RF TEST REPORT For Shen Zhen Shi Zhi Lian Mao Ke Ji You Xian Gong Si Product Name: Selfie Screen Test Model(s): T181 Report Reference No. : DACE250430037RL002 FCC ID : 2BNA6-T181 Applicant's Name : Shen Zhen Shi Zhi Lian Mao Ke Ji You Xian Gong Si Room 1305-1306, Yifenghua Building, No. 28, Yifenghua Innovation Address : Industrial Park, Xinshi Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China **Testing Laboratory**: Shenzhen DACE Testing Technology Co., Ltd. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard : 47 CFR Part 15.247 Date of Receipt : April 30, 2025 **Date of Test** : April 30, 2025 to May 15, 2025 Data of Issue : May 15, 2025 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 90 # Apply for company information 000005217 | Applicant's Name | : | Shen Zhen Shi Zhi Lian Mao Ke Ji You Xian Gong Si | | | | |--------------------------------|---|---|--|--|--| | Address | | Room 1305-1306, Yifenghua Building, No. 28, Yifenghua Innovation Industrial Park, Xinshi Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China | | | | | Product Name | : | Selfie Screen | | | | | Test Model(s) | : | T181 | | | | | Series Model(s) | | T182, T183, T184, T185, T186 | | | | | Test Specification Standard(s) | | 47 CFR Part 15.247 | | | | #### NOTE1: The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Compiled by: Keren Huang Keren Huang / Test Engineer May 15, 2025 Supervised by Cofone of Stone Yin / Project Engineer May 15, 2025 Tom Chery Manager | Version | Description | REPORT No. | Issue Date | | |---------|-------------|--------------------|--------------|--| | V1.0 | Original | DACE250430037RL002 | May 15, 2025 | | | | | -36 | | | | | 1 | 2 | _ 1/6 | | | | | | 2 | | | | | | | | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 90 # **CONTENTS** | 1 TEST SUMMARY | | |---|--------| | 1.1 Test Standards | | | 1.2 SUMMARY OF TEST RESULT | 6 | | 2 GENERAL INFORMATION | 7 | | 2.1 CLIENT INFORMATION | 7 | | 2.2 DESCRIPTION OF DEVICE (EUT) | 7 | | 2.3 DESCRIPTION OF TEST MODES | | | 2.4 DESCRIPTION OF SUPPORT UNITS | | | 2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY | | | 2.7 IDENTIFICATION OF TESTING LABORATORY | 11 | | 2.8 ANNOUNCEMENT | 11 | | 3 EVALUATION RESULTS (EVALUATION) | 12 | | 3.1 ANTENNA REQUIREMENT | 12 | | 3.1.1 Conclusion: | 12 | | 4 RADIO SPECTRUM MATTER TEST RESULTS (RF) | 13 | | 4.1 CONDUCTED EMISSION AT AC POWER LINE | 13 | | 4.1.1 E.U.T. Operation: | | | 4.1.2 Test Setup Diagram: | | | 4.1.3 Test Data: | | | 4.2 6dB Bandwidth | | | 4.2.1 E.U.T. Operation: | 16 | | 4.2.2 Test Setup Diagram: | 16 | | 4.2.3 Test Data: | | | 4.3 MAXIMUM CONDUCTED OUTPUT POWER | | | 4.3.1 E.U.T. Operation: | | | 4.3.2 Test Setup Diagram: | | | 4.3.3 Test Data: | | | 4.4 Power Spectral Density | | | 4.4.1 E.U.T. Operation: | | | 4.4.2 Test Setup Diagram: | | | 4.4.3 Test Data: | | | 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS | | | 4.5.1 E.U.T. Operation: | 21 | | 4.5.2 Test Setup Diagram: | | | 4.5.3 Test Data: | | | 4.6 BAND EDGE EMISSIONS (RADIATED) | | | 4.6.1 E.U.T. Operation: | | | 4.6.2 Test Setup Diagram: 4.6.3 Test Data: | | | | | | 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) | | | 4.7.1 E.U.1. Operation: 4.7.2 Test Setup Diagram: | | | 4.7.3 Test Data: | | | 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) | | | | | | 4.8.1 E.U.T. Operation: | ა၁
 | | 4.8.2 Test Setup Diagram: | 35 | |---------------------------|----| | 4.8.3 Test Data: | | | 5 TEST SETUP PHOTOS | 39 | | 6 PHOTOS OF THE EUT | 41 | | APPENDIX | | | 16DB BANDWIDTH | 48 | | 2. MAX. OUTPUT POWER | 55 | | 3. POWER SPECTRAL DENSITY | | | 4. BANDEDGE | | | 5. Spurious Emission | 78 | | | | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 90 # **TEST SUMMARY** #### 1.1 Test Standards The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz # 1.2 Summary of Test Result | | | 1 | | | | |---|--|-------------------------------------|--------|--|--| | Item | Method | Requirement | Result | | | | Antenna requirement | 1 | 47 CFR 15.203 | Pass | | | | Conducted Emission at AC power line | ANSI C63.10-2020 section 6.2 | 47 CFR 15.207(a) | Pass | | | | 6dB Bandwidth | ANSI C63.10-2020, section 11.8
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(a)(2) | Pass | | | | Maximum Conducted Output Power | ANSI C63.10-2020 section 11.9.1
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(b)(3) | Pass | | | | Power Spectral Density | ANSI C63.10-2020, section 11.10
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(e) | Pass | | | | Emissions in non-restricted frequency bands | ANSI C63.10-2020 section 11.11
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(d),
15.209, 15.205 | Pass | | | | Band edge emissions (Radiated) | ANSI C63.10-2020 section 6.10
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(d),
15.209, 15.205 | Pass | | | | Emissions in frequency bands (below 1GHz) | ANSI C63.10-2020 section 6.6.4
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(d),
15.209, 15.205 | Pass | | | | Emissions in frequency bands (above 1GHz) | ANSI C63.10-2020 section 6.6.4
KDB 558074 D01 15.247 Meas
Guidance v05r02 | 47 CFR 15.247(d),
15.209, 15.205 | Pass | | | Note: 1.N/A -this device(EUT) is not applicable to this testing item 2. RF-conducted test results including cable loss. Tel: +86-755-23010613 Page 6 of 90 Web: http://www.dace-lab.com E-mail: service@dace-lab.com # 2 GENERAL INFORMATION #### 2.1 Client Information Applicant's Name : Shen Zhen Shi Zhi Lian Mao Ke Ji You Xian Gong Si Address : Room 1305-1306, Yifenghua Building, No. 28, Yifenghua Innovation Industrial Park, Xinshi Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China Manufacturer : Shen Zhen Shi Zhi Lian Mao Ke Ji You Xian Gong Si Address : Room 1305-1306, Yifenghua Building, No. 28, Yifenghua Innovation Industrial Park, Xinshi Community, Dalang Street, Longhua District, Shenzhen, Guangdong, China # 2.2 Description of Device (EUT) | Product Name: | Selfie Screen | |-----------------------|---| | Model/Type reference: | T181 | | Series Model: | T182, T183, T184, T185, T186 | | Model Difference: | There are multiple models of the product, with differences in the color of the appearance and customer requirements for different models in the market, resulting in multiple models. However, the internal circuit boards, PCBs, BOMs, and other electrical structures of these models are the same, and these differences will not affect RF&EMC performance. | | Trade Mark: | N/A | | Product Description: | Selfie Screen | | Power Supply: | DC3.7V from battery | | Operation Frequency: | 802.11b/g/n(HT20): 2412MHz to 2462MHz;
802.11n(HT40): 2422MHz to 2452MHz | | Number of Channels: | 802.11b/g/n(HT20): 11 Channels;
802.11n(HT40): 7 Channels | | Modulation Type: | 802.11b: DSSS(CCK, DQPSK, DBPSK);
802.11g: OFDM(BPSK, QPSK, 16QAM, 64QAM);
802.11n(HT20 and HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) | | Antenna Type: | IPEX ANTENNA | | Antenna Gain: | 2.55dBi | | Hardware Version: | V10 | | Software Version: | V1.0 | #### **Operation Frequency each of channel** | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------|---------|-----------| | 01 | 2412MHz | 04 | 2427MHz | 07 | 2442MHz | 10 | 2457MHz | | 02 | 2417MHz | 05 | 2432MHz | 08 | 2447MHz | 11 | 2462MHz | | 03 | 2422MHz | 06 | 2437MHz | 09 | 2452MHz | | | Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 90 | Test channel | Frequen | cy (MHz) | |-----------------|-----------|-----------| | | 20MHz OBW | 40MHz OBW | | Lowest channel | 2412MHz | 2422MHz | | Middle channel | 2437MHz | 2437MHz
 | Highest channel | 2462MHz | 2452MHz | # 2.3 Description of Test Modes V1.0 | No | Title | Description | |-----|--------------------|--| | TM1 | 802.11b mode | Keep the EUT in 802.11b transmitting mode at lowest, middle and highest channel. | | TM2 | 802.11g mode | Keep the EUT in 802.11g transmitting mode at lowest, middle and highest channel. | | TM3 | 802.11n(HT20) mode | Keep the EUT in 802.11n(HT20) transmitting mode at lowest, middle and highest channel. | | TM4 | 802.11n(HT40) mode | Keep the EUT in 802.11n(HT40) transmitting mode at lowest, middle and highest channel. | | TM5 | Charging mode | Charging mode | #### Test software # 2.4 Description of Support Units | Title | Manufacturer | Model No. | Serial No. | |---------|--------------|---------------|------------| | Adapter | PHOTON | ATXC-069AC65B | 1 | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 8 of 90 # 2.5 Equipments Used During The Test | Conducted Emission at AC power line | | | | | | | |-------------------------------------|--------------------|--|----------------------------|------------|------------|--| | Electric Network | SCHWARZ
BECK | CAT5 8158 | CAT5
8158#207 | 2/1/6 | 1 | | | Cable | SCHWARZ
BECK | 1 | 1 | 2025-04-25 | 2026-04-24 | | | Pulse Limiter | SCHWARZ
BECK | VTSD 9561-F
Pulse limiter 10dB
Attenuation | 561-G071 | 2024-12-06 | 2025-12-05 | | | 50ΩCoaxial Switch | Anritsu | MP59B | M20531 | / | | | | Test Receiver | Rohde &
Schwarz | ESPI TEST
RECEIVER | 1164.6607K03
-102109-MH | 2025-04-25 | 2026-04-24 | | | L.I.S.N | R&S | ESH3-Z5 | 831.5518.52 | 2023-12-12 | 2025-12-11 | | | L.I.S.N | SCHWARZ
BECK | NSLK 8126 | 05055 | 2025-04-25 | 2026-04-24 | | | Pulse Limiter | CYBERTEK | EM5010A | 1 | 2024-09-27 | 2025-09-26 | | | EMI test software | EZ -EMC | EZ | V1.1.42 | 1 | 1 | | # Power Spectral Density Emissions in non-restricted frequency bands 6dB Bandwidth # **Maximum Conducted Output Power** | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | |-------------------------------------|--|----------|--------------|------------|--------------| | RF Test Software | Tachoy
Information
Technology(she
nzhen) Co.,Ltd. | RTS-01 | V1.0.0 | DA | | | RF Sensor Unit | Tachoy
Information
Technology(she
nzhen) Co.,Ltd. | TR1029-2 | 000001 | / | 16 | | Wideband radio communication tester | R&S | CMW500 | 113410 | 2025-04-25 | 2026-04-24 | | Vector Signal
Generator | Keysight | N5181A | MY50143455 | 2024-12-06 | 2025-12-05 | | Signal Generator | Keysight | N5182A | MY48180415 | 2024-12-06 | 2025-12-05 | | Spectrum Analyzer | Keysight | N9020A | MY53420323 | 2024-12-06 | 2025-12-05 | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 90 Band edge emissions (Radiated) **Emissions in frequency bands (below 1GHz)** V1.0 Emissions in frequency bands (above 1GHz) | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | |-------------------------------------|----------------|------------------|----------------------------|------------|--------------|--| | EMI Test software | Farad | EZ -EMC | V1.1.42 | 1 | 1 | | | Positioning
Controller | MF | MF-7802 | 1 | 1 | / | | | Amplifier(18-40G) | COM-POWER | AH-1840 | 10100008-1 | 2024-04-26 | 2027-04-25 | | | Horn antenna | COM-POWER | AH-1840 (18-40G) | 10100008 | 2024-04-26 | 2027-04-25 | | | Loop antenna | ZHINAN | ZN30900C | ZN30900C | 2024-06-14 | 2026-06-13 | | | Cable(LF)#2 | Schwarzbeck | 1 | 1 | 2024-12-19 | 2025-12-18 | | | Cable(LF)#1 | Schwarzbeck | 1 | 1 | 2024-12-19 | 2025-12-18 | | | Cable(HF)#2 | Schwarzbeck | AK9515E | 96250 | 2025-04-25 | 2026-04-24 | | | Cable(HF)#1 | Schwarzbeck | SYV-50-3-1 | | 2025-04-25 | 2026-04-24 | | | Power amplifier(LF) | Schwarzbeck | BBV9743 | 9743-151 | 2025-04-29 | 2026-04-28 | | | Power amplifier(HF) | Schwarzbeck | BBV9718 | 9718-282 | 2025-04-29 | 2026-04-28 | | | Wideband radio communication tester | R&S | CMW500 | 113410 | 2025-04-25 | 2026-04-24 | | | Spectrum Analyzer | R&S | FSP30 | 1321.3008K40
-101729-jR | 2025-04-25 | 2026-04-24 | | | Test Receiver | R&S | ESCI 3 | 1166.5950K03
-101431-Jq | 2025-04-25 | 2026-04-24 | | | Horn Antenna | Sunol Sciences | DRH-118 | A091114 | 2025-04-28 | 2026-04-27 | | | Broadband Antenna | Sunol Sciences | JB6 Antenna | A090414 | 2024-09-28 | 2026-09-27 | | # 2.6 Statement Of The Measurement Uncertainty | Test Item | Measurement Uncertainty | | | | |------------------------------------|-------------------------|-------|--|--| | Conducted Disturbance (0.15~30MHz) | ±3.41dB | 1/1:0 | | | | Occupied Bandwidth | ±3.63% | 7 | | | | RF conducted power | ±0.733dB | | | | | RF power density | ±0.234% | | | | | Conducted Spurious emissions | ±1.98dB | | | | | Radiated Emission (Above 1GHz) | ±5.46dB | | | | | Radiated Emission (Below 1GHz) | ±5.79dB | | | | Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 90 Web: http://www.dace-lab.com 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China # 2.7 Identification of Testing Laboratory | Company Name: | Shenzhen DACE Testing Technology Co., Ltd. | | | | |--|--|--|--|--| | Address: | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China | | | | | Phone Number: | +86-13267178997 | | | | | Fax Number: | 86-755-29113252 | | | | | Identification of the Responsible Testing Location | | | | | | Company Name: | Shenzhen DACE Testing Technology Co., Ltd. | |--------------------------------|--| | Address: | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China | | Phone Number: | +86-13267178997 | | Fax Number: | 86-755-29113252 | | FCC Registration Number: | 0032847402 | | Designation Number: | CN1342 | | Test Firm Registration Number: | 778666 | | A2LA Certificate Number: | 6270.01 | #### 2.8 Announcement - (1) The test report reference to the report template version v0. - (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report. - (3) The test report is invalid if there is any evidence and/or falsification. - (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section. - (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory. - (6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant, the laboratory is not responsible for the accuracy of the information provided by the client(item 2.2). When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 90 Web: http://www.dace-lab.com # 3 Evaluation Results (Evaluation) ## 3.1 Antenna requirement Test Requirement: Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. #### 3.1.1 Conclusion: Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 90 # **Radio Spectrum Matter Test Results (RF)** # 4.1 Conducted Emission at AC power line V1.0 | Test Requirement: | Refer to 47 CFR 15.207(a), Except section, for an intentional radiator the utility (AC) power line, the radio free AC power line on any frequency or MHz, shall not exceed the limits in the pH/50 ohms line impedance stabilize | nat is designed to be conne
quency voltage that is cond
frequencies, within the bar
he following table, as mea | ected to the public
lucted back onto the
nd 150 kHz to 30 | | | |-------------------|--|---|---|--|--| | Test Limit: | Frequency of emission (MHz) | Conducted limit (dBµV) | | | | | | 0 | Quasi-peak | Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5-5 | 56 | 46 | | | | | 5-30 | 60 | 50 | | | | |
*Decreases with the logarithm of the | e frequency. | | | | | Test Method: | ANSI C63.10-2020 section 6.2 | OP | | | | | Procedure: | Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices | | | | | #### 4.1.1 E.U.T. Operation: | Operating Environment: | | | | | | | | |------------------------|---------|-----|-----------|------|-------------------|------|---------| | Temperature: | 22.8 °C | | Humidity: | 50 % | Atmospheric Press | ure: | 102 kPa | | Pretest mode: | | TM5 | | | V | ,,, | | | Final test mode: | 6 | TM5 | | | | | | ## 4.1.2 Test Setup Diagram: 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 13 of 90 Tel: +86-755-23010613 E-mail: service@dace-lab.com Web: http://www.dace-lab.com #### 4.1.3 Test Data: | No. I | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-------|-----|--------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1500 | 28.99 | 10.10 | 39.09 | 65.99 | -26.90 | QP | | | 2 | | 0.1539 | 11.22 | 10.10 | 21.32 | 55.78 | -34.46 | AVG | | | 3 | | 0.5299 | 19.28 | 10.08 | 29.36 | 56.00 | -26.64 | QP | | | 4 | | 0.5820 | 10.30 | 10.08 | 20.38 | 46.00 | -25.62 | AVG | | | 5 | | 0.8340 | 24.70 | 10.08 | 34.78 | 56.00 | -21.22 | QP | | | 6 | * | 0.8340 | 16.85 | 10.08 | 26.93 | 46.00 | -19.07 | AVG | | | 7 | | 1.1380 | 10.62 | 10.07 | 20.69 | 46.00 | -25.31 | AVG | | | 8 | | 1.1860 | 16.69 | 10.07 | 26.76 | 56.00 | -29.24 | QP | | | 9 | | 1.9180 | 13.48 | 10.00 | 23.48 | 56.00 | -32.52 | QP | | | 10 | | 1.9460 | 8.63 | 10.00 | 18.63 | 46.00 | -27.37 | AVG | | | 11 | | 7.4060 | 17.30 | 10.24 | 27.54 | 60.00 | -32.46 | QP | | | 12 | | 7.5260 | 10.90 | 10.25 | 21.15 | 50.00 | -28.85 | AVG | | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 90 V1.0 #### NOTE: - 1.An initial pre-scan was performed on the line and neutral lines with peak detector. - 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. - 3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 90 4.2 6dB Bandwidth | Test Requirement: | 47 CFR 15.247(a)(2) | |-------------------|---| | Test Limit: | Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. | | Test Method: | ANSI C63.10-2020, section 11.8
KDB 558074 D01 15.247 Meas Guidance v05r02 | | Procedure: | 11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be | | DAG | as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB. | Report No.: DACE250430037RL002 # 4.2.1 E.U.T. Operation: | Operating Environment: | | | | | | | |------------------------|---------|------|-----------|------|-----------------------|---------| | Temperature: | 22.8 °C | | Humidity: | 50 % | Atmospheric Pressure: | 102 kPa | | Pretest mode: | | TM1, | TM2, TM3, | TM4 | . 60 | | | Final test mode: | 2 | TM1, | TM2, TM3, | TM4 | 200 | - 60 | # 4.2.2 Test Setup Diagram: Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 90 4.2.3 Test Data: DAG Please Refer to Appendix for Details. DAG # 4.3 Maximum Conducted Output Power | Test Requirement: | 47 CFR 15.247(b)(3) | |-------------------|--| | Test Limit: | Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. | | Test Method: | ANSI C63.10-2020 section 11.9.1
KDB 558074 D01 15.247 Meas Guidance v05r02 | | Procedure: | ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi) | # 4.3.1 E.U.T. Operation: | Operating Environment: | | | | | | | 6 | | | |------------------------|---------|------|-----------|------|---|-----------------------|---------|---|----| | Temperature: | 22.8 °C | | Humidity: | 50 % | V | Atmospheric Pressure: | 102 kPa | ~ | 70 | | Pretest mode: | | TM1, | TM2, TM3, | ГМ4 | | | | V | | | Final test mode: | | TM1, | TM2, TM3, | ГМ4 | | | | | | #### 4.3.2 Test Setup Diagram: Tel: +86-755-23010613 Page 18 of 90 Web: http://www.dace-lab.com E-mail: service@dace-lab.com #### 4.3.3 Test Data: DAG Please Refer to Appendix for Details. DAG Tel: +86-755-23010613 Page 19 of 90 Web: http://www.dace-lab.com E-mail: service@dace-lab.com # 4.4 Power Spectral Density | Test Requirement: | 47 CFR 15.247(e) | |-------------------|---| | Test Limit: | Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b)
of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. | | Test Method: | ANSI C63.10-2020, section 11.10
KDB 558074 D01 15.247 Meas Guidance v05r02 | | Procedure: | ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission | ## 4.4.1 E.U.T. Operation: | Operating Environment: | | | | | | | | | |----------------------------------|---------|----|-----------|------|-----------------------|---------|--|--| | Temperature: | 22.8 °C | V, | Humidity: | 50 % | Atmospheric Pressure: | 102 kPa | | | | Pretest mode: TM1, TM2, TM3, TM4 | | | | | | > | | | | Final test mode: | | | TM2, TM3, | TM4 | | - | | | ## 4.4.2 Test Setup Diagram: #### 4.4.3 Test Data: Please Refer to Appendix for Details. Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 90 Web: http://www.dace-lab.com 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China # 4.5 Emissions in non-restricted frequency bands V1.0 | Test Requirement: | 47 CFR 15.247(d), 15.209, 15.205 | |-------------------|---| | Test Limit: | Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. | | Test Method: | ANSI C63.10-2020 section 11.11
KDB 558074 D01 15.247 Meas Guidance v05r02 | | Procedure: | ANSI C63.10-2020
Section 11.11.1, Section 11.11.2, Section 11.11.3 | #### 4.5.1 E.U.T. Operation: | Operating Environment: | | | | | | | | | |------------------------|---------|------|-----------|------|-----------------------|---------|--|--| | Temperature: | 22.8 °C | | Humidity: | 50 % | Atmospheric Pressure: | 102 kPa | | | | Pretest mode: TM1, TM | | | TM2, TM3, | ГМ4 | | C | | | | Final test mode: | | TM1, | TM2, TM3, | ГМ4 | ~1 | C | | | #### 4.5.2 Test Setup Diagram: #### 4.5.3 Test Data: Please Refer to Appendix for Details. Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China # 4.6 Band edge emissions (Radiated) | Test Requirement: | Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)). | | | | | | | | |-------------------|---|-----------------------------------|-------------------------------|--|--|--|--|--| | Test Limit: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | | | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | | | | DE | 1.705-30.0 | 30 | 30 | | | | | | | | 30-88 | 100 ** | 3 | | | | | | | | 88-216 | 150 ** | 3 | | | | | | | | 216-960 | 200 ** | 3 | | | | | | | | Above 960 | 500 | 3 | | | | | | | DAG | ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. | | | | | | | | | Test Method: | ANSI C63.10-2020 section 6.10
KDB 558074 D01 15.247 Meas Guidance v05r02 | | | | | | | | | Procedure: | ANSI C63.10-2020 secti | on 6.10.5.2 | | | | | | | ## 4.6.1 E.U.T. Operation: | Operating Environment: | | | | | | | | | |------------------------|--------------------------------|------|-----------|------|------------|-------------------------------|--|------| | Temperature: 22.8 °C | | | Humidity: | 50 % | Atmospheri | Atmospheric Pressure: 102 kPa | | | | Pretest mode: | Pretest mode: TM1, TM2, TM3, T | | | ГМ4 | | | | | | Final test mode: | ~1 | TM1, | TM2, TM3, | ГМ4 | 10 | | | 1100 | ## 4.6.2 Test Setup Diagram: 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 22 of 90 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com #### 4.6.3 Test Data: #### TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: L V1.0 #### TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 90 | No. | Frequency
(MHz) | Reading (dBuV) | Factor
(dB/m) | Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Azimuth
(deg.) | P/F | Remark | |-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-------------|-------------------|-----|--------| | 1 | 2310.000 | 42.18 | -3.63 | 38.55 | 74.00 | -35.45 | peak | 149 | | Р | | | 2 | 2310.000 | 31.15 | -3.63 | 27.52 | 54.00 | -26.48 | AVG | 149 | | Р | | | 3 | 2390.000 | 67.62 | -3.42 | 64.20 | 74.00 | -9.80 | peak | 149 | | P | | | 4 * | 2390.000 | 50.24 | -3.42 | 46.82 | 54.00 | -7.18 | AVG | 149 | | Р | | TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 90 37.66 -3.13 34.53 Report No.: DACE250430037RL002 P 54.00 -19.47 AVG 149 51.62 -3.42 48.20 54.00 Report No.: DACE250430037RL002 P AVG 149 -5.80 37.25 -3.13 34.12 54.00 -19.88 AVG 149 P Report No.: DACE250430037RL002 V1.0 Remark:Margin=Level - Limit, Level=Test receiver reading + correction factor The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report. AC - OF Report No.: DACE250430037RL002 # 4.7 Emissions in frequency bands (below 1GHz) | Test Requirement: | Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)). | | | | | | | | |-------------------|---
--|---|--|--|--|--|--| | Test Limit: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | | | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | | | | | 1.705-30.0 | 30 | 30 | | | | | | | | 30-88 | 100 ** | 3 | | | | | | | | 88-216 | 150 ** | 3 | | | | | | | | 216-960 | 200 ** | 3 | | | | | | | | Above 960 | 500 | 3 | | | | | | | | radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. | | | | | | | | | Test Method: | ANSI C63.10-2020 section KDB 558074 D01 15.247 | on 6.6.4 | | | | | | | | Procedure: | above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the E above the ground at a 3 of degrees to determine the c. The EUT was set 3 or which was mounted on the d. The antenna height is determine the maximum polarizations of the antene e. For each suspected er the antenna was tuned to below 30MHz, the antener | or 10 meter semi-anechoice the position of the highes EUT was placed on the top meter fully-anechoic chamber position of the highest rad 10 meters away from the interest of a variable-height avaried from one meter to forwalue of the field strength. It was arranged to the field strength and are set to make the memission, the EUT was arranged heights from 1 meter to 4 may awas tuned to heights 1 meters. | of a rotating table 1.5 meters per. The table was rotated 360 liation. Interference-receiving antenna, antenna tower. Four meters above the ground to Both horizontal and vertical asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table | | | | | | | | was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. | | | | | | | | | | g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. | | | | | | | | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 90 - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor - 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. #### 4.7.1 E.U.T. Operation: V1.0 | Operating Environment: | | | | | | | | | |------------------------|---------|------|-------------|------|-----------------------|---------|--|--| | Temperature: | 22.8 °C | | Humidity: | 50 % | Atmospheric Pressure: | 102 kPa | | | | Pretest mode: | | TM1, | TM2, TM3, 7 | ГМ4 | | | | | | Final test mode: | - 1 | TM2 | 7 | | C | | | | #### 4.7.2 Test Setup Diagram: #### 4.7.3 Test Data: Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com 4.8 Emissions in frequency bands (above 1GHz) | Test Requirement: | In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).` | | | | | | | | |-------------------|--|-----------------------------------|-------------------------------|--|--|--|--|--| | Test Limit: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | | | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | | | | | 1.705-30.0 | 30 | 30 | | | | | | | | 30-88 | 100 ** | 3 | | | | | | | | 88-216 | 150 ** | 3 | | | | | | | | 216-960 | 200 ** | 3 | | | | | | | | Above 960 | 500 | 3 | | | | | | |) 12 | and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. | | | | | | | | | Test Method: | ANSI C63.10-2020 section 6.6.4
KDB 558074 D01 15.247 Meas Guidance v05r02 | | | | | | | | | Procedure: | a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. | | | | | | | | | | g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest | | | | | | | | Report No.: DACE250430037RL002 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan
Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 34 of 90 channel. Only the worst case is recorded in the report. 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. #### 4.8.1 E.U.T. Operation: | Operating Environment: | | | | | | | | | |------------------------|---------|-----|-----------|------|--|-----------------------|---------|--| | Temperature: | 22.8 °C | | Humidity: | 50 % | | Atmospheric Pressure: | 102 kPa | | | Pretest mode: TM | | | TM2, TM3, | ГМ4 | | | | | | Final test mode: | | TM2 | | | | 10 | | | #### 4.8.2 Test Setup Diagram: #### 4.8.3 Test Data: 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 35 of 90 28.53 15.10 43.63 54.00 -10.37 AVG P Report No.: DACE250430037RL002 Report No.: DACE250430037RL002 Р P 5 9748.000 9748.000 37.71 26 59 15.10 15.10 52.81 41.69 74.00 54.00 -21.19 -12.31 peak AVG 149 149 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 37 of 90 Remark:Margin=Level - Limit, Level=Test receiver reading + correction factor The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report. Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 38 of 90 ## 5 TEST SETUP PHOTOS ### **Conducted Emission at AC power line** Emissions in frequency bands (below 1GHz) 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 90 #### Emissions in frequency bands (above 1GHz) Page 40 of 90 ## 6 PHOTOS OF THE EUT V1.0 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 90 Report No.: DACE250430037RL002 V1.0 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 42 of 90 ### Internal 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 90 # **Appendix** ### -6dB Bandwidth V1.0 | | | Ap | | | | | | |-----------|---------|---------------|-----------------|--------------|------------|--------|--| | -6dB Bar | ndwidth | D | | | | | | | Condition | Antenna | Modulation | Frequency (MHz) | -6dB BW(MHz) | limit(kHz) | Result | | | NVNT | ANT1 | 802.11b | 2412.00 | 10.33 | 500 | Pass | | | NVNT | ANT1 | 802.11b | 2437.00 | 10.34 | 500 | Pass | | | NVNT | ANT1 | 802.11b | 2462.00 | 10.34 | 500 | Pass | | | NVNT | ANT1 | 802.11g | 2412.00 | 16.33 | 500 | Pass | | | NVNT | ANT1 | 802.11g | 2437.00 | 16.34 | 500 | Pass | | | NVNT | ANT1 | 802.11g | 2462.00 | 16.33 | 500 | Pass | | | NVNT | ANT1 | 802.11n(HT20) | 2412.00 | 17.59 | 500 | Pass | | | NVNT | ANT1 | 802.11n(HT20) | 2437.00 | 17.62 | 500 | Pass | | | NVNT | ANT1 | 802.11n(HT20) | 2462.00 | 17.62 | 500 | Pass | | | NVNT | ANT1 | 802.11n(HT40) | 2422.00 | 36.40 | 500 | Pass | | | NVNT | ANT1 | 802.11n(HT40) | 2437.00 | 36.30 | 500 | Pass | | | NVNT | ANT1 | 802.11n(HT40) | 2452.00 | 36.37 | 500 | Pass | | Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com Page 48 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 49 of 90 Web: http://www.dace-lab.com Tel: +86-755-23010613 -6dB_Bandwidth_NVNT_ANT1_802_11g_2462 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China -6dB_Bandwidth_NVNT_ANT1_802_11n(HT20)_2437 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 90 -6dB_Bandwidth_NVNT_ANT1_802_11n(HT40)_2422 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 90 -6dB_Bandwidth_NVNT_ANT1_802_11n(HT40)_2452 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 90 DAG DAG DAG V1.0 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 90 ### 2. MAX. Output Power V1.0 | Condition | Antenna | Modulation | Frequency
(MHz) | Detector | Conducted
Power(dBm) | limit(dBm) | Result | |-----------|---------|---------------|--------------------|----------|-------------------------|------------|--------| | NVNT | ANT1 | 802.11b | 2412.00 | Peak | 15.93 | 30 | Pass | | NVNT | ANT1 | 802.11b | 2437.00 | Peak | 15.33 | 30 | Pass | | NVNT | ANT1 | 802.11b | 2462.00 | Peak | 15.83 | 30 | Pass | | NVNT | ANT1 | 802.11g | 2412.00 | Peak | 18.29 | 30 | Pass | | NVNT | ANT1 | 802.11g | 2437.00 | Peak | 17.92 | 30 | Pass | | NVNT | ANT1 | 802.11g | 2462.00 | Peak | 17.96 | 30 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2412.00 | Peak | 17.40 | 30 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2437.00 | Peak | 16.98 | 30 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2462.00 | Peak | 17.06 | 30 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2422.00 | Peak | 17.91 | 30 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2437.00 | Peak | 17.47 | 30 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2452.00 | Peak | 17.57 | 30 | Pass | MAX_Output_Power_NVNT_ANT1_802_11b_2437 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 90 MAX__Output_Power_NVNT_ANT1_802_11g_2412 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com E-mail: service@dace-lab.com Page 56 of 90 MAX__Output_Power_NVNT_ANT1_802_11g_2462 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 90 MAX__Output_Power_NVNT_ANT1_802_11n(HT20)_2437 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 90 MAX__Output_Power_NVNT_ANT1_802_11n(HT40)_2422 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 90 MAX__Output_Power_NVNT_ANT1_802_11n(HT40)_2452 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 90 DAG DAG V1.0 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 90 ### 3. Power Spectral Density V1.0 | Conditio
n | Antenn
a | Modulation | Frequenc
y (MHz) | SA_PSD(dBm/30kHz
) | Duty
factor(dB | RB
factor(dB
) | PSD(dBm/3kHz
) | limit(dBm/3kHz
) | Resul
t | |---------------|-------------|-------------------|---------------------|-----------------------|-------------------|----------------------|-------------------|---------------------|------------| | NVNT | ANT1 | 802.11b | 2412.00 | -0.20 | N/A | -10.00 | -10.20 | 8 | Pass | | NVNT | ANT1 | 802.11b | 2437.00 | -0.85 | N/A | -10.00 | -10.85 | 8 | Pass | | NVNT | ANT1 | 802.11b | 2462.00 | -0.31 | N/A | -10.00 | -10.31 | 8 | Pass | | NVNT | ANT1 | 802.11g | 2412.00 | -4.31 | N/A | -10.00 | -14.31 | 8 | Pass | | NVNT | ANT1 | 802.11g | 2437.00 | -4.79 | N/A | -10.00 | -14.79 | 8 | Pass | | NVNT | ANT1 | 802.11g | 2462.00 | -4.67 | N/A | -10.00 | -14.67 | 8 | Pass | | NVNT | ANT1 | 802.11n(HT20
) | 2412.00 | -5.12 | N/A | -10.00 | -15.12 | 8 | Pass | | NVNT | ANT1 | 802.11n(HT20
) | 2437.00 | -5.31 | N/A | -10.00 | -15.31 | 8 | Pass | | NVNT | ANT1 | 802.11n(HT20
) | 2462.00 | -5.46 | N/A | -10.00 | -15.46 | 8 | Pass | | NVNT | ANT1 | 802.11n(HT40
) | 2422.00 | -6.38 | N/A | -10.00 | -16.38 | 8 | Pass | | NVNT | ANT1 | 802.11n(HT40
) | 2437.00 | -6.90 | N/A | -10.00 | -16.90 | 8 | Pass | | NVNT | ANT1 | 802.11n(HT40
) | 2452.00 | -6.77 | N/A | -10.00 | -16.77 | 8 | Pass | Power_Spectral_Density_NVNT_ANT1_802_11b_2437 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 90 Power_Spectral_Density_NVNT_ANT1_802_11g_2412 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 63 of 90 Power_Spectral_Density_NVNT_ANT1_802_11g_2462 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 64 of 90 Power_Spectral_Density_NVNT_ANT1_802_11n(HT20)_2437 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 65 of 90 Power_Spectral_Density_NVNT_ANT1_802_11n(HT40)_2422 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan
Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 66 of 90 Power_Spectral_Density_NVNT_ANT1_802_11n(HT40)_2452 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 67 of 90 DAG DAG DAG DAG DAG Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 68 of 90 DAG Report No.: DACE250430037RL002 ### 4. Bandedge | Condition | Antenna | Modulation | TX_Frequency
(MHz) | Max.
Mark_freq(MHz) | Ref_level(dBm) | Spurious
level(dBm) | limit(dBm) | Result | |-----------|---------|---------------|-----------------------|------------------------|----------------|------------------------|------------|--------| | NVNT | ANT1 | 802.11b | 2412.00 | 2397.024 | 3.838 | -39.198 | -16.162 | Pass | | NVNT | ANT1 | 802.11b | 2462.00 | 2485.168 | 3.637 | -52.935 | -16.363 | Pass | | NVNT | ANT1 | 802.11g | 2412.00 | 2399.936 | 1.255 | -39.940 | -18.745 | Pass | | NVNT | ANT1 | 802.11g | 2462.00 | 2483.536 | 0.066 | -53.600 | -19.934 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2412.00 | 2399.936 | -0.194 | -37.106 | -20.194 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2462.00 | 2483.632 | -0.475 | -52.720 | -20.475 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2422.00 | 2399.760 | -2.329 | -43.717 | -22.329 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2452.00 | 2490.956 | -2.586 | -53.217 | -22.586 | Pass | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 69 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 70 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 71 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 73 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 75 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 76 of 90 Report No.: DACE250430037RL002 DAG DAG DAG DAG DAG Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 77 of 90 DAG ## 5. Spurious Emission V1.0 | Condition | Antenna | Modulation | TX_Frequency
(MHz) | Max.
Mark_freq(MHz) | Ref_level(dBm) | Spurious
level(dBm) | limit(dBm) | Result | |-----------|---------|---------------|-----------------------|------------------------|----------------|------------------------|------------|--------| | NVNT | ANT1 | 802.11b | 2412.00 | 25000.000 | 3.838 | -40.355 | -16.162 | Pass | | NVNT | ANT1 | 802.11b | 2437.00 | 24980.024 | 3.361 | -39.339 | -16.639 | Pass | | NVNT | ANT1 | 802.11b | 2462.00 | 24465.642 | 3.637 | -40.025 | -16.363 | Pass | | NVNT | ANT1 | 802.11g | 2412.00 | 24970.036 | 1.255 | -47.709 | -18.745 | Pass | | NVNT | ANT1 | 802.11g | 2437.00 | 24420.696 | -0.193 | -43.796 | -20.193 | Pass | | NVNT | ANT1 | 802.11g | 2462.00 | 24982.521 | 0.066 | -43.367 | -19.934 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2412.00 | 25000.000 | -0.194 | -47.221 | -20.194 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2437.00 | 24987.515 | -0.244 | -43.882 | -20.244 | Pass | | NVNT | ANT1 | 802.11n(HT20) | 2462.00 | 24955.054 | -0.475 | -43.782 | -20.475 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2422.00 | 24520.576 | -2.329 | -45.418 | -22.329 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2437.00 | 24995.006 | -3.096 | -45.421 | -23.096 | Pass | | NVNT | ANT1 | 802.11n(HT40) | 2452.00 | 24952.557 | -2.586 | -44.734 | -22.586 | Pass | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 78 of 90 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 79 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 81 of 90 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 82 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 83 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 84 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 85 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 87 of 90 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 88 of 90 DAG DAG V1.0