FCC Test Report (Spot Check) Report No.: RF190412C02B FCC ID: KA2BA2620PA1 Original FCC ID: KA2WL6620APSA1 Test Model: DBA-2620P Received Date: Nov. 11, 2019 **Test Date:** Dec. 03, 2019 ~ Jan. 07, 2020 **Issued Date:** Feb. 21, 2020 **Applicant:** D-Link Corporation Address: 17595 Mt. Herrmann, Fountain Valley, California, United States, 92708 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan FCC Registration / 788550 / TW0003 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: RF190412C02B Page No. 1 / 23 Report Format Version:6.1.2 Reference No.: 191111C03 ## **Table of Contents** | R | elease | e Control Record | 3 | |---|---|--|--| | 1 | C | Certificate of Conformity | 4 | | 2 | 5 | Summary of Test Results | 5 | | | 2.1
2.2 | Measurement Uncertainty | | | 3 | C | General Information | 6 | | | 3.1
3.2
3.2.1
3.3
3.3.1
3.4 | General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards and References | 8
9
10
10 | | 4 | T | est Types and Results | 12 | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7 | Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions. Test Results Transmit Power Measurement Limits of Transmit Power Measurement Test Setup. Test Instruments Test Procedure Deviation from Test Standard EUT Operating Conditions. Test Result | 12
13
14
15
15
16
17
19
19
19
19
19
20 | | 5 | | Pictures of Test Arrangements | | | Α | ppend | dix – Information of the Testing Laboratories | 23 | ## **Release Control Record** | Issue No. | Description | Date Issued | |--------------|------------------|---------------| | RF190412C02B | Original release | Feb. 21, 2020 | Report No.: RF190412C02B Page No. 3 / 23 Reference No.: 191111C03 Report Format Version:6.1.2 ## 1 Certificate of Conformity Product: Business Cloud Access Point / Nuclias Cloud-Managed AC1300 Wave 2 Access Point **Brand:** D-Link Corporation Test Model: DBA-2620P Sample Status: Identical Prototype **Applicant:** D-Link Corporation **Test Date:** Dec. 03, 2019 ~ Jan. 07, 2020 **Standards:** 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10:2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Prepared by: Pettie Chem___, Date: Feb. 21, 2020 Pettie Chen / Senior Specialist Approved by: , Date: Feb. 21, 2020 Bruce Chen / Senior Project Engineer ## 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart E (Section 15.407) | | | | | |--|---|------|--|--| | FCC Test Item Re | | | Remarks | | | 15.407(b)
(1/2/3/4(i/ii)/6) | Radiated Emissions & Band
Edge Measurement | Pass | Meet the requirement of limit. Minimum passing margin is -0.1dB at 5470.00MHz. | | | 15.407(a)(1/2/3) | Max Average Transmit Power | Pass | Meet the requirement of limit. | | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ## 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |--------------------------------|---------------|--------------------------------| | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 2.29 dB | | Radiated Emissions above 1 GHZ | 18GHz ~ 40GHz | 2.29 dB | ## 2.2 Modification Record There were no modifications required for compliance. #### 3 General Information ## 3.1 General Description of EUT | Product | Business Cloud Access Point | |------------------------|--| | | / Nuclias Cloud-Managed AC1300 Wave 2 Access Point | | Brand | D-Link Corporation | | Test Model | DBA-2620P | | Sample Status | Identical Prototype | | Dower Supply Dating | 12Vdc from adapter | | Power Supply Rating | 53Vdc from POE | | Modulation Type | 256QAM, 64QAM, 16QAM, QPSK, BPSK | | Modulation Technology | OFDM | | | 802.11a: 54/48/36/24/18/12/9/6Mbps | | Transfer Rate | 802.11n: up to 300Mbps | | | 802.11ac: up to 867Mbps | | Operating Frequency | 5260 ~ 5320MHz, 5500 ~ 5720MHz | | | 5260 ~ 5320MHz: | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20): 4 | | | 802.11n (HT40), 802.11ac (VHT40): 2 | | Number of Channel | 802.11ac (VHT80): 1 | | Number of Channel | 5500 ~ 5720MHz: | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20): 12 | | | 802.11n (HT40), 802.11ac (VHT40): 6 | | | 802.11ac (VHT80): 3 | | Conducted Output Power | 5260 ~ 5320MHz: 179.061mW | | Conducted Output Power | 5500 ~ 5720MHz: 219.786mW | | Antenna Type | Refer to note | | Antenna Connector | Refer to note | | Accessory Device | NA | | Cable Supplied | NA | #### Note: - Exhibit prepared for FCC Spot Check Verification report, the format, test items and amount of spot-check test data are decided by applicant's engineering judgment, for more details please refer to declaration letter exhibit. Radiated emission and Max Average Transmit Power verification test based on the worst output power channel. - 2. This report is prepared for FCC class II permissive change. The difference compared with the original report (BV CPS report no.: RF190412C02-1) is adding 5.26GHz to 5.32GHz and 5.50GHz to 5.70GHz by software. ## 3. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers. | Modulation Mode | Beamforming Mode | TX Function | |------------------|------------------|-------------| | 802.11a | Not Support | 2TX | | 802.11n (HT20) | Support | 2TX | | 802.11n (HT40) | Support | 2TX | | 802.11ac (VHT20) | Support | 2TX | | 802.11ac (VHT40) | Support | 2TX | | 802.11ac (VHT80) | Support | 2TX | ^{*} The modulation and bandwidth are similar for 802.11n mode for 20MHz/40MHz and 802.11ac mode for 20MHz/40MHz, therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1) 4. The EUT uses following antennas. | Type | Connector | Gain (dBi) | | | | |---------------|-----------|------------|------|--|--| | туре | | 2.4GHz | 5GHz | | | | Smart Antenna | I-pex | 4.90 | 6.10 | | | 5. The EUT consumes power from the following adapters and POE. (POE for support unit only) | Adapter 1 | | | |--------------|---|--| | Brand | D-Link | | | Model | AMS115-1202000FU | | | Input Power | 100-240Vac, 50-60Hz, 0.8A | | | Output Power | 12Vdc, 2A | | | Power Line | 1.2m power cable without core attached on adapter | | | Adapter 2 | | | |--------------|---|--| | Brand | D-Link | | | Model | WA-24Q12R | | | Input Power | 100-240Vac, 50-60Hz, 0.7A | | | Output Power | 12Vdc, 2A | | | Power Line | 1.2m power cable without core attached on adapter | | | POE | | | |--------------|--------------|--| | Brand | D-Link | | | Model | PGS-1210-10P | | | Input Power | 100-240Vac | | | Output Power | 53Vdc | | 6. 2.4GHz & 5GHz technology can transmit at same time. ^{*} For 802.11n and 802.11ac, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting. ## 3.2 Description of Test Modes ## For 5260 ~ 5320MHz: 4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 52 | 5260 MHz | 60 | 5300 MHz | | 56 | 5280 MHz | 64 | 5320 MHz | 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 54 | 5270 MHz | 62 | 5310 MHz | 1 channel is provided for 802.11ac (VHT80): | Channel | Frequency | |---------|-----------| | 58 | 5290MHz | #### For 5500 ~ 5720MHz: 12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 100 | 5500 MHz | 124 | 5620 MHz | | 104 | 5520 MHz | 128 | 5640 MHz | | 108 | 5540 MHz | 132 | 5660 MHz | | 112 | 5560 MHz | 136 | 5680 MHz | | 116 | 5580 MHz | 140 | 5700 MHz | | 120 | 5600 MHz | 144 | 5720 MHz | 6 channels are provided for 802.11n (HT40), 802.11ac (VHT40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 102 | 5510 MHz | 126 | 5630 MHz | | 110 | 5550 MHz | 134 | 5670 MHz | | 118 | 5590 MHz | 142 | 5710 MHz | 3 channels are provided for 802.11ac (VHT80): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 106 | 5530 MHz | 122 | 5610 MHz | | 138 | 5690 MHz | | | #### 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | Applic | able to | D | |---------------|--------|-----------|-------------| | Mode | RE≥1G | Р | Description | | - | V | $\sqrt{}$ | - | Where RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement P: Transmit Power Measurement Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**. #### Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Frequency
Band (MHz) | Available
Channel | Tested Channel | Modulation
Technology | Data Rate
(Mbps) | |-----------------------|---------|-------------------------|----------------------|----------------|--------------------------|---------------------| | - | 802.11a | 5260-5320 | 52 to 64 | 64 | OFDM | 6.0 | | - | 802.11a | 5500-5720 | 100 to 144 | 100 | OFDM | 6.0 | #### **Transmit Power Measurement:** This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Frequency
Band (MHz) | Available
Channel | Tested Channel | Modulation
Technology | Data Rate
(Mbps) | |-----------------------|------------------|-------------------------|----------------------|--------------------|--------------------------|---------------------| | | 802.11a | | 52 to 64 | 52, 60, 64 | OFDM | 6.0 | | | 802.11n (HT20) | 5260-5320 | 52 to 64 | 52, 60, 64 | OFDM | 6.5 | | - | 802.11n (HT40) | | 54 to 62 | 54, 62 | OFDM | 13.5 | | | 802.11ac (VHT80) | | 58 | 58 | OFDM | 29.3 | | | 802.11a | | 100 to 144 | 100, 116, 140, 144 | OFDM | 6.0 | | | 802.11n (HT20) | 5500-5720 | 100 to 144 | 100, 116, 140, 144 | OFDM | 6.5 | | - | 802.11n (HT40) | | 102 to 142 | 102, 110, 134, 142 | OFDM | 13.5 | | | 802.11ac (VHT80) | | 106 to 138 | 106, 122, 138 | OFDM | 29.3 | ## **Test Condition:** | Applicable to | Environmental Conditions | Input Power | Tested by | |---------------|--------------------------------|-------------|-----------| | RE≥1G | RE≥1G 22 deg. C, 66% RH | | Han Wu | | Р | P 25 deg. C, 70% RH | | Luke Chen | Report No.: RF190412C02B Page No. 9 / 23 Report Format Version:6.1.2 ## 3.3 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|----------|--------|--------------|------------|------------------|--------------------------| | Α. | Notebook | DELL | E5410 | 6RP2YM1 | FCC DoC Approved | - | | B. | Load | NA | NA | NA | NA | - | | C. | POE | D-Link | PGS-1210-10P | NA | NA | Provided by manufacturer | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item A acted as a communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|---------| | 1. | RJ45, Cat5e | 1 | 6.0 | N | 0 | - | | 2. | RJ45, Cat5e | 1 | 1.5 | N | 0 | - | | 3. | Console | 1 | 1.0 | N | 0 | - | | 4. | RJ45, Cat5e | 1 | 1.8 | N | 0 | - | ## 3.3.1 Configuration of System under Test Report No.: RF190412C02B Page No. 10 / 23 Report Format Version:6.1.2 Reference No.: 191111C03 ## 3.4 General Description of Applied Standards and References The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references: ## **FCC Part 15, Subpart E (15.407)** ANSI C63.10:2013 All test items have been performed and recorded as per the above standards. ## **References Test Guidance:** KDB 789033 D02 General UNII Test Procedure New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01 All test items have been performed as a reference to the above KDB test guidance. Report No.: RF190412C02B Page No. 11 / 23 Report Format Version:6.1.2 #### 4 Test Types and Results ## 4.1 Radiated Emission and Bandedge Measurement #### 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. | Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |-------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Limits of unwanted emission out of the restricted bands | Limits of driwanted emission out of the restricted bands | | | | | | |--|-----------------|----------------------|---|---|--| | Applicable To | | Limit | | | | | 789033 D02 General UNII Test Procedure | | Field Strength at 3m | | | | | New Rules v02r01 | |)2r01 | PK: 74 (dBμV/m) | AV: 54 (dBμV/m) | | | Frequency Band | | Applicable To | EIRP Limit | Equivalent Field Strength at 3m | | | 5150~5250 MHz | 15.407(b)(1) | | | | | | 5250~5350 MHz | 15.407(b)(2) | | PK: -27 (dBm/MHz) | PK: 68.2(dBµV/m) | | | 5470~5725 MHz | | 15.407(b)(3) | | | | | 5725~5850 MHz | 15.407(b)(4)(i) | | PK: -27 (dBm/MHz) *1
PK: 10 (dBm/MHz) *2
PK: 15.6 (dBm/MHz) *3
PK: 27 (dBm/MHz) *4 | PK: 68.2(dBµV/m) *1
PK: 105.2 (dBµV/m) *2
PK: 110.8(dBµV/m) *3
PK: 122.2 (dBµV/m) *4 | | | | | 15.407(b)(4)(ii) | | s in section 15.247(d) | | | *2 holow the hand adap increasing linearly to 10 | | | | | | ^{*1} beyond 75 MHz or more above of the band edge. Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $$E = \frac{1000000\sqrt{30P}}{3}$$ µV/m, where P is the eirp (Watts). Report No.: RF190412C02B Page No. 12 / 23 Report Format Version:6.1.2 ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. #### 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |--|--|---|---------------|---------------| | Test Receiver
KEYSIGHT | N9038A | MY55420137 | Apr. 15, 2019 | Apr. 14, 2020 | | Spectrum Analyzer ROHDE & SCHWARZ | FSP40 | 100269 | Jun. 04, 2019 | Jun. 03, 2020 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-160 | Nov. 07, 2019 | Nov. 06, 2020 | | HORN Antenna
SCHWARZBECK | BBHA 9120 D | 9120D-1169 | Nov. 24, 2019 | Nov. 23, 2020 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 24, 2019 | Nov. 23, 2020 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | Jul. 01, 2019 | Jun. 30, 2020 | | Preamplifier
Agilent
(Below 1GHz) | 8447D | 2944A10638 | Jul. 11, 2019 | Jul. 10, 2020 | | Preamplifier Agilent (Above 1GHz) | 8449B | 3008A02367 | Feb. 18, 2020 | Feb. 17, 2021 | | RF signal cable
HUBER+SUHNER&EMCI | SUCOFLEX 104 &
EMC104-SM-SM8
000 | CABLE-CH9-02
(248780+171006) | Jan. 18, 2020 | Jan. 17, 2021 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | CABLE-CH9-(250795/4) | Jul. 11, 2019 | Jul. 10, 2020 | | RF signal cable
Woken | 8D-FB | Cable-CH9-01 | Jul. 30, 2019 | Jul. 29, 2020 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.5 | NA | NA | NA | | Antenna Tower EMCO | 2070/2080 | 512.835.4684 | NA | NA | | Turn Table
EMCO | 2087-2.03 | NA | NA | NA | | Antenna Tower &Turn BV ADT | AT100 | AT93021705 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021705 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021705 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Pre-amplifier
(18GHz-40GHz)
EMC | EMC184045B | 980175 | Sep. 05, 2019 | Sep. 04, 2020 | | USB Wideband Power
Sensor
KEYSIGHT | U2021XA | MY55050005/MY5519000
4/MY55190007/MY55210
005 | Jul. 15, 2019 | Jul. 14, 2020 | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. 2. The test was performed in HwaYa Chamber 9. #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### Note: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. Report No.: RF190412C02B Page No. 14 / 23 Report Format Version:6.1.2 ## 4.1.4 Deviation from Test Standard No deviation. ## 4.1.5 Test Setup ## For Radiated emission below 30MHz ## For Radiated emission 30MHz to 1GHz #### For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. Prepared a notebook to act as a communication partner and placed it outside of testing area. - c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency. - d. The communication partner sent data to EUT by command "PING". #### 4.1.7 Test Results #### Above 1GHz data: #### 802.11a | CHANNEL | TX Channel 64 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 40GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | *5320.00 | 109.1 PK | | | 3.11 H | 293 | 71.0 | 38.1 | | | 2 | *5320.00 | 98.7 AV | | | 3.11 H | 293 | 60.6 | 38.1 | | | 3 | 5350.00 | 60.1 PK | 74.0 | -13.9 | 3.05 H | 299 | 56.3 | 3.8 | | | 4 | 5350.00 | 46.2 AV | 54.0 | -7.8 | 3.05 H | 299 | 42.4 | 3.8 | | | 5 | 10640.00 | 59.1 PK | 74.0 | -14.9 | 2.98 H | 77 | 42.1 | 17.0 | | | 6 | 10640.00 | 44.4 AV | 54.0 | -9.6 | 2.98 H | 77 | 27.4 | 17.0 | | | | | ANTENI | NA POLARIT | Y & TEST DI | STANCE: VE | RTICAL AT | 3 M | | | | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | *5320.00 | 116.8 PK | | | 3.03 V | 135 | 113.0 | 3.8 | | | 2 | *5320.00 | 106.0 AV | | | 3.03 V | 135 | 102.2 | 3.8 | | | 3 | 5350.00 | 66.8 PK | 74.0 | -7.2 | 3.11 V | 138 | 63.0 | 3.8 | | | 4 | 5350.00 | 53.2 AV | 54.0 | -0.8 | 3.11 V | 138 | 49.4 | 3.8 | | | 5 | 10640.00 | 57.6 PK | 74.0 | -16.4 | 1.32 V | 225 | 40.6 | 17.0 | | | 6 | 10640.00 | 44.7 AV | 54.0 | -9.3 | 1.32 V | 225 | 27.7 | 17.0 | | #### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency - 6. " # ": The radiated frequency is out of the restricted band Report No.: RF190412C02B Page No. 17 / 23 Report Format Version:6.1.2 #### 802.11a | CHANNEL | TX Channel 100 | DETECTOR | Peak (PK) | |-----------------|----------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 40GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 5460.00 | 57.2 PK | 74.0 | -16.8 | 3.39 H | 216 | 53.0 | 4.2 | | | 2 | 5460.00 | 44.3 AV | 54.0 | -9.7 | 3.39 H | 216 | 40.1 | 4.2 | | | 3 | #5470.00 | 58.2 PK | 68.2 | -10.0 | 3.40 H | 214 | 53.9 | 4.3 | | | 4 | *5500.00 | 108.5 PK | | | 3.39 H | 216 | 69.8 | 38.7 | | | 5 | *5500.00 | 98.0 AV | | | 3.39 H | 216 | 59.3 | 38.7 | | | 6 | 11000.00 | 59.2 PK | 74.0 | -14.8 | 1.32 H | 163 | 40.8 | 18.4 | | | 7 | 11000.00 | 44.8 AV | 54.0 | -9.2 | 1.32 H | 163 | 26.4 | 18.4 | | | | | ANTEN | NA POLARIT | Y & TEST DI | STANCE: VE | RTICAL AT | 3 M | | | | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 5460.00 | 62.2 PK | 74.0 | -11.8 | 3.51 V | 186 | 58.0 | 4.2 | | | 2 | 5460.00 | 47.1 AV | 54.0 | -6.9 | 3.51 V | 186 | 42.9 | 4.2 | | | 3 | #5470.00 | 68.1 PK | 68.2 | -0.1 | 3.47 V | 173 | 63.8 | 4.3 | | | 4 | *5500.00 | 118.4 PK | | | 3.47 V | 182 | 79.7 | 38.7 | | | 5 | *5500.00 | 108.2 AV | | | 3.47 V | 182 | 69.5 | 38.7 | | | 6 | 11000.00 | 59.6 PK | 74.0 | -14.4 | 1.72 V | 220 | 41.2 | 18.4 | | | 7 | 11000.00 | 45.2 AV | 54.0 | -8.8 | 1.72 V | 220 | 26.8 | 18.4 | | ## Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency - 6. " # ": The radiated frequency is out of the restricted band #### 4.2 Transmit Power Measurement #### 4.2.1 Limits of Transmit Power Measurement | Operation
Band | EUT Category | Limit | |-------------------|-----------------------------------|---| | U-NII-1 Fix | Outdoor Access Point | 1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon) | | | Fixed point-to-point Access Point | 1 Watt (30 dBm) | | | Indoor Access Point | 1 Watt (30 dBm) | | | Mobile and Portable client device | 250mW (24 dBm) | | U-NII-2A | V | 250mW (24 dBm) or 11 dBm+10 log B* | | U-NII-2C | √ | 250mW (24 dBm) or 11 dBm+10 log B* | | U-NII-3 | | 1 Watt (30 dBm) | ^{*}B is the 26 dB emission bandwidth in megahertz Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices, Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT}; Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} ≥ 5. For power measurements on all other devices: Array Gain = 10 log(N_{ANT}/N_{SS}) dB. ## 4.2.2 Test Setup For Power Output #### 4.2.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.2.4 Test Procedure For Average Power Measurement ## 802.11a, 802.11n (HT20), 802.11n (HT40), 802.11ac (VHT80) Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to average. Duty factor is not added to measured value. #### 4.2.5 Deviation from Test Standard No deviation. #### 4.2.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. Report No.: RF190412C02B Page No. 19 / 23 Report Format Version:6.1.2 ## 4.2.7 Test Result Power Output: 802.11a | Chan. Freq. | Maximum Conducted Power (dBm) | | Total Dower (m\/) | Total Dower (dPm) | | | |-------------|-------------------------------|---------|-------------------|-------------------|-------------------|--| | Chan. | (MHz) | Chain 0 | Chain 1 | Total Power (mW) | Total Power (dBm) | | | 52 | 5260 | 16.75 | 16.63 | 93.325 | 19.70 | | | 60 | 5300 | 16.66 | 16.11 | 87.096 | 19.40 | | | 64 | 5320 | 16.97 | 16.73 | 96.828 | 19.86 | | | 100 | 5500 | 17.11 | 16.91 | 100.462 | 20.02 | | | 116 | 5580 | 17.08 | 16.82 | 99.083 | 19.96 | | | 140 | 5700 | 17.20 | 17.03 | 103.039 | 20.13 | | | 144 | 5720 | 16.55 | 15.97 | 84.723 | 19.28 | | ## 802.11n (HT20) | Chan Freq. | Maximum Conducted Power (dBm) | | Total Dower (m\\) | Total Dawer (dDm) | | | |------------|-------------------------------|---------|-------------------|-------------------|-------------------|--| | Chan. | Chan. (MHz) | Chain 0 | Chain 1 | Total Power (mW) | Total Power (dBm) | | | 52 | 5260 | 17.22 | 16.51 | 97.499 | 19.89 | | | 60 | 5300 | 16.89 | 16.61 | 94.624 | 19.76 | | | 64 | 5320 | 17.66 | 17.47 | 114.288 | 20.58 | | | 100 | 5500 | 18.13 | 18.01 | 128.233 | 21.08 | | | 116 | 5580 | 17.31 | 16.97 | 103.514 | 20.15 | | | 140 | 5700 | 17.77 | 17.31 | 113.763 | 20.56 | | | 144 | 5720 | 17.21 | 16.44 | 96.605 | 19.85 | | Report No.: RF190412C02B Reference No.: 191111C03 ## 802.11n (HT40) | Chan Freq. | Maximum Conducted Power (dBm) | | | Total Dawer (dDm) | | | |------------|-------------------------------|---------|---------|-------------------|-------------------|--| | Chan. | (MHz) | Chain 0 | Chain 1 | Total Power (mW) | Total Power (dBm) | | | 54 | 5270 | 19.80 | 19.21 | 179.061 | 22.53 | | | 62 | 5310 | 18.33 | 18.06 | 132.130 | 21.21 | | | 102 | 5510 | 18.57 | 18.33 | 139.959 | 21.46 | | | 110 | 5550 | 20.01 | 19.40 | 187.499 | 22.73 | | | 134 | 5670 | 19.23 | 19.08 | 164.816 | 22.17 | | | 142 | 5710 | 19.77 | 19.11 | 176.198 | 22.46 | | ## 802.11ac (VHT80) | Chan Freq. | Maximum Conducted Power (dBm) | | | Total Dayyar (dDm) | | | |------------|-------------------------------|---------|---------|--------------------|-------------------|--| | Chan. | (MHz) | Chain 0 | Chain 1 | Total Power (mW) | Total Power (dBm) | | | 58 | 5290 | 15.71 | 15.63 | 73.790 | 18.68 | | | 106 | 5530 | 17.88 | 17.62 | 119.124 | 20.76 | | | 122 | 5610 | 19.80 | 19.63 | 187.499 | 22.73 | | | 138 | 5690 | 20.72 | 20.08 | 219.786 | 23.42 | | | 5 Pictures of Test Arrangements | | | | | | | | |---|--|--|--|--|--|--|--| | Please refer to the attached file (Test Setup Photo). | Report No.: RF190412C02B Reference No.: 191111C03 #### Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF190412C02B Page No. 23 / 23 Report Format Version:6.1.2