

Report on the Radio Testing

For

Inova Design Solutions Ltd ( Bodytrak)

on

Bodytrak I

Report no. TRA-054222-47-07BB

DD Month YYYY

RF915 9.0







Report Number: TRA-054222-47-07B

Issue: E

REPORT ON THE RADIO TESTING OF A
Inova Design Solutions Ltd (Bodytrak)
Bodytrak I
WITH RESPECT TO SPECIFICATION
FCC 47CFR 15.247 ISED RSS-247
TO SATISFY MODULAR INTEGRATION REQUIREMENTS OF
KDB 996369 D04 v01 / RSP-100

TEST DATE: 2022/01/04 to 2022/01/06

Tested by: Michael Else

Michael Else

Written by: Radio Test Engineer

John Charters

Approved by: Laboratory Manager

Date: DD Month YYYY

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

# 1 Revision Record

| Issue Number | Issue Date    | Revision History                                                                                                             |
|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------|
| Α            | DD Month YYYY | Original                                                                                                                     |
| В            | 06 June 2022  | Test set-up Photo deleted- due to short term confidentiality requirement,  Model number updated and modulation type amended. |

RF915 9.0 Page 3 of 27

# 2 Summary

| TEST REPORT NUMBER:         | TRA-054222-47-07B                      |
|-----------------------------|----------------------------------------|
| WORKS ORDER NUMBER:         | TRA-054222-01                          |
| PURPOSE OF TEST:            | Modular Integration                    |
| TEST SPECIFICATION:         | 47CFR15.247 & RSS-247                  |
| EQUIPMENT UNDER TEST (EUT): | Bodytrak I                             |
| FCC IDENTIFIER:             | Contains: T7V1326C2                    |
| ISED IDENTIFIER:            | Contains: 216Q-1326C2                  |
| EUT SERIAL NUMBER:          | BTCP1-B0020                            |
| MANUFACTURER/AGENT:         | Inova Design Solutions Ltd ( Bodytrak) |
| ADDRESS:                    | Innovation Warehouse86-90 Paul Street  |
|                             | 1st Floor                              |
|                             | 1 East Poultry Avenue                  |
|                             | London                                 |
|                             | EC2A 4NE                               |
|                             | United Kingdom                         |
| CLIENT CONTACT:             | Dmitry lakovlev                        |
|                             | <b>**</b> +44 (0)203 432 5439          |
|                             | ⊠ dmitry.iakovlev@bodytrak.co          |
| TEST DATE:                  | 2022/01/04 to 2022/01/06               |
| TESTED BY:                  | Michael Else                           |
|                             | Element                                |
|                             |                                        |

RF915 9.0 Page 4 of 27

## 2.1 Test Summary

| Test Method and D                                                          | escription  | Requirement<br>Clause<br>47CFR15 | Requirement<br>Clause RSS | Applicable to this equipment | Result /<br>Note    |  |
|----------------------------------------------------------------------------|-------------|----------------------------------|---------------------------|------------------------------|---------------------|--|
| Radiated spurious emiss<br>(restricted bands of oper<br>cabinet radiation) |             | 15.247 (d)                       | 247, 3.3                  |                              | Pass                |  |
| AC power line conducted                                                    | l emissions | 15.207                           | Gen, 8.8                  |                              | Note 1              |  |
| Occupied bandwidth                                                         |             | 15.247 (a) (2)                   | 247, 5.2 (a)              |                              | Note 1              |  |
| Conducted carrier                                                          | Peak        | 45 247 (b) (2)                   | 247 5 4 (4)               |                              | Information<br>Only |  |
| power                                                                      | Max.        | 15.247 (b) (3)                   | 247, 5.4 (d)              |                              |                     |  |
| Out of band emissions                                                      |             | 15.247 (d)                       | 247, 5.5                  |                              | Note 1              |  |
| Power spectral density                                                     |             | 15.247 (e)                       | 247, 5.2 (b)              |                              | Note 1              |  |
| Calculation of duty corre                                                  | ction       | -                                | 15.35 (c)                 |                              | Note 1              |  |

### **Specific Note:**

Note1: Limited testing was performed to check Carrier power / & transmitter radiated spurious emissions only, as requested by the client, to satisfy modular integration requirements of KDB996369 D04 v01 / RSP-100

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF915 9.0 Page 5 of 27

# 3 Contents

| 1  | F    | Revision Record                                      | 3   |
|----|------|------------------------------------------------------|-----|
| 2  | S    | Summary                                              | 4   |
|    | 2.1  | Test Summary                                         | . 5 |
| 3  | C    | Contents                                             | 6   |
| 4  | lı   | ntroduction                                          | 7   |
| 5  | Т    | Test Specifications                                  | 3   |
|    | 5.1  |                                                      | . 8 |
|    | 5.2  | Deviations from Test Standards                       | . 8 |
| 6  | C    | Glossary of Terms                                    | ç   |
| 7  | E    | Equipment under Test                                 | 10  |
|    | 7.1  | EUT Identification                                   | 10  |
|    | 7.2  | System Equipment                                     | 10  |
|    | 7.3  | EUT Mode of Operation                                | 10  |
|    | 7.4  | EUT Radio Parameters                                 | 10  |
|    | 7    | 7.4.1 General                                        | 10  |
|    | 7    | 7.4.2 Antennas                                       | 10  |
|    | 7    | 7.4.3 Product specific declarations                  | 11  |
|    | 7.5  | EUT Description                                      | 11  |
| 8  | Λ    | Modifications                                        | 12  |
| 9  | E    | EUT Test Setup                                       | 12  |
|    | 9.1  | Block Diagram                                        | 12  |
|    | 9.2  | General Set-up Photograph                            | 13  |
|    | 9.3  | Measurement software                                 | 14  |
| 10 | o c  | General Technical Parameters                         | 15  |
|    | 10.1 | 1 Normal Conditions                                  | 15  |
|    | 10.2 | 2 Varying Test Conditions                            | 15  |
| 1  | 1 F  | Radiated emissions                                   | 16  |
|    | 11.  | 1 Definitions                                        | 16  |
|    | 11.2 | 2 Test Parameters                                    | 16  |
|    | 11.3 | 3 Test Limit                                         | 16  |
|    | 11.4 |                                                      |     |
|    | 11.  | 5 Test Equipment                                     | 18  |
|    | 11.6 |                                                      | 19  |
| 12 | 2 N  | Maximum peak conducted output power and Maximum EIRP |     |
|    | 12.1 |                                                      |     |
|    | 12.2 | 2 Test Parameters                                    | 23  |
|    | 12.3 | •                                                    |     |
|    | 12.4 |                                                      |     |
|    | 12.  | • =                                                  |     |
|    | 12.6 |                                                      |     |
| 13 | 3 N  | Measurement Uncertainty                              | 26  |

Report Number: TRA-054222-47-07B

#### 4 Introduction

This report TRA-054222-47-07B presents the results of the Radio testing on a Inova Design Solutions Ltd (Bodytrak), Bodytrak I to specification 47CFR15 Radio Frequency Devices. RSS-247 - Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

The testing was carried out for Inova Design Solutions Ltd (Bodytrak) by Element, at the address detailed below.

□ Element Hull □ Element Skelmersdale
Unit E Unit 1
South Orbital Trading Park
Hedon Road Skemersdale
Hull □ West Lancashire

HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

#### FCC Site Listing:

The test laboratory is accredited for the above sites under the following US-UK MRA, Designation numbers.

Element Hull UK2007 Element Skelmersdale UK2020

**ISED Registration Numbers:** 

Element Hull 3483A Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 9.0 Page 7 of 27

## 5 Test Specifications

#### 5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ISED RSS-247, Issue 2, February 2017 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.
- ISED RSS-Gen, Issue 5, March 2019 General Requirements for Compliance of Radio Apparatus.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- KDB 996369 D04 Module Integration Guide V01 Modular Transmitter Integration Guide Guidance for Host Product Manufacturers.
- RSP-100, Issue 12, August 2019, Certification of Radio Apparatus and Broadcasting Equipment

#### 5.2 Deviations from Test Standards

Limited testing was performed to check transmitter radiated spurious emissions and confirm carrier power only, as requested by the client, to satisfy modular integration requirements of KDB996369 D04 v01 / RSP-100.

RF915 9.0 Page 8 of 27

# 6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

**CW** Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

**Hz** hertz

IC Industry Canada

ITU International Telecommunication Union

**LBT** Listen before Talk

m metre
max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format
Pt-mpt Point-to-multipoint

Pt-pt Point-to-point
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second

**SVSWR** Site Voltage Standing Wave Ratio

Tx transmitter

**UKAS** United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$ 

RF915 9.0 Page 9 of 27

Report Number: TRA-054222-47-07B

## 7 Equipment under Test

#### 7.1 EUT Identification

Name: Bodytrak I

Serial Number: BTCP1-B0020
Model Number: BCP1N
Software Revision: 4602

• Build Level / Revision Number: Not Applicable

## 7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable – No support/monitoring equipment required.

## 7.3 EUT Mode of Operation

The mode of operation for transmit tests was as follows:-

The EUT was set to transmit permanently on top, middle or bottom channels as required.

## 7.4 EUT Radio Parameters

### 7.4.1 General

| Frequency of operation:        | 2402 to 2480 MHz                        |
|--------------------------------|-----------------------------------------|
| Modulation type(s):            | GFSK                                    |
| Occupied channel bandwidth(s): | 2 MHz                                   |
| Channel spacing:               | 2 MHz                                   |
| ITU emission designator(s):    | F1D                                     |
| Declared output power setting: | -3 dBm                                  |
| Nominal Supply Voltage:        | 3.7 Vdc From Li-Po rechargeable battery |
| Duty cycle:                    | 100% for test                           |

#### 7.4.2 Antennas

| Туре:            | Component Multilayer Antenna |  |  |
|------------------|------------------------------|--|--|
| Make/Model       | TDK ANT016008LCS2442MA1      |  |  |
| Frequency range: | 2400 MHz to 2484 MHz         |  |  |
| Gain:            | 1.6 dBi                      |  |  |
| Connector type:  | Integral                     |  |  |

RF915 9.0 Page 10 of 27

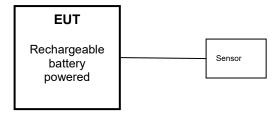
# 7.4.3 Product specific declarations

| Multiple antenna configuration(s), e.g. MIMO:                          | Single |
|------------------------------------------------------------------------|--------|
| Fixed pt-pt operations (yes/no):                                       | No     |
| Installation manual advice on pt-pt operational restrictions (yes/no): | No     |
| Fixed pt-mpt operations (yes/no):                                      | No     |
| Simultaneous tx (yes/no):                                              | No     |

# 7.5 EUT Description

The EUT is a personal wearable device and is comprised of a miniature earpiece with integrated sensors connected to a torso-worn communication pack.

RF915 9.0 Page 11 of 27


# 8 Modifications

No modifications were performed during this assessment.

# 9 EUT Test Setup

# 9.1 Block Diagram

The following diagram shows basic EUT Test Setup:



RF915 9.0 Page 12 of 27

# 9.2 General Set-up Photograph

Not applicable due to short term confidentiality.

RF915 9.0 Page 13 of 27

## 9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 Element Transmitter Bench Test ETS Lindgren EMPower V1.0.4.2

RF915 9.0 Page 14 of 27

## 10 General Technical Parameters

#### 10.1 Normal Conditions

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 3.7 Vdc from Li-Po Rechargeable batteries.

## 10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

| Category | Nominal        | Variation      |  |
|----------|----------------|----------------|--|
| Mains    | 110 Vac +/-2 % | 85 % and 115 % |  |
| Battery  | New battery    | Fully Charged  |  |

RF915 9.0 Page 15 of 27

#### 11 Radiated emissions

#### 11.1 Definitions

#### Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

#### Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

#### 11.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Chamber 01

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6 EUT Frequencies Measured: 2402 MHz, 2440 MHz & 2480 MHz

Deviations from Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak; Above 1 GHz: RMS average and

Peak

### **Environmental Conditions (Normal Environment)**

Temperature: 13.1 °C +15 °C to +35 °C (as declared)

Humidity: 49 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.7 Vdc As declared

#### 11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

## General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

| Frequency<br>(MHz) | Field Strength<br>(µV/m at 3 m) | Field Strength<br>(dBµV/m at 3 m) |  |
|--------------------|---------------------------------|-----------------------------------|--|
| 30 to 88           | 100                             | 40.0                              |  |
| 88 to 216          | 150                             | 43.5                              |  |
| 216 to 960         | 200                             | 46.0                              |  |
| Above 960          | 500                             | 54.0                              |  |

On frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function. On frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit.

RF915 9.0 Page 16 of 27

#### 11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in  $dB\mu V/m$  at the regulatory distance, using:

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

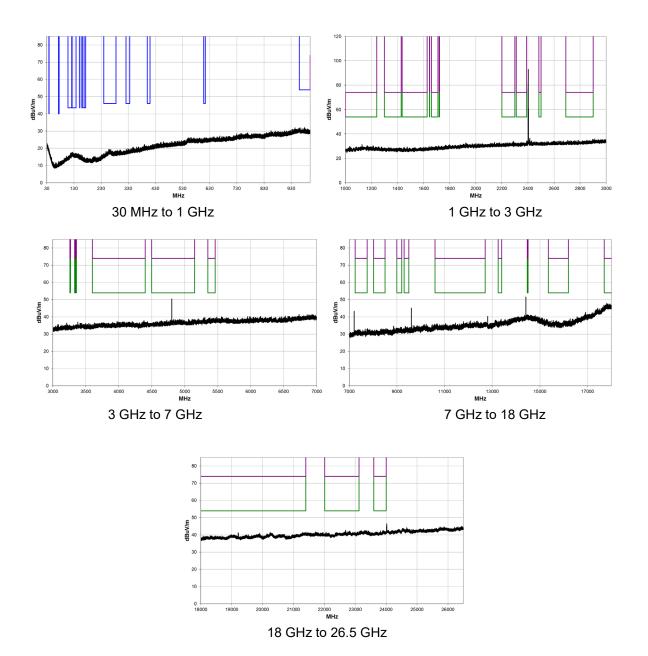
CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

### Figure i Test Setup



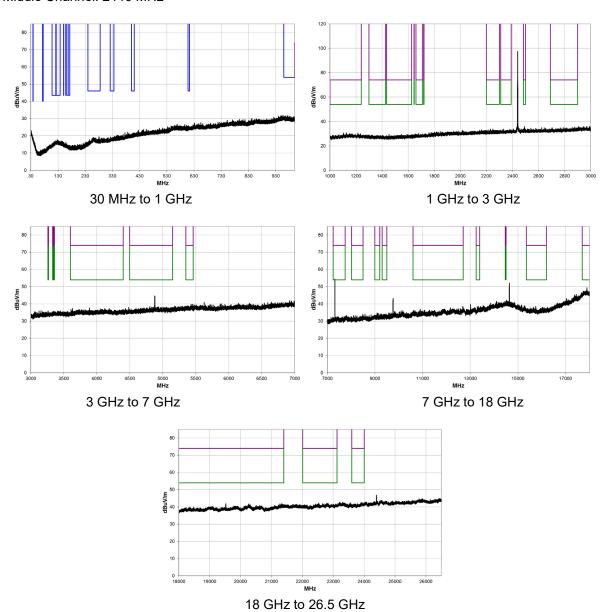
RF915 9.0 Page 17 of 27


# 11.5 Test Equipment

| Equipment    |                    | Equipment                 | Element | Due For          |
|--------------|--------------------|---------------------------|---------|------------------|
| Туре         | Manufacturer       | Description               | No      | Calibration      |
| ATS          | Rainford EMC       | Chamber 1                 | U387    | 2023-10-24       |
| Emissions R5 | Element            | Radiated Test<br>Software | REF9000 | Cal not required |
| ESR26        | R&S                | EMI Receiver              | U489    | 2022-03-04       |
| FSU26        | R&S                | Spectrum Analyser         | U405    | 2022-03-31       |
| 3115         | EMCO               | 1-18GHz Horn              | L139    | 2023-07-27       |
| AFH-07000    | Atlantic Microwave | High Pass Filter          | U558    | 2022-01-30       |
| SN 4478      | BSC                | 2.4G Band Stop<br>Filter  | U543    | 2022-01-30       |
| 20240-20     | Flann              | Horn 18-26GHz<br>(&U330)  | L300    | 2022-04-23       |
| CBL611/B     | Chase              | Bilog                     | U573    | 2023-01-28       |
| LNA6901      | AMETEK             | Pre Amp                   | U711    | 2022-02-03       |
| 8449B        | Agilent            | Pre Amp                   | L572    | 2022-10-29       |
| 6201-69      | Watkins Johnson    | PreAmp                    | U372    | 2022-03-01       |

RF915 9.0 Page 18 of 27

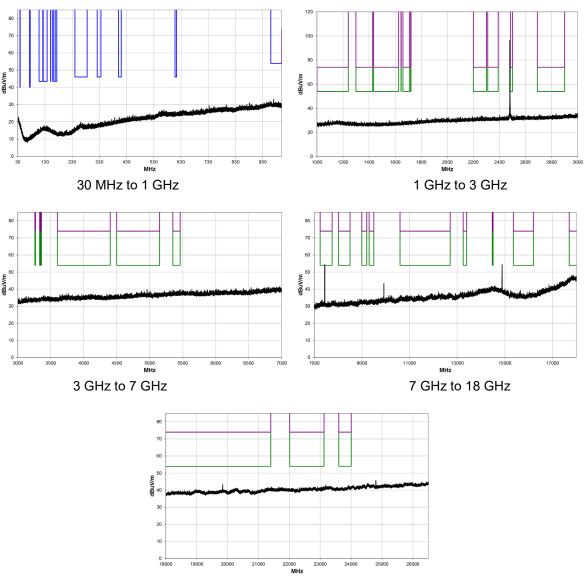
## 11.6 Test Results


Bottom Channel: 2402 MHz



| Frequency: 2402 MHz; Power Setting: -3 dBm; |                |                              |                |                                 |                                        |                               |                   |                |
|---------------------------------------------|----------------|------------------------------|----------------|---------------------------------|----------------------------------------|-------------------------------|-------------------|----------------|
| Detector                                    | Freq.<br>(MHz) | Meas'd<br>Emission<br>(dBµV) | Factor<br>(dB) | Duty<br>Cycle<br>Corr'n<br>(dB) | Distance<br>Extrap'n<br>Factor<br>(dB) | Field<br>Strength<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| AV                                          | 4804.2         | 48.1                         | 2.3            | 0                               | 0                                      | 50.4                          | 54                | -3.6           |
| AV                                          | 4804.233       | 37                           | 2.3            | 0                               | 0                                      | 39.3                          | 54                | -14.7          |
| PK                                          | 4803.709       | 54.8                         | 2.3            | 0                               | 0                                      | 57.1                          | 74                | -16.9          |

RF915 9.0 Page 19 of 27

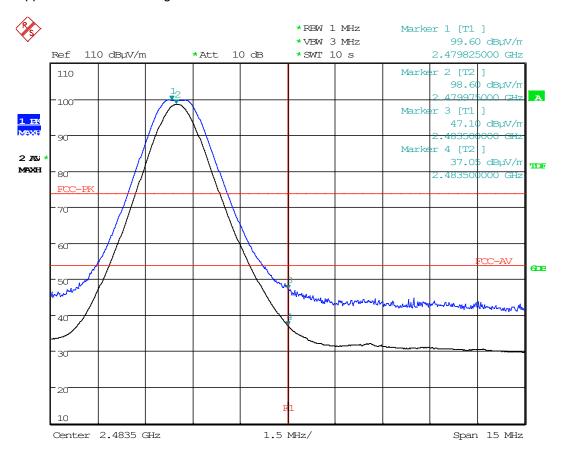

## Middle Channel: 2440 MHz



Frequency: 2440 MHz; Power Setting: -3 dBm; Distance Duty Meas'd Field Cycle Corr'n Margin (dB) Freq. (MHz) Factor Extrap'n Limit Detector **Emission** Strength (dB) (dBµV/m) Factor (dBµV) (dBµV/m) (dB) (dB) 4880.200 43.2 2.6 45.8 54 -8.2 ΑV 0 0 4880.25 0 AV36.1 2.6 0 38.7 54 -15.3 ΑV 7320.749 56.8 6.5 0 -9.5 53.8 54 -0.2 ΑV 7320.749 52.4 6.5 0 -9.5 49.4 54 -4.6 PΚ 0 74 7320.774 63.6 6.5 -9.5 60.6 -13.4 PΚ 7320.765 59.7 0 **-**9.5 56.7 74 -17.3 6.5 ΑV 19518.36 38.2 9.7 0.0 -9.5 38.4 54 -15.6 AV19518.32 35.2 0.0 **-**9.5 35.4 -18.6 9.7 54

RF915 9.0 Page 20 of 27

# Top Channel: 2480 MHz




18 GHz to 26.5 GHz

|          | Frequency: 2480 MHz; Power Setting: -3 dBm; |                              |                |                                 |                                        |                               |                   |                |  |
|----------|---------------------------------------------|------------------------------|----------------|---------------------------------|----------------------------------------|-------------------------------|-------------------|----------------|--|
| Detector | Freq.<br>(MHz)                              | Meas'd<br>Emission<br>(dBµV) | Factor<br>(dB) | Duty<br>Cycle<br>Corr'n<br>(dB) | Distance<br>Extrap'n<br>Factor<br>(dB) | Field<br>Strength<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
| AV       | 4960.250                                    | 36.4                         | 2.5            | 0                               | 0                                      | 38.9                          | 54                | -15.1          |  |
| AV       | 4960.416                                    | 31.4                         | 2.5            | 0                               | 0                                      | 33.9                          | 54                | -20.1          |  |
| AV       | 7440.749                                    | 56.9                         | 6.5            | 0                               | -9.5                                   | 53.9                          | 54                | -0.1           |  |
| AV       | 7440.749                                    | 53.3                         | 6.5            | 0                               | -9.5                                   | 50.3                          | 54                | -3.7           |  |
| PK       | 7440.79                                     | 63.8                         | 6.5            | 0                               | -9.5                                   | 60.8                          | 74                | -13.2          |  |
| PK       | 7440.782                                    | 60.6                         | 6.5            | 0                               | -9.5                                   | 57.6                          | 74                | -16.4          |  |
| AV       | 19842.12                                    | 36.2                         | 9.7            | 0                               | -9.5                                   | 36.4                          | 54                | -17.6          |  |
| AV       | 19844.50                                    | 34.5                         | 9.7            | 0.0                             | -9.5                                   | 34.7                          | 54                | -19.3          |  |

RF915 9.0 Page 21 of 27

# Upper Radiated Band Edge



Date: 15.NOV.2021 16:49:40

RF915 9.0 Page 22 of 27

## 12 Maximum peak conducted output power and Maximum EIRP

#### 12.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The effective isotropic radiated power (EIRP) is defined as the product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

#### 12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Chamber 01

Test Standard and Clause: ANSI C63.10-2013, Clause 11.9.1 EUT Channels / Frequencies Measured: 2402 MHz, 2440 MHz & 2480 MHz

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

None

10 MHz

30 MHz

(requirement at least 3x RBW)

Measurement Detector: Peak

#### **Environmental Conditions (Normal Environment)**

Temperature: 13.1 °C +15 °C to +35 °C (as declared)
Humidity: 49 % RH 20 % RH to 75 % RH (as declared)

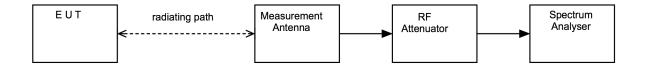
#### 12.3 Test Limit

FCC:

For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

ISED:

For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W. The EIRP shall not exceed 4 W.


RF915 9.0 Page 23 of 27

#### 12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

## **Figure iv Test Setup**



## 12.5 Test Equipment

| Equipment    |              | Equipment                 | Element | Due For          |
|--------------|--------------|---------------------------|---------|------------------|
| Туре         | Manufacturer | Description               | No      | Calibration      |
| ATS          | Rainford EMC | Chamber 1                 | U387    | 2023-10-24       |
| Emissions R5 | Element      | Radiated Test<br>Software | REF9000 | Cal not required |
| ESR26        | R&S          | EMI Receiver              | U489    | 2022-03-04       |
| 3115         | EMCO         | 1-18GHz Horn              | L139    | 2023-07-27       |
| 8449B        | Agilent      | Pre Amp                   | L572    | 2022-10-29       |

RF915 9.0 Page 24 of 27

Report Number: TRA-054222-47-07B

#### 12.6 Test Results

FCC:

The following formula was used to convert field strength (*E*) in volts/metre to conducted output power in watts:

Conducted Output Power = 
$$(E \times d)^2/(30 \times G)$$

Where,

E is the electric field strength in V/m

d is the measurement distance in meters (m)

G is the antenna numerical gain referenced to isotropic gain

| BLE, Power setting: -3dBm |                                       |                                    |                 |                          |                   |                                               |        |
|---------------------------|---------------------------------------|------------------------------------|-----------------|--------------------------|-------------------|-----------------------------------------------|--------|
| Frequency<br>(MHz)        | Peak<br>Field<br>Strength<br>(dBµV/m) | Peak<br>Field<br>Strength<br>(V/m) | Distance<br>(m) | Antenna<br>Gain<br>(dBi) | Numerical<br>Gain | Maximum peak<br>conducted output<br>power (W) | Result |
| 2402                      | 95.70                                 | 0.06                               | 3.00            | 1.60                     | 1.45              | 0.0007711187                                  | PASS   |
| 2440                      | 98.70                                 | 0.09                               | 3.00            | 1.60                     | 1.45              | 0.0015385842                                  | PASS   |
| 2480                      | 99.20                                 | 0.09                               | 3.00            | 1.60                     | 1.45              | 0.0017263198                                  | PASS   |

#### ISED:

The following formula was used to convert field strength (*E*) in volts/metre to EIRP in watts:

$$EIRP = (E \times d)^2 / 30$$

Where,

E is the electric field strength in V/m

d is the measurement distance in meters (m)

| BLE, Power setting: -3dBm |                                    |                                 |                 |              |        |
|---------------------------|------------------------------------|---------------------------------|-----------------|--------------|--------|
| Frequency<br>(MHz)        | Peak Field<br>Strength<br>(dBµV/m) | Peak Field<br>Strength<br>(V/m) | Distance<br>(m) | EIRP<br>(W)  | Result |
| 2402                      | 95.70                              | 0.06                            | 3               | 0.0011146057 | PASS   |
| 2440                      | 98.70                              | 0.09                            | 3               | 0.0022239307 | PASS   |
| 2480                      | 99.20                              | 0.09                            | 3               | 0.0024952913 | PASS   |

RF915 9.0 Page 25 of 27

# 13 Measurement Uncertainty

## Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

| Test/Measurement                                                                               | Budget Number    | MU              |
|------------------------------------------------------------------------------------------------|------------------|-----------------|
| Conducted RF Power, Power Spectral Density, Adjacent Channel Power and                         |                  |                 |
| Spurious emissions                                                                             |                  |                 |
| Absolute RF power (via antenna connecter) Dare RPR3006W Power Head                             | MU4001           | 0.9 dB          |
| Carrier Power and PSD - Spectrum Analysers                                                     | MU4004           | 0.9 dB          |
| Adjacent Channel Power                                                                         | MU4002           | 1.9 dB          |
| Transmitter conducted spurious emissions                                                       | MU4041           | 0.9 dB          |
| Conducted power and spurious emissions 40 GHz to 50 GHz                                        | MU4042           | 2.4 dB          |
| Conducted power and spurious emissions 50 GHz to 75 GHz                                        | MU4043           | 2.5 dB          |
| Conducted power and spurious emissions 75 GHz to 110 GHz                                       | MU4044           | 2.4 dB          |
| Padiated PE Dawar and Spurious emissions EPD and EIPD                                          |                  |                 |
| Radiated RF Power and Spurious emissions ERP and EIRP  Effective Radiated Power Reverb Chamber | MUMOOO           | 2740            |
|                                                                                                | MU4020           | 3.7 dB          |
| Effective Radiated Power                                                                       | MU4021           | 4.7 dB          |
| TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna                           | MU4046           | 5.3 dB          |
| TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna                                 | MU4047           | 5.1 dB          |
| TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn                                      | MU4048           | 2.7 dB          |
| TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn                                      | MU4049           | 2.7 dB          |
| Spurious Emissions Electric and Magnetic Field                                                 |                  |                 |
| Radiated Spurious Emissions 30 MHz to 1 GHz                                                    | MU4037           | 4.7 dB          |
| Radiated Spurious Emissions 1-18 GHz                                                           | MU4032           | 4.5 dB          |
| E Field Emissions 18GHz to 26 GHz                                                              | MU4024           | 3.2 dB          |
| E Field Emissions 26GHz to 40 GHz                                                              | MU4025           | 3.3 dB          |
| E Field Emissions 40GHz to 50 GHz                                                              | MU4026           | 3.5 dB          |
| E Field Emissions 50GHz to 75 GHz                                                              | MU4027           | 3.6 dB          |
| E Field Emissions 75GHz to 110 GHz                                                             | MU4028           | 3.6 dB          |
| Radiated Magnetic Field Emissions                                                              | MU4031           | 2.3 dB          |
| Frequency Measurements                                                                         |                  |                 |
| Frequency Deviation                                                                            | MU4022           | 0.316 kHz       |
| Frequency error using CMTA test set                                                            | MU4023           | 113.441 Hz      |
| Frequency error using GPS locked frequency source                                              | MU4045           | 0.0413 ppm      |
| Frequency error using GF3 locked frequency source                                              | 10104045         | 0.0413 ppiii    |
| Bandwidth/Spectral Mask Measurements                                                           |                  |                 |
| Channel Bandwidth                                                                              | MU4005           | 3.87 %          |
| Transmitter Mask Amplitude                                                                     | MU4039           | 1.3 dB          |
| Transmitter Mask Frequency                                                                     | MU4040           | 2.59 %          |
| Time Domain Measurements                                                                       |                  |                 |
| Transmission Time                                                                              | MU4038           | 4.40 %          |
| Dynamia Eraguanay Salaatian (DES) Baramatara)                                                  |                  |                 |
| Dynamic Frequency Selection (DFS) Parameters)  DFS Analyser - Measurement Time                 | MITADOR          | 670             |
|                                                                                                | MU4006<br>MU4007 | 679 μs<br>92 Hz |
| DFS Generator - Frequency Error DFS Threshold Conducted                                        | MU4007<br>MU4008 | 1.3 dB          |
| DFS Threshold Radiated                                                                         | MU4008<br>MU4009 | 3.2 dB          |
| DES THESHOU BAUAICO                                                                            | I IVIU4UUS       | 3.∠ UD          |

RF915 9.0 Page 26 of 27

| Test/Measurement                                         | Budget Number | MU     |
|----------------------------------------------------------|---------------|--------|
| Receiver Parameters                                      |               |        |
| EN300328 Receiver Blocking                               | MU4010        | 1.1 dB |
| EN301893 Receiver Blocking                               | MU4011        | 1.1 dB |
| EN303340 Adjacent Channel Selectivity                    | MU4012        | 1.1 dB |
| EN303340 Overloading                                     | MU4013        | 1.1 dB |
| EN303340 Receiver Blocking                               | MU4014        | 1.1 dB |
| EN303340 Receiver Sensitivity                            | MU4015        | 0.9 dB |
| EN303372-1 Image Rejection                               | MU4016        | 1.4 dB |
| EN303372-1 Receiver Blocking                             | MU4017        | 1.1 dB |
| EN303372-2 Adjacent Channel Selectivity                  | MU4018        | 1.1 dB |
| EN303372-2 Dynamic Range                                 | MU4019        | 0.9 dB |
| Receiver Blocking Talk Mode Conducted                    | MU4033        | 1.2 dB |
| Receiver Blocking Talk Mode- radiated                    | MU4034        | 3.4 dB |
| Rx Blocking, listen mode, blocking level                 | MU4035        | 3.2 dB |
| Rx Blocking, listen mode, radiated Threshold Measurement | MU4036        | 3.4 dB |
| Adjacent Sub Band Selectivity                            | MU4003        | 4.2 dB |

RF915 9.0 Page 27 of 27