

TEST REPORT

Applicant:	Dals Lighting Inc.
Address of Applicant:	80 boul. De La Seigneurie Est, Blainville, QC, J7C 4N1, Canada
Manufacturer/Factory:	HANGZHOU LIJIACHENG ELECTRIC CO., LTD.
Address of	NO.35 YANGSHAN ROAD,GAOHONG ZONE,LINAN,
Manufacturer/Factory:	HANGZHOU ZHEJIANG 311307 China (Peoples Republic Of)
Equipment Under Test (E	EUT)
Product Name:	Smart wall control
Model No.:	SM-WLCT
Trade Mark:	DALS, ILLUME
FCC ID:	2AQSN-SMWLCT
IC:	10733A-SMWLCT
HVIN:	SM-WLCT
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
	ANSI C63.10:2013
	RSS-Gen Issue 5
	RSS-247 Issue 2
Date of sample receipt:	December 30,2021
Date of Test:	December 31,2021-January 08,2022
Date of report issued:	January 10,2022
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 33

2 Version

Version No.	Date	Description
00	2022-1-10	Original

hantly **Prepared By:** Date: 2022-1-10 Project Engineer objusor (m) Check By: Date: 2022-1-10 Reviewer

Report No.: GTSL202201000020F01

3 Contents

		Pa	age
1	CON	/ER PAGE	1
2	VER	SION	2
3	0	ITENTS	2
3	CON		3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4 5.5	DEVIATION FROM STANDARDS	
	5.6	Test Facility	
	5.7	TEST LOCATION	
6	TES	T INSTRUMENTS LIST	8
Ů	120		
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5 7.6	Power Spectral Density Spurious Emission in Non-restricted & restricted Bands	
	7.6.		
	7.6.2		
	7.7	FREQUENCY STABILITY	31
8	TES	Т SETUP PHOTO	33
		말 같은 생활은 집에 다 가슴을 걸었다. 가슴을 잘 다 가슴을 걸 때 다 가슴을 했다.	
9	EUT	CONSTRUCTIONAL DETAILS	33

Report No.: GTSL202201000020F01

4 Test Summary

Test Item	Section in CFR 47	Result
Antonno roquiromont	15.203/15.247 (b)(4)	Pass
Antenna requirement	RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207	Pass
AC Power Line Conducted Emission	RSS-Gen Section 8.8	Pass
Conducted Book Output Bower	15.247 (b)(3)	Pass
Conducted Peak Output Power	RSS-247 Section 5.4(d)	Fass
Channel Bandwidth	15.247 (a)(2)	Pass
	RSS-247 Section 5.2(a)	Fass
99% Occupy Bandwidth	RSS-Gen Section 6.7	Pass
Power Spectral Density	15.247 (e)	Pass
Fower Spectral Density	RSS-247 Section 5.2(b)	r ass
Band Edge	15.247(d)	Pass
Band Luge	RSS-247 Section 5.5	T 855
Spurious Emission	15.205/15.209	Pass
	RSS-247 Section 5.5	r ass
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013 and RSS-Gen.

Measurement Uncertainty

No.	Item	Measurement Uncertainty			
1	Radio Frequency	1 x 10 ⁻⁷			
2	Duty cycle	0.37%			
3	Occupied Bandwidth	2.8dB			
4	RF conducted power	0.75dB			
5	RF power density	3dB			
6	Conducted Spurious emissions	2.58dB			
7	AC Power Line Conducted Emission	Conducted Emission 3.44dB (0.15MHz~30MHz)			
		3.1dB (9kHz-30MHz)			
		3.8039dB (30MHz-200MHz)			
8	Radiated Spurious emission test	3.9679dB (200MHz-1GHz)			
		4.29dB (1GHz-18GHz)			
		3.30dB (18GHz-40GHz)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

Product Name:	Smart wall control
Model No.:	SM-WLCT
Test sample(s) ID:	GTSL202201000020-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Hardware Version:	V3.1
Software Version:	V1.1.0
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	2.0dBi
Power Supply:	AC 120V/60Hz

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2440MHz		
The Highest channel	2480MHz		

Test Item	Software	Description	
Conducted RF Testing and Radiated testing	Beken Wi-Fi Test Tool V1.6.0	Set the EUT to different modulation and channel	

Output power setting table:

Test Mode Set Tx Output Power		Data Rate		
BT LE	6dBm	1Mbps		

5.2 Test mode

	Transmitting mode Keep the EUT in continuously transmitting mode						
	Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.						
5.3	Description of Supp	ort Units					

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: • FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022	
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022	
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022	
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022	
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022	
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022	

Con	Conducted Emission						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022	
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022	
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022	

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

Gene	General used equipment:							
Item	Item Test Equipment Manufacturer Model No. Inventory Cal.Date Cal.Due (mm-dd-yy) (mm-dd-yy)							
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

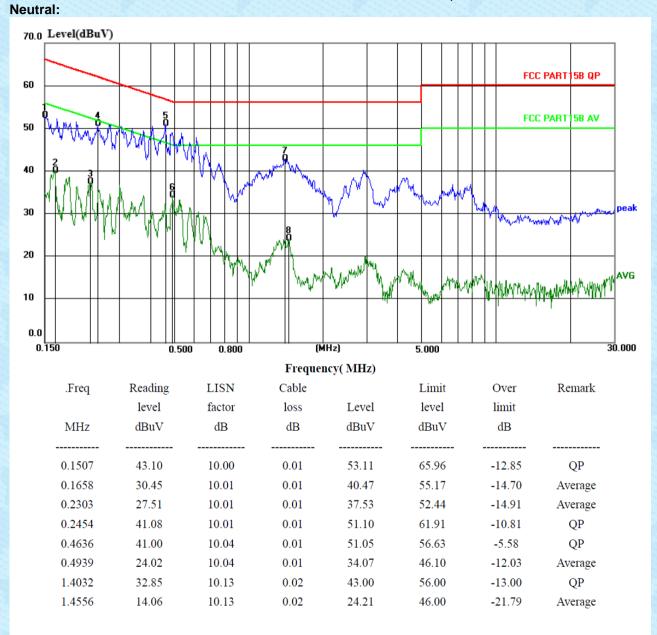
Standard requirement:	FCC Part15 C Section 15.203 /247(b)(4)						
15.203 requirement:							
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.							
15.247(b)(4) requirement:							
(4) The conducted output power limit specified in paragraph (b) of this sec-tion is based on the use of antennas with directional gains that do not ex-ceed 6 dBi. Except as shown in para-graph (c) of this section, if transmit-ting antennas of directional gain great-er than 6 dBi are used, the conducted output power from the intentional ra-diator shall be reduced below the stat-ed values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appro-priate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.							
Standard requirement: RSS-Gen Section 6.8							
When a measurement at the gain of the device's antenna manufacturer. For transmitte antenna gain that is in excess output power to demonstrate standard. For transmitters of	old or operated with antennas with which it was approved. The antenna connector is used to determine RF output power, the effective shall be stated, based on measurement or on data from the antenna ers of RF output power of 10 milliwatts or less, only the portion of the ss of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF e compliance with the radiated power limits specified in the applicable f output power greater than 10 milliwatts, the total antenna gain shall be poutput power to demonstrate compliance to the specified radiated power						
E.U.T Antenna:							
E.U.T Antenna: The antenna is Internal antenna, the best case gain of the is 2.0dBi, reference to the appendix II for details							

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
	RSS-Gen Section 8.8				
Test Method:	ANSI C63.10:2013 and RSS-Gen				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Aver	age	
	0.15-0.5	66 to 56*	56 to		
	0.5-5	56	40		
	5-30	<u>60</u>	50	0	
Tost satur:	* Decreases with the logarithm				
Test setup:	Reference Plane		_		
	LISN 40cm 80cm Filter AC power Equipment E.U.T Test table/Insulation plane Remark				
Test procedure:	E.U.T. Equipment Under Test LISN: Line Impedance Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a				
	 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details	6			
Test mode:	Refer to section 5.2 for details	3			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

Remark:N/A

Measurement data


Report No.: GTSL202201000020F01

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz

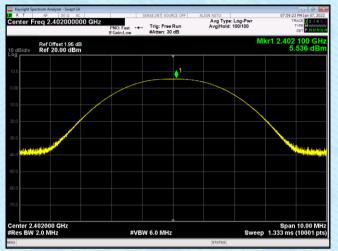
Line:

Notes:

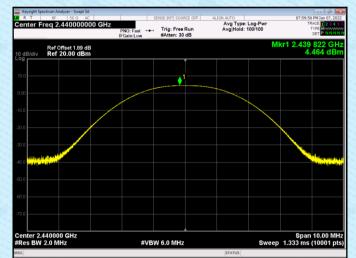
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

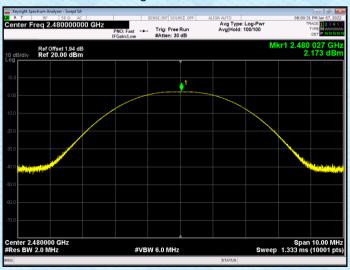
Test Requirement:	FCC Part15 C Section 15.247 (b)(3) RSS-247 Section 5.4(d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				


Measurement Data

Test channel	Peak Output Power (dBm)	EIRP (dBm)	Output Power Limit(dBm)	EIRP Limit(dBm)	Result
Lowest	5.536	7.536	30.00	36.00	Pass
Middle	4.464	6.464	30.00	36.00	Pass
Highest	2.173	4.173	30.00	36.00	Pass


Test plot as follows:

Report No.: GTSL202201000020F01


Lowest channel

Middle channel

Highest channel

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2) RSS-Gen Section 6.7 & RSS-247 Section 5.2(a)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.7422		
Middle	0.7344	>500	Pass
Highest	0.7229	States 1	

Test channel	99% Bandwidth (MHz)	Result
Lowest	1.0456	
Middle	1.0475	Pass
Highest	1.0469	

Test plot as follows:

Report No.: GTSL202201000020F01

Highest channel

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

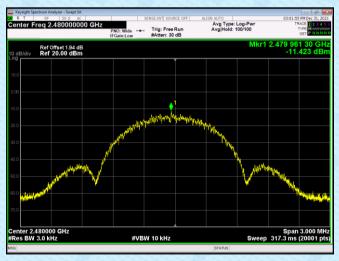
7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)				
	RSS-247 Section 5.2(b)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02				
	and RSS-Gen				
Limit:	8dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-9.069		
Middle	-9.195	8.00	Pass
Highest	-11.423		

Test plot as follows:

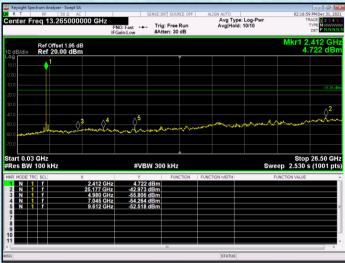

Report No.: GTSL202201000020F01

Lowest channel

Middle channel

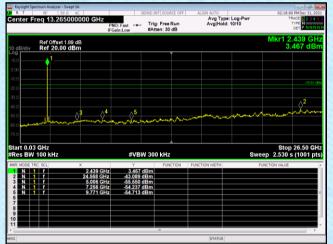
Highest channel

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.6 Spurious Emission in Non-restricted & restricted Bands

7.6.1	Conducted	Emission	Method
1.0.1	oonaaotoa	LIIIIOOIOII	mounou

Test Requirement:	FCC Part15 C Section 15.247 (d)						
	RSS-247 Section 5.5						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02						
	& RSS-Gen						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						


Test plot as follows: Lowest channel

Report No.: GTSL202201000020F01


30MHz~26.5GHz

Middle channel

30MHz~26.5GHz

Highest channel

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Lowest channel

Report No.: GTSL202201000020F01

		inalyzer - Swept SA										
R T enter F	req 2	50 Ω AC 2.3560000	00 GHz	PNO: Fast IFGain:Low	Tri	g: Free R tten: 30 d	un		Type: Log- Hold: 100/1			TYPE PNNN
0 dB/div	Ref Ref	Offset 1.95 d 20.00 dBr	B n								Mkr1 2.4 5	02 0 GH .060 dB
						Ĭ						1
												- i
0.0												
0.0												
0.0												
0.0										,	4 ^3	
0.0										the second state	Turn Lines and	Marcall V
0.0 betwee d	ماريسا	and the second	Anyher man	and the second s	ulewy the	atu suy medil	posticion	water and the second second	2404 494 49			
0.0												
tart 2.30 Res BW				;	≠VBW 30	0 kHz				Sweep	Stop 2 9.600 m	.40600 GH s (1001 pt
KR MODE T			х		Y	FUNCT	TION	FUNCTION WIDT	тн	FU	NCTION VALUE	
2 N	1 1 1 1		2.402 0 GH 2.400 0 GH	z -43	.060 dBm .837 dBm							
3 N 4	1 f 1 f		2.390 0 GH 2.386 0 GH		.735 dBm .747 dBm							
5												
7												
9												
1												

Highest channel

Keysight Spe	ectrum Analyzer - Swept SA RF 50 Ω AC		9	ENSE:INT SOUR	CE OFF	ALIGN AUTO		02:18:4	2 PM Dec 31, 2021
Center F	req 2.5260000	P	NO: Fast 🔸	Trig: Free #Atten: 30	Run	Avg Type Avg Hold	: Log-Pwr 100/100	T	RACE 12345 TYPE MWWWWW DET PNNNN
10 dB/div	Ref Offset 1.94 dE Ref 20.00 dBm								80 0 GHz 686 dBm
10.0	1								
-10.0									-18.61 dBr
-20.0									10.01424
-40.0								_	
-60.0	William and a	themploymente	womelestation	R-L-Maranapolis	ور در ارور مرور ارور ارور	anto Ducificado a contrata a posta	gf og velyeller landgeda av ge	un and a source	
Start 2.47 #Res BW			#VB\	N 300 kHz			Sweep	Stop 2. 9.600 ms	57600 GHz s (1001 pts
MKR MODE TR		2.480 0 GHz	Y 1.686		TION	FUNCTION WIDTH	FL	INCTION VALUE	
2 N 3 N 4 N 5	f	2.483 5 GHz 2.500 0 GHz 2.484 5 GHz	-51.085 -56.447 -49.434	dBm dBm					
6 7 8									
9 10 11				<u> </u>					-
MSG						STATUS			

7.6.2 Radiated Emission Method

Test Requirement:		on 15	: 200 and 1	5 205					
rest Requirement.	FCC Part15 C Section 15.209 and 15.205 RSS-247 Section 3.3 & RSS-Gen Section 8.9								
Test Method:	ANSI C63.10:2013 & RSS-Gen Section 8.9								
Test Frequency Range:	ANSI C63.10:2013 & RSS-Gen 9kHz to 26.5GHz								
Test site:		9kHz to 26.5GHz Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Value								
	9KHz-150KHz Quasi-peak 200Hz 600Hz Quasi-peak								
	150KHz-30MHz		lasi-peak	9KH			Quasi-peak		
	30MHz-1GHz		asi-peak	120K			Quasi-peak		
			Peak	1MH			Peak		
	Above 1GHz Peak 1MHz 10Hz Average								
Limit:	Frequency Limit (uV/m) Value Measurement Distance								
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	QP		300m		
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m		
	1.705MHz-30MH	lz	30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz	2	150		QP				
	216MHz-960MH	z	200		QP		3m		
	960MHz-1GHz		500		QP		511		
	Above 1GHz		500		Average				
	710070 10112		5000		Peak				
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MHz				
	Turn Table	and the second s	< 3m > Test A ım Table. [,]	ntenna Im Receiver					

GTS Report No.: GTSL202201000020F01 For radiated emissions from 30MHz to1GHz < 3m Test Antenna < 1m ... 4m > EUT. Turn Table. < 80cm 3 Turn Table+ 1 Receiver. Preamplifier. For radiated emissions above 1GHz ******** < 3m > Test Antenna+ < 1m ... 4m > EUT. Tum Tables <150cm P Receiver+ Preamplifier+ Test Procedure: The EUT was placed on the top of a rotating table (0.8m for below 1G 1. and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details

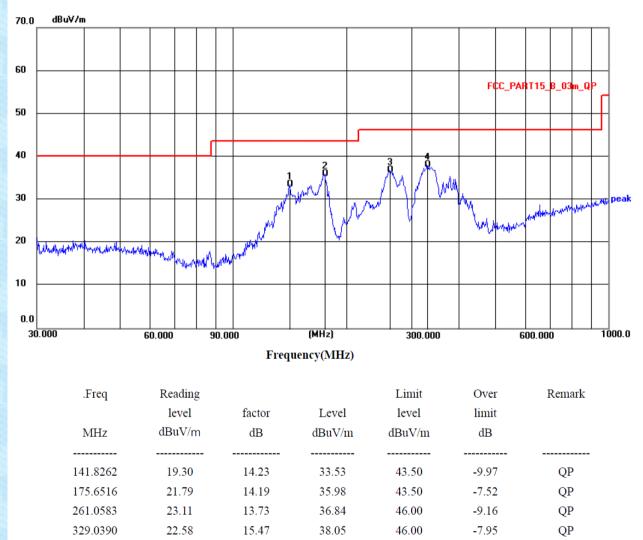
			and the second	Report No.: G	TSL202201	000020F01			
Test mode:	Refer to see	Refer to section 5.2 for details							
Test environment:	Temp.:	26 °C	Humid.:	53%	Press.:	1010mbar			
Test voltage:	AC 120V, 6	0Hz							
Test results:	Pass								

Measurement data:

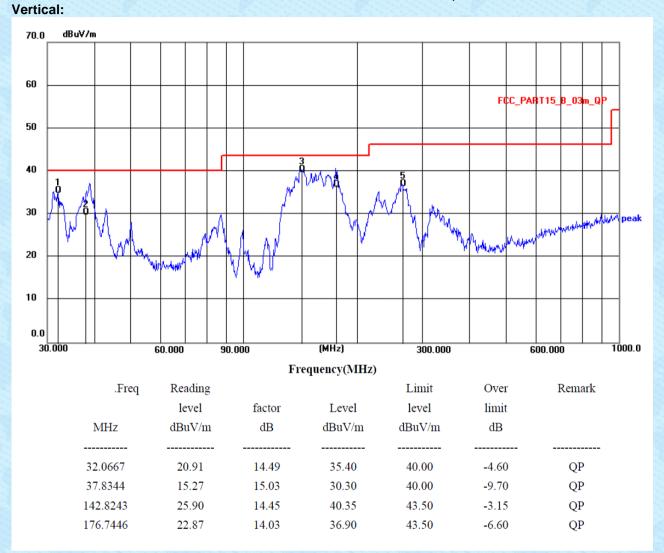
Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: GTSL202201000020F01


Below 1GHz

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz

Horizontal:

Remark:

- 1. An initial pre-scan was performed on the Horizontal and Vertical with peak detector.
- 2. Quasi-Peak measurement were performed at the frequencies with maximized peak emission.
- 3. Level =Reading + Factor
- 4. Factor= Antenna Gain + Cable Loss Amplifier Gain

Unwanted Emissions in non-restricted Frequency Bands

Above 1GHz

Test mode:		BLE			Test	channel:		Lowe	rest		
Peak value:		- States				and the state			S. Salar		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Loss Facto		Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization	
4804.00	42.31	31.54	8.36	32	.00	50.21	74.0	00	-23.79	Vertical	
7206.00	33.18	35.84	11.35	31	.99	48.38	74.0	00	-25.62	Vertical	
4804.00	42.58	31.54	8.36	32	.00	50.48	74.(00	-23.52	Horizontal	
7206.00	34.09	35.84	11.35	31	.99	49.29	74.(00	-24.71	Horizontal	
Average val	ue:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor IB)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization	
4804.00	35.97	31.54	8.36	32	.00	43.87	54.0	00	-10.13	Vertical	
7206.00	27.24	35.84	11.35	31	.99	42.44	54.0	00	-11.56	Vertical	
4804.00	36.75	31.54	8.36	32	.00	44.65	54.0	00	-9.35	Horizontal	
7206.00	28.40	35.84	11.35	31	.99	43.60	54.0	00	-10.40	Horizontal	

Test mode:		BLE			Test	channel:		Midd	dle		
Peak value:				8							
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Prea Fac	tor	Level (dBuV/m)	Limit (dBu\		Over Limit	polarization	
4880.00	(dBuV) 40.36	(dB/m) 31.96	(dB) 8.82	(dl 32.	/	49.05	74.0	00	(dB) -24.95	Vertical	
7320.00	32.58	36.46	11.98	31.	89	49.13	74.(00	-24.87	Vertical	
4880.00	42.45	31.96	8.82	32.	09	51.14	74.0	00	-22.86	Horizontal	
7320.00	35.29	36.46	11.98	31.	89	51.84	74.(00	-22.16	Horizontal	
Average val	ue:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization	
4880.00	34.83	31.96	8.82	32.	09	43.52	54.0	00	-10.48	Vertical	
7320.00	26.72	36.46	11.98	31.	89	43.27	54.0	00	-10.73	Vertical	
4880.00	35.47	31.96	8.82	32.	09	44.16	54.0	00	-9.84	Horizontal	
7320.00	27.94	36.46	11.98	31.	89	44.49	54.0	00	-9.51	Horizontal	

						F	Report N	lo.: G	TSL20220	1000020F01	
Test mode:		BLE			Test channel: High			High	nest		
Peak value:											
Frequency	Read	Antenna	Cable	Pre	amp	Level	Limit	Line	Over	polarization	
(MHz)	Level	Factor	Loss	Fa	ctor	(dBuV/m)	(dBu	V/m)	Limit		
	(dBuV)	(dB/m)	(dB)	(d	IB)	1912-121-14	2-2-22	1922	(dB)		
4960.00	39.85	32.01	8.87	32	.13	48.60	74.	00	-25.40	Vertical	
7440.00	30.18	36.65	11.99	31	.80	47.02	74.	00	-26.98	Vertical	
4960.00	41.51	32.01	8.87	32	.13	50.26	74.	00	-23.74	Horizontal	
7440.00	33.53	36.65	11.99	31	.80	50.37	74.	00	-23.63	Horizontal	
Average val	ue:										
Frequency	Read	Antenna	Cable	Pre	amp	Level	Limit	Line	Over	polarization	
(MHz)	Level	Factor	Loss	Fa	ctor	(dBuV/m)	(dBu)	//m)	Limit		
	(dBuV)	(dB/m)	(dB)	(d	IB)				(dB)		
4960.00	31.92	32.01	8.87	32	.13	40.67	54.	00	-13.33	Vertical	
7440.00	24.78	36.65	11.99	31	.80	41.62	54.	00	-12.38	Vertical	
4960.00	34.13	32.01	8.87	32	.13	42.88	54.	00	-11.12	Horizontal	
7440.00	26.46	36.65	11.99	31	.80	43.30	54.	00	-10.70	Horizontal	

						Report No.: 0	GTSL20220	1000020F01
Test mode:		BLE		Test	t channel:	Low	vest	
Peak value:								
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	polarization
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
2310.00	41.19	27.14	6.19	42.04	32.48	74.00	-41.52	Vertical
2390.00	53.55	27.37	6.31	42.11	45.12	74.00	-28.88	Vertical
2310.00	42.24	27.14	6.19	42.04	33.53	74.00	-40.47	Horizontal
2390.00	55.37	27.37	6.31	42.11	46.94	74.00	-27.06	Horizontal
Average val	lue:							
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
0010.00	(dBuV)	(dB/m)	(dB)	(dB)	04.05	54.00	(dB)	
2310.00	32.76	27.14	6.19	42.04	24.05	54.00	-29.95	Vertical
2390.00	46.58	27.37	6.31	42.11	38.15	54.00	-15.85	Vertical
2310.00	34.53	27.14	6.19	42.04	25.82	54.00	-28.18	Horizontal
2390.00	49.42	27.37	6.31	42.11	40.99	54.00	-13.01	Horizontal
Testmeder				Teel			haat	
Test mode:		BLE		Test	channel:	пıg	hest	
Peak value:								
Frequency	Read	Antenna	Cable	Preamp			Over	polarization
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
2483.50	50.67	27.66	6.45	42.01	42.77	74.00	-31.23	Vertical
2500.00	43.54	27.70	6.47	42.00	35.71	74.00	-38.29	Vertical
2483.50	52.28	27.66	6.45	42.01	44.38	74.00	-29.62	Horizontal
2500.00	43.39	27.70	6.47	42.00	35.56	74.00	-38.44	Horizontal
Average val	lue:							
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
2483.50	(dBuV) 42.58	(dB/m) 27.66	(dB) 6.45	(dB) 42.01	34.68	54.00	(dB) -19.32	Vortical
2500.00	35.14	27.70	6.47	42.00	27.31	54.00	-26.69	Vertical Vertical
	00.11							
	46.32	27.66	6.45	42.01	38.42	54.00	-10.00	Horizontal
2483.50 2500.00	46.32 35.63	27.66 27.70	6.45 6.47	42.01 42.00	38.42 27.80	54.00 54.00	-15.58 -26.20	Horizontal Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.	11
Test Method:	ANSI C63.10: 2013 & RSS-Gen	
Limit:		nsible for ensuring frequency stability d within the band of operation under all pecified
Test Procedure:	The EUT was setup to ANSI C63.1 compliance to RSS-Gen requireme	
Test setup:	Spectrum analyzer Image: Constraint of the setup for testing on A Note : Measurement setup for testing on A	Temperature Chamber
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

Report No.: GTSL202201000020F01

leasuremen		Eroquene	y stability vers	us Tomp		
			er Supply: AC			
		0 minute	2 minute	5 minute	10 minute	
Temp.	Operating	Measured	Measured	Measured	Measured	Pass
(°C)	Frequency	Frequency	Frequency	Frequency	Frequency	/Fail
(0)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	/1 ali
	2402	2402.003	2402.003	2402.002	2402.001	Pass
-30	2402	2440.002	2440.001	2440.002	2440.002	Pass
-50	2480	2479.998	2479.998	2479.999	2480.001	Pass
	2400	2402.002	2402.002	2402.003	2402.000	Pass
-20	2402	2440.002	2402.002	2402.003	2402.000	Pass
-20	2440	2479.999	2479.996	2479.998	2480.001	Pass
	2400	2401.998	2402.002	2402.002	2402.002	Pass
-10	2402	2401.998	2439.999	2439.998	2402.002	Pass
-10	2440	2479.999	2439.999	2439.998	2440.001	Pass
	2400	2479.999	2402.002	2479.999	2400.004	Pass
0	2402	2402.001	2402.002	2402.002	2402.002	Pass
0	2440	2479.999	2479.997	2439.997	2439.997	Pass
	2400	2479.999	2479.997	2401.999	2479.999	Pass
10	2402	2402.001	2402.001	2401.999	2402.002	Pass
10	2440	2440.000	2440.001	2479.998	2439.999	Pass
	2400	2480.002	2479.996	2479.998	2402.001	
20						Pass
20	2440	2440.004	2440.002	2439.998	2440.001	Pass
	2480	2479.996	2479.997	2479.997	2479.999	Pass
	2402	2402.001	2402.003	2401.998	2402.002	Pass
30	2440	2440.002	2440.002	2439.997	2440.001	Pass
	2480	2480.004	2479.998	2479.998	2480.002	Pass
	2402	2401.999	2402.001	2402.002	2401.999	Pass
40	2440	2440.003	2440.003	2440.001	2439.998	Pass
1-2-2-2-2-2-2-2	2480	2479.996	2480.001	2479.999	2480.001	Pass
	2402	2402.001	2402.002	2401.999	2402.002	Pass
50	2440	2440.002	2440.002	2440.001	2440.001	Pass
	2480	2480.002	2479.997	2480.002	2479.999	Pass
			y stability versu			
			emperature: 25			
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	Pass
(VAC)	(MHz)	Frequency	Frequency	Frequency	Frequency	/Fail
((1)(0))	, ,	(MHz)	(MHz)	(MHz)	(MHz)	
	2402	2402.001	2419.998	2402.003	2402.002	Pass
120	2440	2440.003	2440.001	2440.001	2440.001	Pass
	2480	2480.005	2479.998	2480.000	2479.998	Pass

Report No.: GTSL202201000020F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----