Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	FCC PART 15.247
	CFUC FART 13.24/
Report Reference No	CTA24061301001
FCC ID :	2BGJL-F100
Compiled by	
(position+printed name+signature) .:	File administrators Jinghua Xiao
Supervised by	
position+printed name+signature) .:	Project Engineer Lushan Kong
	approved
Approved by	RE Managar Eric Wang
(position+printed name+signature) .:	RF Manager Eric Wang
Date of issue	Jun. 19, 2024
Cesting Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
A data a a	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,
Address	Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	Yingda Intelligent Technology (Shenzhen) Co., Ltd
Address	401, No.8, Huafeng Science Park, Fengtang Avenue, Tangwei
	Community, Fuhai Street, Baoan District, Shenzhen China
Test specification	
600	FCC Part 15.247
Standard	Co., Ltd. All rights reserved.
CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzher
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzhen acknowledged as copyright owner and source of the material. Shenzher es no responsibility for and will not assume liability for damages
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context.
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzhen acknowledged as copyright owner and source of the material. Shenzhen es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Projector N/A
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzhen acknowledged as copyright owner and source of the material. Shenzhen es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Projector N/A
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description Trade Mark Manufacturer Model/Type reference	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzhen acknowledged as copyright owner and source of the material. Shenzhen es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Projector N/A
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Trade Mark Manufacturer Model/Type reference Listed Models	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Projector N/A
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Trade Mark Manufacturer Listed Models Modulation	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Projector N/A Yingda Intelligent Technology (Shenzhen) Co., Ltd F100 E100
Standard Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretatio Test item description	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Projector N/A Yingda Intelligent Technology (Shenzhen) Co., Ltd F100 E100 GFSK, П/4DQPSK, 8DPSK

		TEST R	REPORT		
CTATE					
Equipment	under : P	rojector			
Test		(cm C'.		TESTIN	
Model /Type	e : F	100		TATESTING	
Listed Mode	els : E	100			
Applicant	· N		ha a la ma (Oh a nah an)	0- 141	
Applicant	TE	Ingda Intelligent Tec	hnology (Shenzhen)	Co., Ltd	
Address			ience Park, Fengtang		ommunity
	9	uhai Street, Baoan Di	strict, Shenzhen China	I	
Manufactu	rer : Y	ingda Intelligent Tec	hnology (Shenzhen)	Co., Ltd	ATES
Address		-	ience Park, Fengtang / strict, Shenzhen China	-	ommunity
	TING				
			16		
CTA Y					
A CTA I	Test Resu	It: CTATEST	llea	PASS	
A CTA I		CTP CTP		PASS	
It is not p	port merely corr ermitted to cop	esponds to the test sa		TATESTING	n of the
lt is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa	ample.	TATESTING	n of the
lt is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa	ample.	TATESTING	n of the
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	n of the
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	n of the
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample.	e written permission	
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	TEST
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	TEST
It is not p laboratory.	port merely corr ermitted to cop	esponds to the test sa by extracts of these	ample. test result without the	e written permission	TEST

Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24061301001

	Contents	
1	TEST STANDARDS	
2	SUMMARY	5
		STIL
2.4	Conorol Remerko	CTATES IN 5 5 5
2.1 2.2	General Remarks	CTA 5
2.2	Product Description	5 5 5 5 6 6
2.3 2.4	Equipment Under Test Short description of the Equipment under Test (EUT)	5
2.4	EUT operation mode	5
2.5	Block Diagram of Test Setup	5
2.0	Related Submittal(s) / Grant (s)	0
2.8	Modifications	6
2.0	and an and a set the set of the s	0
<u>3</u>	TEST ENVIRONMENT	
3.1	Address of the test laboratory	740
3.2	Test Facility	TEST
3.3	Environmental conditions	TAIL
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	CTATES 7 7 8 8
3.6	Equipments Used during the Test	9
_		
<u>4</u>	TEST CONDITIONS AND RESULTS	
4.1	AC Power Conducted Emission	11
4.2	Radiated Emission	11 14 20 21 25 27 29
4.3	Maximum Peak Output Power	20
4.4	20dB Bandwidth	21
4.5	Frequency Separation	25
4.6	Number of hopping frequency	27
4.7	Time of Occupancy (Dwell Time)	29
4.8	Out-of-band Emissions	33
4.9	Pseudorandom Frequency Hopping Sequence	42
4.10	Antenna Requirement	43
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	4.4
<u>.</u>		
	CIN	
<u>6</u>	PHOTOS OF THE EUT	45
	CTA'	
		CTA TESTING
		TAIL
		C C V

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn TING

GTA CTATESTING

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

2 SUMMARY

2.1 General Remarks

TATES		
2.1 General Remarks		
Date of receipt of test sample	10-	Jun. 12, 2024
	(TP)	
Testing commenced on		Jun. 12, 2024
Testing concluded on	:	Jun. 19, 2024

2.2 Product Description

lesting commenced on	; Jun. 12, 2024
Testing concluded on	: Jun. 19, 2024
2.2 Product Descrip	tion
Product Name:	Projector
Model/Type reference:	F100
Power supply:	AC 100-260V 50/60Hz
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA240613010-1# (Engineer sample) CTA240613010-2# (Normal sample)
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79 CT
Channel separation:	1MHz
Antenna type:	PIFA antenna
Antenna gain:	1.01 dBi

2.3 Equipment Under Test

Power supply system utilised

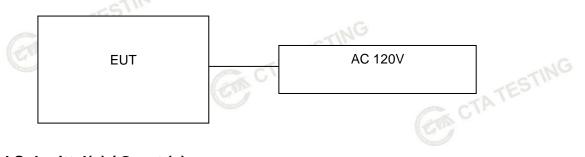
Power supply voltage	:	Ο	230V / 50 Hz	•	120V / 60Hz
5		Ο	12V DC	Ο	24V DC
		Ο	Other (specified in blank be	elow)
			Com		
			<u>_</u>		Good
2.4 Short description of the Equipment under Test (EUT)					

Short description of the Equipment under Test (EUT) 2.4

This is a Projector.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

C

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
	ATES
38	2440
39	2441
40	2442
:	ATA
77	2479
78	2480

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
Humidity:	46 %	TING
Atmospheric pressure:	950-1050mbar	ATESIN
Conducted testing:	(cm)	32
Temperature:	25 ° C	

Conducted testina:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
- CTA I	
The Contraction of the Contracti	
	TATES
	C VI

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK N/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK N/4DQPSK 8DPSK	Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK	🛛 Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK ∏/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK 8DPSK	Lowest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK 8DPSK	Lowest	GFSK	 ☑ Lowest ☑ Middle ☑ Highest 	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	X Middle	Compliant

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

	Spectrum bandwidth	/	1.1%	(1)
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
P	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

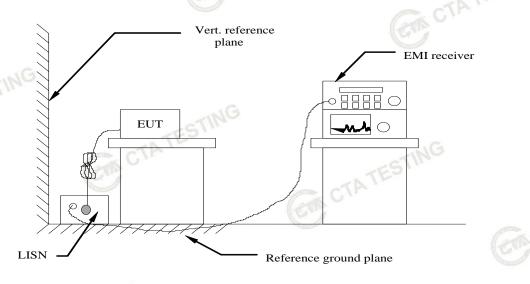
3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/07
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/07
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/07
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	G R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/07
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/07
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/07
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/07
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	S XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/07
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/07
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/07
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/07
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/02

Report No.: CTA24061301001

Page 10 of 66

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	TP-
	TING		· · · ·			60	
CTATE	STING	CTATESTING					
		CTATES					


Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

GIA CTATESTING

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

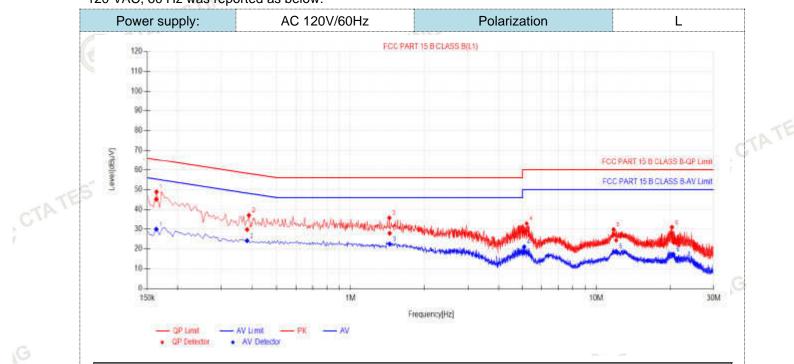
Eroquency range (MHz)	Limit	(dBuV)				
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
+ Descrete with the large it has a fither for more an						

* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

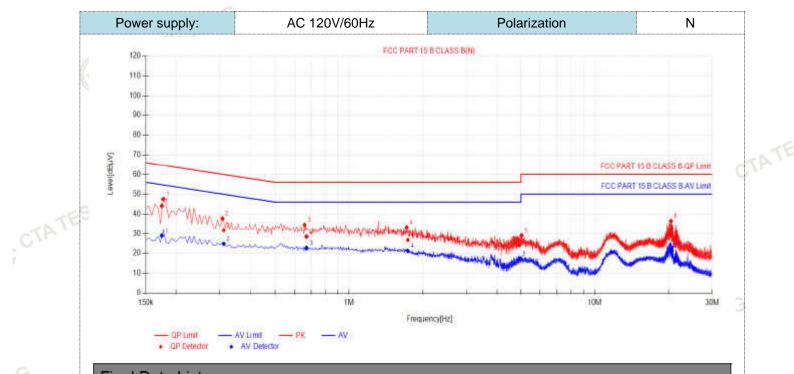

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24061301001

Page 12 of 66

2. Both 120 VAC, 50/60 Hz and 260 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Final Data List

	1 IIIG	i Data Els	~										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	1	0.1632	10.50	34.64	45.14	65.30	20.16	19.35	29.85	55.30	25.45	PASS	
2	2	0.3823	10.50	19.19	29.69	58.23	28.54	13.56	24.06	48.23	24.17	PASS	
2	3	1.4416	10.50	17.30	27.80	56.00	28.20	11.92	22.42	46.00	23.58	PASS	
	4	5.0812	10.50	17.99	28.49	60.00	31.51	10.52	21.02	50.00	28.98	PASS	
	5	12.0470	10.50	13.81	24.31	60.00	35.69	8.26	18.76	50.00	31.24	PASS	
	6	20.6186	10.50	12.72	23.22	60.00	36.78	6.67	17.17	50.00	32.83	PASS	~
Ν	Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)												4VD
2). Fact	tor (dB)=in	sertion l	oss of LIS	SN (dB)	+ Cable	loss (dB))					
3). QPN	Margin(dB)) = QP Li	mit (dBµ	V) - QP '	Value (dl	BµV)						

- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBµV) AV Value (dBµV) CTATES

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

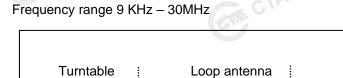
Page 13 of 66

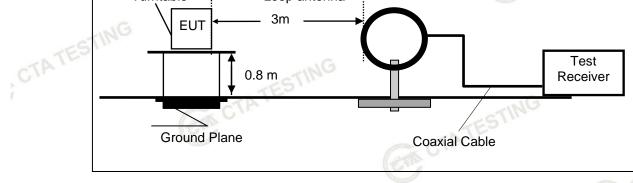
Fin	al I	Dat	a L	ISt	

- 1			^										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1747	10.50	33.59	44.09	64.73	20.64	18.37	28.87	54.73	25.86	PASS	
	2	0.3118	10.50	21.22	31.72	59.92	28.20	14.24	24.74	49.92	25.18	PASS	
	3	0.6713	10.50	17.93	28.43	56.00	27.57	12.23	22.73	46.00	23.27	PASS	
	4	1.7344	10.50	16.19	26.69	56.00	29.31	10.70	21.20	46.00	24.80	PASS	
	5	4.9274	10.50	13.61	24.11	56.00	31.89	6.71	17.21	46.00	28.79	PASS	
	6	20.5754	10.50	18.53	29.03	60.00	30.97	11.05	21.55	50.00	28.45	PASS	
	,	.QP Value tor (dB)=in	<u>ч</u> , т, ,		0 (· /	`		9				-5
		/argin(dB)			` '		```	, ,					
	4).	AVMargin	n(dB) = A	V Limit (dBµV) - J	AV Value	e (dBµV)						

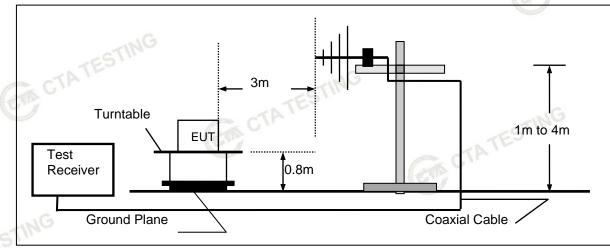
4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV) CTA TESTING

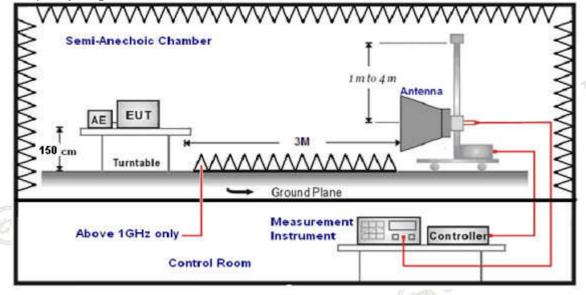
Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn


ring


STING

ESTING


4.2 **Radiated Emission**



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

6.

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.

The distance between test antenna and EUT as following table states:									
Test Frequency range	Test Antenna Type	Test Distance							
9KHz-30MHz	Active Loop Antenna	3							
30MHz-1GHz	Ultra-Broadband Antenna	3							
1GHz-18GHz	Double Ridged Horn Antenna	3							
18GHz-25GHz	Horn Anternna	1							

Setting test receiver/spectrum as following table states:

Setting test receiver/spectrum as following table states.								
Test Frequency range	Test Receiver/Spectrum Setting	Detector						
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP						
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP						
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP						
	Peak Value: RBW=1MHz/VBW=3MHz,	17 C						
	Sweep time=Auto	Deals						
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	Peak						
2	Sweep time=Auto							

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATEC
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

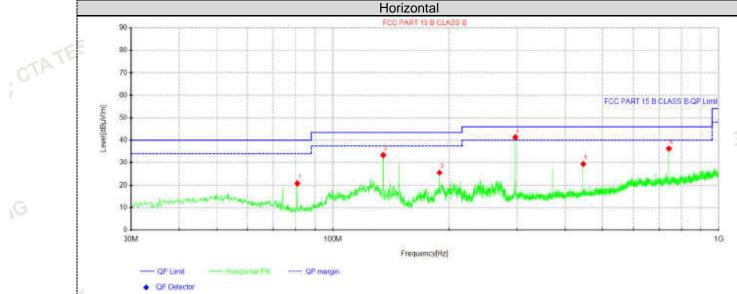
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

TATE

CTA TESTING


CTA TESTING

TEST RESULTS

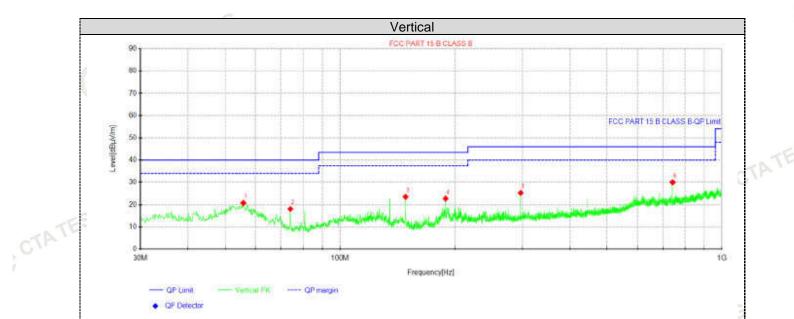
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and 2. recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel(powered by external circuit). 3.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspected Data List

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty			
1	80.925	37.79	20.83	-16.96	40.00	19.17	200	150	Horizontal			
2	135.002	49.92	33.39	-16.53	43.50	10.11	200	186	Horizontal			
3	188.958	39.75	25.58	-14.17	43.50	17.92	100	90	Horizontal			
4	296.992	52.75	41.26	-11.49	46.00	4.74	100	44	Horizontal			
5	445.523	39.38	29.35	-10.03	46.00	16.65	200	0	Horizontal			
6	742.586	41.17	36.25	-4.92	46.00	9.75	100	2	Horizontal			


Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATE

Suspected Data List

NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity
[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	55.8262	32.91	20.77	-12.14	40.00	19.23	100	149	Vertical
2	74.135	34.13	18.04	-16.09	40.00	21.96	200	279	Vertical
3	148.461	39.44	23.46	-15.98	43.50	20.04	100	275	Vertical
4	188.958	36.86	22.69	-14.17	43.50	20.81	100	102	Vertical
5	296.992	36.76	25.27	-11.49	46.00	20.73	100	170	Vertical
6	742.586	34.94	30.02	-4.92	46.00	15.98	200	233	Vertical
	3 4 5	NO. [MHz] 1 55.8262 2 74.135 3 148.461 4 188.958 5 296.992	NO. [MHz] [dBμV] 1 55.8262 32.91 2 74.135 34.13 3 148.461 39.44 4 188.958 36.86 5 296.992 36.76	NO. [MHz] [dBμV] [dBμV/m] 1 55.8262 32.91 20.77 2 74.135 34.13 18.04 3 148.461 39.44 23.46 4 188.958 36.86 22.69 5 296.992 36.76 25.27	NO. [MHz] [dBμV] [dBμV/m] [dBμm] 1 55.8262 32.91 20.77 -12.14 2 74.135 34.13 18.04 -16.09 3 148.461 39.44 23.46 -15.98 4 188.958 36.86 22.69 -14.17 5 296.992 36.76 25.27 -11.49	NO. [MHz] [dBμV] [dBμV/m] [dBμ] [dBμV/m] 1 55.8262 32.91 20.77 -12.14 40.00 2 74.135 34.13 18.04 -16.09 40.00 3 148.461 39.44 23.46 -15.98 43.50 4 188.958 36.86 22.69 -14.17 43.50 5 296.992 36.76 25.27 -11.49 46.00	NO. [MHz] [dBμV] [dBμV/m] [dB/m] [dBμV/m] [dBμV/m] 1 55.8262 32.91 20.77 -12.14 40.00 19.23 2 74.135 34.13 18.04 -16.09 40.00 21.96 3 148.461 39.44 23.46 -15.98 43.50 20.04 4 188.958 36.86 22.69 -14.17 43.50 20.81 5 296.992 36.76 25.27 -11.49 46.00 20.73	NO. [MHz] [dBμV] [dBμV/m] [dB/m] [dBμV/m] [dmμV/m] [dmμV/m] [dmμV/m] [dmμV/m] [dmμV/m] [dmμV/m] [dmμV/m] [dmμV/m] [dmμV/	NO. [MHz] [dBμV] [dBμV/m] [dB/m] [dBμV/m] [dBmμV/m] [dBmμV/m] [dBmμV/m] [dmμV/m] [dm

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

GIA CTATESTING

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	61.95	PK	74	12.05	66.22	32.33	5.12	41.72	-4.27		
4804.00	45.55	AV	54	8.45	49.82	32.33	5.12	41.72	-4.27		
7206.00	53.92	PK	74	20.08	54.44	36.6	6.49	43.61	-0.52		
7206.00	43.10	AV	54	10.90	43.62	36.6	6.49	43.61	-0.52		

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.20	PK	74	13.80	64.47	32.33	5.12	41.72	-4.27
4804.00	43.34	AV	54	10.66	47.61	32.33	5.12	41.72	-4.27
7206.00	51.42	PK	74	22.58	51.94	36.6	6.49	43.61	-0.52
7206.00	41.69	AV	54	12.31	42.21	36.6	6.49	43.61	-0.52

Frequency(MHz):			2441		Polarity:		HORIZONTAL		\L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.41	PK	74	12.59	65.29	32.6	5.34	41.82	-3.88
4882.00	45.05	AV	54	8.95	648.93	32.6	5.34	41.82	-3.88
7323.00	53.49	PK	74	20.51	53.60	36.8	6.81	43.72	-0.11
7323.00	42.83	AV	54	11.17	42.94	36.8	6.81	6 43.72	-0.11
	George						STIN		

		N Contractor							
Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.07	PK	74	14.93	62.95	32.6	5.34	41.82	-3.88
4882.00	42.65	AV	54	11.35	46.53	32.6	5.34	41.82	-3.88
7323.00	51.30	PK	74	22.70	51.41	36.8	6.81	43.72	-0.11
7323.00	41.30	AV	54	12.70	41.41	36.8	6.81	43.72	-0.11
		-	ES.						

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.33	PK	74	13.67	63.41	32.73	5.66	41.47	-3.08
4960.00	44.60	AV	54	9.40	47.68	32.73	5.66	41.47	-3.08
7440.00	52.54	PK	74	21.46	52.09	37.04	7.25	43.84	0.45
7440.00	42.19	PK	54	11.81	41.74	37.04	7.25	43.84	0.45

Frequency(MHz):			24	2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	58.52	PK	74 G	15.48	61.60	32.73	5.66	41.47	-3.08		
4960.00	42.30	AV	54	11.70	45.38	32.73	5.66	41.47	-3.08		
7440.00	50.94	PK	74	23.06	50.49	37.04	7.25	43.84	0.45		
7440.00	40.35	PK	54	13.65	39.90	37.04	7.25	43.84	0.45		

Report No.: CTA24061301001

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GESK

				GFS	5K				1
Freque	ency(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.78	PK	74	12.22	72.20	27.42	4.31	42.15	-10.42
2390.00	43.28	AV	54	10.72	53.70	27.42	4.31	42.15	-10.42
Frequency(MHz):		2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctior Factor (dB/m)
2390.00	59.09	PK	74	14.91	69.51	27.42	4.31	42.15	-10.42
2390.00	41.86	AV	54	12.14	52.28	27.42	4.31	42.15	-10.42
Freque	ency(MHz)	:	2480		Pola	arity:	н	ORIZONTA	۱L
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctior Factor (dB/m)
2483.50	60.88	PK	74	13.12	70.99	27.7	4.47	42.28	-10.11
2483.50	42.85	AV	54	11.15	52.96	27.7	4.47	42.28	-10.11
Freque	ency(MHz)	:	24	80	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctior Factor (dB/m)
2483.50	58.59	PK	74	15.41	68.70	27.7	4.47	42.28	-10.11
2483.50	40.42	AV	54	13.58	50.53	27.7	4.47	42.28	-10.11
REMARKS	<u>.</u>							8	9.1

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

CTA TESTING 4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration CTATESTING

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-2.66		TES
GFSK	39	-2.33	20.97	Pass
	78	-1.54	G	
IN	G 00	-3.99		
π/4DQPSK	39	-3.02	20.97	Pass
GTA	78	-2.28		
1	00	-3.39	TING	
8DPSK	39	-3.00	20.97	Pass
	78	-2.21	CIN	

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

20dB Bandwidth 4.4

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Test Results			CTATESTI
Modulation	Channel	20dB bandwidth (MHz)	Result
ING	CH00	0.957	
GFSK	CH39	0.954	_
CITA	CH78	1.020	
55	CH00	1.281	G
π/4DQPSK	CH39	1.296	Pass
	CH78	1.296	
	CH00	1.293	
8DPSK	CH39	1.290	G
ING	CH78	1.302	E

Test plot as follows:

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Frequency Separation 4.5

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

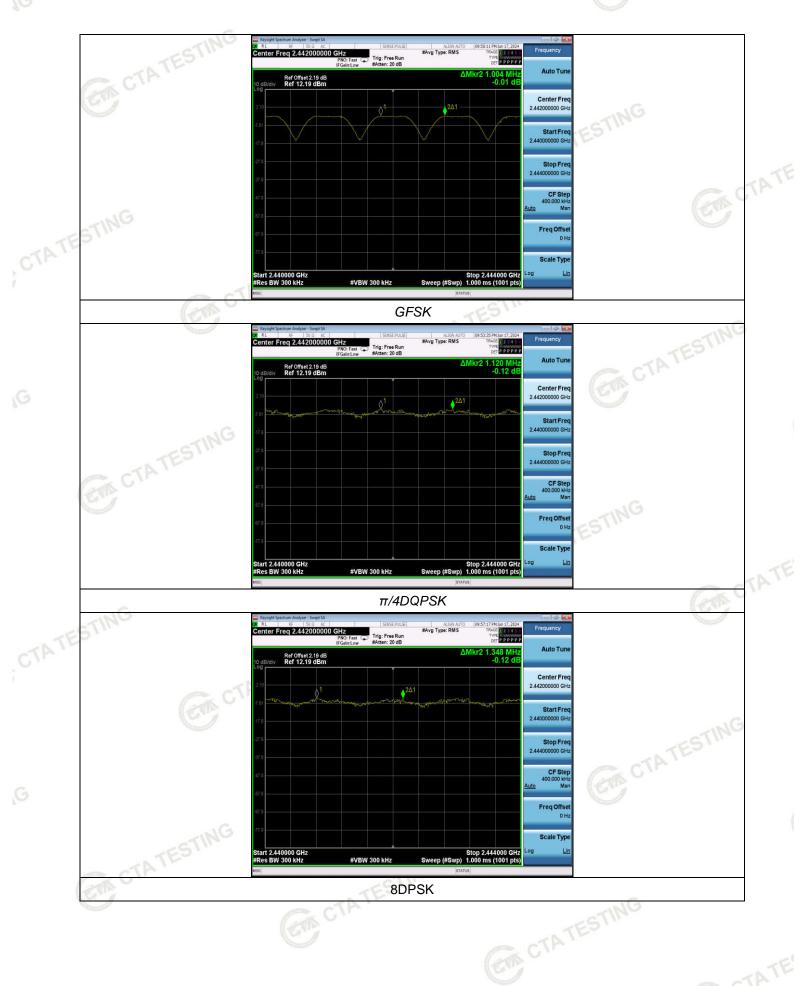
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

	GTA CTATE.			
Channel	Channel Separation (MHz)	Limit(MHz)	Result	
CH38	1.004	25KHz or 2/3*20dB	Pass	
CH39	1.004	bandwidth	1 435	
CH38	1 1 2 0	25KHz or 2/3*20dB	Pass	
CH39	1.120	bandwidth	Fd55	
CH38	1 249	25KHz or 2/3*20dB	Pass	
CH39	1.340	bandwidth	r a55	
	CH38 CH39 CH38 CH39 CH39 CH38	Channel (MHz) CH38 1.004 CH39 1.120 CH39 1.120 CH38 1.348	Channel(MHz)Limit(MHz)CH38 CH391.00425KHz or 2/3*20dB bandwidthCH38 CH391.12025KHz or 2/3*20dB bandwidthCH38 CH381.12025KHz or 2/3*20dB bandwidth	

Note:


We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTIN

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24061301001

Page 26 of 66

Number of hopping frequency 4.6

Limit C

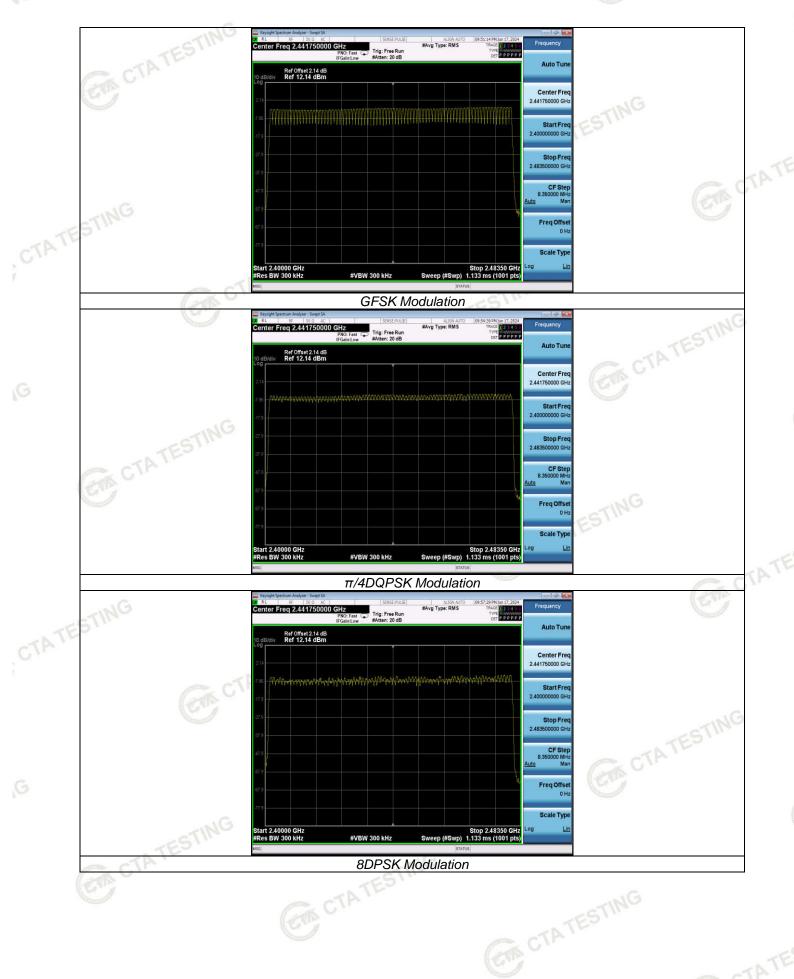
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration CTATES

Test Results


Test Results	CTAT		
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	e	AL C.
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24061301001

Page 28 of 66

Time of Occupancy (Dwell Time) 4.7

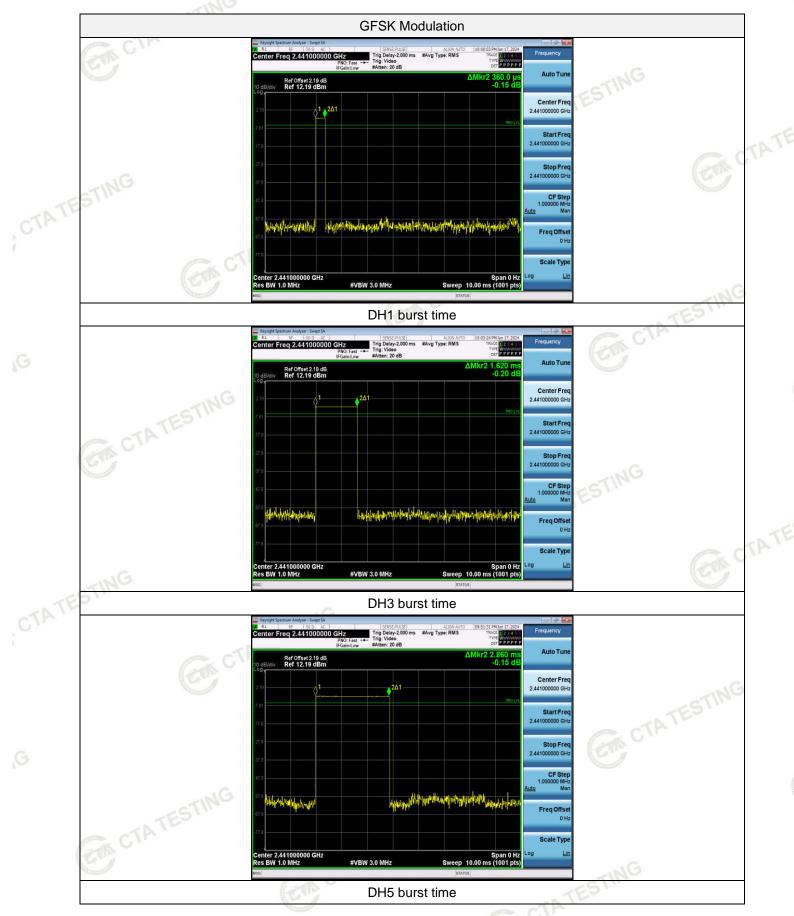
Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

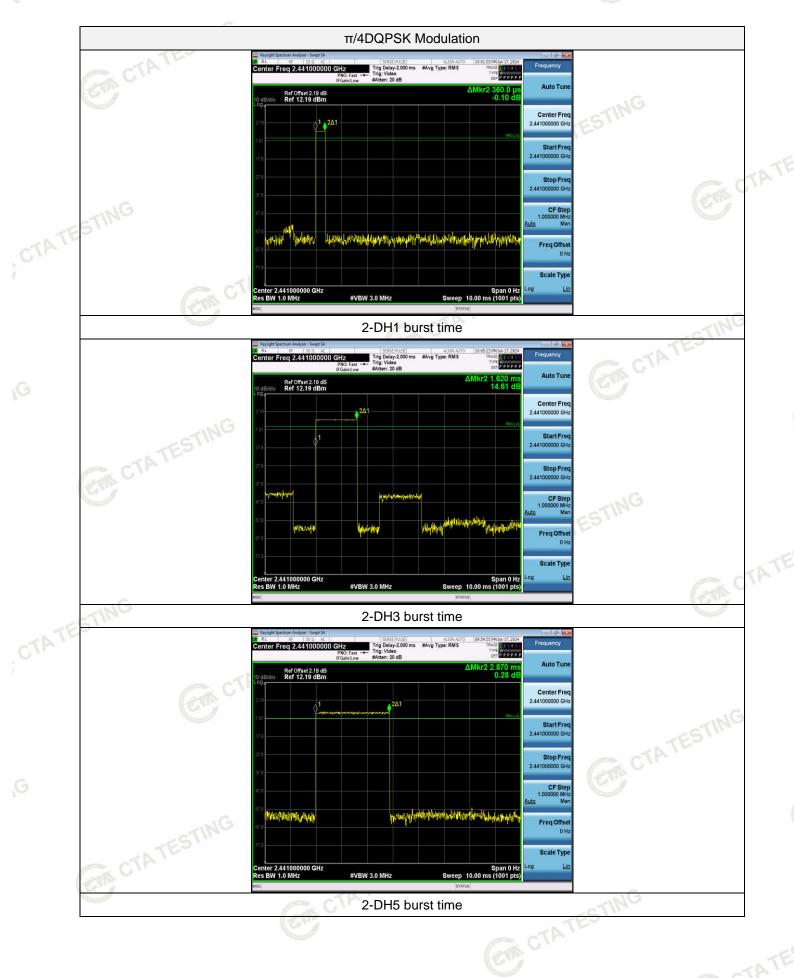
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

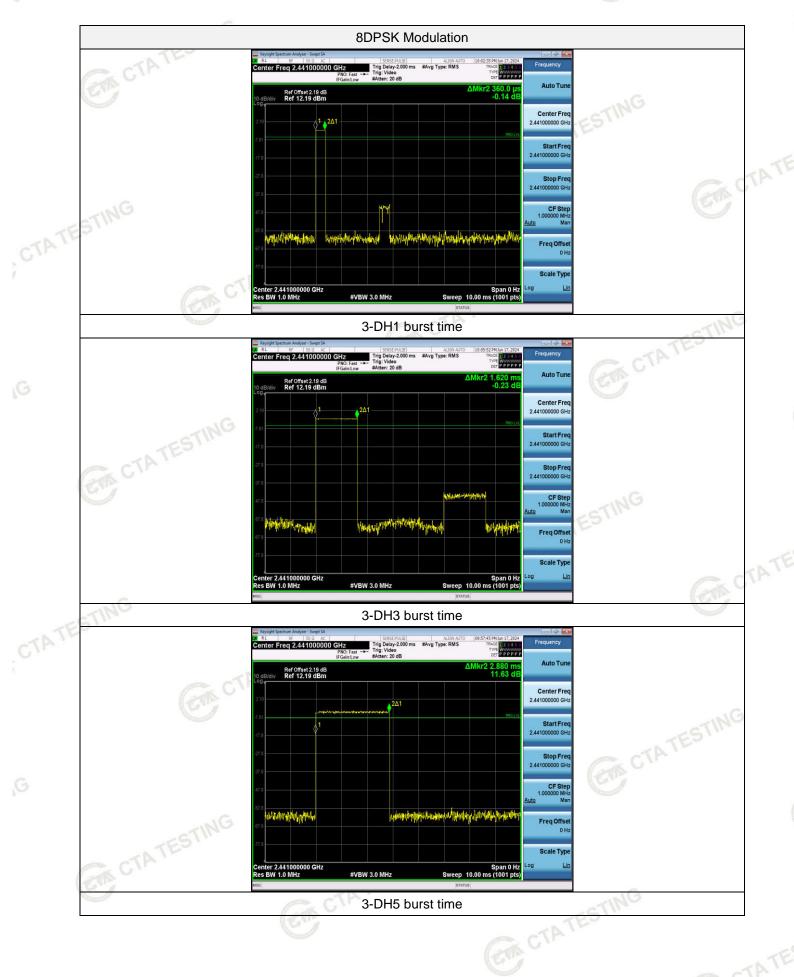
Test Configuration


Test Results			CTATES			
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result	
	DH1	0.36	0.115			
GFSK	ODH3	1.62	0.259	0.40	Pass	
	DH5	2.86	0.305			
Carrie	2-DH1	0.36	0.115			
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass	
	2-DH5	2.87	0.306	TESTIN		
	3-DH1	0.36	0.115	CIA		
8DPSK	3-DH3	1.62	0.259	0.40	Pass	
	3-DH5	2.88	0.307]		
TING					6.	

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5


Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24061301001


Test plot as follows:

Out-of-band Emissions 4.8

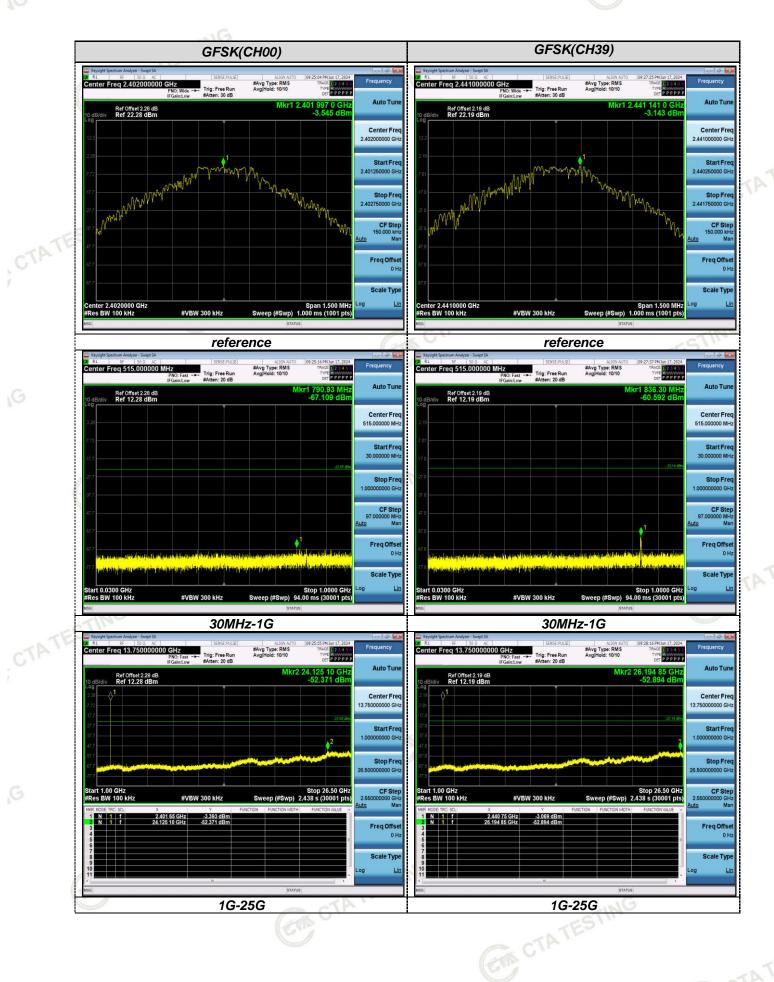
Limit C

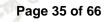
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

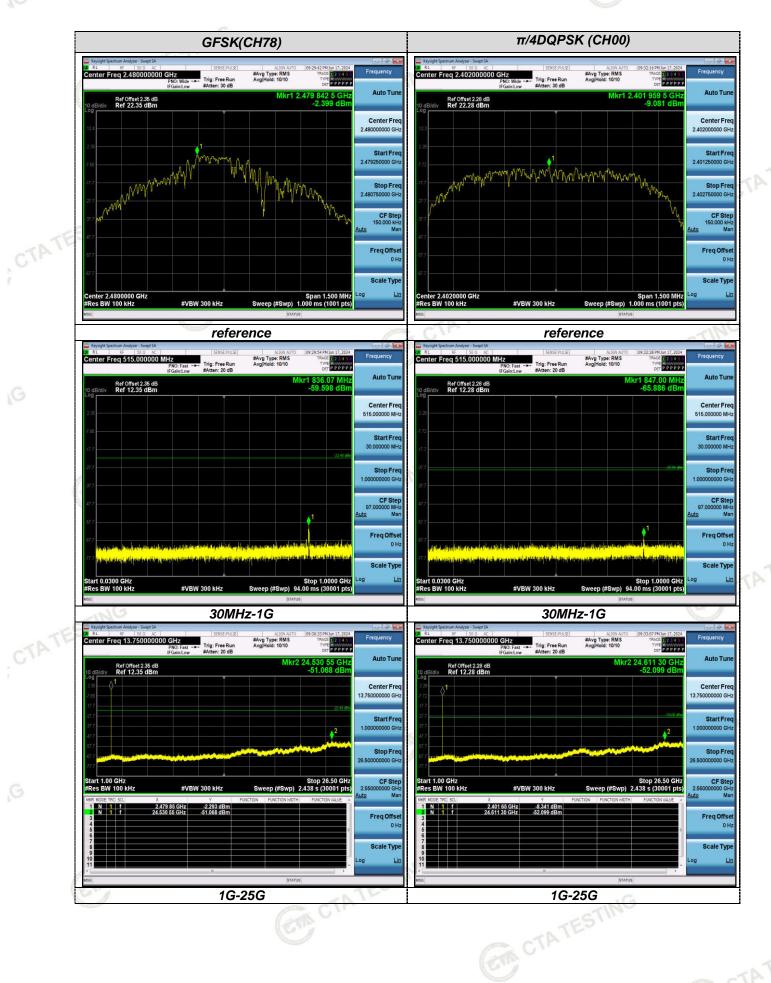
Test Procedure

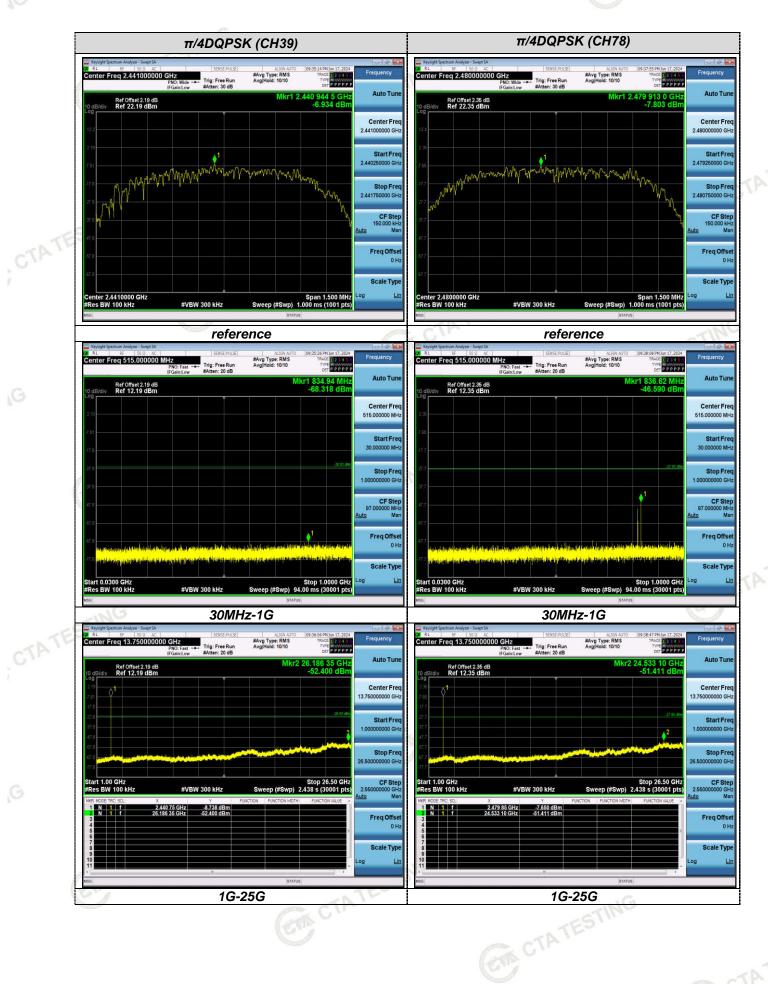
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

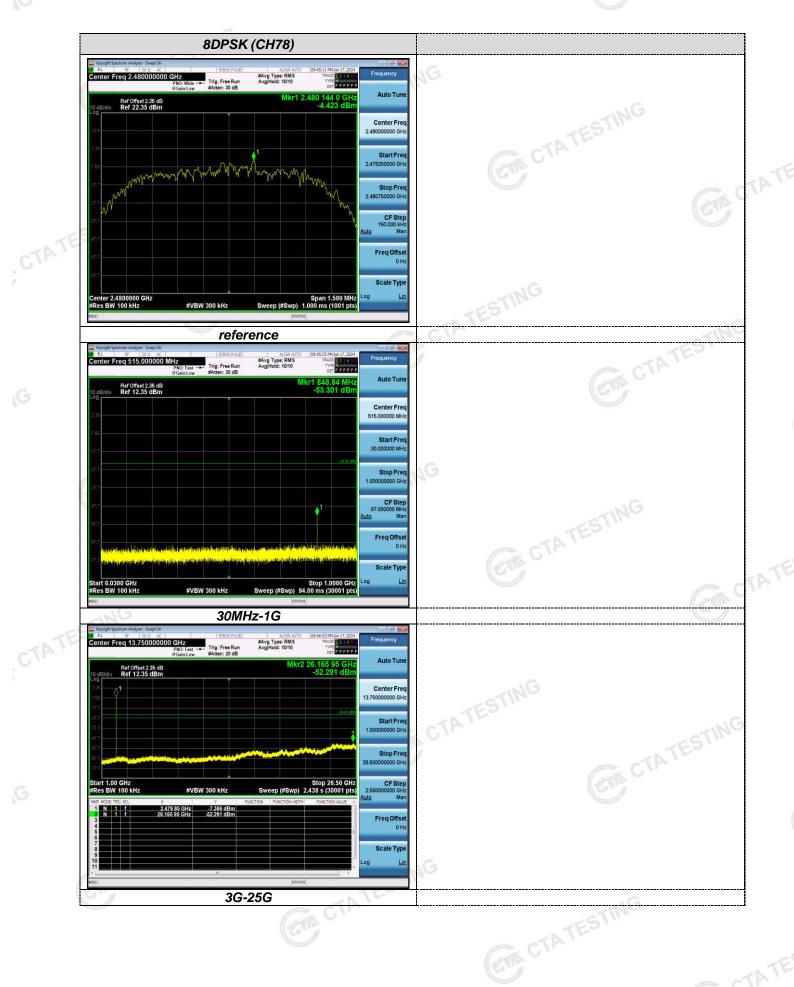

Test Results

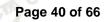

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

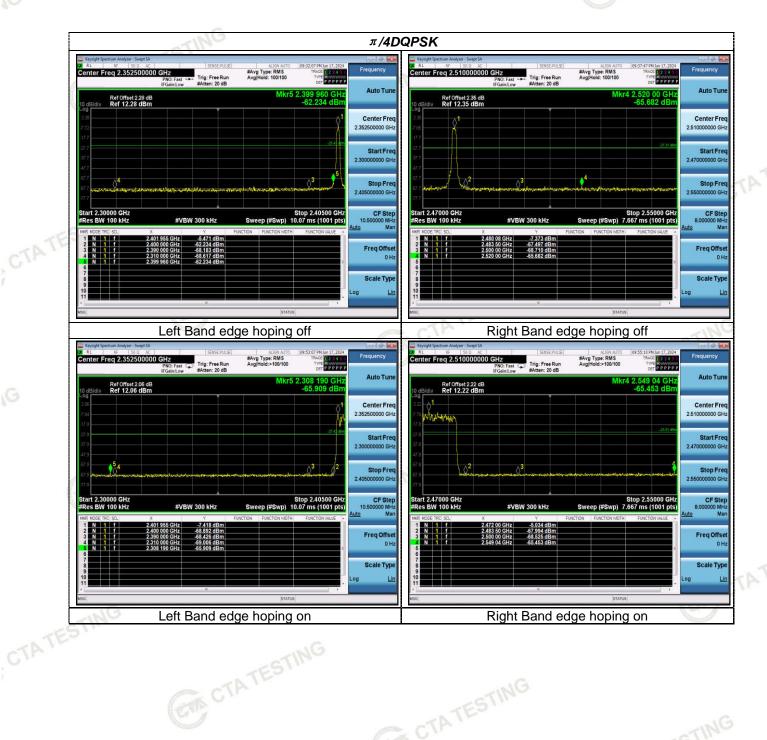

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5


Test plot as follows:

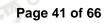

Page 34 of 66

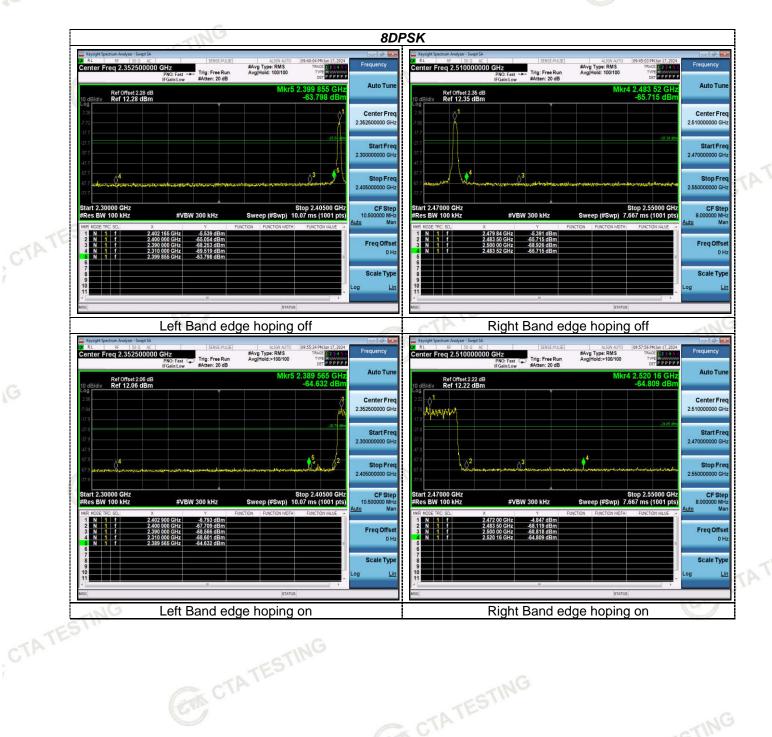






Band-edge Measurements for RF Conducted Emissions:



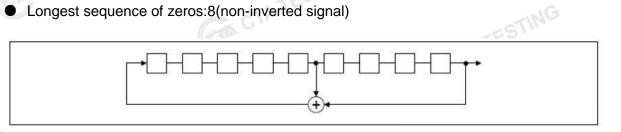


COM CTATESTING

COM CTATESTING

Pseudorandom Frequency Hopping Sequence 4.9

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	78	1	73 75	77
				 	П			 	\square
				1		1			
						1			

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 1.01 dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT



Report No.: CTA24061301001

