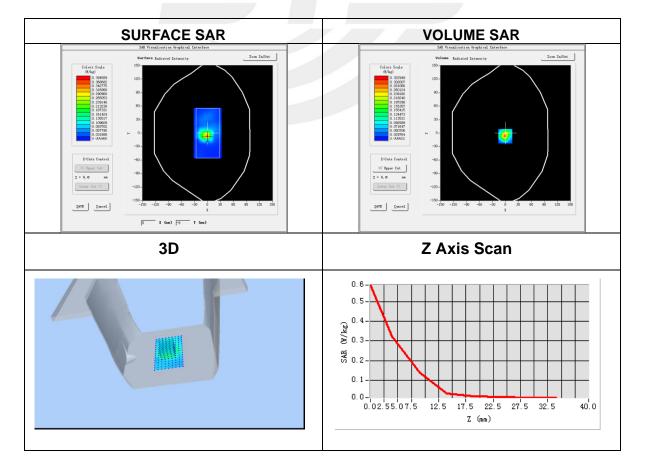
2018-07-18
SN 45/15 EPGO281
2.16
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body back
LTE Band 2(RB 1)
High
LTE (Crest factor: 1.0)
1900
53.28
1.49
-1.90

Maximum location: X=-9.00, Y=24.00 SAR Peak: 0.56 W/kg

SAR 10g (W/Kg)	0.222531
SAR 1g (W/Kg)	0.367580

Shenzhen STS Test Services Co., Ltd.

Page 70 of 77


Report No.: STS1902072H02

Plot 6: DUT: POCKETALK ; EUT Model: W1PGK

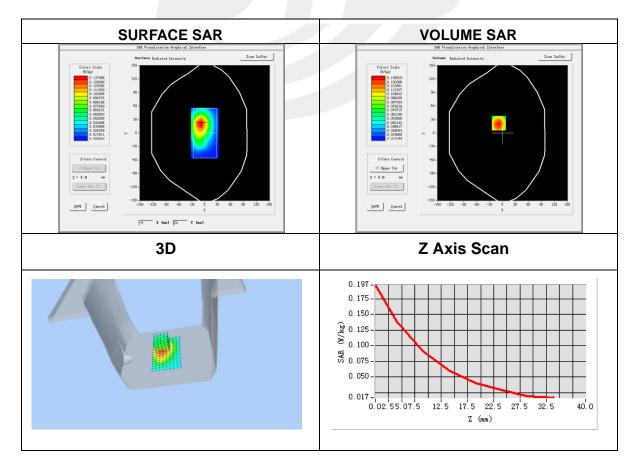
Test Date	2018-08-14
Probe	SN 45/15 EPGO281
ConvF	2.10
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front to face
Band	WCDMA II
Channels	High
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	1907.6
Relative permittivity (real part)	40.93
Conductivity (S/m)	1.38
Variation (%)	2.11
Maximum location: X=-1.00, Y=-7.00	

SAR Peak: 0.60 W/kg

SAR 10g (W/Kg)	0.103846
SAR 1g (W/Kg)	0.283890

Shenzhen STS Test Services Co., Ltd.

Page 71 of 77


Report No.: STS1902072H02

Plot 7: DUT: POCKETALK ; EUT Model: W1PGK

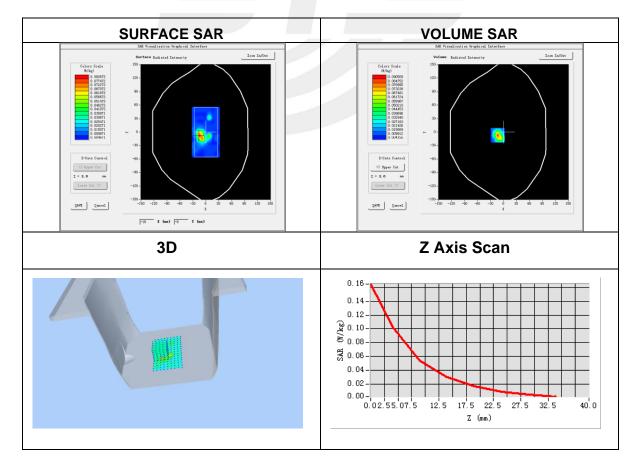
Test Date	2018-8-14
Probe	SN 45/15 EPGO281
ConvF	1.78
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front to face
Band	WCDMA V
Channels	Middle
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	836.6
Relative permittivity (real part)	40.37
Conductivity (S/m)	0.91
Variation (%)	-1.53
Maximum location: X=-9.00, Y=22.00	

SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.082941
SAR 1g (W/Kg)	0.134094

Shenzhen STS Test Services Co., Ltd.

Page 72 of 77


Report No.: STS1902072H02

Plot 8: DUT: POCKETALK ; EUT Model: W1PGK

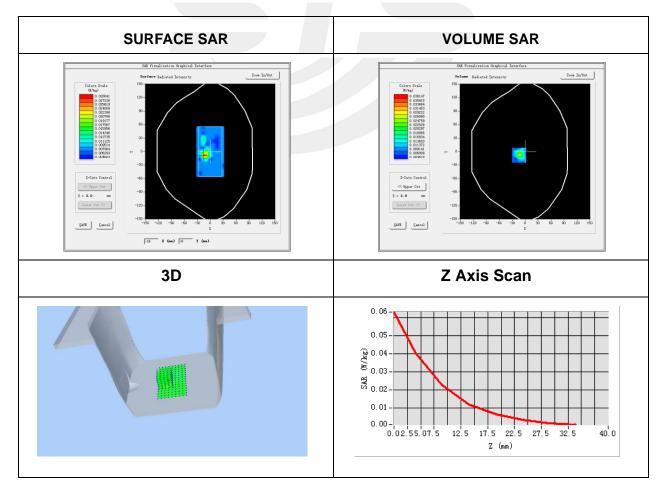
Test Date	2018-08-15
Probe	SN 45/15 EPGO281
ConvF	2.21
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front to face
Band	IEEE 802.11b ISM
Channels	High
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2462
Relative permittivity (real part)	39.59
Conductivity (S/m)	1.76
Variation (%)	2.03
Maximum location: X=-14.0, Y=-7.00	

SAR Peak: 0.16 W/kg

SAR 10g (W/Kg)	0.019707
SAR 1g (W/Kg)	0.056151

Shenzhen STS Test Services Co., Ltd.

Page 73 of 77


Report No.: STS1902072H02

Plot 9: DUT: POCKETALK ; EUT Model: W1PGK

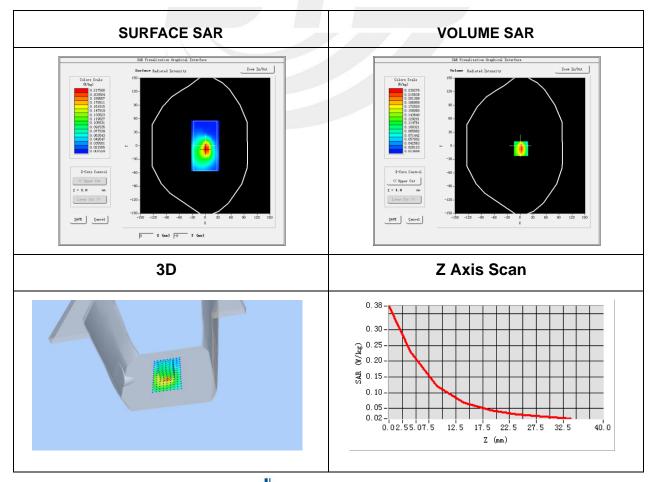
Test Date	2017-08-15
Probe	SN 45/15 EPGO281
ConvF	2.46
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front to face
Band	IEEE 802.11a U-NII
Channels	Low
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5180
Relative permittivity (real part)	37.22
Conductivity (S/m)	4.51
Variation (%)	1.98

Maximum location: X=-14.00, Y=-8.00 SAR Peak: 0.06 W/kg

e, it i bart	siee nag
SAR 10g (W/Kg)	0.010308
SAR 1g (W/Kg)	0.020718

Shenzhen STS Test Services Co., Ltd.

Page 74 of 77


Report No.: STS1902072H02

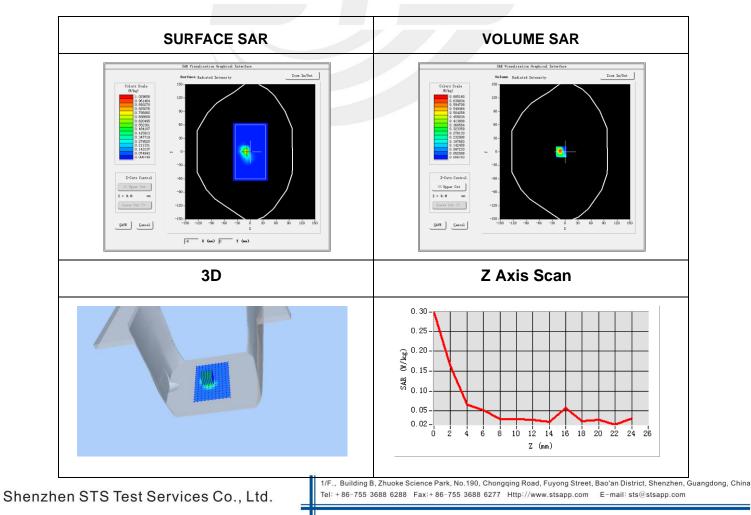
Plot 10: DUT: POCKETALK ; EUT Model: W1PGK

2018-08-14
SN 45/15 EPGO281
2.10
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Front to face
LTE Band 2(RB 1)
High
LTE (Crest factor: 1.0)
1900
40.93
1.38
2.08

Maximum location: X=2.00, Y=-6.00 SAR Peak: 0.38 W/kg

	3
SAR 10g (W/Kg)	0.114825
SAR 1g (W/Kg)	0.217888

Shenzhen STS Test Services Co., Ltd.



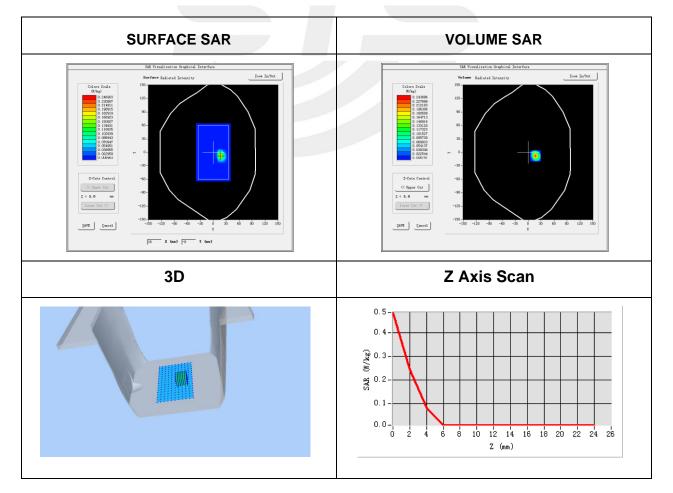
Plot 11: DUT: POCKETALK ; EUT Model: W1PGK

Test Date	2019-03-05
Probe	SN 45/15 EPGO281
ConvF	2.79
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back
Band	IEEE 802.11a U-NII
Channels	Low
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5260
Relative permittivity (real part)	50.51
Conductivity (S/m)	5.70
Variation (%)	2.09

Maximum location: X=-9.00, Y=0.00 SAR Peak: 0.30 W/kg

SAR 10g (W/Kg)	0.036172
SAR 1g (W/Kg)	0.087628

Page 76 of 77


Report No.: STS1902072H02

Plot 12: DUT: POCKETALK ; EUT Model: W1PGK

Test Date	2019-03-05
Probe	SN 45/15 EPGO281
ConvF	2.83
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back
Band	IEEE 802.11a U-NII
Channels	Low
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5500
Relative permittivity (real part)	49.83
Conductivity (S/m)	5.91
Variation (%)	1.62

Maximum location: X=17.00, Y=-8.00 SAR Peak: 0.53 W/kg

SAR 10g (W/Kg)	0.031855
SAR 1g (W/Kg)	0.120147

Shenzhen STS Test Services Co., Ltd.

Page 77 of 77

Report No.: STS1902072H02

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

Shenzhen STS Test Services Co., Ltd.