

TEST REPORT

FCC ID: 2AFW2B038

Product: 2.4G Wireless Keypad

Model No.: B038

Additional Model No.: B038C

Trade Mark: N/A

Report No.: TCT190404E016

Issued Date: Apr. 17, 2019

Issued for:

Shenzhen DZH Industrial Co., Ltd
3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone,
ShaJing, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab.
1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

	st Certific							
2. Te	st Result	Summai	у					4
3. EU	IT Descri	ption	<u></u>		<u></u>		<u></u>	5
4. Ge	eneral Info	ormation	(6)		(6)		(6)	7
4.1	. Test Envi	ronment a	nd Mode.					7
	. Descripti							
5. Fa	cilities ar	nd Accre	ditations	(0)		$\langle C_{i} \rangle$		8
5.1	. Facilities							8
5.2	. Location							8
5.3	. Measurer	nent Unce	rtainty					8
6. Te	st Result	s and Me	asureme	ent Data				9
	. Antenna							
6.2	. Conducte	ed Emissio	on					10
	. Radiated							
6.4	. 20dB Occ	cupied Bai	ndwidth		((Ci.)		(,)	20
Appen	idix A: Ph	otograp	hs of Tes	st Setup				
Appen	ndix B: Ph	otograp	hs of EU	T				

1. Test Certification

TCT通测检测
TESTING CENTRE TECHNOLOGY

Product:	2.4G Wireless Keypad
Model No.:	B038
Additional Model No.:	B038C
Trade Mark:	N/A
Applicant:	Shenzhen DZH Industrial Co., Ltd
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen, China
Manufacturer:	Shenzhen DZH Industrial Co., Ltd
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen, China
Date of Test:	Apr. 08, 2019 – Apr. 16, 2019
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249 ANSI C63.10:2013

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Jerry Xie

Jerry Xie

Reviewed By:

Beryl Zhao

Approved By:

Date: Apr. 16, 2019

Date: Apr. 17, 2019

Date: Apr. 17, 2019

2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna Requirement	§15.203	PASS		
AC Power Line Conducted Emission	§15.207	N/A		
Field Strength of Fundamental	§15.249 (a)	PASS		
Spurious Emissions	§15.249 (a) (d)/ §15.209	PASS		
Band Edge	§15.249 (d)/ §15.205	PASS		
20dB Occupied Bandwidth	§15.215 (c)	PASS		

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.

Page 5 of 27

3. EUT Description

Product:	2.4G Wireless Keypad
Model No.:	B038
Additional Model No.:	B038C
Trade Mark:	N/A
Hardware Version:	KB-B038MA138-12
Software Version:	V1.0
Operation Frequency:	2408MHz - 2474MHz
Number of Channel:	34
Modulation Technology:	FSK
Antenna Type:	PCB Antenna
Antenna Gain:	-3dBi
Power Supply:	1.5V2.5mA
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Operation Frequency Each of Channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2408MHz	11	2428MHz	21	2448MHz	31	2468MHz
2	2410MHz	12	2430MHz	22	2450MHz	32	2470MHz
3	2412MHz	13	2432MHz	23	2452MHz	33	2472MHz
4	2414MHz	14	2434MHz	24	2454MHz	34	2474MHz
5	2416MHz	15	2436MHz	25	2456MHz		
6	2418MHz	16	2438MHz	26	2458MHz		<u> </u>
7	2420MHz	17	2440MHz	27	2460MHz		-
8	2422MHz	18	2442MHz	28	2462MHz		-
9	2424MHz	19	2444MHz	29	2464MHz		_
10	2426MHz	20	2446MHz	30	2466MHz		_

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

DOIOW.	
Channel	Frequency
The lowest channel	2408MHz
The middle channel	2440MHz
The Highest channel	2474MHz

4. General Information

4.1. Test Environment and Mode

Operating Environment:							
Temperature:	25.0 °C						
Humidity:	54 % RH						
Atmospheric Pressure:	1010 mbar						
Test Mode:							
Engineering mode:	Keep the EUT in continuous transmitting by select channel						

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1 (6)	1) 1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2.Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
d ()	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1GHz)	±3.92dB
5	All emissions, radiated(>1GHz)	±4.28dB
6	Temperature	±0.1℃
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -3dBi.

6.2.Conducted Emission

6.2.1. Test Specification

A)						
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
	Frequency range Limit (dBuV)					
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Refere	nce Plane				
Test Setup:	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test Mode:	Transmitting mode with	n modulation	No.			
Test Procedure:	 The E.U.T and simulators are connected to the mai power through a line impedance stabilization networ (L.I.S.N.). This provides a 50ohm/50uH couplin impedance for the measuring equipment. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximur emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Result:	N/A; Because the EUT item is not applicable.	is powered by th	ne battery, so the			

6.3. Radiated Emission Measurement

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013					
Frequency Range:	9 kHz to 25 GHz					
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal 8	& Vertical				
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Remark Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz 30MHz-1GHz	Quasi-peak Quasi-peak	9kHz 120kHz	30kHz 300kHz	Quasi-peak Value Quasi-peak Value	
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	
Limit(Field strength of the fundamental signal):	Frequency 2400MHz-2483.5MHz		Limit (dBuV/m @3m) 94.00 114.00		Remark Average Value Peak Value	
Limit(Spurious Emissions):	Frequency 0.009-0.490 0.490-1.705 1.705-30 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz		Limit (dBuV/m @3m) 2400/F(KHz) 24000/F(KHz) 30 40.0 43.5 46.0		Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value	
	960MHz-1GHz Above 1GHz		54.0 54.0 74.0		Quasi-peak Value Average Value Peak Value	
Limit (band edge) :	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by a least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209					
Test Procedure:	general radiated emission limits in Section 15.209, whichever is the lesser attenuation. 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make					

the measurement.

- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz

30MHz to 1GHz

Test setup:

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

6.3.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 17, 2019			
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 20, 2019			
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 16, 2019			
Pre-amplifier	HP	8447D	2727A05017	Sep. 16, 2019			
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 20, 2019			
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 02, 2019			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Oct. 20, 2019			
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 16, 2019			
Antenna Mast	Keleto	RE-AM	N/A	N/A			
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 16, 2019			
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 16, 2019			
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 16, 2019			
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 16, 2019			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

Field Strength of Fundamental

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2408	81.26	Н	114	-32.74
2408	73.01	V	114	-40.99
2440	80.68	Н	114	-33.32
2440	71.72	V	114	-42.28
2474	79.85	(C)H	114	-34.15
2474	70.66	V	114	-43.34

Frequency (MHz)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2408	68.57	Н	94	-25.43
2408	56.27	(c)V	94	-37.73
2440	66.85	Н	94	-27.15
2440	54.66	V	94	-39.34
2474	64.02	Н	94	-29.98
2474	51.76	V	94	-42.24

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(C))-	('C') ('C')	-(,C)
- (A)	- K\	- C

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Frequency Range (30MHz-1GHz)

Horizontal:

Site Polarization: Horizontal Temperature: 2
Limit: FCC Part 15C 3M Radiation Power: DC 1.5V Humidity: 55 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		33.1015	34.43	-11.02	23.41	40.00	-16.59	peak			
2		72.2111	38.36	-15.87	22.49	40.00	-17.51	peak			
3		216.1197	41.74	-13.55	28.19	46.00	-17.81	peak			
4		264.9709	46.51	-12.07	34.44	46.00	-11.56	peak			
5		360.9775	40.57	-9.53	31.04	46.00	-14.96	peak			
6	*	708.6941	39.83	-5.30	34.53	46.00	-11.47	peak			

Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: DC 1.5V Humidity: 55 %

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		32.8697	35.36	-11.02	24.34	40.00	-15.66	peak			
2	*	72.2111	40.70	-15.87	24.83	40.00	-15.17	peak			
3		142.7692	44.00	-16.13	27.87	43.50	-15.63	peak			
4		211.6112	41.07	-13.67	27.40	43.50	-16.10	peak			
5		264.9709	39.72	-12.07	27.65	46.00	-18.35	peak			
6		381.8520	37.39	-9.21	28.18	46.00	-17.82	peak			

Note: 1, Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

2, Any value more than 10dB below limit have not been specifically reported.

Above 1GHz

				Low channe	l: 2408MH	lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB µV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2387.50	I	52.05		-4.20	47.85		74	54	-6.15
4816.00	Н	51.31		-3.94	47.37		74	54	-6.63
7224.00	Η	48.67		0.52	49.19		74	54	-4.81
	1		-						
					/				
2387.50	V	50.96	-420	-4.20	46.76	(C) } -	74	54	-7.24
4816.00	V	49.47		-3.94	45.53	<u></u>	74	54	-8.47
7224.00	V	46.88		0.52	47.40		74	54	-6.60

			N	1iddle chann	el: 2440M	Hz			
Frequency	Ant Bol	Peak	AV	Correction	Emissio	on Level	Peak limit	A\/ limit	Margin
(MHz)	H/V	reading	reading	Factor	Peak	AV	(dDu//m)	(dBu\//m)	(dB)
(IVITIZ)	□/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ασμν/ιιι)	(dBµV/m)	(ub)
4880.00	H	50.79	+.6	-3.98	46.81		74	54	-7.19
7320.00	H	49.02		0.57	49.59	<u></u>	74	54	-4.41
~					X				
G_{J}		$({}_{\mathcal{L}}G)$		(20	(`((C_{i}, C_{i})		/ ₂ C
4880.00	٧	52.15		-3.98	48.17		74	54	-5.83
7320.00	V	47.84		0.57	48.41		74	54	-5.59
	4			<u></u>	/	<u> </u>			
	<u> </u>		-140)		(O-J-			

	High channel: 2474MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak Iimit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
2483.51	Н	51.07		-2.38	48.69		74	54	-5.31			
4948.00	Н	52.34		-3.98	48.36		74	54	-5.64			
7422.00	H	49.21		0.57	49.78		74	54	- 4.22			
			- -			. C		4				
,					7							
2483.51	V	51.46		-2.38	49.08		74	54	- 4.92			
4948.00	V	52.19		-3.98	48.21		74	54	-5.79			
7422.00	V	48.74		0.57	49.31		74	54	-4.69			
(0)		(¿G`)		(- ا		(2G)		(, C)			

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Band Edge Requirement

.Ow Charin	el: 2408M			_					
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2400	Н	48.94	/	-4.20	44.74		74		-29.26
2400	Н		43.21	-4.20		39.01		54	-14.99
2400	V	49.07	(-4.20	44.87		74	f.c3	-29.13
2400	V		41.65	-4.20		37.45		54	-16.55
50	Variable and the second second	and the state of t	ob a company that		50	and the second s	in a survival or	and the same of th	pul h

	nel: 2474N		A \ /	0	—				
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	Ŧ	51.37		-4.20	47.17		74		-26.83
2483.5	Η		42.04	-4.20		37.84		54	-16.16
					-				
			\	/					
2483.5	V	50.59	/	-4.20	46.39		74		-27.61
2483.5	V		41.76	-4.20		37.56		54	-16.44
					-	-			
60 My Mary Mary	WANT TO THE PARTY OF THE PARTY	m,	FCC part 15.249 ba		so Mydding Mh	- MANANA	η	FCC part 15.249 bandedg	
20.0 2468.000 2471.20	2474.40 2477.50	2400.00 2404.00 2405	FCC past 15:2491	wandestgefAVG)	60 MM 2000 2471 20		2460.80 2484.00 2487	FCC part 15.249 bandes	
	20000000 00000000		FEC part 15:249 t	wandestgefAVG)		2474.40 2477.60	2480.80 2484.00 2487. Polarization: <i>V</i> Power: DC 15	FEC part 15:249 handed	Z500.00 MHz

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak/Average)(dB \mu V/m)-(Peak/Average) limit (dB \mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6.4. 20dB Occupied Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	N/A
	 1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test results:	PASS

6.4.2. Test Instruments

	RF Test Room								
Equipment	Equipment Manufacturer Model Serial Number Calibration D								
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion
Lowest	2259.62	(6)	PASS
Middle	2259.62		PASS
Highest	2246.38	(A)-	PASS

Test plots as follows:

Lowest channel

Date: 15.APR.2019 10:52:48

Middle channel

Date: 15.APR.2019 10:54:2

Highest channel

Date: 15.APR.2019 10:57:12

Appendix A: Photographs of Test Setup Product: 2.4G Wireless Keypad Model: B038 Radiated Emission

Appendix B: Photographs of EUT Product: 2.4G Wireless Keypad

Model: B038

Product: 2.4G Wireless Keypad Model: B038

