Report No.: CTA24120300816 Page 136 of 162 In Collaboration with Client Anbotek (Auden) Certificate No: 224-97103 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1021 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: Jun 11, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|--| | 101919 | 1-Jul-23(CTTL, No.J23X04256) | Jun-24 | | 101547 | 1-Jul-23(CTTL, No.J23X04256) | Jun-24 | | SN 7307 | 19-Feb-24(SPEAG, No.EX3-7307_Feb24) | Feb-25 | | SN 771 | 02-Feb-24(CTTL-SPEAG,No.Z24-97011) | Feb-25 | | ID# | Cal Date(Calibrated by, Certi ficate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-24(CTTL, No.J24X00893) | Jan-25 | | MY46110673 | 26-Jan-24 (CTTL, No.J24X00894) | Jan-25 | | | 101919
101547
SN 7307
SN 771
ID#
MY49071430 | 101919 1-Jul-23(CTTL, No. J23X04256) 101547 1-Jul-23(CTTL, No. J23X04256) SN 7307 19-Feb-24(SPEAG, No. EX3-7307_Feb24) SN 771 02-Feb-24(CTTL-SPEAG, No. Z24-97011) ID# Cal Date(Calibrated by, Certi ficate No.) MY49071430 01-Feb-24(CTTL, No. J24X00893) | | A3 | Name | Function | Signature | |----------------|-------------|-----------------------------------|-------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 设有 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | - | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | 192, 483073 | Issued: Jun 12,2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z24-97103 Page 1 of 8 Report No.: CTA24120300816 Page 137 of 162 Add: No.51 Xueyuan Road, Huidian District, Beijing, 100191, China Tel=#86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005. c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)". March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### **Additional Documentation:** e) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z.24-97103 Page 2 of 8 Report No.: CTA24120300816 Page 138 of 162 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1258 | |--------------------------------|----------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL - | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | | NEW YORK CONTROL | A COMPANY OF THE PROPERTY. | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 260 mW input power | 9.17 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 36.9 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.94 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.8 mW /g ± 20.4 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.1 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.25 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 36.7 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.94 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 19.7 mW /g ± 20.4 % (k=2) | Certificate No: Z.24-97103 Page 3 of 8 Report No.: CTA24120300816 Page 139 of 162 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.6Ω- 1.40jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 33.9dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.0Ω+ 0.61jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.5dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.318 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.010 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 100 TO AN | | Certificate No: Z24-97103 Page 4 of 8 Report No.: CTA24120300816 Page 140 of 162 Date: 06.11.2024 In Collaboration with S D C A Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel:>+86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.362$ S/m; $\epsilon r = 40.49$; $\rho = 1000$ kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5.Configuration: - Probe: EX3DV4 SN7307; ConvF(8.37, 8.37, 8.37); Calibrated: 2/19/2021; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2021 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.1 IV/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.4W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.14 dBW/kg Certificate No: Z.24-97103 Page 5 of 8 Report No.: CTA24120300816 Page 141 of 162 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel::#86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z24-97103 Page 6 of 8 ESTING CTATES Report No.: CTA24120300816 Page 142 of 162 Date: 06.11.2024 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Ffttp://www.ehinattl.cn DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.505 \text{ S/m}$; $\varepsilon_r = 53.06$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 -SN7307; ConvF(8.18, 8.18, 8.18); Calibrated: 2/19/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn77 1; Calibrated: 2/2/2021 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.11 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.25 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.1 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg Certificate No: Z24-97103 Page 7 of 8 Report No.: CTA24120300816 Page 143 of 162 Impedance Measurement Plot for Body TSL Certificate No: Z24-97103 Page 8 of 8 ESTING Report No.: CTA24120300816 Page 144 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client CTA Certificate No: J23Z60388 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d002 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 25, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | 1 | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60388 Page 1 of 6 ESTING Report No.: CTA24120300816 Page 145 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60388 Page 2 of 6 TING Report No.: CTA24120300816 Page 146 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### **Measurement Conditions** as far as not given on page 1 | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | _ | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition | - 1 | | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60388 Page 3 of 6 Report No.: CTA24120300816 Page 147 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6Ω+ 1.54jΩ | |--------------------------------------|---------------| | Return Loss | - 35.7dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.084 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.004 113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by SPEAG | |-----------------------| |-----------------------| Certificate No: J23Z60388 Page 4 of 6 Report No.: CTA24120300816 Page 148 of 162 Date: 2023-08-25 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d002 Communication System: UID 0, CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.378 S/m; ϵ_r = 38.95; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.11 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 53.4% Maximum value of SAR (measured) = 15.8 W/kg Certificate No: J23Z60388 Page 5 of 6 ESTING Report No.: CTA24120300816 Page 149 of 162 CTATESTIN CTA TESTING TATESTING Report No.: CTA24120300816 Page 150 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn CTA Certificate No: J23Z60389 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 745 Calibration Procedure(s) Client FF-Z11-003-01 August 28, 2023 Calibration Procedures for dipole validation kits Calibration date: This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | | 7.55 mag. 9 7.550 | Name | Function | Signature | |-------------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 1000 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林洛 | | Approved by: | Qi Dianyuan | SAR Project Leader | SNR | Issued: September 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60389 Page 1 of 6 Report No.: CTA24120300816 Page 151 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60389 Page 2 of 6 Report No.: CTA24120300816 Page 152 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com # Measurement Conditions DASY system configuration, as | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60389 Page 3 of 6 Report No.: CTA24120300816 Page 153 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caict.ac.cn Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.2Ω + 5.40 j Ω | |--------------------------------------|----------------------------------| | Return Loss | - 23.7dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.077 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: J23Z60389 Page 4 of 6 Report No.: CTA24120300816 Page 154 of 162 Date: 2023-08-28 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 745 Communication System: UID 0, CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.835$ S/m; $\varepsilon_r = 39.03$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 48.5% Maximum value of SAR (measured) = 22.4 W/kg Certificate No: J23Z60389 Page 5 of 6 ESTING Report No.: CTA24120300816 Page 155 of 162 CTA TESTING Report No.: CTA24120300816 Page 156 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client ATC Certificate No: Z23-60086 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1073 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: February 17, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\infty}$ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Power sensor NRP6A | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Reference Probe EX3DV4 | SN 7464 | 19-Jan-23 (CTTL-SPEAG,No.Z22-60565) | Jan-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49070393 | 17-May-23 (CTTL, No.J22X03157) | May-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 26 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林秀 | | Approved by: | Qi Dianyuan | SAR Project Leader | | | | | | 1/2 | Issued: February 24, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z23-60086 Page 1 of 6 Report No.: CTA24120300816 Page 157 of 162 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z23-60086 Page 2 of 6 Page 158 of 162 Report No.: CTA24120300816 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.98 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 18.7 % (k=2) | Certificate No: Z23-60086 Page 3 of 6 Report No.: CTA24120300816 Page 159 of 162 Add: No.52 Hua Yuan
Bei Road, Haidian District, Beijing, 100191, China Tel
: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.6Ω- 6.32 jΩ | | |--------------------------------------|------------------|--| | Return Loss | - 23.7dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.058 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: Z23-60086 Page 4 of 6 Page 160 of 162 Report No.: CTA24120300816 Date: 2023-02-17 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1073 Communication System: UID 0, CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 39.75$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.5, 7.5, 7.5) @ 2600 MHz; Calibrated: 2023-01-19 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.06 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.36 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47.1% Maximum value of SAR (measured) = 24.5 W/kg Certificate No: Z23-60086 Page 5 of 6 Page 161 of 162 Report No.: CTA24120300816 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Impedance Measurement Plot for Head TSL Certificate No: Z23-60086 Page 6 of 6 Referring to KDB 865664D01V01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration) and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | NA P | D8 | 335V2, SN.484 | | . C. | |-------------------------|---------------------|---------------|----------------------------|----------------| | 835 Head | | | | | | Date of.
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | | 2023-08-25 | -31.2 | | 49.8 | (37) | | 2024-08-24 | -31.25 | 0.16 | 49.6 | -0.2 | | | . 113 = = = = = = = = = = = = = = = = = = | - · · · - | | | | |-------|---|---------------------|-----------------|----------------------------|----------------| | -50 | 2024-08-24 | -31.25 | 0.16 | 49.6 | -0.2 | | CTATL | | TING | | | | | | . 1 | D19 | 00V2, SN. 5d002 | | | | | CT | A. * | 19 | 00 Head | | | | Date of.
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | | G | 2023-08-25 | -35.7 | | 50.6 | | | | 2024-08-24 | -35.64 | -0.17 | 50.3 | -0.3 | | TESTING | D24 | 150V2, SN. 745 | | | | | |-------------------------|---------------------|----------------|----------------------------|-------------|--|--| | CTA. | 2450 Head | | | | | | | Date of.
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta (ohm) | | | | 2023-08-28 | -23.7 | | 54.2 | | | | | 2024-08-27 | -23.68 | -0.08 | 54.1 | -0.1 | | | | 7E9 | D2600V2, SN. 1073 | | | | | | | |-----|-------------------------|---------------------|--------------|----------------------------|----------------|--|--| | CTA | | 2600 Head | | | | | | | | Date of.
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | | | | | 2023-02-17 | -23.7 | (EM) | 48.6 | TESTIN | | | | | 2024-02-16 | -23.73 | 0.13 | 48.7 | 0.1 | | | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. *****END OF REPORT****