

RF TEST REPORT

For

HaoshenTechnology(ZhongshanCity)Co.,Ltd.

Product Name: FAN LIGHT Test Model(s).: F005

Report Reference No. : POCE240320003RL001

FCC ID : 2BFSR-F005

Applicant's Name : HaoshenTechnology(ZhongshanCity)Co.,Ltd.

Address : No.15XinhuaEast,XiaolanTown,ZhongshanCity,GuangdongProvince

Testing Laboratory: Shenzhen POCE Technology Co., Ltd.

Address : 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology

Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : March 20, 2024

Date of Test : March 20, 2024 to April 9, 2024

Data of Issue : April 9, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Revision History Of Report

Version	Description	REPORT No.	Issue Date	
V1.0	Original	POCE240320003RL001	April 9, 2024	
			E	
	200	200		
	Po			

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Ben Tang	Tom chen	Machoel Mrs
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager

CONTENTS

1 TEST SUMMARY	5
1.1 TEST STANDARDS	5
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	6
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 OCCUPIED BANDWIDTH	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power Spectral Density	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	29

V1.0

4.8.2 Test Data:		29
5 TEST SETUP PHOTOS		32
6 PHOTOS OF THE EUT		
APPENDIX		40
16DB BANDWIDTH	*	41
2. 99% OCCUPIED BANDWIDTH		43
3. DUTY CYCLE		45
4. PEAK OUTPUT POWER		
5. Power Spectral Density		
6. BANDEDGE		51
7. Spurious Emission		53

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : HaoshenTechnology(ZhongshanCity)Co.,Ltd.

Address: No.15XinhuaEast,XiaolanTown,ZhongshanCity,GuangdongProvince

Manufacturer : HaoshenTechnology(ZhongshanCity)Co.,Ltd.

Address : No.15XinhuaEast,XiaolanTown,ZhongshanCity,GuangdongProvince

2.2 Description of Device (EUT)

Product Name:	FAN LIGHT
Model/Type reference:	F005
Series Model:	T009-470-C,T011-780-W,T011-780-B,T011-780-G,T010-650-W,
Series Model.	T010-650-B,T010-650-G,T006-790-B,T006-790-W,T006-790-G,
	T005-750-W,T005-750-B,T005-750-G,T004-500-B,T004-500-W,
CE	T004-500-G,T003-400-B,T003-400-W,T003-500-W,T003-500-B,
	T001-500-W,T001-500-B,T001-500-G,T001-400-W,T003-300-B,
	T001-400-G,T007-500-B,T001-300-G,T001-400-W,T008-500-B,
	K01-B,K01-W,K02-B,K02-W,K03-B,K03-W,K04-B,K04-W,K05-B,
	K05-W,K06-B,K06-W,K07-B,K07-W,K08-B,K08-W,K09-B,K09-W,
	K10-B,K10-W,K11-B,K11-W,K11-G,K12-B,K12-W,K12-G,K13-B,
POCE	K13-W,K13-G,K14-B,K14-W,K14-G,K15-B,K15-W,K15-G,K16-B,
PO	K16-W,K16-G,K17-B,K17-W,K17-G,K18-B,K18-W,K18-G,K19-B,
	K19-W,K19-G,K20-B,K20-W,K20-G,K21-B,K21-W,K21-G,K22-B,
	K22-W,K22-G,K23-B,K23-W,K23-G,K24-B,K24-W,K24-G,K25-B,
	K25-W,K25-G,K26-B,K26-W,K26-G,K27-B,K27-W,K27-G,K28-B,
OCE	K28-W,K28-G,K29-B,K29-W,K29-G,K30-B,K30-W,K30-G,F005-B,
000	F005-W,F005-G,F005-R40-B,F005-R40-W,F005-R40-G,F012-B,
	F012-W,F010-B,F010-W,F010-G,F011-B,F011-W,F2203-W,F2203-B,
	F2203-G,F2204-W,F2204-B,F2204-G,F007,F016,F018,
	F008,F027,D022,F017,F025,D01-R40-B,D01-R40-W,D01-R31-B,
50	D01-R31-W,D008-500-B,D008-500-W,D008-400-B,D008-400-W,
P	D009-500-B,D009-500-W,D009-400-B,D009-400-W,D01-B,D01-W,D02-B,
	D02-W,D03-B,D03-W,D04-B,D04-W,D05-B,D05-W,D06-B,D06-W,D07-B
	,D07-W,D08-B,D08-W,D09-B,D09-W,D10-B,D10-W,D11-B,D11-W,D11-G,
	D12-B,D12-W,D12-G,D13-B,D13-W,D13-G,D14-B,D14-W,D14-G,D15-B,
	D15-W,D15-G,D16-B,D16-W,D16-G,D17-B,D17-W,D17-G,D18-B,D18-W,
No.	D18-G,D19-B,D19-W,D19-G,D20-B,D20-W,D20-G,D21-B,D21-W,D21-G,
	D22-B,D22-W,D22-G,D23-B,D23-W,D23-G,D24-B,D24-W,D24-G,D25-B,
	D25-W,D25-G,D26-B,D26-W,D26-G,D27-B,D27-W,D27-G,D28-B,D28-W,
	D28-G,D29-B,D29-W,D29-G,D30-B,D30-W,D30-G,FS-HX-R520-W,
	FS-HX-R520-O,FS-HX-R520-Y,FS-HX-R520-GR,FS-HX-R520-BL,
	FS-HX-R520-PP,FS-HX-R520-PK,FS-HX-R520-M,FS-HX-R420-W,
	FS-HX-R420-O,FS-HX-R420-Y,FS-HX-R420-GR,FS-HX-R420-BL,
	FS-HX-R420-PP,FS-HX-R420-PK,FS-HX-R420-M,FS-HX-R420-SJ-S,
Į.	FS-HX-R520-SJ-L,C-FS-R300,C-FS-R260

Model Difference: since the electrical circuit design, layout, components used and internalwiring were identical for the above models, Only the sales customers, sales region, product appearance is different. Test sample model: F005 Trade Mark: **SURNIE** Power Supply: AC120V60Hz Operation Frequency: 2402MHz to 2480MHz Number of Channels: 40 **GFSK** Modulation Type: Antenna Type: **External Antenna** -5.09dBi Antenna Gain: Hardware Version: V1.0 Software Version: V1.0

Report No.: POCE240320003RL001

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)				
rest channel	BLE				
Lowest channel	2402MHz				
Middle channel	2440MHz				
Highest channel	2480MHz				
Remark:Only the data of the worst mode would be recorded in this report.					

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 7 of 55

TM3	Highest channel	Keep the EUT connect to AC power line and works in continuously
TM3	Highest channel	transportition made with CECK made lation

transmitting mode with GFSK modulation.

Report No.: POCE240320003RL001

2.4 Description of Support Units

The EUT was tested as an independent device.

2.5 Equipments Used During The Test

Conducted Emission a	at AC power line		PO		T.
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/ 30	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	/
Cable	SCHWARZ BECK	ck	1	2024-03-20	2025-03-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	1
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Occupied Bandwidth

-					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	/	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	HP	66311B	38444359		/
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	/
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12

Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1				
Positioning Controller	′	MF-7802	100	CF	1				
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1				
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04				
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04				
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04				
Cable(LF)#2	Schwarzbeck	1	/	2024-02-19	2025-02-18				
Cable(LF)#1	Schwarzbeck	1	/	2024-02-19	2025-02-18				
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19				
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19				
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12				
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12				
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12				
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13				
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12				
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20				
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12				

2.6 Statement Of The Measurement Uncertainty

±3.41dB	
±3.63%	
±0.733dB	
±0.234%	
±1.98dB	1
±5.46dB	
±5.79dB	
	±0.733dB ±0.234% ±1.98dB ±5.46dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.		
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China		
Phone Number:	+86-13267178997		
Fax Number:	86-755-29113252		

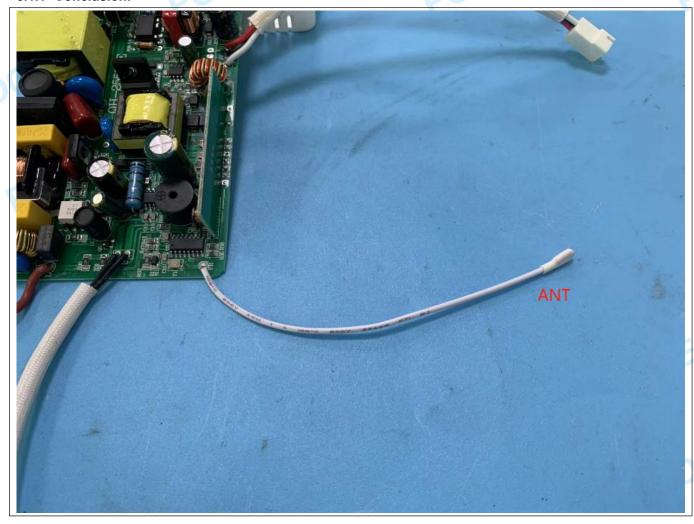
Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 10 of 55


3 Evaluation Results (Evaluation)

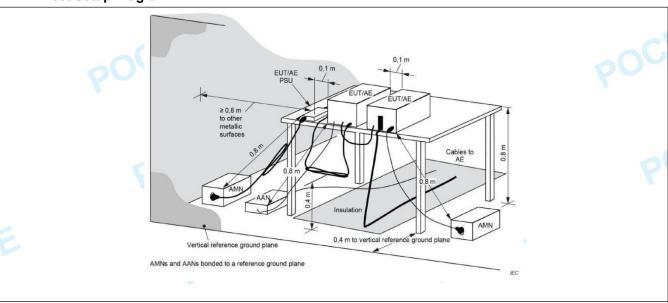
3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

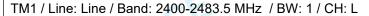
4 Radio Spectrum Matter Test Results (RF)

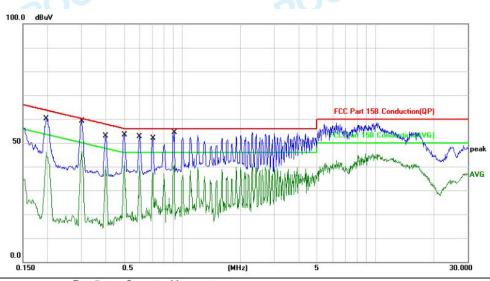

4.1 Conducted Emission at AC power line

	The state of the s							
Test Requirement:	section, for an intentional radiator to utility (AC) power line, the radio free AC power line on any frequency or MHz, shall not exceed the limits in	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)							
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
CE	0.5-5	56	46					
	5-30	60	50					
	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							

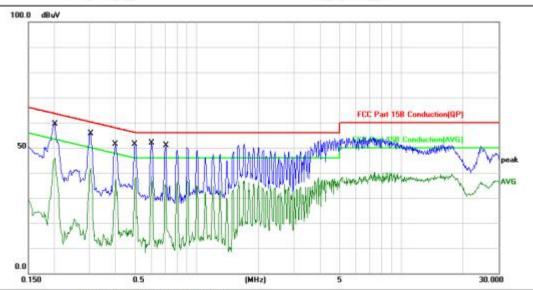
4.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa
Pretest mode:	E	TM1		~C		OCE
Final test mode:		TM1		000		000


4.1.2 Test Setup Diagram:



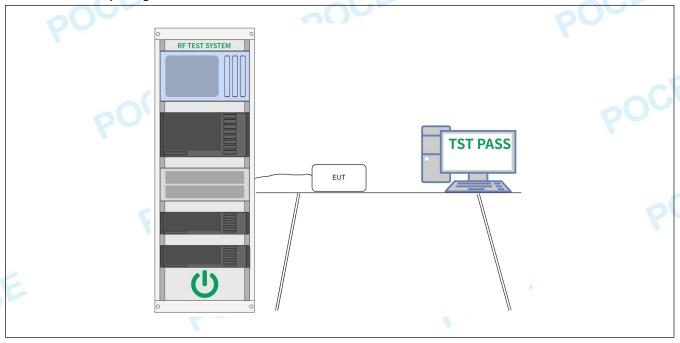
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 12 of 55


4.1.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1980	49.91	10.19	60.10	63.69	-3.59	QP	
2		0.1980	36.03	10.19	46.22	53.69	-7.47	AVG	
3	*	0.3020	49.07	10.18	59.25	60.19	-0.94	QP	
4		0.3020	36.30	10.18	46.48	50.19	-3.71	AVG	
5		0.4020	42.80	10.16	52.96	57.81	-4.85	QP	
6		0.4020	30.03	10.16	40.19	47.81	-7.62	AVG	
7		0.5020	43.32	10.14	53.46	56.00	-2.54	QP	
8		0.5020	32.05	10.14	42.19	46.00	-3.81	AVG	
9		0.6020	42.38	10.13	52.51	56.00	-3.49	QP	
10		0.6020	30.61	10.13	40.74	46.00	-5.26	AVG	
11		0.7060	41.77	10.11	51.88	56.00	-4.12	QP	
12		0.7060	27.47	10.11	37.58	46.00	-8.42	AVG	
13		0.9100	44.21	10.07	54.28	56.00	-1.72	QP	

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2020	49.28	10.20	59.48	63.52	-4.04	QP	
2		0.2020	35.68	10.20	45.88	53.52	-7.64	AVG	
3		0.3020	45.33	10.18	55.51	60.19	-4.68	QP	
4		0.3020	31.59	10.18	41.77	50.19	-8.42	AVG	
5		0.3980	41.23	10.16	51.39	57.89	-6.50	QP	
6		0.4020	27.16	10.16	37.32	47.81	-10.49	AVG	
7		0.4980	41.30	10.14	51.44	56.03	4.59	QP	
8		0.5020	28.03	10.14	38.17	46.00	-7.83	AVG	
9		0.6020	41.73	10.13	51.86	56.00	4.14	QP	
10		0.6020	28.57	10.13	38.70	46.00	-7.30	AVG	
11		0.7019	25.15	10.11	35.26	46.00	-10.74	AVG	
12		0.7060	40.84	10.11	50.95	56.00	-5.05	QP	


4.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Envir	ronment:			OCF		OCH
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode	:	TM1,	TM2, TM3			

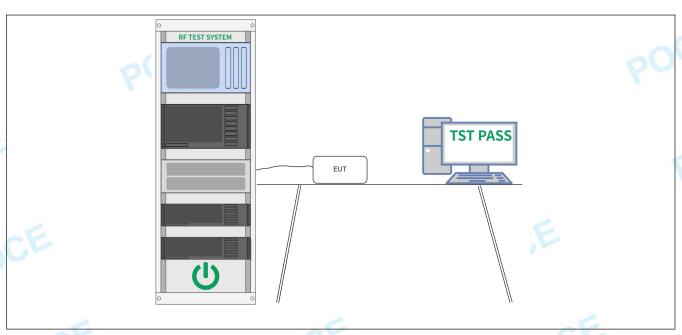
4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 15 of 55

4.3 Maximum Conducted Output Power


4.5 Maximum Cond	actor Catpari ener
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

4.3.1 E.U.T. Operation:

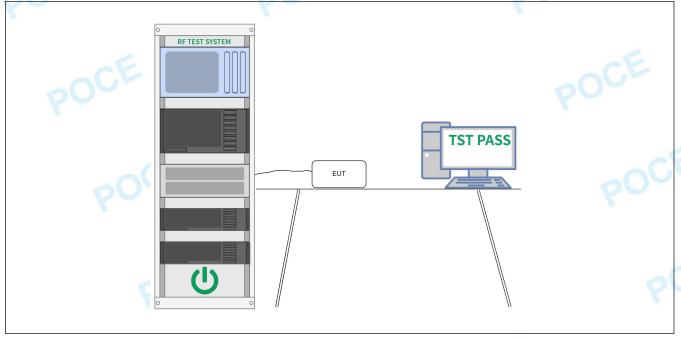
Operating Environment:								
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2, TM3			TM2, TM3		000			
Final test mode:		TM1,	TM2, TM3					

4.3.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 16 of 55

4.3.3 Test Data:

Please Refer to Appendix for Details.


4.4 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

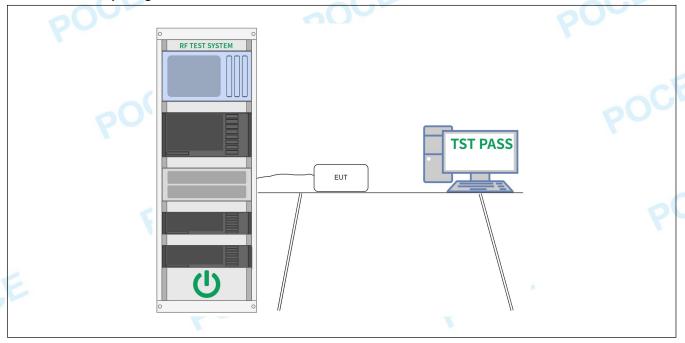
Operating Envir	onment:		bo		PO.	
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode	•	TM1,	TM2, TM3	CE		CE

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 18 of 55


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

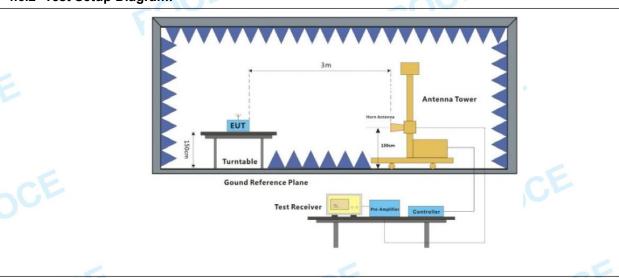
Operating Envir	ronment:			OCF		OCH
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode	:	TM1,	TM2, TM3			

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 19 of 55

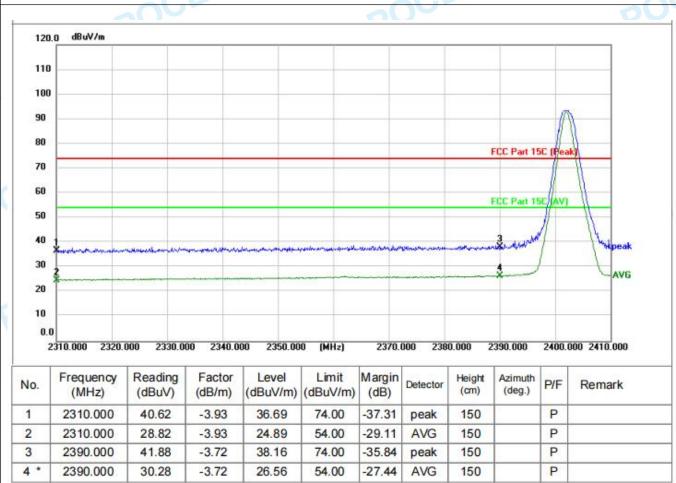

4.6 Band edge emissions (Radiated)

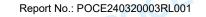
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
CE	88-216	150 **	3					
O P	216-960	200 **	3					
	Above 960	500	3					
POCE	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013 secti KDB 558074 D01 15.24	on 6.10 7 Meas Guidance v05r02	PO					
Procedure:	ANSI C63.10-2013 secti	on 6.10.5.2						

4.6.1 E.U.T. Operation:

•								
Operating Environment:								000
Temperature:	23.5 °C		Humidity:	52.8 %		Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3					
Final test mode: T			TM3					

4.6.2 Test Setup Diagram:





4.6.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

V1.0

2

3

4 *

2310.000

2390.000

2390.000

30.25

43.10

31.84

-5.23

-4.91

-4.91

25.02

38.19

26.93

54.00

74.00

54.00

-28.98

-35.81

-27.07

AVG

peak

AVG

150

150

150

P

P

Р

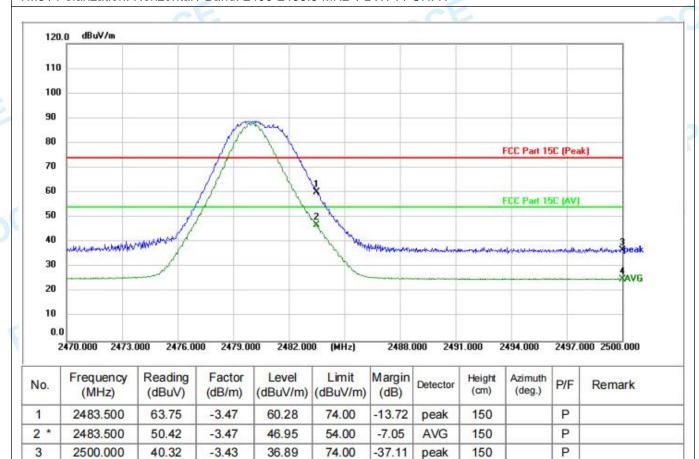
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 120.0 110 100 90 80 FCC Part 15C (Rea 70 60 FCC Part 150 50 40 30 AVG 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 (MHz) 2370.000 2380.000 2390.000 2400.000 2410.000 Frequency Reading Factor Level Limit Margin Height Azimuth P/F No. Detector Remark (cm) (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2310.000 41.08 -5.2335.85 74.00 150 P 1 -38.15 peak

2500.000

4

Report No.: POCE240320003RL001

Р

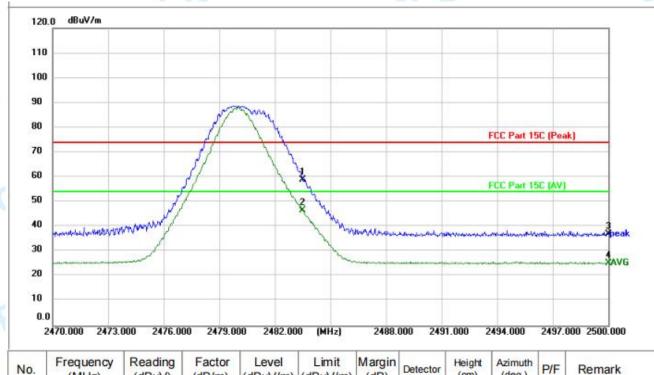

150

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

-3.43

28.48

25.05


54.00

-28.95

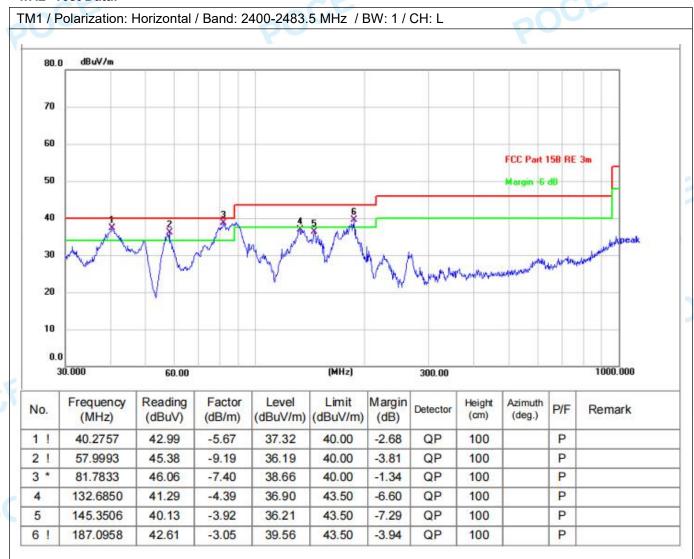
AVG

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Control of the Contro	-	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
2483.500	63.62	-4.54	59.08	74.00	-14.92	peak	150		Р	
2483.500	51.32	-4.54	46.78	54.00	-7.22	AVG	150		Р	
2500.000	41.66	-4.48	37.18	74.00	-36.82	peak	150		Р	
2500.000	29.81	-4.48	25.33	54.00	-28.67	AVG	150		Р	
	(MHz) 2483.500 2483.500 2500.000	(MHz) (dBuV) 2483.500 63.62 2483.500 51.32 2500.000 41.66	(MHz) (dBuV) (dB/m) 2483.500 63.62 -4.54 2483.500 51.32 -4.54 2500.000 41.66 -4.48	(MHz) (dBuV) (dB/m) (dBuV/m) 2483.500 63.62 -4.54 59.08 2483.500 51.32 -4.54 46.78 2500.000 41.66 -4.48 37.18	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 2483.500 63.62 -4.54 59.08 74.00 2483.500 51.32 -4.54 46.78 54.00 2500.000 41.66 -4.48 37.18 74.00	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2483.500 63.62 -4.54 59.08 74.00 -14.92 2483.500 51.32 -4.54 46.78 54.00 -7.22 2500.000 41.66 -4.48 37.18 74.00 -36.82	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 2483.500 63.62 -4.54 59.08 74.00 -14.92 peak 2483.500 51.32 -4.54 46.78 54.00 -7.22 AVG 2500.000 41.66 -4.48 37.18 74.00 -36.82 peak	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) 2483.500 63.62 -4.54 59.08 74.00 -14.92 peak 150 2483.500 51.32 -4.54 46.78 54.00 -7.22 AVG 150 2500.000 41.66 -4.48 37.18 74.00 -36.82 peak 150	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) 2483.500 63.62 -4.54 59.08 74.00 -14.92 peak 150 2483.500 51.32 -4.54 46.78 54.00 -7.22 AVG 150 2500.000 41.66 -4.48 37.18 74.00 -36.82 peak 150	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) P/F 2483.500 63.62 -4.54 59.08 74.00 -14.92 peak 150 P 2483.500 51.32 -4.54 46.78 54.00 -7.22 AVG 150 P 2500.000 41.66 -4.48 37.18 74.00 -36.82 peak 150 P

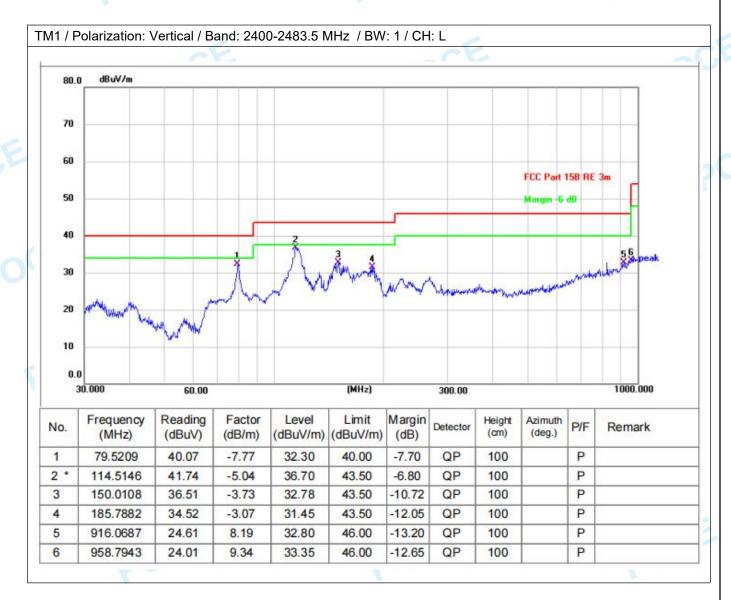
4.7 Emissions in frequency bands (below 1GHz)

pO	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
-E	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
OCE	and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-pour 110–490 kHz and above 100	rmitted under other sections of the tighter limit applies at the banthe above table are based on the detector except for the frequion MHz. Radiated emission limits employing an average detector	and edges. measurements uency bands 9–90 kHz, s in these three bands					
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	above the ground at a 3 or 1 360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 met degrees to determine the poc. The EUT was set 3 or 10 which was mounted on the td. The antenna height is var determine the maximum valupolarizations of the antenna e. For each suspected emissible the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees to	was placed on the top of a rota of meter semi-anechoic chambes e position of the highest radiation was placed on the top of a rota fer fully-anechoic chamber. The sition of the highest radiation, meters away from the interference op of a variable-height antennated from one meter to four meterule of the field strength. Both hor are set to make the measurements of the EUT was arranged to it eights from 1 meter to 4 meters of was tuned to heights 1 meter) are 360 degrees to find the maxing was set to Peak Detect Function	er. The table was rotated on. ating table 1.5 meters table was rotated 360 ace-receiving antenna, tower. It is above the ground to rizontal and vertical ent. Its worst case and then (for the test frequency of and the rotatable table num reading.					


channel. Only the worst case is recorded in the report.

- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:


Operating Environment:								
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa		
Pretest mode:	Pretest mode: TM1							
Final test mode:		TM1						

4.7.2 Test Data:

V1.0

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
E	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
POU	and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-pe 110–490 kHz and above 100	rmitted under other sections of the tighter limit applies at the bar the above table are based on meak detector except for the freque to MHz. Radiated emission limits a employing an average detector.	nd edges. leasurements ency bands 9–90 kHz, in these three bands					
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	above the ground at a 3 or 1 360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 met degrees to determine the poc. The EUT was set 3 or 10 met. The antenna height is varied termine the maximum valuated polarizations of the antenna e. For each suspected emission the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees to f. The test-receiver system was defined, then testing could reported. Otherwise the emistered one by one using pear reported in a data sheet. h. Test the EUT in the lowest in the radiation measurement transmitting mode, and found the specified of the system o	was placed on the top of a rotation meter semi-anechoic chamber. The position of the highest radiation was placed on the top of a rotation of the highest radiation. The tastion of the highest radiation of	The table was rotated in the table and the table and vertical int. In worst case and then for the test frequency of the rotatable table and Specified wer than the limit of the EUT would be argin would be red as specified and then the Highest channel.					
CE.	Remark: 1) For emission below 1GHz	, through pre-scan found the wor	st case is the lowest					

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 28 of 55

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: POCE240320003RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.5 °C		Humidity:	52.8 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2, TM			TM2, TM3					
Final test mode: TM1,			TM2, TM3					

4.8.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	46.81	3.10	49.91	74.00	-24.09	peak	150		Р	
2	4804.000	32.03	3.10	35.13	54.00	-18.87	AVG	150		Р	
3	7206.000	36.36	10.13	46.49	74.00	-27.51	peak	150		Р	
4	7206.000	24.87	10.13	35.00	54.00	-19.00	AVG	150		Р	
5	9608.000	34.14	15.09	49.23	74.00	-24.77	peak	150		Р	
6 *	9608.000	24.13	15.09	39.22	54.00	-14.78	AVG	150		Р	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	49.80	3.72	53.52	74.00	-20.48	peak	150		Р	
2	4804.000	35.08	3.72	38.80	54.00	-15.20	AVG	150		Р	9 5
3	7206.000	35.29	10.09	45.38	74.00	-28.62	peak	150		Р	
4	7206.000	24.94	10.09	35.03	54.00	-18.97	AVG	150		Р	
5	9608.000	35.40	15.02	50.42	74.00	-23.58	peak	150		Р	A.
6 *	9608.000	24.32	15.02	39.34	54.00	-14.66	AVG	150		Р	

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 29 of 55

TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	43.14	3.35	46.49	74.00	-27.51	peak	150		Р	
2	4877.500	29.35	3.35	32.70	54.00	-21.30	AVG	150		Р	
3	7320.000	35.31	10.31	45.62	74.00	-28.38	peak	150		Р	
4	7320.000	24.56	10.31	34.87	54.00	-19.13	AVG	150		Р	
5	9760.000	35.32	15.09	50.41	74.00	-23.59	peak	150		Р	
6 *	9760.000	24.14	15.09	39.23	54.00	-14.77	AVG	150	1	Р	

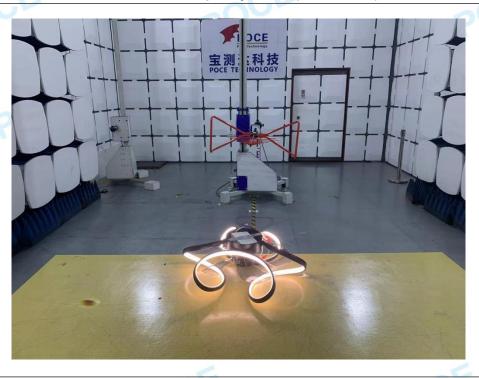
TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	44.73	3.96	48.69	74.00	-25.31	peak	150		Р	
2	4877.500	30.92	3.96	34.88	54.00	-19.12	AVG	150		Р	
3	7320.000	35.83	10.36	46.19	74.00	-27.81	peak	150		Р	
4	7320.000	24.63	10.36	34.99	54.00	-19.01	AVG	150		Р	
5	9760.000	35.31	15.12	50.43	74.00	-23.57	peak	150		Р	
6 *	9760.000	24.20	15.12	39.32	54.00	-14.68	AVG	150		Р	

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

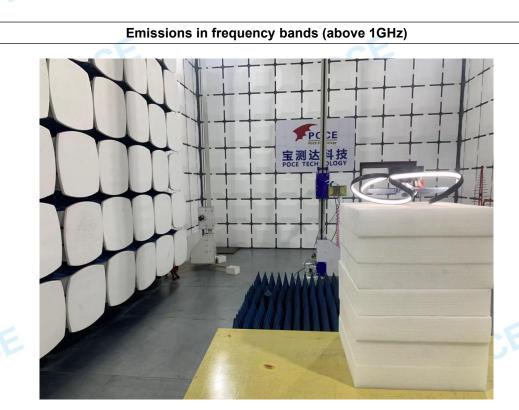
No.	Frequency	Reading		Level	Contract to the contract of th	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	(MHz) 4960.000	(dBuV) 36.65	3.63	40.28	(dBuV/m) 74.00	-33.72	peak	150	(deg.)	Р	
2	4960.000	26.33	3.63	29.96	54.00	-24.04	AVG	150		Р	
3	7440.000	35.86	10.49	46.35	74.00	-27.65	peak	150		Р	
4	7440.000	24.66	10.49	35.15	54.00	-18.85	AVG	150		Р	
5	9920.000	37.38	15.08	52.46	74.00	-21.54	peak	150		Р	
6 *	9920.000	24.77	15.08	39.85	54.00	-14.15	AVG	150		Р	1

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	37.88	3.63	41.51	74.00	-32.49	peak	150		Р	
2	4960.000	26.57	3.63	30.20	54.00	-23.80	AVG	150		Р	
3	7440.000	36.42	10.49	46.91	74.00	-27.09	peak	150		Р	
4	7440.000	24.80	10.49	35.29	54.00	-18.71	AVG	150		Р	
5	9920.000	35.54	15.08	50.62	74.00	-23.38	peak	150		Р	
6 *	9920.000	24.87	15.08	39.95	54.00	-14.05	AVG	150		Р	

TEST SETUP PHOTOS

Conducted Emission at AC power line

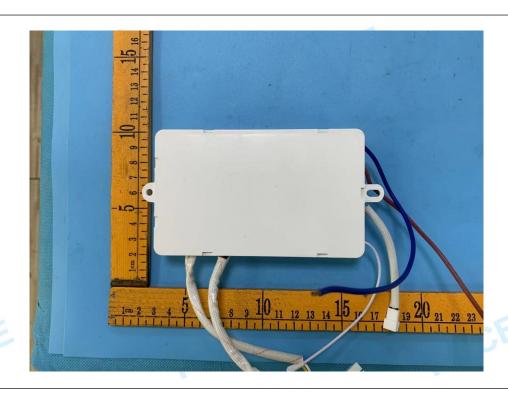


Emissions in frequency bands (below 1GHz)

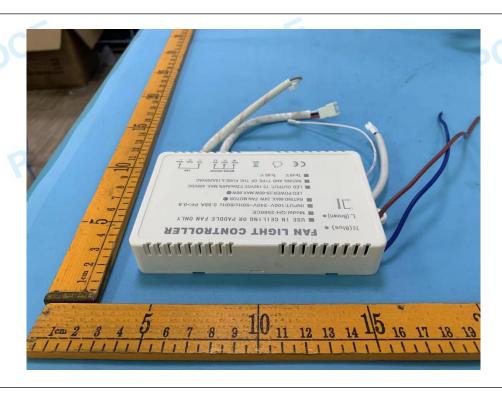
V1.0

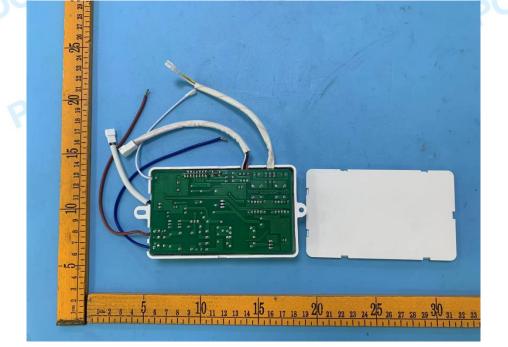
POCE

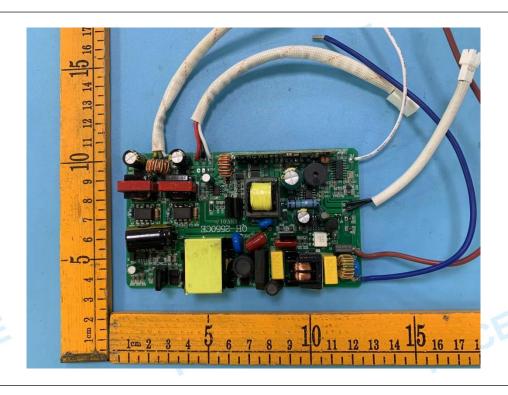
6 PHOTOS OF THE EUT

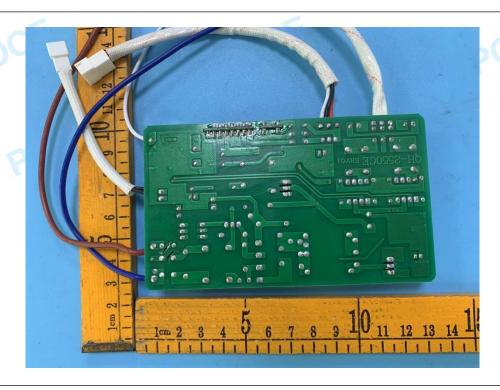

External

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 34 of 55

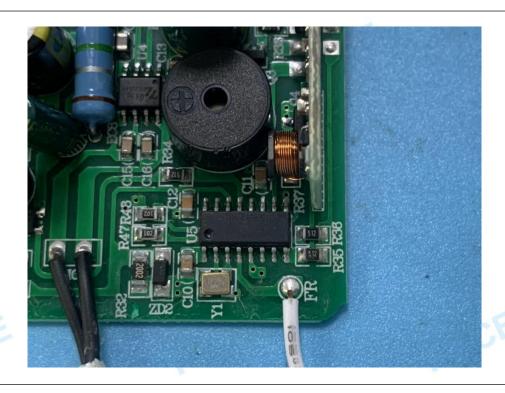








Internal



V1.0

POCE POCE POCE

POCE POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE