

TEST REPORT

Report No.:	BCTC2502627448E
Applicant:	SHENZHEN JUNYE ELECTRONICS CO LTD
Product Name:	TWS Earbuds
Test Model:	Y96
Tested Date:	2025-02-12 to 2025-02-14
Issued Date:	2025-03-04
She 미상(21回 	nzhen BCTC Testing Co., Ltd.
No.: BCTC/RF-EMC-005	Page: 1 of 81

FCC ID: 2BB3B-TWSY96

Product Name:	TWS Earbuds
Trademark:	N/A
Model/Type Reference:	Y96,V40057W2-BLK,SKU#2199136
Prepared For:	SHENZHEN JUNYE ELECTRONICS CO LTD
Address:	201,Building 7,Xingye er Road,Fenghuang Village, Fuyong Town,Baoan District, Shenzhen City,Guangdong Province,China
Manufacturer:	SHENZHEN JUNYE ELECTRONICS CO LTD
Address:	201,Building 7,Xingye er Road,Fenghuang Village, Fuyong Town,Baoan District, Shenzhen City,Guangdong Province,China
Prepared By:	Shenzhen BCTC Testing Co., Ltd
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2025-02-12
Sample Tested Date:	2025-02-12 to 2025-02-14
Report No.:	BCTC2502627448E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

Vave

Brave Zeng/ Project Handler

Approved by: Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 81

Table of Content

Test	Report Declaration F	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information and Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement and Restricted Bands of Operation	
8.1	Block Diagram Of Test Setup.	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result.	
9.	Spurious RF Conducted Emissions	
9.1	Block Diagram Of Test Setup	27
9.2	Limit	
9.3	Test procedure	27
0.1	Test procedure Test Result	28
10.	20 dB Bandwidth	49
10.1	Block Diagram Of Test Setun	49
10.2	Limit	49
10.2	Tast procedure	49
10.5	Test Result Maximum Peak Output Power Block Diagram Of Test Setup Limit	
11.	Maximum Peak Output Power	
11.1	Block Diagram Of Test Setup	
11.2		
11.3	Test procedure	
11.0		

JC JC JC

еро

11.4 Test Result	
12. Hopping Channel Separation	
12.1 Block Diagram Of Test Setup	62
12.2 Limit	62
12.3 Test procedure	62
12.4 Test Result	62
13. Number of Hopping Frequency	68
13.1 Block Diagram Of Test Setup	68
13.2 Limit	68
13.3 Test procedure	68
13.4 Test Result	68
14. Dwell Time	71
14.1 Block Diagram Of Test Setup	71
14.2 Limit	71
14.3 Test procedure	71
14.4 Test Result	71
15. Antenna Requirement	78
15.1 Limit	78
15.2 Test Result	78
16. EUT Test Setup Photographs	79

t Sea

Page: 4 of 81

1. Version

Report No.	Issue Date	Description	Approved
BCTC2502627448E	2025-03-04	Original	Valid

Page: 5 of 81

Test Summary 2.

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
5	Dwell Time	§15.247(a)(1)(iii)	PASS
6	Spurious RF conducted emissions	§15.247(d)	PASS
7	Band edge	§15.247(d)	PASS
8	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
9	Antenna Requirement	15.203	PASS
	N/A (Not Applicable)		

NOTE1: N/A (Not Applicable) NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

Page: 6 of 81

3. Measurement Uncertainty

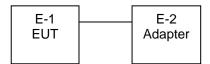
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

No.: BCTC/RF-EMC-005

Page: 7 of 81

4. Product Information and Test Setup


4.1 Product Information

Model/Type reference:	Y96,V40057W2-BLK,SKU#2199136
Model differences:	The following models of units we produce are identical in electrical, mechanical and physical structure; The difference is only in the model name, we finally have Y96 as test model.
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK, π/ 4 DQPSK,8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
Antenna Gain:	2.7dBi
Remark:	The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.
power supply:	DC 5V,1A
Battery:	DC 3.7V/30mAh

4.2 Test Setup Configuration

See test photographs attached in eut test setup photographs for the actual connections between product and support equipment.

Conducted Emission:

Radiated Spurious Emission

Page: 8 of 81

Edition: B.2

E

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	TWS Earbuds	N/A	Y96	N/A	EUT
E-2	Adapter	N/A	N/A	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	N/A	N/A

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel			
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz			
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz			
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz			
4	Transmitting (Co	Transmitting (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	FCC_assist 1.0.1.2				
Frequency	2402 MHz 2441 MHz 2480 MHz				
Parameters	DEF	DEF	DEF		

t Se

Page: 10 of 81

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

5.2 Test Instrument Used

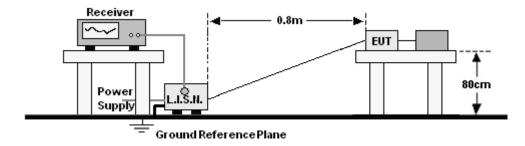
Conducted Emissions Test								
Equipment Manufacturer Model# Serial# Last Cal. Next								
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	EMC-CON 3A1	١	\			
Pulse limiter	Schwarzbeck	VTSD 9561-F	01323	May 16, 2024	May 15, 2025			

	RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
Power meter	Keysight	E4419	\	May 16, 2024	May 15, 2025				
Power Sensor (AV)	Keysight	E9300A	/	May 16, 2024	May 15, 2025				
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025				
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025				

Page: 11 of 81

	Radiated Emissions Test (966 Chamber)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025			
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025			
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025			
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025			
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 16, 2024	May 15, 2025			
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 30, 2024	May 29, 2025			
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025			
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	FA-03A2 RE	\	\			

C 00.,LT


No.: BCTC/RF-EMC-005

Page: 12 of 81

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

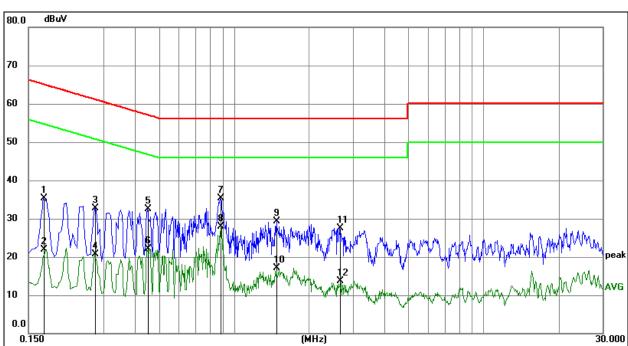
6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

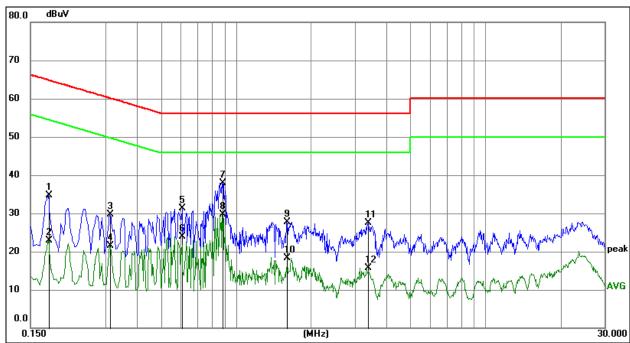
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.


4. Over = Measurement - Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1725	24.64	10.58	35.22	64.84	-29.62	QP
2	0.1725	11.35	10.58	21.93	54.84	-32.91	AVG
3	0.2760	22.18	10.60	32.78	60.94	-28.16	QP
4	0.2760	10.17	10.60	20.77	50.94	-30.17	AVG
5	0.4515	21.95	10.62	32.57	56.85	-24.28	QP
6	0.4515	11.56	10.62	22.18	46.85	-24.67	AVG
7	0.8835	24.60	10.61	35.21	56.00	-20.79	QP
8 *	0.8835	17.32	10.61	27.93	46.00	-18.07	AVG
9	1.4865	18.62	10.68	29.30	56.00	-26.70	QP
10	1.4865	6.33	10.68	17.01	46.00	-28.99	AVG
11	2.6520	16.70	10.86	27.56	56.00	-28.44	QP
12	2.6520	2.90	10.86	13.76	46.00	-32.24	AVG

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	N
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

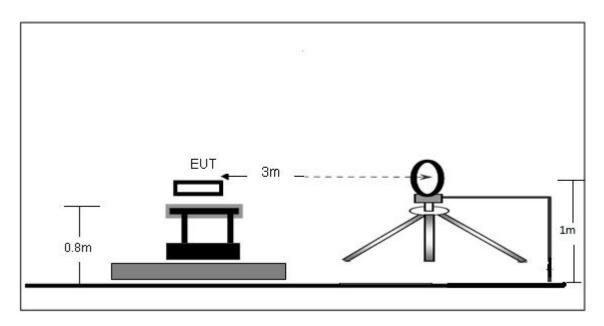
All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.
Measurement = Reading Level + Correct Factor

4.	Over	= Measurement -	Limit

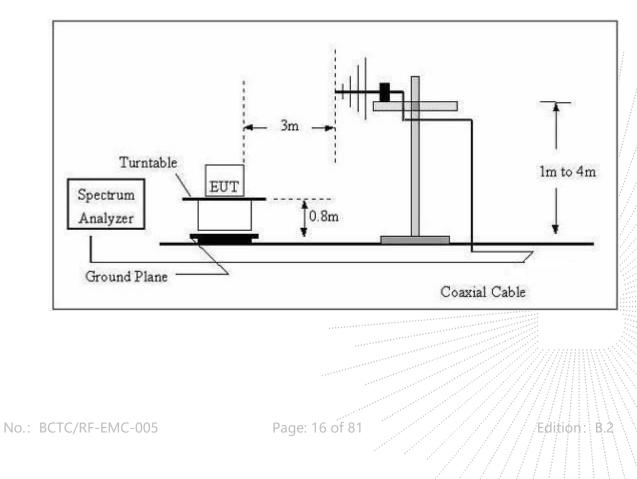
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1770	24.07	10.58	34.65	64.63	-29.98	QP
2	0.1770	12.36	10.58	22.94	54.63	-31.69	AVG
3	0.3120	19.17	10.60	29.77	59.92	-30.15	QP
4	0.3120	10.97	10.60	21.57	49.92	-28.35	AVG
5	0.6090	20.74	10.66	31.40	56.00	-24.60	QP
6	0.6090	13.21	10.66	23.87	46.00	-22.13	AVG
7	0.8835	27.37	10.61	37.98	56.00	-18.02	QP
8 *	0.8835	19.17	10.61	29.78	46.00	-16.22	AVG
9	1.5945	17.06	10.70	27.76	56.00	-28.24	QP
10	1.5945	7.51	10.70	18.21	46.00	-27.79	AVG
11	3.3855	16.56	10.94	27.50	56.00	-28.50	QP
12	3.3855	4.69	10.94	15.63	46.00	-30.37	AVG

ероі

TE.

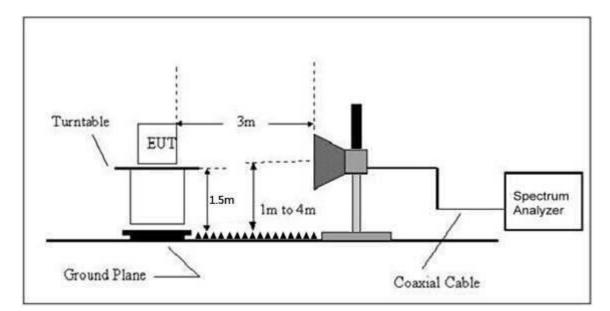

T(

t Sea


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)
	Peak Average
Above 1000	74 54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Page: 17 of 81

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak,
1 200112	RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Page: 19 of 81

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%	
Pressure:	101KPa	Test Voltage :	DC 3.7V	
Test Mode:	Mode 4	Test vollage.		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the

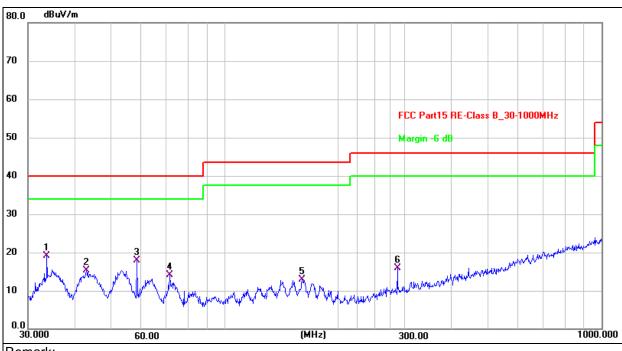
permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

No.: BCTC/RF-EMC-005

Page: 20 of 81


Edition: B.2

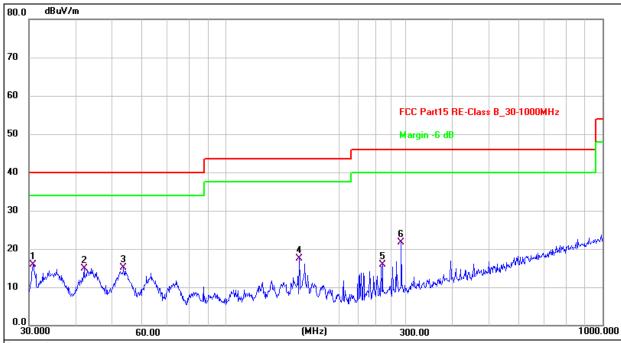
E

Between 30MHz – 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage :	DC 3.7V

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.


Measurement = Reading Level + Correct Factor
Over = Measurement - Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	33.6802	36.71	-17.63	19.08	40.00	-20.92	QP
2	42.8998	32.64	-17.25	15.39	40.00	-24.61	QP
3	58.4074	35.67	-17.75	17.92	40.00	-22.08	QP
4	71.3300	33.43	-19.25	14.18	40.00	-25.82	QP
5	160.3456	29.93	-17.08	12.85	43.50	-30.65	QP
6	286.9823	33.20	-17.34	15.86	46.00	-30.14	QP

ероі

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	DC 3.7V

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement = Reading Level + Correct Factor Over = Measurement - Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	30.7455	33.46	-17.47	15.99	40.00	-24.01	QP
2	42.0066	32.24	-17.26	14.98	40.00	-25.02	QP
3	53.5052	32.38	-17.32	15.06	40.00	-24.94	QP
4	156.4578	34.56	-17.15	17.41	43.50	-26.09	QP
5	260.1444	34.34	-18.34	16.00	46.00	-30.00	QP
6	292.0583	38.82	-17.17	21.65	46.00	-24.35	QP

No.: BCTC/RF-EMC-005

Page: 22 of 81

Edition: B.2

t Sea

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			GFSK Low ch	annel			
V	4804.00	71.66	-19.99	51.67	74.00	-22.33	PK
V	4804.00	61.19	-19.99	41.20	54.00	-12.80	AV
V	7206.00	63.28	-14.22	49.06	74.00	-24.94	PK
V	7206.00	53.77	-14.22	39.55	54.00	-14.45	AV
Н	4804.00	70.23	-19.99	50.24	74.00	-23.76	PK
Н	4804.00	60.72	-19.99	40.73	54.00	-13.27	AV
Н	7206.00	61.78	-14.22	47.56	74.00	-26.44	PK
Н	7206.00	52.84	-14.22	38.62	54.00	-15.38	AV
		G	FSK Middle c	hannel			
V	4882.00	69.22	-19.84	49.38	74.00	-24.62	PK
V	4882.00	61.07	-19.84	41.23	54.00	-12.77	AV
V	7323.00	60.74	-13.90	46.84	74.00	-27.16	PK
V	7323.00	51.02	-13.90	37.12	54.00	-16.88	AV
Н	4882.00	66.62	-19.84	46.78	74.00	-27.22	PK
Н	4882.00	56.67	-19.84	36.83	54.00	-17.17	AV
Н	7323.00	58.16	-13.90	44.26	74.00	-29.74	PK
Н	7323.00	50.40	-13.90	36.50	54.00	-17.50	AV
			GFSK High ch	annel			
V	4960.00	72.01	-19.68	52.33	74.00	-21.67	PK
V	4960.00	61.01	-19.68	41.33	54.00	-12.67	AV
V	7440.00	65.23	-13.57	51.66	74.00	-22.34	PK
V	7440.00	55.35	-13.57	41.78	54.00	-12,22	AV
Н	4960.00	70.14	-19.68	50.46	74.00	-23.54	PK
Н	4960.00	59.59	-19.68	39.91	54.00	-14.09	AV
Н	7440.00	63.30	-13.57	49.73	74.00	-24.27	PK
Н	7440.00	55.18	-13.57	41.61	54.00	-12.39	AV

Between 1GHz – 25GHz

Remark:

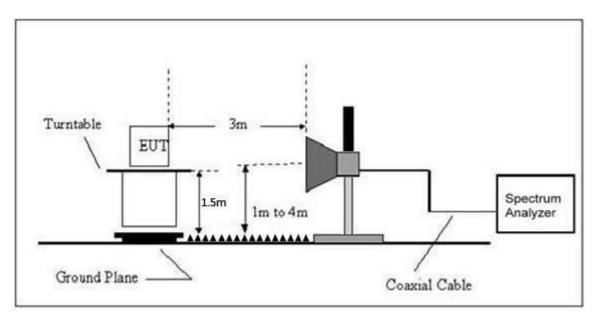
1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.All the Modulation are test, the worst mode is GFSK, the data recording in the report:


) ED

8. Radiated Band Emission Measurement and Restricted Bands of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)			
	Peak	Average		
Above 1000	74	54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting				
Attenuation	Auto				
Start Frequency	2300MHz				
Stop Frequency	2520				
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average				

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Frequency (MHz) Reading Level (dBuV/m)	Correct Factor (dB)	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result			
	(1)	()			PK	PK	AV				
	Low Channel 2402MHz										
	Н	2390.00	73.96	-25.43	48.53	74.00	54.00	PASS			
	Н	2400.00	75.50	-25.40	50.10	74.00	54.00	PASS			
	V	2390.00	74.02	-25.43	48.59	74.00	54.00	PASS			
GFSK	V	2400.00	74.93	-25.40	49.53	74.00	54.00	PASS			
	High Channel 2480MHz										
	Н	2483.50	72.46	-25.15	47.31	74.00	54.00	PASS			
	Н	2500.00	70.38	-25.10	45.28	74.00	54.00	PASS			
	V	2483.50	73.58	-25.15	48.43	74.00	54.00	PASS			
	V	2500.00	69.31	-25.10	44.21	74.00	54.00	PASS			
			Low	v Channel 2 ⁴	402MHz						
	Н	2390.00	72.97	-25.43	47.54	74.00	54.00	PASS			
	Н	2400.00	75.19	-25.40	49.79	74.00	54.00	PASS			
	V	2390.00	72.80	-25.43	47.37	74.00	54.00	PASS			
π/4DQPSK	V	2400.00	74.34	-25.40	48.94	74.00	54.00	PASS			
	High Channel 2480MHz										
	Н	2483.50	73.40	-25.15	48.25	74.00	54.00	PASS			
	Н	2500.00	68.53	-25.10	43.43	74.00	54.00	PASS			
	V	2483.50	72.70	-25.15	47.55	74.00	54.00	PASS			
	V	2500.00	68.36	-25.10	43.26	74.00	54.00	PASS			
8DPSK	Low Channel 2402MHz										
	Н	2390.00	73.63	-25.43	48.20	74.00	54.00	PASS			
	Н	2400.00	75.35	-25.40	49.95	74.00	54.00	PASS			
	V	2390.00	73.93	-25.43	48.50	74.00	54.00	PASS			
	V	2400.00	75.49	-25.40	50.09	74.00	54.00	PASS			
			High	h Channel 2	480MHz		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				
	Н	2483.50	71.96	-25.15	46.81	74.00	54.00	PASS			
	Н	2500.00	68.93	-25.10	43.83	74.00	54.00	PASS			
	V	2483.50	73.70	-25.15	48.55	74.00	54.00	PASS			
	V	2500.00	69.29	-25.10	44.19	74.00	54.00	PASS			

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

E

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold JC JC JPR

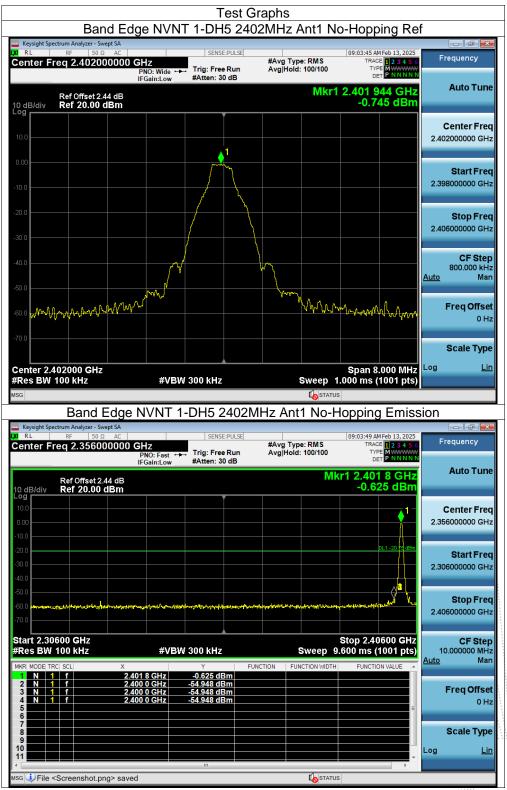
epoi

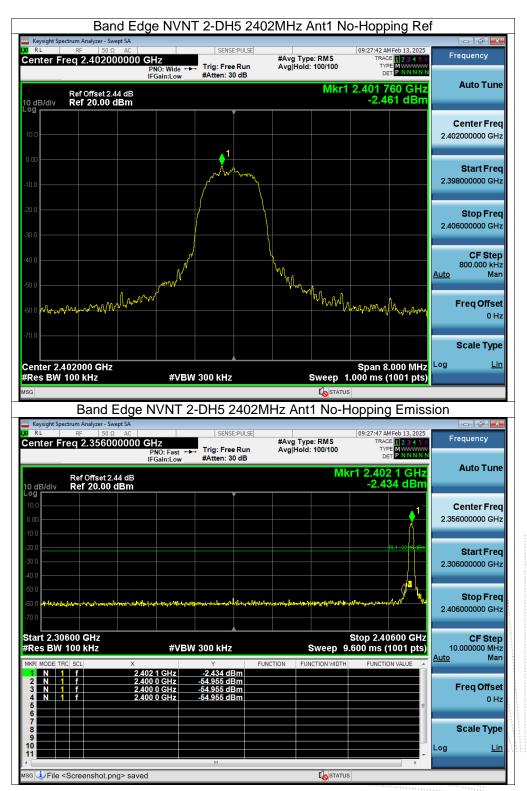
Page: 27 of 81

9.4 Test Result

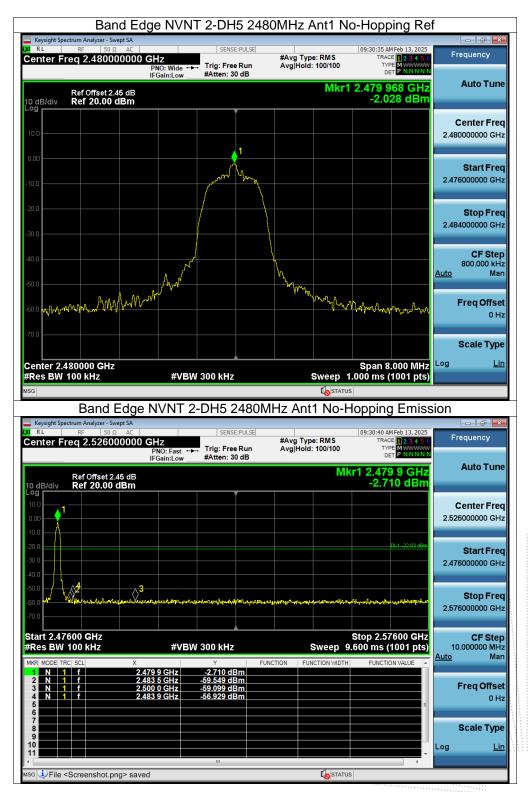

Page: 32 of 81

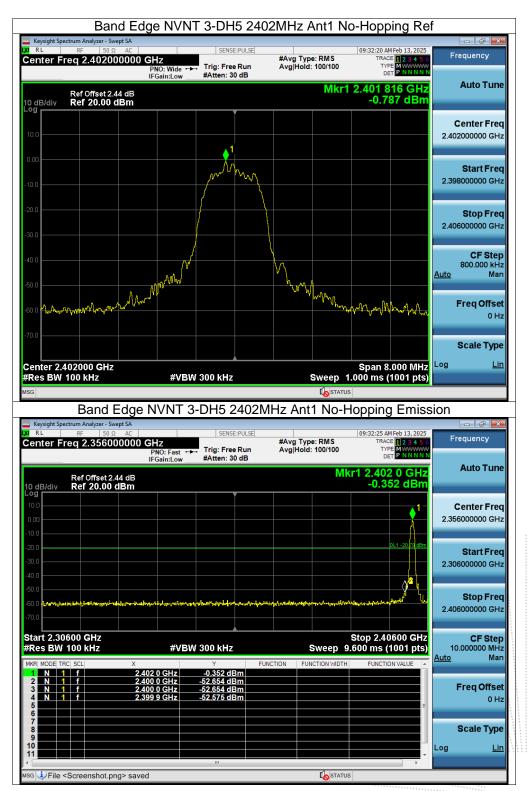
epoi



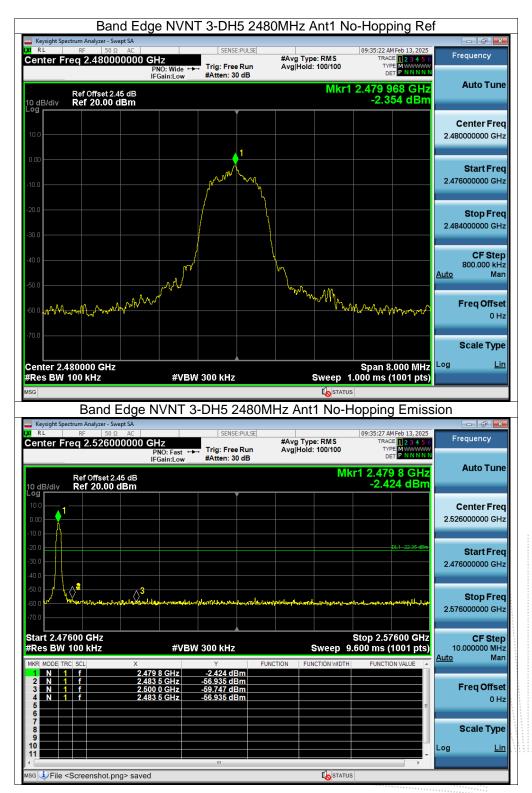


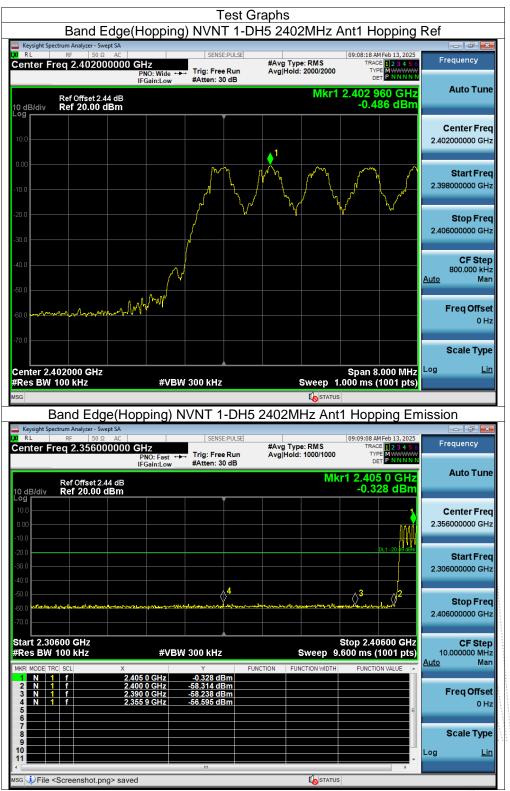
Page: 37 of 81





epoi





C 00.,LTA

Page: 44 of 81

'epoi

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

- 10.3 Test procedure
- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.

6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

CHENZHE.

Page: 49 of 81

10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	0.953	Pass
NVNT	1-DH5	2441	0.948	Pass
NVNT	1-DH5	2480	0.944	Pass
NVNT	2-DH5	2402	1.282	Pass
NVNT	2-DH5	2441	1.274	Pass
NVNT	2-DH5	2480	1.270	Pass
NVNT	3-DH5	2402	1.243	Pass
NVNT	3-DH5	2441	1.270	Pass
NVNT	3-DH5	2480	1.270	Pass

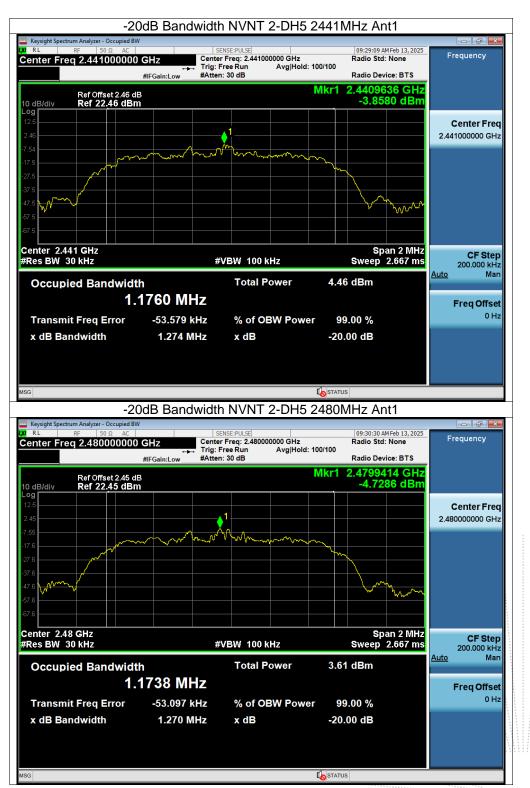
No.: BCTC/RF-EMC-005

Page: 50 of 81

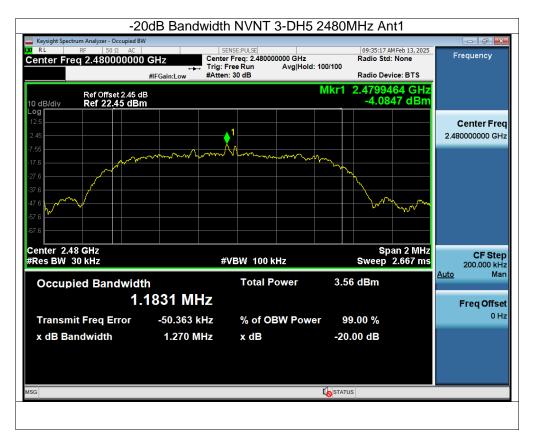


epor

Page: 51 of 81



Page: 52 of 81


Page: 53 of 81

Page: 54 of 81

Page: 55 of 81

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

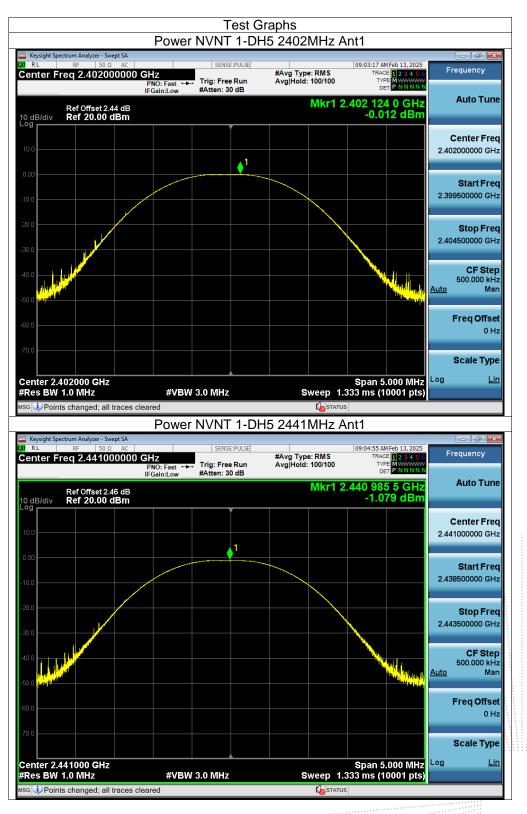
FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS		

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.


11.4 Test Result

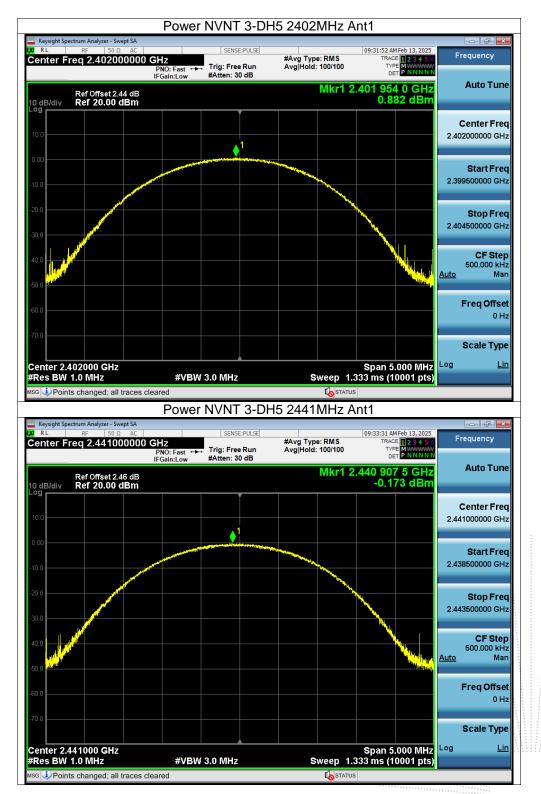
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	-0.01	21	Pass
NVNT	1-DH5	2441	-1.08	21	Pass
NVNT	1-DH5	2480	-1.87	21	Pass
NVNT	2-DH5	2402	0.56	21	Pass
NVNT	2-DH5	2441	-0.46	21	Pass
NVNT	2-DH5	2480	-1:31	21	Pass
NVNT	3-DH5	2402	0.88	21	Pass
NVNT	3-DH5	2441	-0.17	21	Pass
NVNT	3-DH5	2480	-1.01	21	Pass

Page: 56 of 81

E

JC JC PPR


epoi



Page: 59 of 81

C. CO.,LTA

Page: 60 of 81

No.: BCTC/RF-EMC-005

Page: 61 of 81

E

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

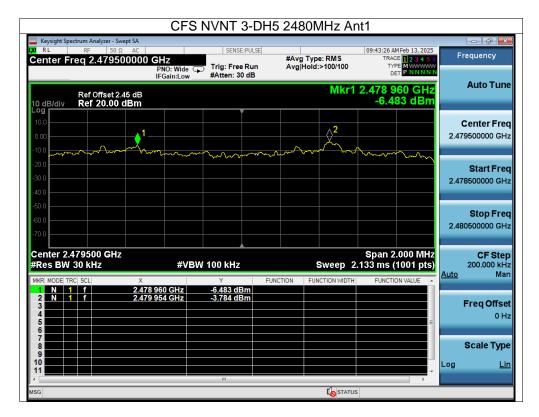
3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
1-DH5	2401.952	2402.948	0.996	0.635	Pass
1-DH5	2440.954	2441.962	1.008	0.632	Pass
1-DH5	2478.92	2479.948	1.028	0.629	Pass
2-DH5	2401.942	2402.98	1.038	0.855	Pass
2-DH5	2440.942	2441.95	1.008	0.849	Pass
2-DH5	2478.974	2479.97	0.996	0.847	Pass
3-DH5	2401.952	2402.952	1.000	0.829	Pass
3-DH5	2440.96	2441.958	0.998	0.847	Pass
3-DH5	2478.96	2479.954	0.994	0.847	Pass
	1-DH5 1-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	Mode (MHz) 1-DH5 2401.952 1-DH5 2440.954 1-DH5 2478.92 2-DH5 2401.942 2-DH5 2440.942 2-DH5 2478.974 3-DH5 2401.952 3-DH5 2440.96	Mode (MHz) (MHz) 1-DH5 2401.952 2402.948 1-DH5 2440.954 2441.962 1-DH5 2478.92 2479.948 2-DH5 2401.942 2402.98 2-DH5 2440.942 2441.95 2-DH5 2478.974 2479.97 3-DH5 2401.952 2402.952 3-DH5 2401.952 2402.952	Mode(MHz)(MHz)(MHz)1-DH52401.9522402.9480.9961-DH52440.9542441.9621.0081-DH52478.922479.9481.0282-DH52401.9422402.981.0382-DH52440.9422441.951.0082-DH52478.9742479.970.9963-DH52401.9522402.9521.0003-DH52440.962441.9580.998	Mode(MHz)(MHz)(MHz)1-DH52401.9522402.9480.9960.6351-DH52440.9542441.9621.0080.6321-DH52478.922479.9481.0280.6292-DH52401.9422402.981.0380.8552-DH52440.9422441.951.0080.8492-DH52478.9742479.970.9960.8473-DH52401.9522402.9521.0000.8293-DH52440.962441.9580.9980.847

12.4 Test Result

JC JC PPR

'epoi



No.: BCTC/RF-EMC-005

Page: 67 of 81

13. Number of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.4 Test Result

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass
NVNT	2-DH5	79	15	Pass
NVNT	3-DH5	79	15	Pass

E

Hopping No. NVNT 1-DH5 2402MHz Ant1
MRL RF S0 0 AC SENSE:PULSE 109:08:03 AMFeb 13,2025 Frequency Center Freq 2.441750000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS Avg Hold:>100/100 Trig: Tree I 2: 4: 50 Dot Frequency Frequency Ref Offset 2.44 dB 0 dB/div Mkr1 2.401 920 5 GHz -0.297 dBm Auto Tul 0 dB/div Ref 20.00 dBm -0.297 dBm Center Fre 2.441750000 G 10 0 0 00 0 00 0 00 0 00 0 00 0 00 0 00
Ref Offset 2.44 dB Mkr1 2.401 920 5 GHz Auto Tur 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 10 dB/div Ref 20.00 dBm -0.297 dBm -0.297 dBm 2.00 -0.297 dBm -0.297 dBm -0.241750000 G 2.00 -0.297 dBm -0.297 dBm -0.297 dBm -0.00 -0.100 dBm -0.297 dBm -0.297 dBm -0.00 -0.100 dBm -0.297 dBm -0.297 dBm -0.00 -0.100 dBm -0.100 dBm -0.297 dBm -0.00 -0.100 dBm -0.100 dBm -0.100 dBm -0.00 -0.100 dBm -0.100 dBm -0.100 dBm -0.00 -0.100 dBm -0.100 dBm -0.100 dBm
1 Center Fm 200 Canter Fm 2
Start 2.40000 GHz Start 2.48350 GHz CF Start
600 2.483500000 G 700 Start 2.40000 GHz Stop 2.48350 GHz CF Stop
Start 2.40000 GHz Stop 2.48350 GHz CF Str #Res BW 100 kHz #VBW 300 kHz <u>Sweep 8.000 ms (1001 pts)</u> 8.350000 M
MKR MODE[TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto M 1 N 1 f 2.401 920 5 GHz -0.297 dBm
N 1 2.401 520 3 GHz -0.250 GHz
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Hopping No. NVNT 2-DH5 2402MHz Ant1
Center Freq 2.441750000 GHz SENSE:PULSE 09:20:57 AMFeb 13,2025 PN0: Fast PN0: Fast #Avg Type: RMS Trace [] 2:3:4:5 G IFGain:Low #Atten: 30 dB Avg Hold:>100/100 Type [Minimum Ninh]
Ref Offset 2.44 dB Mkr1 2.401 753 5 GHz Auto Tur 10 dB/div Ref 20.00 dBm -4.109 dBm
100 0.00 -100 -100
-20.0
-50.0 C Stop Fr -60.0 C Stop Fr 2.483500000 G
Start 2.40000 GHz #Res BW 100 kHz Stop 2.48350 GHz #VBW 300 kHz Stop 2.48350 GHz Sweep CF Stop 3.48350 GHz 8.350000 M MKR_MODE[TRC SCL] X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto M
1 N 1 f 2.4017535GHz -4.109dBm 2 N 1 f 2.4803270GHz -7.123dBm 3 - - - - - Freq Offs 4 - - - - - 0

ероі

H	lopping No. NVNT	3-DH5 2402MH	z Ant1	
Keysight Spectrum Analyzer - Swept SA Μ RL RF 50 Ω AC Center Freg 2.441750000 (GH7	#Avg Type: RMS	09:37:17 AM Feb 13, 2025	Frequency
•	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold:>100/100	TYPE MWWWW DET PNNNNN	Auto Tune
Ref Offset 2.44 dB 10 dB/div Ref 20.00 dBm		Mkr1 2	.401 837 0 GHz -4.063 dBm	
	water and the second second	hunhanandhanan	mmmm 2	Center Freq 2.441750000 GHz
-20.0				Start Freq 2.400000000 GHz
-50.0			\	Stop Freq 2.483500000 GHz
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz		Stop 2.48350 GHz .000 ms (1001 pts)	CF Step 8.350000 MHz
	37 0 GHz -4.063 dBm 27 0 GHz -6.735 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man Freq Offset 0 Hz
7 8 9 9 10				Scale Type
MSG	III	STATUS	• • • • •	

No.: BCTC/RF-EMC-005

Page: 70 of 81

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.

Page: 71 of 81

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.404	128.068	400	Pass
NVNT	1-DH3	2441	1.657	263.463	400	Pass
NVNT	1-DH5	2441	2.905	278.880	400	Pass
NVNT	2-DH1	2441	0.413	131.334	400	Pass
NVNT	2-DH3	2441	1.662	255.948	400	Pass
NVNT	2-DH5	2441	2.913	320.430	400	Pass
NVNT	3-DH1	2441	0.412	131.016	400	Pass
NVNT	3-DH3	2441	1.664	262.912	400	Pass
NVNT	3-DH5	2441	2.913	302.952	400	Pass

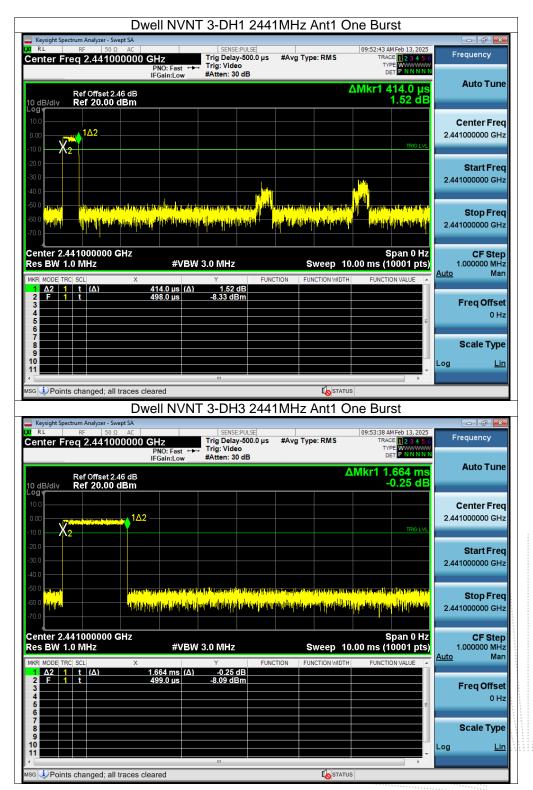
n 00.,LT

No.: BCTC/RF-EMC-005

Page: 72 of 81

Test Gr Dwell NVNT 1-DH1 244		
Keysight Spectrum Analyzer - Swept SA SENSE:PULSE X RL RF 50.0 AC SENSE:PULSE Center Freq 2.441000000 GHz Trig Delay-500.0 µs PNO: Fast → Trig: Video	09:44:52 AM Feb 13, 2025	auency
IFGain:Low #Atten: 30 dB Ref Offset 2.46 dB 10 dB/div Ref 20.00 dBm		uto Tune
		enter Freq 000000 GHz
-20.0		Start Freq 000000 GHz
	ali a ca subat di 📕 da banan a sa addi ali ata a sa sa kasa basa bat	Stop Freq 000000 GHz
	Span 0 Hz Sweep 10.00 ms (10001 pts) Auto	CF Step 00000 MHz Man
1 Δ2 1 t Δ00.0 μs Δ0.0 μs Δ0.0 μs -0.68 dB -0.68 dB	Fr	r eq Offset 0 Hz
7 8 9 10 11	Log	cale Type <u>Lin</u>
Msg Doints changed; all traces cleared	, Kostatus	
Dwell NVNT 1-DH3 244 Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC SENSE:PULSE	09:48:26 AM Feb 13, 2025	
Center Freq 2.441000000 GHz PN0; Fast IFGain:Low Trig: Video #Atten: 30 dB		uto Tune
Ref Offset 2.46 dB 10 dB/div Ref 20.00 dBm	ΔMkr1 1.656 ms -0.54 dB	
10.0 0.00 -10.0		enter Freq 000000 GHz
-20.0 X		Start Freq 000000 GHz
		Stop Freq 000000 GHz
Center 2.441000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz	Auto	CF Step 00000 MHz Man
Δ2 1 t (Δ) 1.656 ms (Δ) -0.54 dB 2 F 1 t 477.0 μs -18.98 dBm 3 4 - - - - 4 - - - - - 5 - - - - - 6 - - - - -	CTION FUNCTION WIDTH FUNCTION VALUE	r eq Offset 0 Hz
7 8 8 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Log	cale Type Lin
11 ™ Msc JPoints changed; all traces cleared	STATUS	

12 M 74



	Dwell NVN	T 1-DH5 244	1MHz Ant1 O	ne Burst	
Keysight Spectrum Analyzer - Sv KIRL RF 50 G	vept SA	SENSE:PULSE		09:12:41 AM Feb 13, 2025	
Center Freq 2.4410		Trig Delay-500.0 μs Trig: Video #Atten: 30 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N	Frequency
Ref Offset 2. 10 dB/div Ref 20.00			Δ	Mkr1 2.905 ms 6.18 dB	Auto Tune
- 0	1Δ2			TRIG LVL	Center Fred 2.441000000 GH;
20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	1,41,10);10,00,101,01,01,01				Start Free 2.441000000 GH:
50.0 (1) He (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		angay <mark>di se nga kangkerak ka</mark> Kana mutakan kangkerakan	ar fann an fan hwer in ter fran yn fer ann yn gener. Dy'r fel yn ar fran yn fer yn yn fer an fan gener fan gener.	an a calmara da magna da fariga. Nan a calmara da magna da sa da sa sa	Stop Fre 2.441000000 GH
2enter 2.441000000 Res BW 1.0 MHz		3.0 MHz	Sweep 10	Span 0 Hz .00 ms (10001 pts)	CF Step 1.000000 MH
KR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t (Δ) 3 - - - - 4 - - - - 5 - - - -	× 2.905 ms (Δ) 481.0 μs	Y FUN 6.18 dB -16.86 dBm	ICTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mar Freq Offse 0 H
6 7 8 9 10					Scale Typ
sg 🗼 Points changed; all	traces cleared			3	
	Dwell NVN	T 2-DH1 244	1MHz Ant1 O	ne Burst	
Keysight Spectrum Analyzer - Sv RL RF 50 C Center Freq 2.4410	2 AC	SENSE:PULSE Trig Delay-500.0 µs Trig: Video	#Avg Type: RMS	09:50:56 AM Feb 13, 2025 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N	Frequency
Ref Offset 2. 0 dB/div Ref 20.00		#Atten: 30 dB		ΔMkr1 404.0 μs -2.16 dB	Auto Tun
οg 10.0 0.00 10.0η <u>ντη</u> 1Δ2				TRIG LVL	Center Fre 2.441000000 GH
		() ฝั่งยุ 			Start Fre 2.441000000 GH
	alling in the second	Bard Alth Country Courts and a fight and and substitution	ana na na tanàna harana ara an Ny INSEE dia mampina mandritra mandritra mandritra mandritra mandritra mandritra Ny INSEE dia mandritra	etter the heart all all the test of some and the test and a state of the test of	Stop Fre 2.441000000 GH
Center 2.441000000 Res BW 1.0 MHz		3.0 MHz	Sweep 10	Span 0 Hz .00 ms (10001 pts)	CF Step 1.000000 MH
KR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 5	X 404.0 μs 482.0 μs	Y FUN -2.16 dB -14.08 dBm	ICTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma Freq Offse 0 H
6 7 8 9 10					Scale Type
					Log <u>Lir</u>
sg i Points changed: all	traces cleared				

	Dwel	INVN	T 2-DH	3 2441	MHz /	Ant1 C	ne Bu	rst	
Keysight Spectrum Analyz	er - Swept SA 50 Ω AC		SENSE	ou cr			00/51-50	MEeb 12, 2025	- ē -
enter Freq 2.44	1000000 GH	Z NO: Fast ↔ Gain:Low	Trig Delay Trig: Video #Atten: 30	-500.0 µs o	#Avg Typ	e: RMS	TRA T)	M Feb 13, 2025 CE 1 2 3 4 5 6 PE WWWWWW ET P N N N N N	Frequency
	et 2.46 dB .00 dBm	am.cow	writen. oo			L	Mkr1 1	.661 ms 1.09 dB	Auto Tuno
.og 10.0									
									Center Free 2.441000000 GH
0.00	1Δ2							TRIG LVL	2.441000000 GH
									Start Free
30.0									2.441000000 GH
40.0									
	فرويه المندين ويقدرونه	AN TRANSPORT		1 A A A A A A A A A A A A A A A A A A A		1	a na an ann an ann ann ann ann ann ann	and the second secon	Stop Free
70.0		Made Ma h			400000-100-00	n n n n n n n n n n n n n n n n n n n	hte he filt		2.441000000 GH
/0.0									
enter 2.4410000	00 GHz							Span 0 Hz	CF Ste
Res BW 1.0 MHz		#VBW	3.0 MHz		S	weep 10	0.00 ms (1	0001 pts)	1.000000 MH Auto Mar
MKR MODE TRC SCL	х		Y	FUNC	TION FUN	ICTION WIDTH	FUNCT	ON VALUE	Adto Ma
1 Δ2 1 t (Δ) 2 F 1 t		61 ms (Δ) 2.0 μs	<u>1.09 c</u> -15.35 dB	m					F
3 4									Freq Offse 0 H
5								=	UH
6 7									
8									Scale Type
10									Log <u>Lii</u>
sg 🔱 Points changed	d; all traces cleare	əd				I o STATU	s		
	Dwel		T 2-DH	5 2441	MHz	Ant1 O	ne Ru	ret	
Keysight Spectrum Analyz				52441	1111127			51	- 6 -
RL RF	50 Ω AC		SENSE					M Feb 13, 2025	Frequency
enter Freq 2.44		Z Ю:Fast ⊶⊷	Trig Delay Trig: Video	•	#Avg Typ	e: RIVIS	T	CE 123456 PE WWWWW	
	IFG	Gain:Low	#Atten: 30	dB					Auto Tune
	et 2.46 dB					Δ		.904 ms	Auto Tun
0 dB/div Ref 20	.00 dBm						-	1.93 dB	
10.0									Center Free
0.00									2.441000000 GH
	<u>nacutro</u> 1∆2							TRIG LVL	
20.0 X 20.01 A 10 									Stort Ero
30.0	<u>کھو</u> روپ								Start Free 2.441000000 GH
40.0									2.44100000 00
50.0				distant to the second	ter kast og Hun	hilitatil some f		a dink is transfer a film	
		nis databilita ana las		dinalah kanada ka					Stop Free
60.0 <mark>044</mark>		or showing a	Let MI	discrimination of		. 11 1	and the state of the dis	I to dout the	2.441000000 GH
h						· ·			
70.0									
70.0	00 GHz							Span 0 Hz	
20.0 Center 2.4410000 Res BW 1.0 MHz		#VBW	3.0 MHz				i.33 ms (1	0001 pts)	1.000000 MH
70.0 Center 2.4410000 Res BW 1.0 MHz	X		Y	FUNC		weep 15	i.33 ms (1		1.000000 MH
70.0 Center 2.4410000 Res BW 1.0 MHz MKR MODE TRC scL 1 Δ2 1 t (Δ) 2 F 1 t	X	#VBW 04 ms (Δ) 9.9 μs	/ 3.0 MHz Y -1.93 d -13.89 dB	B			i.33 ms (1	0001 pts)	1.000000 MH <u>Auto</u> Mar I
70.0 Δ Center 2.4410000 Res BW 1.0 MHz MKR MODE TRC SCL 1 1 Δ2 1 t 2 F 1 t 3 4 4 Δ	X		۲ -1.93 d	B			i.33 ms (1	0001 pts)	1.000000 MH <u>Auto</u> Ma Freq Offse
2 F 1 t 3 4 5	X		۲ -1.93 d	B			i.33 ms (1	0001 pts)	1.000000 MH <u>Auto</u> Mar Freq Offse
70.0 Center 2.44 10000 tes BW 1.0 MHz MKR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 6 6 7	X		۲ -1.93 d	B			i.33 ms (1	ON VALUE	1.000000 MH <u>Auto</u> Ma Freq Offse 0 H
70.0 Center 2.4410000 Res BW 1.0 MHz MKR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 6 7 8 9	X		۲ -1.93 d	B			i.33 ms (1	ON VALUE	1.000000 MH <u>Auto</u> Mar Freq Offse 0 H
Δ2 1 t Δ2 1 t Δ3 Δ2 1 t Δ3 Δ3 Δ4 Δ5 Δ6 Δ7 7 Δ8 Δ9 Δ1 1 Δ2 1 t 3 Δ3 Δ4 Δ5 Δ5 Δ4 Δ5 Δ6 Δ6<	X		۲ -1.93 d	B			i.33 ms (1	ON VALUE	CF Step 1.000000 MH Auto Freq Offse 0 H Scale Type Log <u>Lin</u>
70.0 Δ Center 2.4410000 Res BW 1.0 MHz MKR MODE 1 Δ2 1 Δ2 2 F 1 t 3 4 5 6 7 8 9 9 10	X		۲ -1.93 d	B			i.33 ms (1	ON VALUE	1.000000 MH Auto Mar Freq Offse 0 H Scale Type

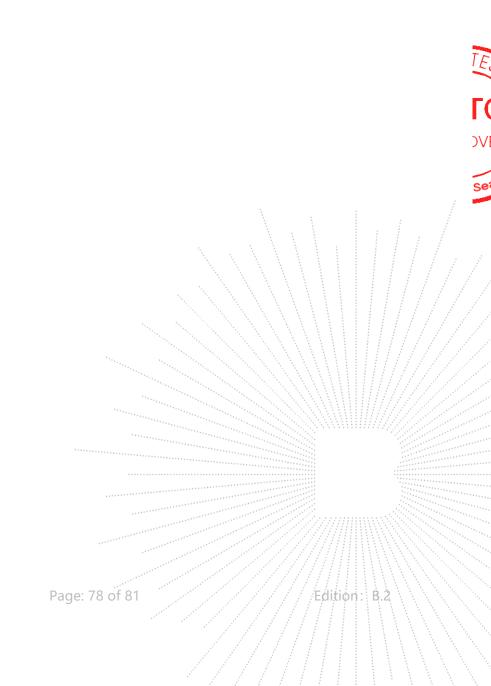
ер

Edition: B.2

Page: 76 of 81

Dwe	II NVNT 3-DH5 2	441MHz Ant1 C	One Burst	
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.441000000 GH PP	NO: Fast +++ Trig: Video	0 μs #Avg Type: RMS	09:41:40 AM Feb 13, 2025 TRACE 1 2 3 4 5 6 TYPE	Frequency
Ref Offset 2.46 dB	Gain:Low #Atten: 30 dB		ΔMkr1 2.912 ms -0.64 dB	Auto Tune
	ι <u></u>		TRIG LVL	Center Freq 2.441000000 GHz
-200 X ()(11 ())				Start Free 2.441000000 GHz
-60.0	The second se		n <mark>halister som som som som som som som som som som</mark>	Stop Fred 2.441000000 GH2
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 1	Span 0 Hz 0.00 ms (10001 pts)	CF Step 1.000000 MHz Auto Mar
	12 ms (Δ) -0.64 dB 0.0 μs -15.76 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset
7 8 9 10 11			· · · · · · · · · · · · · · · · · · ·	Scale Type
MSG Doints changed; all traces clear	ed	to statu	JS	

Page: 77 of 81


15. Antenna Requirement

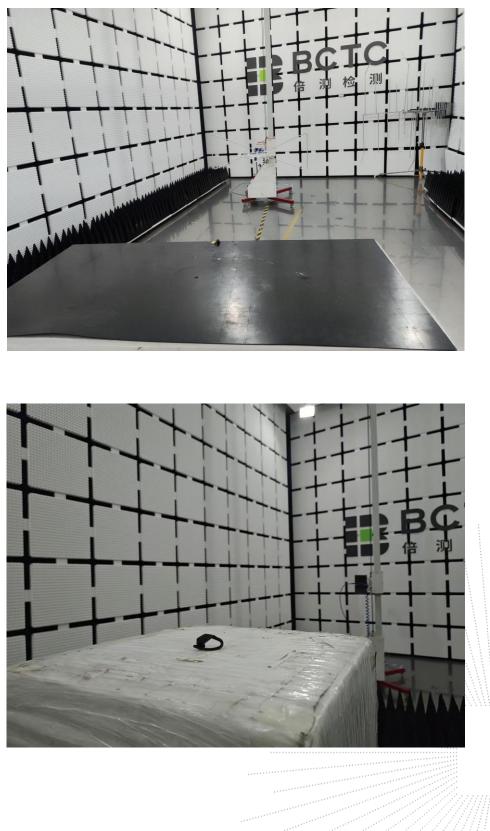
15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.2 Test Result

The EUT antenna is internal antenna, fulfill the requirement of this section.

16. EUT Test Setup Photographs


Conducted Emission Measurement Photos

Page: 79 of 81

Radiated Measurement Photos

Page: 80 of 81

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6.The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

******** END ******

Page: 81 of 81