ENGINEERING TEST REPORT

VHF Digital Transceiver Model No.: IC-F7010S/T FCC ID: AFJ384400

Applicant:

ICOM Incorporated

1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

Tested in Accordance With

Federal Communications Commission (FCC) 47 CFR, Parts 2, 22, 74, 80 and 90 (Subpart I)

UltraTech's File No.: 17ICOM448_FCC90

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: March 24, 2017

Report Prepared by: Santhosh Fernandez

Issued Date: March 24, 2017

Tested by: Wei Wu

Test Dates: March 10-24, 2017

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by any agency of the US Government.
 This test report shall not be reproduced, except in full, without a written approval from UltraTech.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

 $Website: \underline{www.ultratech-labs.com}, \underline{Email: \underline{vic@ultratech-labs.com}}, \underline{Email: \underline{tri@ultratech-labs.com}}, \underline{Email: \underline$

91038

1309

46390-2049

SL2-IN-E-1119R

TABLE OF CONTENTS

IT 1.	INTRODUCTION	. 1
SCOP	PE	. 1
IT 2.	PERFORMANCE ASSESSMENT	. 2
CLIE	NT INFORMATION	. 2
IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	. 5
CLIM	IATE TEST CONDITIONS	. 5
OPER	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	. 5
IT 4.	SUMMARY OF TEST RESULTS	. 6
LOCA		
TEST		
	()(()	
	EOUENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213]	72
IT 6.	TEST EQUIPMENT LIST	30
IT 7.	MEASUREMENT UNCERTAINTY	31
RADI	ATED EMISSION MEASUREMENT UNCERTAINTY	31
IT 8.	MEASUREMENT METHODS	32
RADI	ATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD	33
EMIS	SION MASK	87
SPUR	LIOUS EMISSIONS (CONDUCTED)	37
TRAN	NSIENT FREQUENCY BEHAVIOR	38
	SCOF RELANORI IT 2. CLIE EQUI EUT', LIST ANCI GENE IT 3. CLIM OPER IT 4. LOCA APPL MOD IT 5. TEST MEAN MEAN ESSE RF PC AUDI MOD OCCU TRAN 9, 80.21 TR IT 6. IT 7. RADI IT 7. RADI FREC EMIS SPUR	SCOPE RELATED SUBMITTAL(S)/GRANT(S) NORMATIVE REFERENCES IT 2. PERFORMANCE ASSESSMENT CLIENT INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EUT'S TECHNICAL SPECIFICATIONS LIST OF EUT'S PORTS. ANCILLARY EQUIPMENT GENERAL TEST SETUP IT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS. CLIMATE TEST CONDITIONS. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS. IT 4. SUMMARY OF TEST RESULTS. LOCATION OF TESTS. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES. IT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS TEST PROCEDURES MEASUREMENT UNCERTAINTIES. MEASUREMENT UNCERTAINTIES. MEASUREMENT EQUIPMENT USED SESENTIAL PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER RF POWER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.213 & 90.205] AUDIO FREQUENCY RESPONSE [§ 2.1047(A), 80.213 & 90.210] OCCUPIED BANDWIDTH & EMISSION MASK [§§ 2.1049, 74.462, 80.211(F), 90.209 & 90.210] TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§§ 2.1051, 2.1057, 9.80.211(F), 30. 90.210] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1057, 22.359, 80.211(F), 30. 201] TRANSMITTER SPURIOUS/HARMO

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: 17ICOM448_FCC90

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference: FCC Parts 2, 22, 74, 80 and 90 (Subpart I)	
Title:	Code of Federal Regulations (CFR), Title 47 Telecommunication – Parts 2, 22, 74, 80 and 90 (Subpart I)
Purpose of Test:	To obtain FCC Certification Authorization for Radio operating in the Frequency Band 136-174 MHz (25 kHz, 12.5 kHz Channel Spacing).
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with TIA/EIA Standard TIA/EIA-603-D – Land Mobile FM or PM Communications Equipment Measurement and performance Standards.

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC CFR Parts 0-19, 80-End	2016	Code of Federal Regulations – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA/EIA 603, Edition D	2010	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
ANSI C63.26	2015	American National Standard for Compliance Testing of Transmitters used in Licensed Radio Services
CISPR 22	2008-09 Ed 6	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

Page 1 of 70

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. **CLIENT INFORMATION**

APPLICANT		
Name:	Icom Incorporated	
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003	
Contact Person:	Mr. Hideji Fujishima Phone #: +81 6 6793 5302 Fax #: +81 6 6793 0013 Email Address: world_support@icom.co.jp	

MANUFACTURER		
Name:	Icom Incorporated	
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003	
Contact Person:	Mr. Hideji Fujishima Phone #: +81 6 6793 5302 Fax #: +81 6 6793 0013 Email Address: world support@icom.co.jp	

2.2. **EQUIPMENT UNDER TEST (EUT) INFORMATION**

The applicant has supplied the following information (with the exception of the Date of Receipt).

Brand Name:	ICOM Incorporated
Product Name:	VHF Digital Transceiver
Model Name or Number:	IC-F7010T
Serial Number:	00000225
Type of Equipment:	Licensed Non-Broadcast Transmitter Held to Face
Power Supply Requirement:	7.5 VDC nominal
Transmitting/Receiving Antenna Type:	Non-integral
Primary User Functions of EUT:	2-Way Wireless Voice & Data Communication

Page 2 of 70

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	Portable	
Intended Operating Environment:	Restricted to Occupational Use only	
Power Supply Requirement:	7.5 VDC nominal	
RF Output Power Rating:	5 Watt (High) / 1 Watt (Low)	
Operating Frequency Range:	136-174 MHz	
RF Output Impedance:	50 Ω	
Channel Spacing:	25 kHz, 15 kHz, 12.5 kHz	
Occupied Bandwidth (99%):	15.42 kHz (for 25 kHz Analog) 10.66 kHz (for 12.5 kHz Analog) 8.109 kHz (for 12.5 kHz Digital)	
Emission Designation*:	Analog:16K0F3E**, 11K0F3E, P-25: 8K10F1E, 8K10F1D, 8K10F1W	

^{*} For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows: For FM Voice Modulation:

Channel Spacing = 25 KHz, D = 5 KHz max, K = 1, M = 3 KHz

 $B_n = 2M + 2DK = 2(3) + 2(5)(1) = 16 \text{ KHz}$

Emission designation: 16K0F3E

Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz

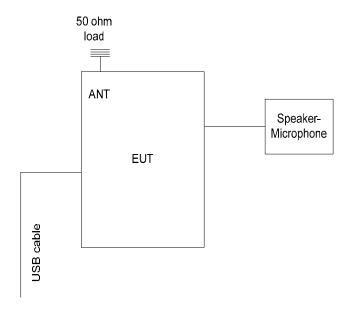
 $B_n = 2M + 2DK = 2(3) + 2(2.5)(1) = 11 KHz$

Emission designation: 11K0F3E

**Note: The emission designation 16K0F3E with 25 KHz Channel bandwidth is only applied to the device operated in FCC Rules Part 22, 74 & 80 frequencies. The operation of 16K0F3E emission will be disabled in the firmware by the manufacturer for device that operates in FCC Rules Part 90 frequencies (Private Land Mobile) as declared by the applicant.

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Terminated with
1	Speaker-Microphone Connector	1	ICOM Multi-connector Jack	Speaker-Microphone
2	Antenna Connector	1	Special type	50 Ohm Load
3	USB		Micro-USB	USB cable


Page 3 of 70

2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Speaker Microphone	
Brand Name:	Icom Inc.	
Model Name or Number:	HM-222	

2.6. GENERAL TEST SETUP

EUT OPERATING CONDITIONS AND CONFIGURATIONS EXHIBIT 3. DURING TESTS

CLIMATE TEST CONDITIONS 3.1.

The climate conditions of the test environment are as follows:

Temperature:	21°C - 24°C
Humidity:	45% to 58%
Pressure:	102 kPa
Power Input Source:	7.5 VDC Nominal

OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS 3.2.

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna port terminated to a 50 Ohm RF Load.

Transmitter Test Signals		
Frequency Band(s):	136-174 MHz	
Test Frequencies: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	138.1 MHz, 151.1 MHz, 173.3 MHz	
Transmitter Wanted Output Test Signals:		
Transmitter Power (measured maximum output power):	5.24 W High and 1.17 W Low	
Normal Test Modulation:	FM Voice/Digital	
Modulating signal source:	External	

Page 5 of 70 FCC ID: AFJ384400

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3).

4.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Applicability (Yes/No)
1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	Yes, Refer to SAR Report
2.1046, 22.565, 74.461, 80.215 & 90.205	RF Power Output	Yes
2.1047(a), 80.213(e) & 90.242(b)(8)	Audio Frequency Response	Not applicable to new standard. However, tests are conducted under FCC's recommendation.
2.1047(b), 74.463, 80.213 & 90.210	Modulation Limiting	Yes
2.1049, 74.462, 80.211(f), 90.209 & 90.210	Emission Limitation & Emission Mask	Yes
2.1051, 2.1057, 80.211(f)(3), & 90.210	Emission Limits - Spurious Emissions at Antenna Terminal	Yes
2.1053, 2.1057, 22.359, 80.211(f)(3), & 90.210	Emission Limits - Field Strength of Spurious Emissions	Yes
2.1055, 22.355, 74.464 80.209 & 90.213	Frequency Stability	Yes
74.462(c) & 90.214	Transient Frequency Behavior	Yes

VHF Digital Transceiver, Model No: IC-F7010S/T, by ICOM Incorporated has also been tested and found to comply with FCC Part 15, Subpart B - Radio Receivers and Class B Digital Devices. The engineering test report has been documented and kept on file and is available upon request.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

4.3.1. DEVIATION OF STANDARD TEST PROCEDURES

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: 17ICOM448_FCC90

March 24, 2017

Page 6 of 70

FCC ID: AFJ384400

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EXHIBIT 5. EMISSIONS

TEST PROCEDURES 5.1.

This section contains test results only. Details of test methods and procedures can be found in EXHIBIT 8 of this report.

5.2. **MEASUREMENT UNCERTAINTIES**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) - Guide to the Expression of Uncertainty in Measurement. Refer to Exhibit 7 for Measurement Uncertainties.

5.3. **MEASUREMENT EQUIPMENT USED**

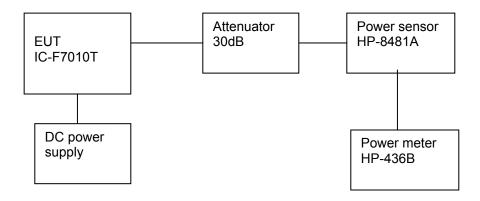
The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

The essential function of the EUT is to communicate to and from radios over RF link.

Page 7 of 70

5.5. RF POWER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205]


5.5.1. Limits

Please refer to FCC 47 CFR 90.205, 74.461, 80.215 & 22.565 for specification details.

5.5.2. **Method of Measurements**

Refer to Section 8.1 (Conducted) and 8.2 (Radiated) of this report for measurement details

5.5.3. **Test Arrangement**

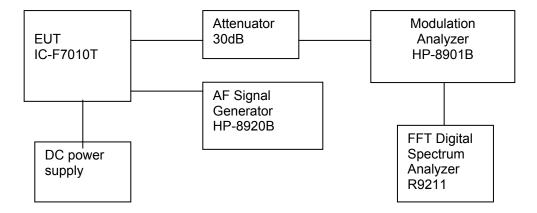
5.5.4. **Test Data**

Fundamental Frequency	Wide/	Power Rating	Measured Power
(MHz)	Narrow	Watts	Watts
138.100	Narrow	5.0	5.24
151.100	Narrow	5.0	5.21
173.300	Narrow	5.0	5.22
138.100	Narrow	1.0	1.17
151.100	Narrow	1.0	1.25
173.300	Narrow	1.0	1.21
138.100	Narrow	2.5	2.03
151.100	Narrow	2.5	2.12
173.300	Narrow	2.5	2.17

5.6. AUDIO FREQUENCY RESPONSE [§ 2.1047(a), 80.213(e) & 90.242(b)(8)]

5.6.1. Limits

§ 2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.


§ 90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 kHz Attenuation
3 –20 KHz 20 – 30 KHz	60 log ₁₀ (f/3) dB where f is in kHz 50dB

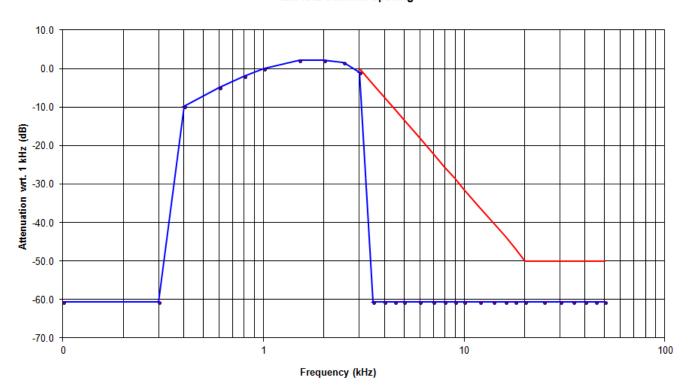
5.6.2. Method of Measurements

The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.

5.6.3. Test Arrangement

Page 9 of 70

5.6.4. **Test Data**


12.5 KHz Channel Spacing, F3E 5.6.4.1.

Remark: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 kHz in comparison with the recommended audio filter attenuation.

Frequency (KHz)	Audio In (dBV)	Audio Out (dBV)	Attenuation (Out - In) (dB)	Attenuation Rel. to 1 KHz (dB)	Recommended Attenuation (dB)
0.1	-35.92	-60.00	-24.1	-60.5	
0.3	-35.92	-60.00	-24.1	-60.5	
0.4	-35.92	-9.22	26.7	-9.7	
0.6	-35.92	-4.38	31.5	-4.9	
0.8	-35.92	-1.46	34.5	-2.0	
1.0	-35.92	0.52	36.4	0.0	
1.5	-35.92	2.66	38.6	2.1	
2.0	-35.92	2.69	38.6	2.2	
2.5	-35.92	2.05	38.0	1.5	
3.0	-35.92	-0.53	35.4	-1.1	0
3.5	-35.92	-60.00	-24.1	-60.5	-4
4.0	-35.92	-60.00	-24.1	-60.5	-7
4.5	-35.92	-60.00	-24.1	-60.5	-11
5.0	-35.92	-60.00	-24.1	-60.5	-13
6.0	-35.92	-60.00	-24.1	-60.5	-18
7.0	-35.92	-60.00	-24.1	-60.5	-22
8.0	-35.92	-60.00	-24.1	-60.5	-26
9.0	-35.92	-60.00	-24.1	-60.5	-29
10.0	-35.92	-60.00	-24.1	-60.5	-31
12.0	-35.92	-60.00	-24.1	-60.5	-36
14.0	-35.92	-60.00	-24.1	-60.5	-40
16.0	-35.92	-60.00	-24.1	-60.5	-44
18.0	-35.92	-60.00	-24.1	-60.5	-47
20.0	-35.92	-60.00	-24.1	-60.5	-50
25.0	-35.92	-60.00	-24.1	-60.5	-50
30.0	-35.92	-60.00	-24.1	-60.5	-50
35.0	-35.92	-60.00	-24.1	-60.5	-50
40.0	-35.92	-60.00	-24.1	-60.5	-50
45.0	-35.92	-60.00	-24.1	-60.5	-50
50.0	-35.92	-60.00	-24.1	-60.5	-50

Page 10 of 70

Audio Frequency Response 12.5 kHz Channel Spacing

5.6.4.2. 25 KHz Channel Spacing, F3E

Note: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 KHz in comparison with the recommended audio filter attenuation.

Frequency (KHz)	Audio In (dBV)	Audio Out (dBV)	Attenuation (Out - In) (dB)	Attenuation Rel. to 1 KHz (dB)	Recommended Attenuation (dB)
0.1	-35.65	-60.00	-24.4	-66.7	
0.3	-35.65	-60.00	-24.4	-66.7	
0.4	-35.65	-2.91	32.7	-9.6	
0.6	-35.65	1.90	37.6	-4.8	
0.8	-35.65	4.77	40.4	-2.0	
1.0	-35.65	6.72	42.4	0.0	
1.5	-35.65	8.68	44.3	2.0	
2.0	-35.65	8.99	44.6	2.3	
2.5	-35.65	8.75	44.4	2.0	
3.0	-35.65	7.40	43.1	0.7	0
3.5	-35.65	-55.40	-19.8	-62.1	-4
4.0	-35.65	-60.00	-24.4	-66.7	-7
4.5	-35.65	-60.00	-24.4	-66.7	-11
5.0	-35.65	-60.00	-24.4	-66.7	-13
6.0	-35.65	-60.00	-24.4	-66.7	-18
7.0	-35.65	-60.00	-24.4	-66.7	-22
8.0	-35.65	-60.00	-24.4	-66.7	-26
9.0	-35.65	-60.00	-24.4	-66.7	-29
10.0	-35.65	-60.00	-24.4	-66.7	-31
12.0	-35.65	-60.00	-24.4	-66.7	-36
14.0	-35.65	-60.00	-24.4	-66.7	-40
16.0	-35.65	-60.00	-24.4	-66.7	-44
18.0	-35.65	-60.00	-24.4	-66.7	-47
20.0	-35.65	-60.00	-24.4	-66.7	-50
25.0	-35.65	-60.00	-24.4	-66.7	-50
30.0	-35.65	-60.00	-24.4	-66.7	-50
35.0	-35.65	-60.00	-24.4	-66.7	-50
40.0	-35.65	-60.00	-24.4	-66.7	-50
45.0	-35.65	-60.00	-24.4	-66.7	-50
50.0	-35.65	-60.00	-24.4	-66.7	-50

File #: 17ICOM448_FCC90

Audio Frequency Response 25 kHz Channel Spacing

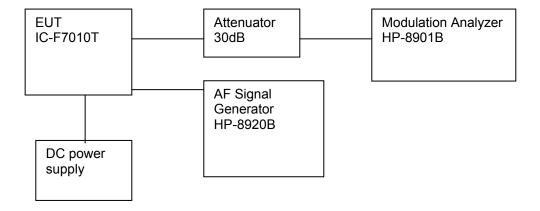
File #: 17ICOM448_FCC90

5.7. MODULATION LIMITING [§§ 2.1047 (b), 74.463, 80.213 & 90.210]

5.7.1. Limits

§ 2.1047(b): Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Recommended frequency deviation characteristics are given below:


- 1.25 kHz for 6.25 kHz Channel Spacing System
- 2.5 KHz for 12.5 kHz Channel Spacing System

5.7.2. **Method of Measurements**

For Audio Transmitter: The carrier frequency deviation was measured with the tone input signal level varied from 0 Vp to audio input rating level plus 16 dB at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

For Data Transmitter with Maximum Frequency Deviation set by Factory: The EUT was set at maximum frequency deviation, and its peak frequency deviation was then measured using EUT's internal random data source.

5.7.3. **Test Arrangement**

Page 14 of 70

5.7.4. Test Data

5.7.4.1. Voice Modulation Limiting for 12.5 KHz Channel Spacing Operation

Modulating Signal Level		Peak Frequency Deviation (kHz) at the following modulating frequency:				
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	0.02	0.10	0.22	0.42	0.03	2.5
4	0.02	0.19	0.44	0.73	0.03	2.5
6	0.02	0.28	0.64	1.02	0.03	2.5
8	0.02	0.37	0.87	1.19	0.03	2.5
10	0.02	0.44	1.02	1.26	0.03	2.5
15	0.02	0.65	1.42	1.29	0.03	2.5
20	0.02	0.86	1.73	1.32	0.03	2.5
25	0.02	1.04	1.88	1.39	0.03	2.5
30	0.02	1.20	1.94	1.39	0.03	2.5
35	0.02	1.36	1.99	1.39	0.03	2.5
40	0.02	1.49	2.02	1.39	0.03	2.5
45	0.02	1.59	2.04	1.39	0.03	2.5
50	0.02	1.72	2.05	1.39	0.03	2.5
60	0.02	1.73	2.03	1.39	0.03	2.5
70	0.02	1.74	2.06	1.39	0.03	2.5
80	0.02	1.72	1.96	1.39	0.03	2.5
90	0.02	1.74	1.94	1.39	0.03	2.5
100	0.02	1.74	1.90	1.39	0.03	2.5

Page 15 of 70

Voice Signal Input Level	= STD MOD Level + 16 dB
--------------------------	-------------------------

=20log (16)+16 = 40.08dB(mVrms) = 100.95Vrms

Modulation Frequency (kHz)	Peak Deviation (kHz)	Maximum Limit (kHz)
0.1	0.02	2.5
0.2	0.02	2.5
0.4	1.68	2.5
0.6	1.81	2.5
0.8	1.93	2.5
1.0	1.90	2.5
1.2	2.05	2.5
1.4	2.07	2.5
1.6	2.08	2.5
1.8	2.12	2.5
2.0	2.13	2.5
2.5	1.99	2.5
3.0	1.39	2.5
3.5	0.02	2.5
4.0	0.02	2.5
4.5	0.02	2.5
5.0	0.03	2.5
6.0	0.02	2.5
7.0	0.02	2.5
8.0	0.02	2.5
9.0	0.02	2.5
10.0	0.02	2.5

5.7.4.2. Voice Modulation Limiting for 25 KHz Channel Spacing Operation (Not for FCC Part 90 **Certification**)

Modulating Signal Level	Peak Frequency Deviation (kHz) at the following modulating frequency:					Maximum Limit
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	0.05	0.20	0.45	0.98	0.05	5.0
4	0.05	0.38	0.88	1.85	0.05	5.0
6	0.05	0.55	1.28	2.56	0.05	5.0
8	0.05	0.72	1.68	3.02	0.05	5.0
10	0.05	0.87	2.02	3.19	0.05	5.0
15	0.05	1.27	2.81	3.35	0.05	5.0
20	0.05	1.69	3.37	3.46	0.06	5.0
25	0.05	2.06	3.63	3.53	0.06	5.0
30	0.05	2.38	3.78	3.53	0.07	5.0
35	0.05	2.68	3.89	3.53	0.07	5.0
40	0.05	2.94	3.96	3.53	0.08	5.0
45	0.05	3.13	4.02	3.53	0.08	5.0
50	0.05	3.27	4.08	3.53	0.08	5.0
60	0.05	3.39	4.13	3.53	0.08	5.0
70	0.05	3.43	4.01	3.53	0.08	5.0
80	0.05	3.43	3.88	3.53	0.08	5.0
90	0.05	3.43	3.80	3.53	0.08	5.0
100	0.05	3.39	3.68	3.53	0.08	5.0

Voice Signal Input Level = STD MOD Level + 16 dB =20log (16.5)+16 = 40.35 dB(mVrms)= 104.11 mVrms

Modulation Frequency (KHz)	Peak Deviation (KHz)	Maximum Limit (KHz)
0.1	0.05	5.0
0.2	0.05	5.0
0.4	3.16	5.0
0.6	3.46	5.0
0.8	3.68	5.0
1.0	3.68	5.0
1.2	4.12	5.0
1.4	4.13	5.0
1.6	4.18	5.0
1.8	4.21	5.0
2.0	4.25	5.0
2.5	4.23	5.0
3.0	3.53	5.0
3.5	0.03	5.0
4.0	0.03	5.0
4.5	0.03	5.0
5.0	0.08	5.0
6.0	0.04	5.0
7.0	0.04	5.0
8.0	0.03	5.0
9.0	0.04	5.0
10.0	0.04	5.0

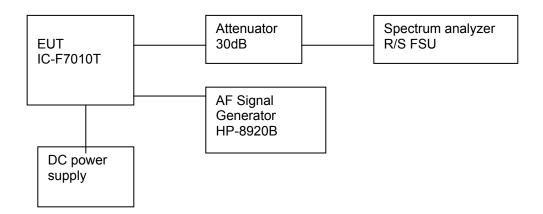
5.8. OCCUPIED BANDWIDTH & EMISSION MASK [§§ 2.1049, 74.462, 80.211(f), 90.209 & 90.210]

5.8.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	Maximum Authorized BW (KHz)	Channel Spacing (KHz)	Recommended Frequency Deviation (KHz)	FCC Applicable Mask
156-174, 421-512	11.25	12.5	2.5	Mask D – Voice & Data
156-174, 421-512	20	25	5.0	Mask B – Voice & Data
150-174, 421-512	6	6.25	1.25	Mask E – Voice & Data

§80.211(f) Emission limitations


Emissions shall be attenuated below the mean output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;
- (2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log₁₀ (mean power in watts) dB.

5.8.2. **Method of Measurements**

Refer to Section 8.4 of this report for measurement details.

5.8.3. **Test Arrangement**

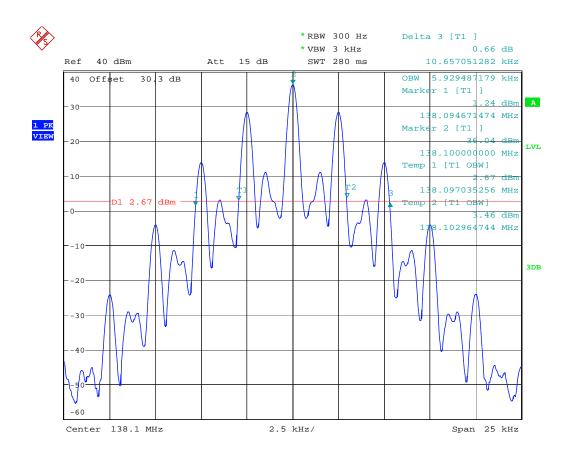
Page 19 of 70

5.8.4. Test Data

5.8.4.1. 99% Occupied Bandwidth

Frequency (MHz)	Channel Spacing (kHz)	Modulation	*Measured 99% OBW at Maximum Freq. Deviation (kHz)	Maximum Authorized Bandwidth (kHz)
138.1	25.0*	FM with 2.5 KHz sine wave signal	15.42*	20.0
151.1	25.0*	FM with 2.5 KHz sine wave signal	15.42*	20.0
173.3	25.0*	FM with 2.5 KHz sine wave signal	15.42*	20.0
138.1	12.5	FM with 2.5 kHz sine wave signal	10.66	11.25
151.1	12.5	FM with 2.5 kHz sine wave signal	10.62	11.25
173.3	12.5	FM with 2.5 kHz sine wave signal	10.58	11.25
138.1	12.5	P-25 Phase 1 Digital (F1D, F1E)	8.01	11.25
151.1	12.5	P-25 Phase 1 Digital (F1D, F1E)	8.109	11.25
173.3	12.5	P-25 Phase 1 Digital (F1D, F1E)	8.01	11.25
138.1	12.5	P-25 Phase 2 Digital(F7W)	7.92	11.25
151.1	12.5	P-25 Phase 2 Digital(F7W)	8.08	11.25
173.3	12.5	P-25 Phase 2 Digital(F7W)	7.95	11.25

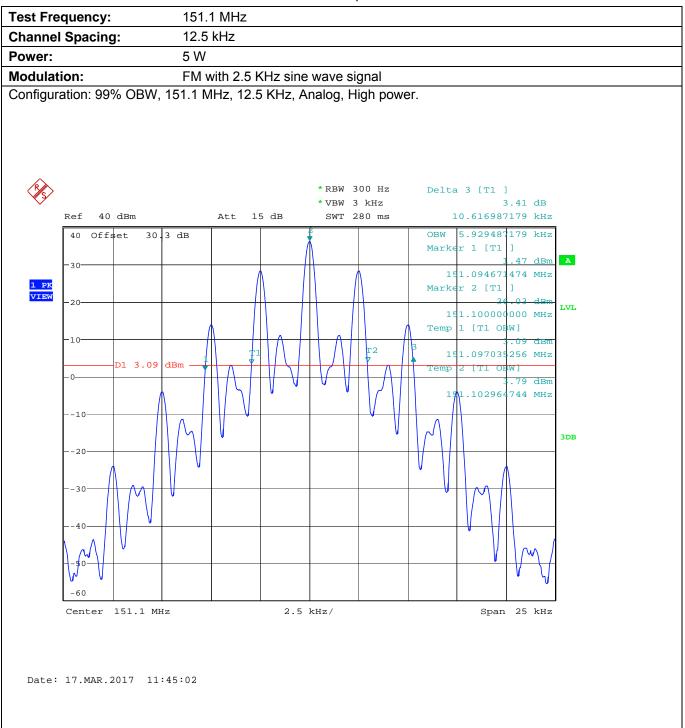
^{*} Not for FCC Part 90 Certification, refer to cover letter for details.


Refer to the following test data plots for details.

Page 20 of 70

Plot 5.8.4.1.1. Occupied Bandwidth

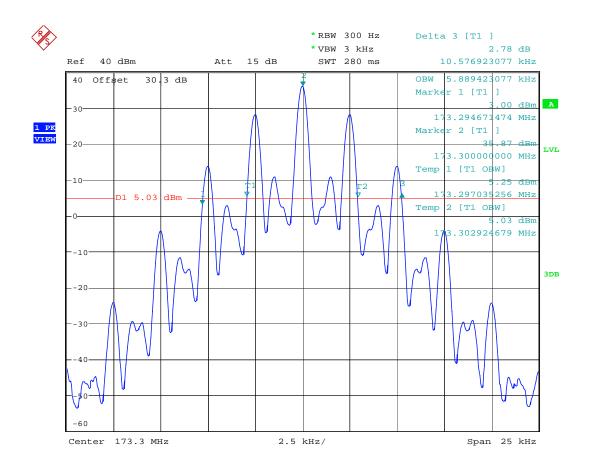
Test Frequency:	138.1 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	FM with 2.5 kHz sine wave signal


Configuration: 99% OBW, 138.1 MHz, 12.5 KHz, Analog, High power.

Date: 17.MAR.2017 11:40:04

File #: 17ICOM448_FCC90

Plot 5.8.4.1.2. Occupied Bandwidth

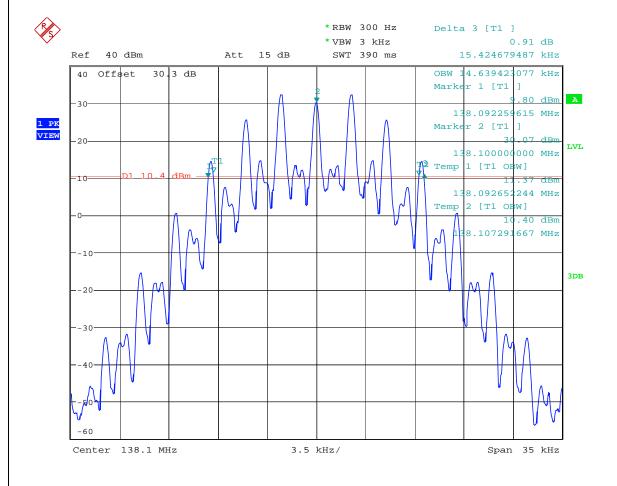


ULTRATECH GROUP OF LABS

Plot 5.8.4.1.3. Occupied Bandwidth

Test Frequency:	173.3 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	FM with 2.5 KHz sine wave signal

Configuration: 99% OBW, 173.3 MHz, 12.5 KHz, Analog, High power.


Date: 17.MAR.2017 12:05:46

File #: 17ICOM448_FCC90

Plot 5.8.4.1.4. Occupied Bandwidth

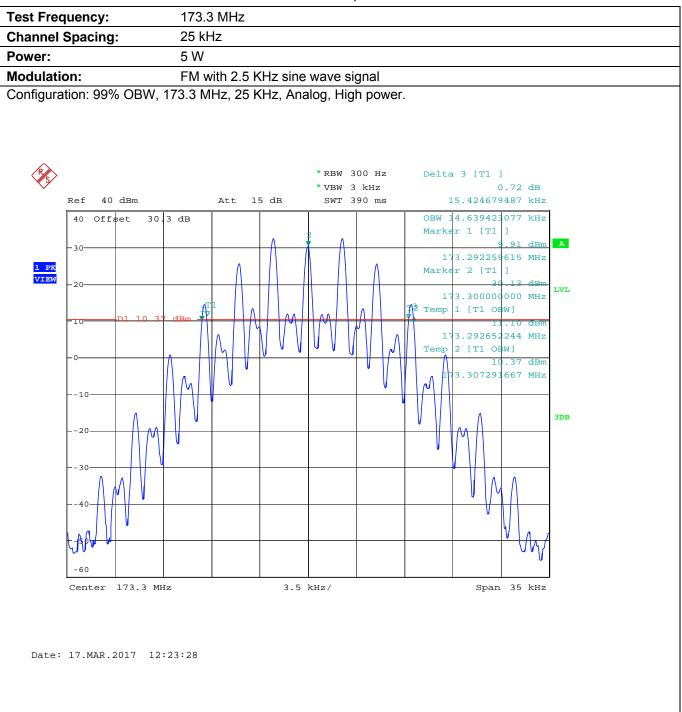
Test Frequency:	138.1 MHz
Channel Spacing:	25 kHz
Power:	5 W
Modulation:	FM with 2.5 kHz sine wave signal

Configuration: 99% OBW, 138.1 MHz, 25 KHz, Analog, High power.

Date: 17.MAR.2017 12:10:17

Plot 5.8.4.1.5. Occupied Bandwidth

Test Frequency:	151.1 MH	Z			
Channel Spacing:	25 kHz				
Power:	5 W				
Modulation:	FM with 2	.5 KHz sine wave	signal		
Configuration: 99%	OBW, 151.1 MHz, :	25 KHz, Analog, F	ligh power.		
(R)			300 Hz	Delta 3 [T1] 1.75 dB	
Ref 40	dBm Att		390 ms	15.424679487 kHz	z.
40 Offs	et 30.3 dB	2		OBW 14.639423077 kHz Marker 1 [T1]	<u> </u>
-30-		 	1	9.41 dBm 151.092259615 MHz	
1 PK VIEW 20		n	1 1	Marker 2 [T1]	
-20	1 1 1 1 1 1 1 1 1 1			30.09 dBm 151.1000000000 MHz Temp 1 [T1 OBW]	T.37T.
-10	31 10.2 dBm	14 0,0 10,0	M	11.57 dBm 151.092652244 MHz Temp 2 [T1 OBW]	
10	MMV		7	10.02 dBm 151.107291667 MHz	
20				V	3DB
30					
-40				MA	
				V (


Date: 17.MAR.2017 12:13:31

Center 151.1 MHz

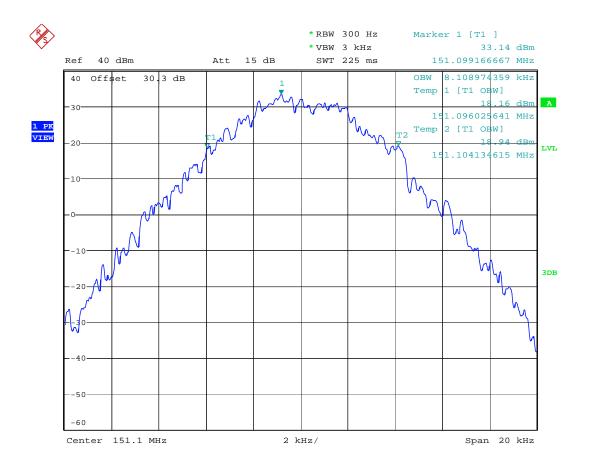
Span 35 kHz

3.5 kHz/

Plot 5.8.4.1.6. Occupied Bandwidth

ULTRATECH GROUP OF LABS

Plot 5.8.4.1.7. Occupied Bandwidth



ULTRATECH GROUP OF LABS

Plot 5.8.4.1.8. Occupied Bandwidth

Test Frequency:	151.1 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	P-25 Phase 1 Digital (F1D, F1E)

Configuration: 99% OBW, 151.1 MHz, 12.5 KHz, Digital (F1D, F1E), High power.

Date: 21.MAR.2017 14:04:11

Plot 5.8.4.1.9. Occupied Bandwidth

Test Frequency:	173.3 MHz		
Channel Spacing:	12.5 kHz		
Power:	5 W		
Modulation:	P-25 Phase 1 Dig		
Configuration: 99% OBW	/, 173.3 MHz, 12.5 KH	z, Digital (F1D, F1E), High power	•
Ref 40 dBm	Att 15 de	*RBW 300 Hz Marker 1 [' *VBW 3 kHz SWT 225 ms 173.299	F1] 33.41 dBm 102564 MHz
40 Offset	Att 15 dE		820513 kHz
		Temp 1 [T1	OBW] 17.13 dBm
-30	W	V- 3	929487 MHz
1 PK VIEW -20		T2 Temp 2 [T1	OBW J 19 19 dBm
	M. T	173.303	942308 MHz
-10	M	h.n.	
		M.	
20			Ny
			h _M .
40			•
7-40			
50			
-60			
<u> </u>	3 MHz	2 kHz/ Sp	an 20 kHz

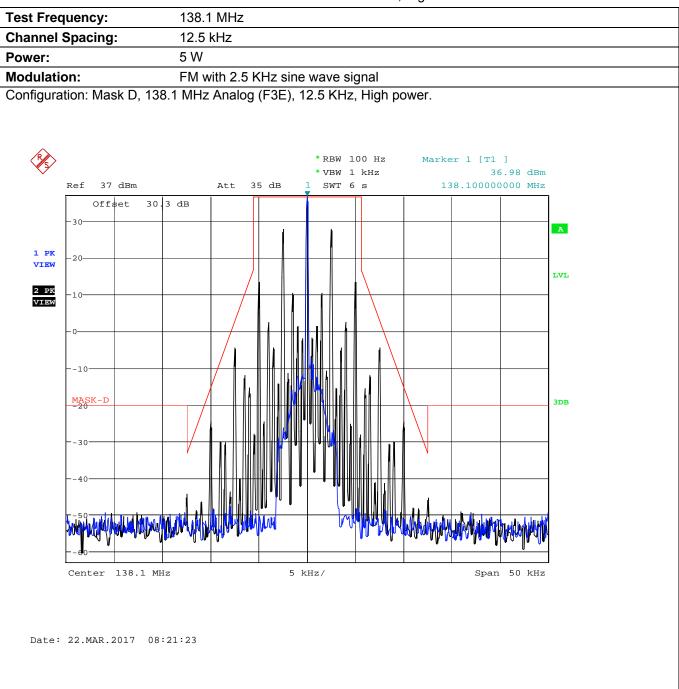
Date: 21.MAR.2017 14:08:34

Plot 5.8.4.1.10. Occupied Bandwidth

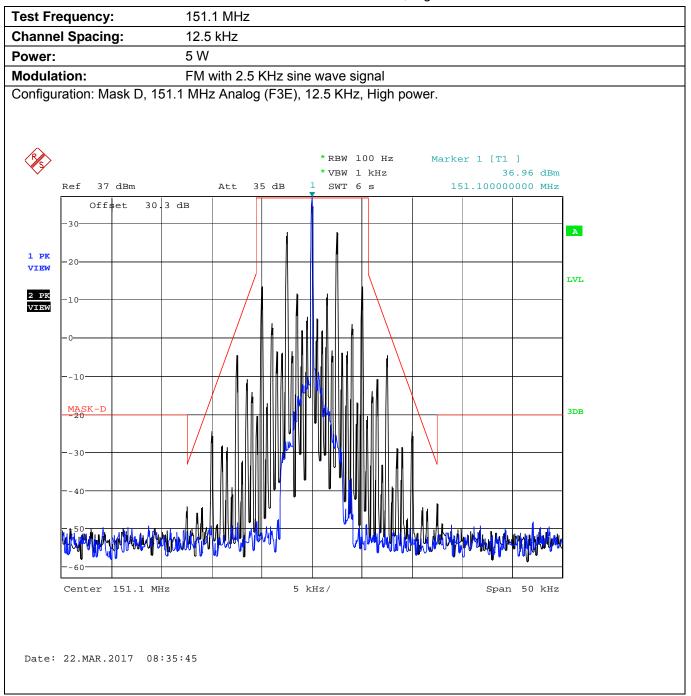


All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

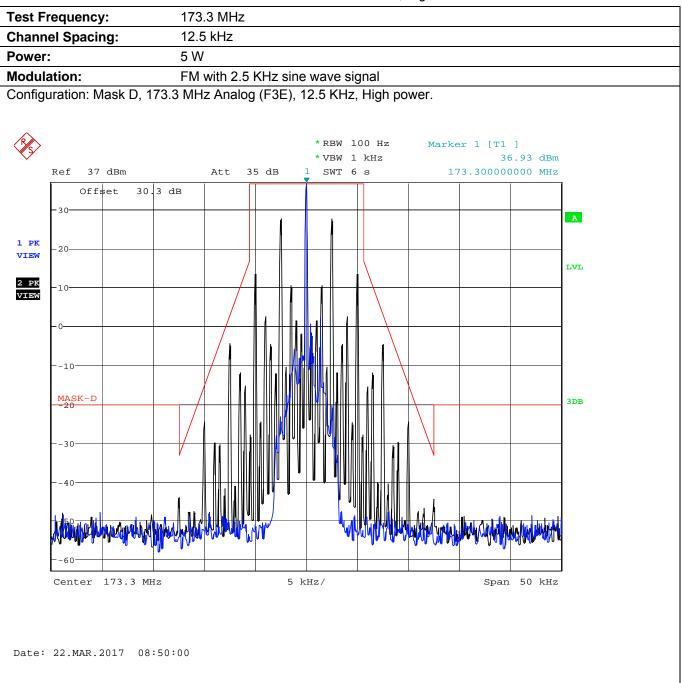
Plot 5.8.4.1.11. Occupied Bandwidth



Plot 5.8.4.1.12. Occupied Bandwidth



5.8.4.2. **Emission Mask D**

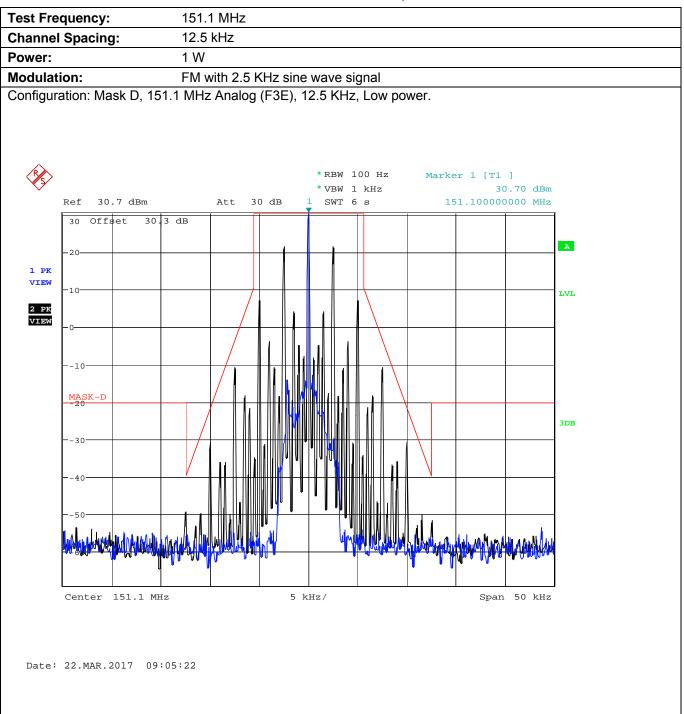

Plot 5.8.4.2.1. Emission Mask D, High Power

Plot 5.8.4.2.2. Emission Mask D, High Power

Plot 5.8.4.2.3. Emission Mask D, High Power

Plot 5.8.4.2.4. Emission Mask D, Low Power

Test Frequency:	138.1 MHz	
Channel Spacing:	12.5 kHz	
Power:	1 W	
Modulation:	FM with 2.5 KHz sine wave signal	
Configuration: Mask D, 13	3.1 MHz Analog (F3E), 12.5 KHz, Low power.	
(R)	*RBW 100 Hz Marker 1 [T1]	
Ref 30.5 dBm	*VBW 1 kHz 30.46 dB Att 30 dB 1 SWT 6 s 138.100000000 MH	
	3 dB	-
1		
-20		A
1 PK VIEW		
-10		LVL
2 PK VIEW		
-0		
-10		
MASK-D		
20		3DB
30		
-40	<u> </u>	_
-50		4

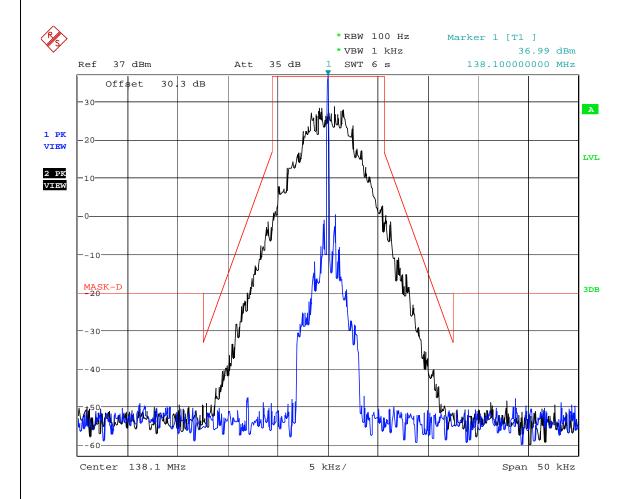

Date: 22.MAR.2017 09:10:10

Center 138.1 MHz

Span 50 kHz

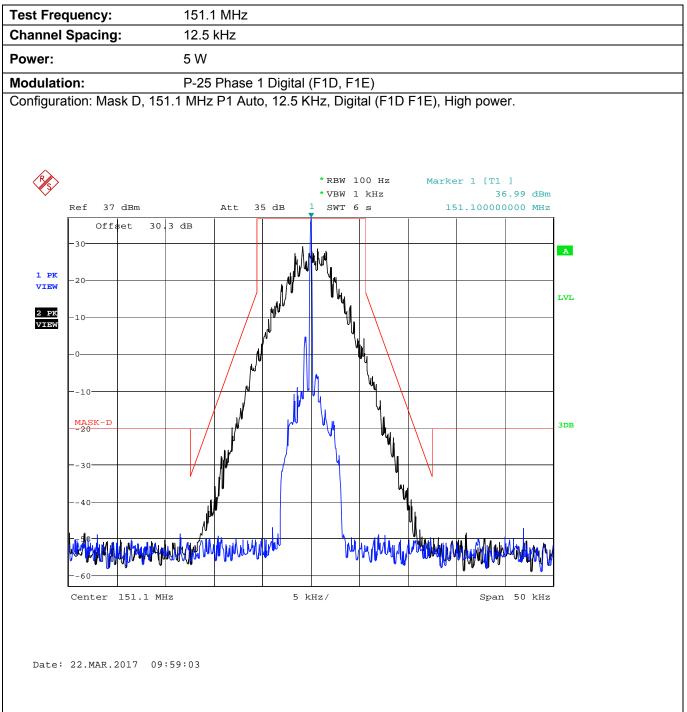
5 kHz/

Plot 5.8.4.2.5. Emission Mask D, Low Power


Plot 5.8.4.2.6. Emission Mask D, Low Power

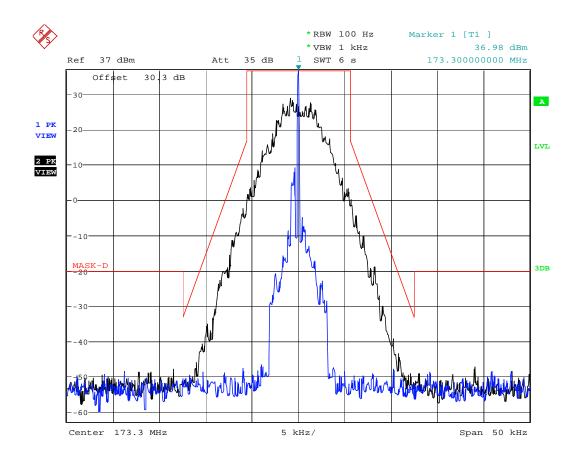
st Frequency:	173.3 MHz	<u>: </u>
nannel Spacing:	12.5 kHz	
wer:	1 W	
odulation:	FM with 2.5	5 KHz sine wave signal
onfiguration: Mask	D, 173.3 MHz Analo	og (F3E), 12.5 KHz, Low power. *RBW 100 Hz Marker 1 [T1]
Ref 30.	8 dBm Att	*VBW 1 kHz 30.75 dBm 30 dB 1 SWT 6 s 173.300000000 MHz
30 Offs		
1 PK VIEW		LVL
2 PK VIEW -0		
10 MASK-D		
-30		3рв
40	/	
50		
• • • • • • • • • • • • • • • • • • •		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	73.3 MHz	5 kHz/ Span 50 kHz

Plot 5.8.4.2.7. Emission Mask D, High Power


Test Frequency:	138.1 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	P-25 Phase 1 Digital (F1D, F1E)
Configuration: Mask D	138 1 MHz P1 Auto 12.5 KHz Digital (F1D F1F) High power

Configuration: Mask D, 138.1 MHz P1 Auto, 12.5 KHz, Digital (F1D F1E), High power.

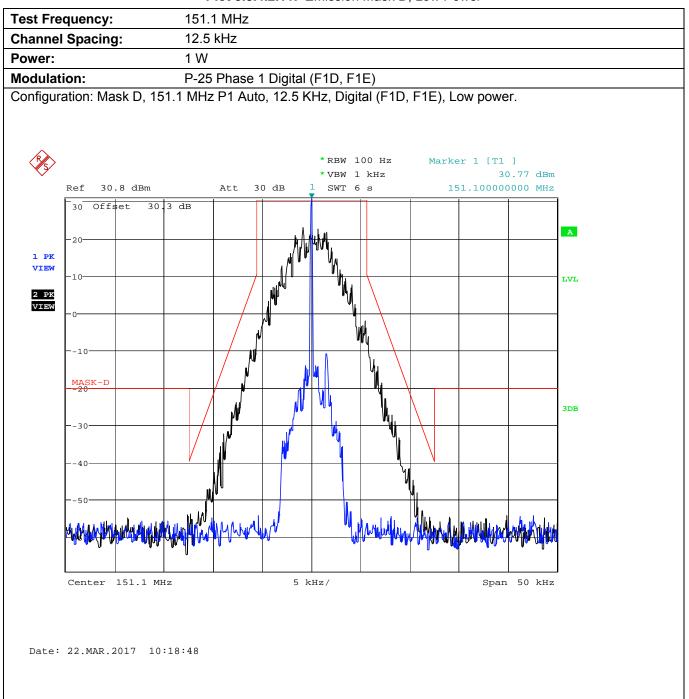
Date: 22.MAR.2017 09:54:08


Plot 5.8.4.2.8. Emission Mask D, High Power

Plot 5.8.4.2.9. Emission Mask D, High Power

Test Frequency:	173.3 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	P-25 Phase 1 Digital (F1D, F1E)

Configuration: Mask D, 173.3 MHz P1 Auto, 12.5 KHz, Digital (F1D F1E), High power.


Date: 22.MAR.2017 10:08:27

Plot 5.8.4.2.10. Emission Mask D, Low Power

Test Frequency:	138.1 MHz
Channel Spacing:	12.5 kHz
Power:	1 W
Modulation:	P-25 Phase 1 Digital (F1D, F1E)
Configuration: Mask D, 13	8.1 MHz P1 Auto, 12.5 KHz, Digital (F1D, F1E), Low power.
	*RBW 100 Hz Marker 1 [T1]
Ref 30.5 dBm	*VBW 1 kHz 30.46 dBm Att 30 dB 1 SWT 6 s 138.100000000 MHz
	0.3 dB
30 011466 3	
-20	And the last of th
1 PK	
-10	LVL
2 PK VIEW	
-0	
-10	
MASK-D	
-20	3DB
30	
40	
	
50	
Alexandra and alexandra and	ALERANDER SOLL STATE OF THE SOLUTION OF THE SO
E. all alta alta alta alta alta alta alta	Theory Land of a fine and to the country of the state of
Center 138.1	MHz 5 kHz/ Span 50 kHz

Date: 22.MAR.2017 10:13:05

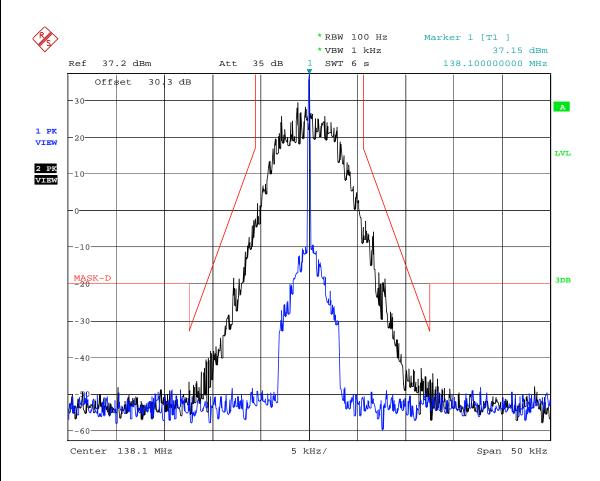
Plot 5.8.4.2.11. Emission Mask D, Low Power

Plot 5.8.4.2.12. Emission Mask D. Low Power

	PI	ot 5.8.4.2.12.	Emission N	lask D, Low F	Power	
Test Frequency:	173.3	MHz				
Channel Spacing	: 12.5 k	Hz				
Power:	1 W					
Modulation:		Phase 1 Digital				
Configuration: Mas	sk D, 173.3 MHz	P1 Auto, 12.5 k	KHz, Digita	I (F1D, F1E),	Low power.	
\wedge						
\$			* RBW 100 * VBW 1 }		er 1 [T1] 30.86 dBm	
	30.9 dBm	Att 30 dB	1 SWT 6 s	1	73.300000000 MHz	7
30 Of	fset 30.3 dB					
-20		Na A				А
1 PK		Ma W				
VIEW -10			1			LVL
2 PK VIEW		\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	١, ١			
-0		/ /	٧,			
10		/ //	<u> Y</u>			
-10		/	Wi '	\		
MASK-	D	/ / / N	\	\mathbb{Q}		
		ا امد	I NII			3DB
30		- 	+ ₩	\		
40		N		1		
-40				Ч		
50	<u> </u>	W .				
ر بند الله بربا	والمالا والمالية والمالية	AMALL BURNEY	4/1/1	بالملام الملامل الملامل	وتوريقه والمحارية والمحارية	
	taktodrody-Undrallita.jrvi			<u>, nantuni, altinit</u>	Marian Amaria Amaria an	
	·				•	
Center	173.3 MHz	5	kHz/		Span 50 kHz	
Date: 22.MAR	1.2017 10:26:16					

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

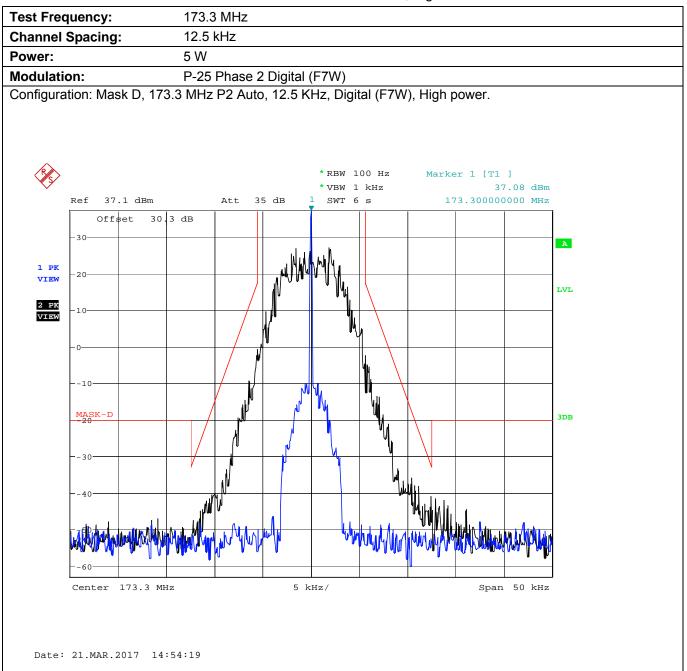

File #: 17ICOM448_FCC90

March 24, 2017

Plot 5.8.4.2.13. Emission Mask D, High Power

Test Frequency:	138.1 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	P-25 Phase 2 Digital (F7W)

Configuration: Mask D, 138.1 MHz P2 Auto, 12.5 KHz, Digital (F7W), High power.



Date: 21.MAR.2017 14:27:43

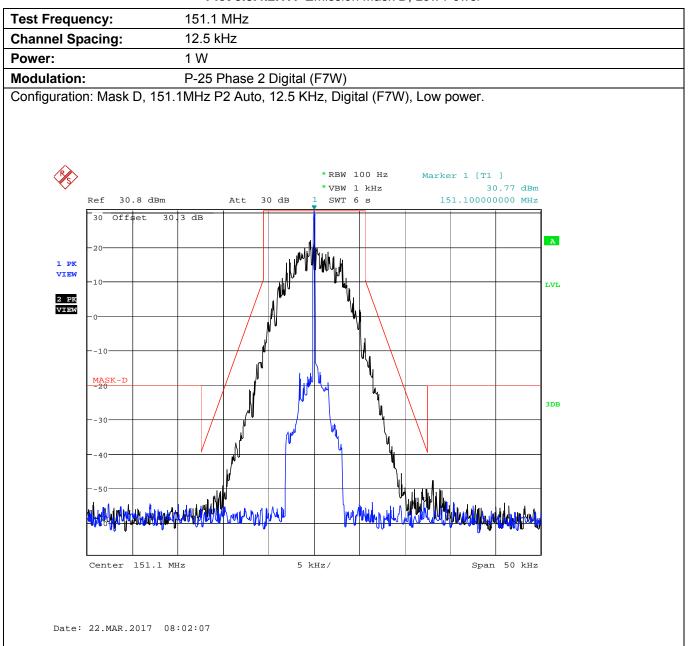
Plot 5.8.4.2.14. Emission Mask D, High Power

st Frequency: annel Spacing:	151 1 N/HZ				
anner Spacing:	151.1 MHz 12.5 kHz				
wer:	5 W				
odulation:		2 Digital (F7W)			
Ref 37.2 dBm Offset 30. 1 PK VIEW		* RBW 10 * VBW 1 5 dB 1 SWT 6	00 Hz Marke kHz		LVL
2 PK VIEW -10 -0 10 10 20					3DB
30					
	Mark Mark Mark Mark				
60	Iz	5 kHz/		Span 50 kHz	J

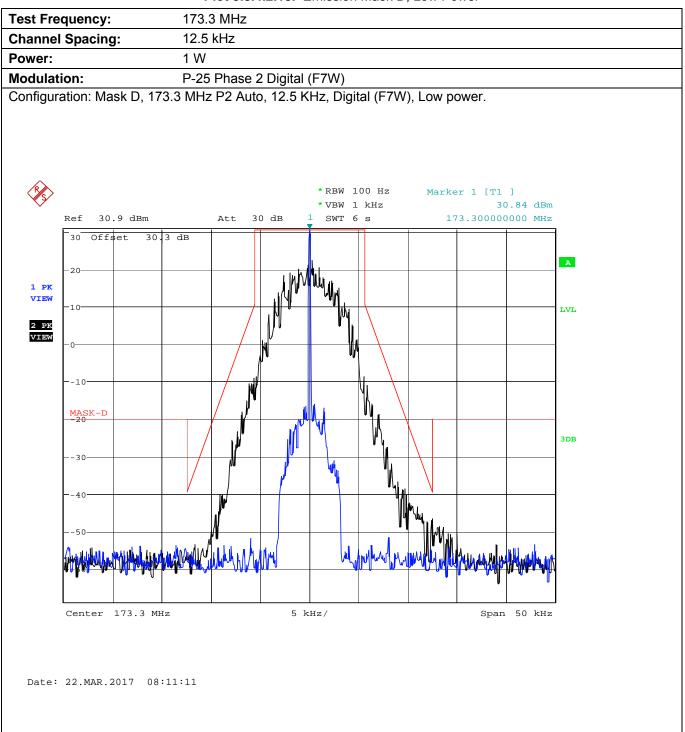
Plot 5.8.4.2.15. Emission Mask D, High Power

Plot 5.8.4.2.16. Emission Mask D, Low Power

Power: 1 W	Test Frequency:	138.1 MHz
#RBW 100 Hz Marker 1 [T1] *VBW 1 kHz 30.53 dBm Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.10000000 MHz **PRW 100 Hz Marker 1 [T1] **VBW 1 kHz 30.53 dBm 30 Offset 30 3 dB **PRW 100 Hz Marker 1 [T1] **VBW 1 kHz 30.53 dBm 1 FK VIEW 1 PK VIEW 1 PK VIEW 1 PK VIEW 1 OFFset 30 3 dBm 3 Offset 30 3 dBm 4 Offset 30 3 dBm 3 Offset 30 3 dBm 3 Offset 30 3 dBm 4 Offset 30 3 dBm 3 Offset 30 3 dBm 4 Offset 30 3 dBm 3 Offset 30 3 dBm 4 Offset 30 3	Channel Spacing:	12.5 kHz
Configuration: Mask D, 138.1MHz P2 Auto, 12.5 KHz, Digital (F7W), Low power. *RBW 100 Hz Marker 1 [T1] *VBW 1 kHz 30.53 dBm Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.10000000 MHz 20 1 PK VIEW *VIEW 10 MASK-D ABB 100 Hz Marker 1 [T1] *VBW 1 kHz 30.53 dBm 1 SWT 6 s 138.10000000 MHz Att 30 dB 1 SWT 6 s 30.3 dB 30.53 dBm Att 30 dB 1 SWT 6 s 30.53 dBm Att 30 dB 1	Power:	1 W
*RBW 100 Hz Marker 1 [T1] *VBW 1 kHz 30.53 dBm Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.100000000 MHz 1 PK VIEW 10	Modulation:	
* VBW 1 kHz 30.53 dBm Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.100000000 MHz 1 PK VIEW -10 -10 -10 -30 -30 -30 -30 -30 -30 -30 -30 -30 -3	Configuration: Mask D, 13	8.1MHz P2 Auto, 12.5 KHz, Digital (F7W), Low power.
* VBW 1 kHz 30.53 dBm Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.100000000 MHz 1 PK VIEW -10 -10 -10 -30 -30 -30 -30 -30 -30 -30 -30 -30 -3		
* VBW 1 kHz 30.53 dBm Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.100000000 MHz 1 PK VIEW -10 -10 -10 -30 -30 -30 -30 -30 -30 -30 -30 -30 -3	^	
Ref 30.6 dBm Att 30 dB 1 SWT 6 s 138.100000000 MHz 1 PK VIEW -1010 MASK-D -30 3DB		
1 PK VIEW -10 -10 -10 -10 -30 -30 -30	Ref 30.6 dBm	
1 PK VIEW 10 -0 -10 -30 -30	30 Offset 30	3 dB
1 PK VIEW 10 -0 -10 -30 -30		
TIEW		1 M. A. William
2 PK VIEW 0	VIEW	
10 MASK-D -30		LVL
MASK-D -30	VIEW	
MASK-D -30		
-30 3DB		
-30	MASK-D 20	
	30	
	40	
	F.0.	
		ا الله الله الله الله الله الله الله ال
المناه منظ مقمم المناه الم		\$4\cuppic xar_111 \rangle \ran
	A o o off off of	المراهيم في الأيل المالية

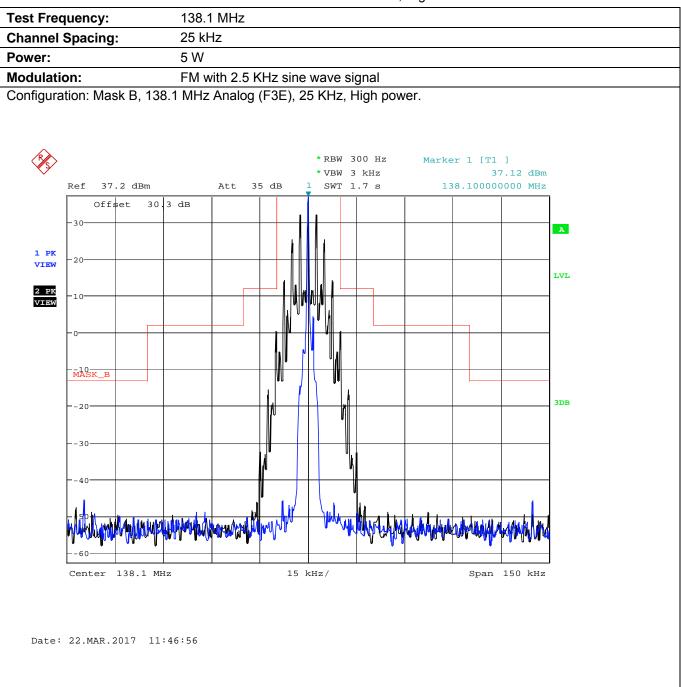

Date: 22.MAR.2017 07:40:15

Center 138.1 MHz

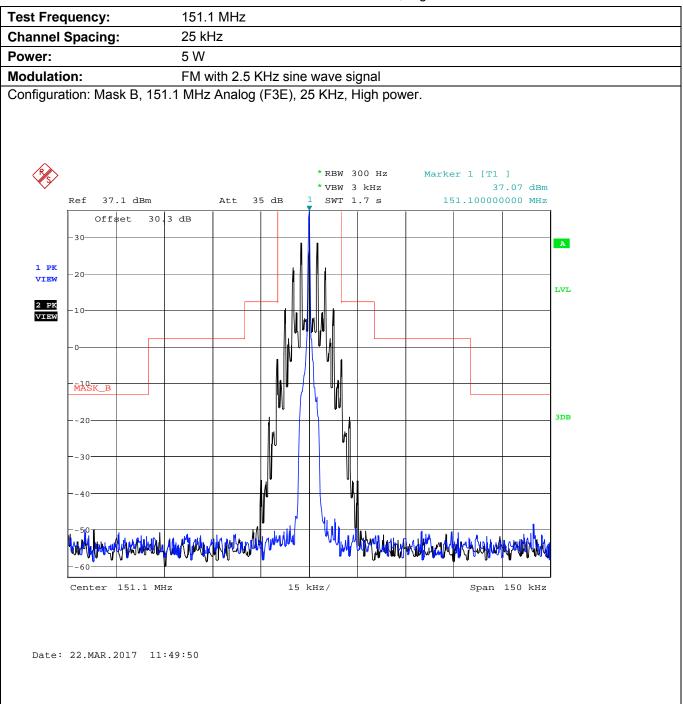

Span 50 kHz

5 kHz/

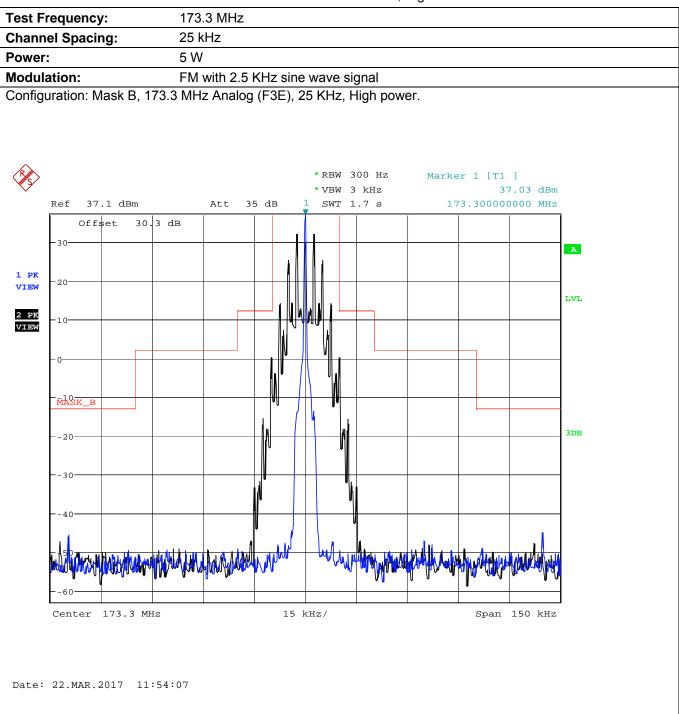
Plot 5.8.4.2.17. Emission Mask D, Low Power

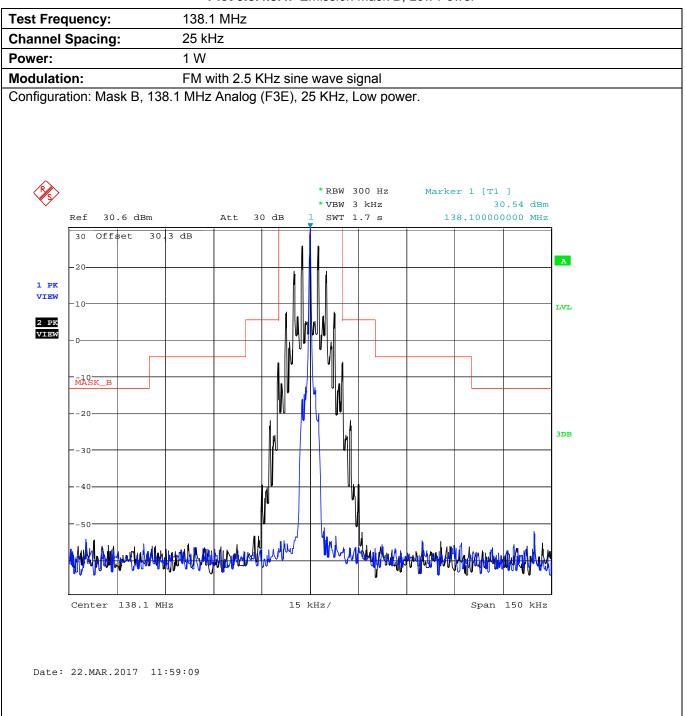


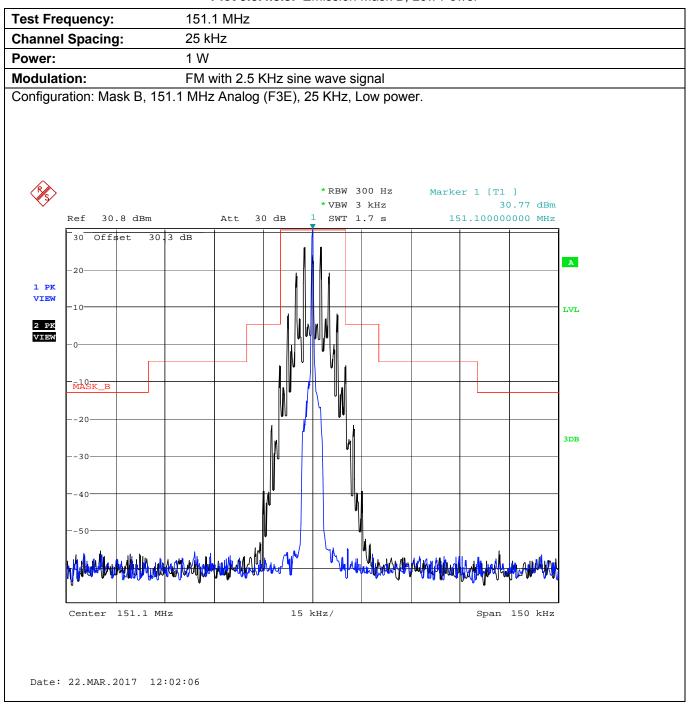
Plot 5.8.4.2.18. Emission Mask D, Low Power

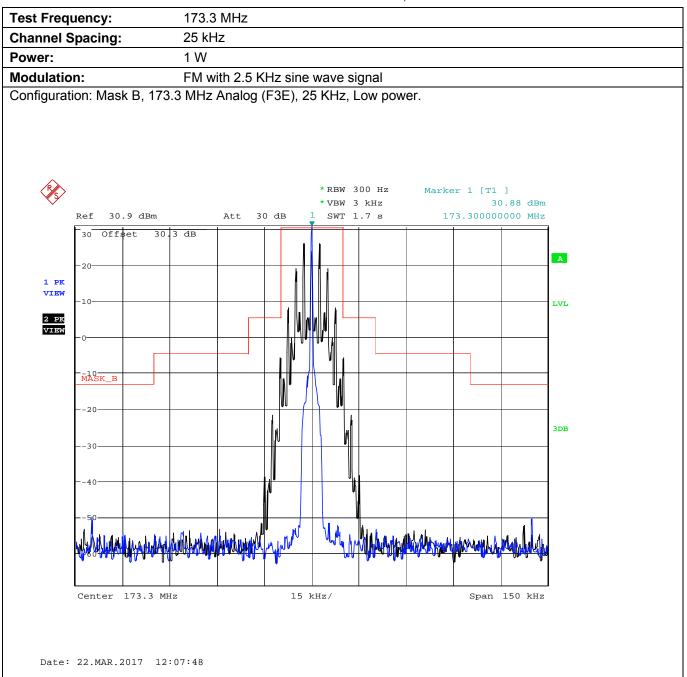


5.8.4.3. **Emission Mask B (Not for FCC Certification purpose)**


Plot 5.8.4.3.1. Emission Mask B, High Power


Plot 5.8.4.3.2. Emission Mask B, High Power


Plot 5.8.4.3.3. Emission Mask B, High Power

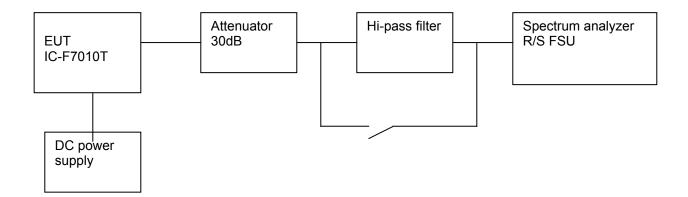

Plot 5.8.4.3.4. Emission Mask B, Low Power

Plot 5.8.4.3.5. Emission Mask B, Low Power

Plot 5.8.4.3.6. Emission Mask B, Low Power

TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§§ 5.9. 2.1051, 2.1057, 22.359, 80.211(f)(3) & 90.210]

5.9.1. Limits


Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Attenuation Limit (dBc)
§ 22.359	At least 43 + 10 log (P) dB.
§ 80.211(f)(3),	At least 43 +10log ₁₀ (mean power in watts) dB
§ 90.210(b)	At least 43 + 10 log (P) dB
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

5.9.2. **Method of Measurements**

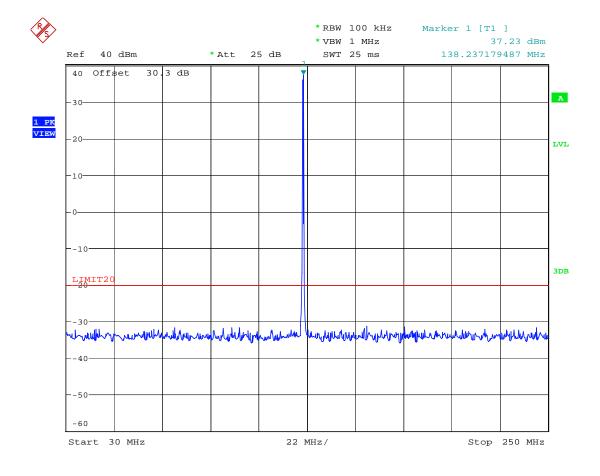
Refer to Section 8.5 of this report for measurement details

5.9.3. **Test Arrangement**

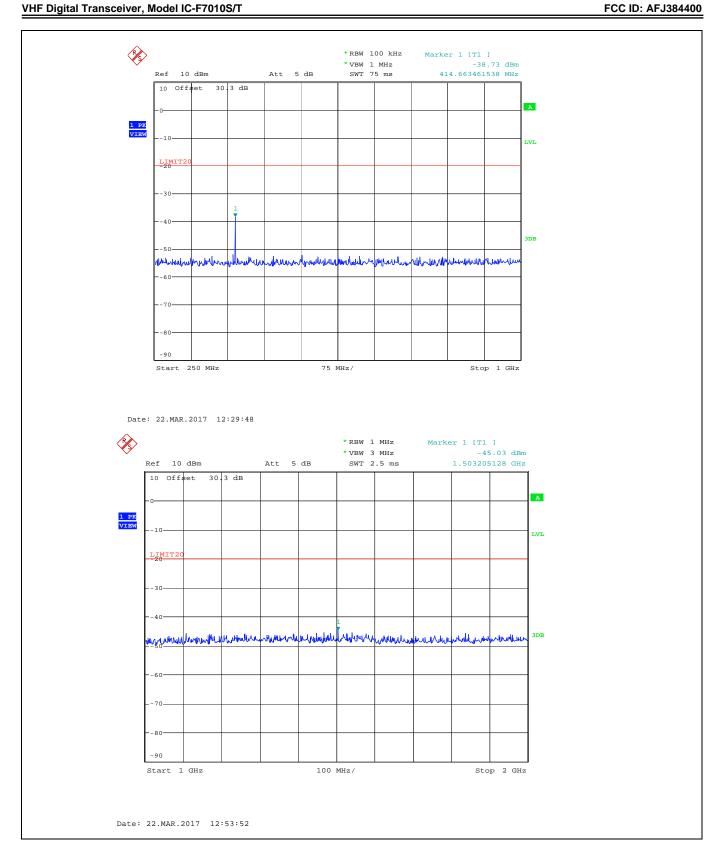
5.9.4. **Test Data**

Note: There was no difference in spurious/harmonic emissions on the pre-scans for different channel spacing and modulation types. Therefore, the rf spurious/harmonic emissions in this section would be performed for Digital modulation with 12.5 kHz channel spacing and the more stringent limit of 50 + 10*log(P) would be applied for worst case.

Page 57 of 70


FCC ID: AFJ384400

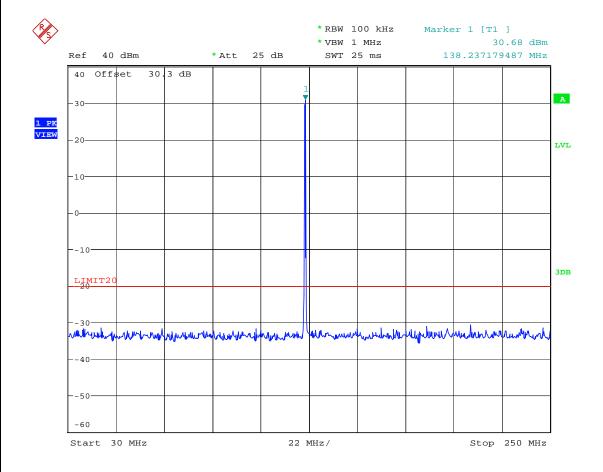
5.9.4.1. Near Lowest Frequency (138.1 MHz)


Plot 5.9.4.1.1. Conducted Transmitter Spurious Emissions for 138.1 MHz, High Power

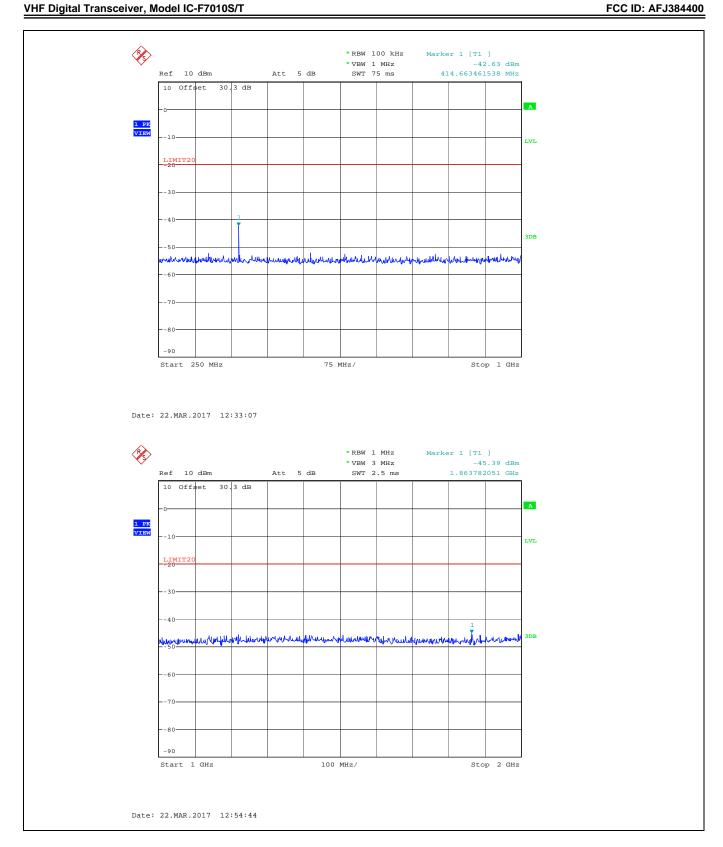
Test Frequency:	138.1 MHz
Channel Spacing:	12.5 kHz
Power:	5 W
Modulation:	P-25 Phase 2 Digital (F7W)
Carefian matiana. To Care do cata	d Francisco 100 1 MHz DO Auto 10 F KHz Digital (F7M) High record

Configuration: Tx Conducted Emission, 138.1 MHz P2 Auto, 12.5 KHz, Digital (F7W), High power.

Date: 22.MAR.2017 12:15:00

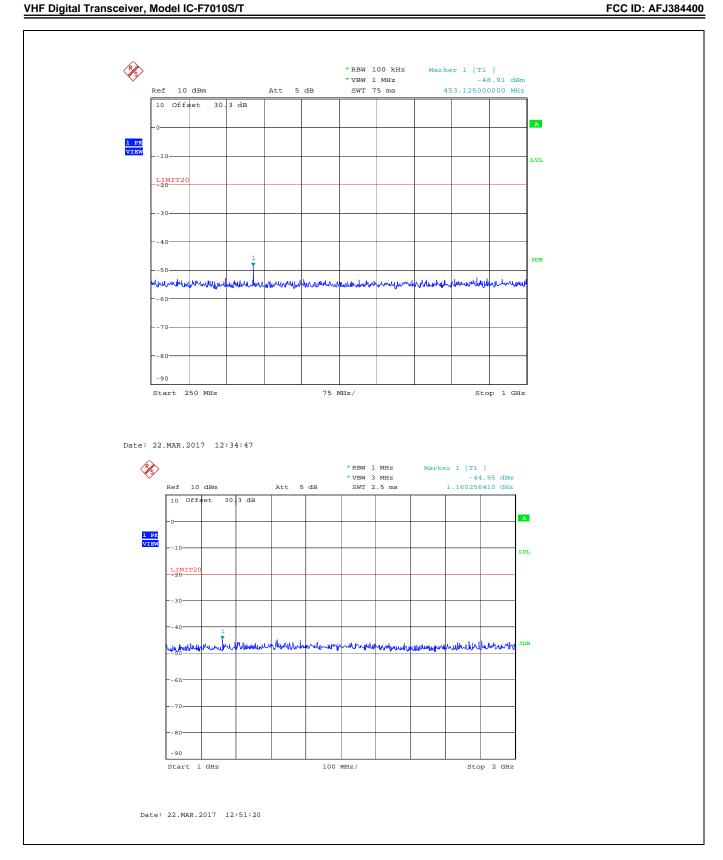


File #: 17ICOM448_FCC90


Plot 5.9.4.1.2. Conducted Transmitter Spurious Emissions for 138.1 MHz, Low Power

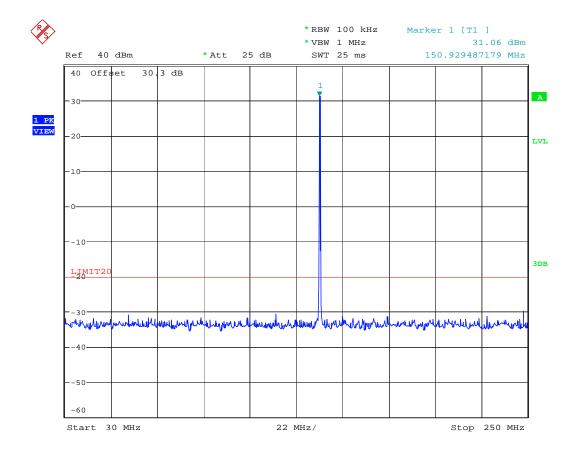
Test Frequency:	138.1 MHz
Channel Spacing:	12.5 kHz
Power:	1 W
Modulation:	P-25 Phase 2 Digital (F7W)

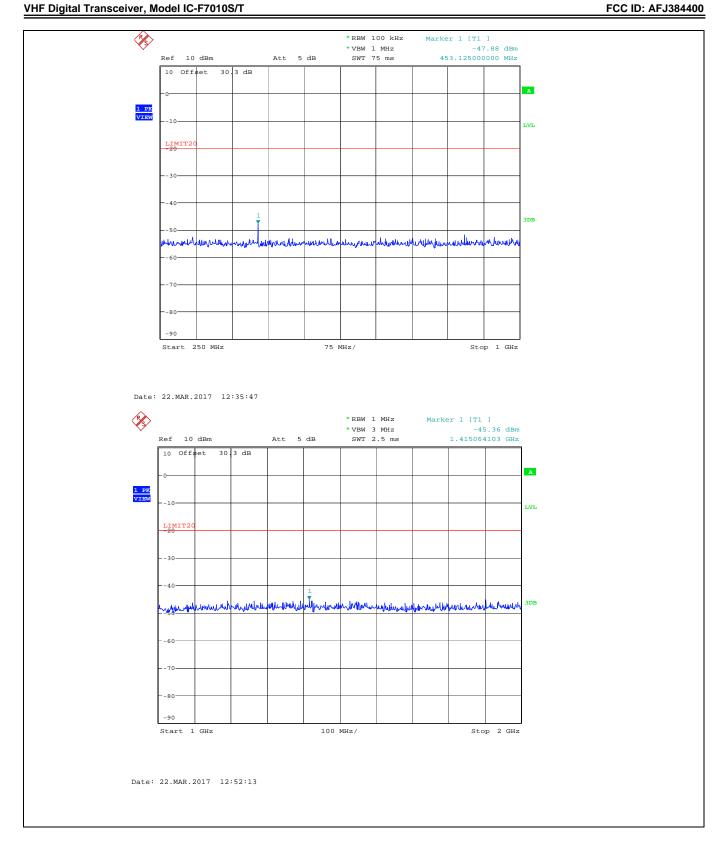
Configuration: Tx Conducted Emission, 138.1 MHz P2 Auto, 12.5 KHz, Digital (F7W), Low power.


Date: 22.MAR.2017 12:26:20

5.9.4.2. Near Middle Frequency (151.1 MHz)

Plot 5.9.4.2.1. Conducted Transmitter Spurious Emissions for 151.1 MHz, High Power


Test Freque	ncy:		151.1	MHz								. -
Channel Spacing:			12.5 kl	Hz								
Power:			5 W									
Modulation:			P-25 F	hase 2	2 Digital (F7W	/)					
Configuration	ı: Tx Cor	nducted	l Emissi	on, 15	1.1 MHz			12.5 k		yital (F7\ er 1 [T1		n power.
\$					* VE	3W 1	MHz		31	7.27 dBm		
		dBm		* Att	25 dB	SW 1	IT 25	ms	15	0.92948	7179 MHz	Ī
3 194	40 Offs	et 30.	3 dB									A
1 PK VIEW	-20											LVL
	-10											
	10											
	LIMIT20											3DB
	-30 hay walked 40	hhmhhiph	Menne	Lanka Makalland	Willywilliam	Mund	hum	ph phrandulu	Mar Miller March Miller	Marini	maderm	
	50											
	-60											
Date:	22.MAR.2		:16:15		22 1	MHz/				Stop	250 MHz	


Plot 5.9.4.2.2. Conducted Transmitter Spurious Emissions for 151.1 MHz, Low Power

Test Frequency:	151.1 MHz
Channel Spacing:	12.5 kHz
Power:	1 W
Modulation:	P-25 Phase 2 Digital (F7W)

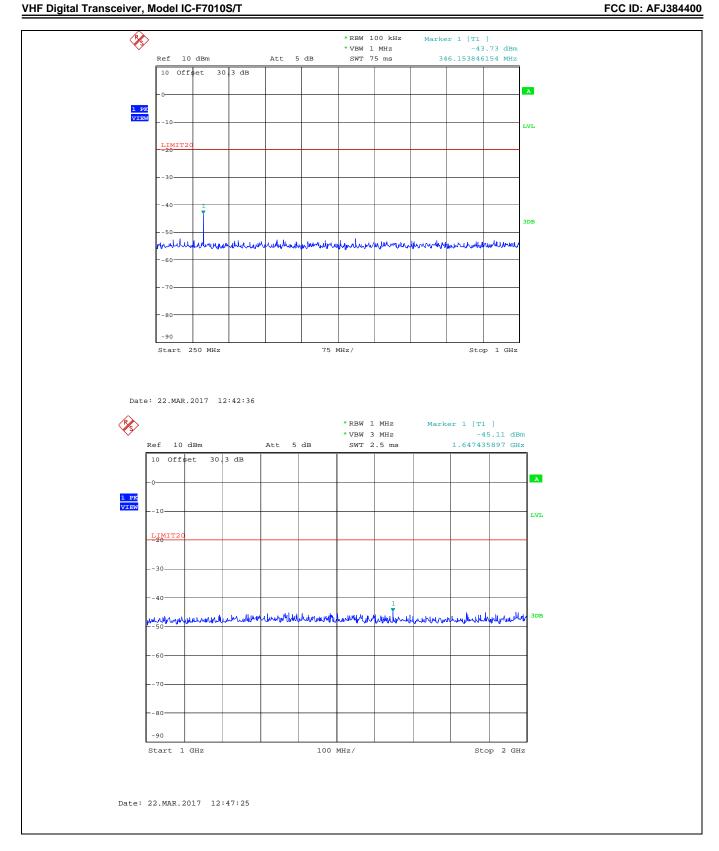
Configuration: Tx Conducted Emission, 151.1 MHz P2 Auto, 12.5 KHz, Digital (F7W), Low power.

Date: 22.MAR.2017 12:24:43

5.9.4.3. **Near Highest Frequency (173.3 MHz)**

Plot 5.9.4.3.1. Conducted Transmitter Spurious Emissions for 173.3 MHz, High Power

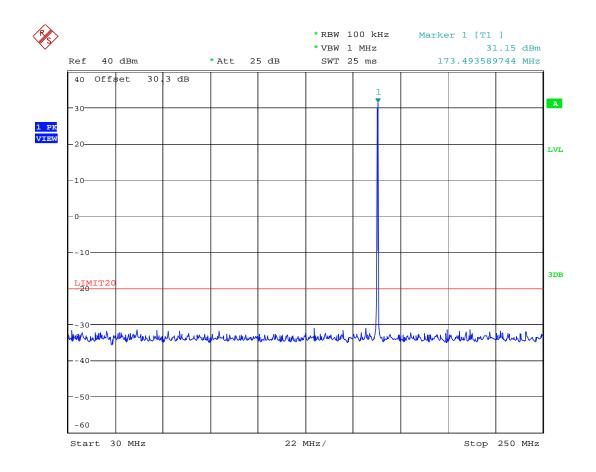
Test Frequency:		173.3	173.3 MHz 12.5 kHz									
Channel Spa	12.5 k											
Power:		5 W		-					-			
Modulation:			Phase 2									
Configuration	: Tx Condu	cted Emiss	ion, 173	3.3 MHz	P2 Aut	o, 12.	5 KH:	z, Dig	ital (F7	W), Hig	h power.	
(R)					* RBW	100 kF	Iz	Marke	r 1 [T1	1		
* **	Ref 40 dBm	n	*Att 2	95 dB	* VBW	1 MHz 25 ms		17		7.22 dBm 9744 MHz		
	40 Offset	30.3 dB	The 2	T db	- SWI	23 1113	<u> </u>	- /	3.19330.	7711 14112	1	
											A	
	-30											
1 PK VIEW	-20											
											LVL	
	-10											
	-0											
	10										1	
	LIMIT20										3DB	
	-30								. 1			
	Harry Harry	Moundly	ntermiliting	MANNAMA	MANAMALA	numul '	MUNICHER	nullah	ak/apacan	-Ulrum	1	
	40					+	+					
	50										1	
	-60										J	
	Start 30 M	Hz		22	MHz/				Stop	250 MHz		

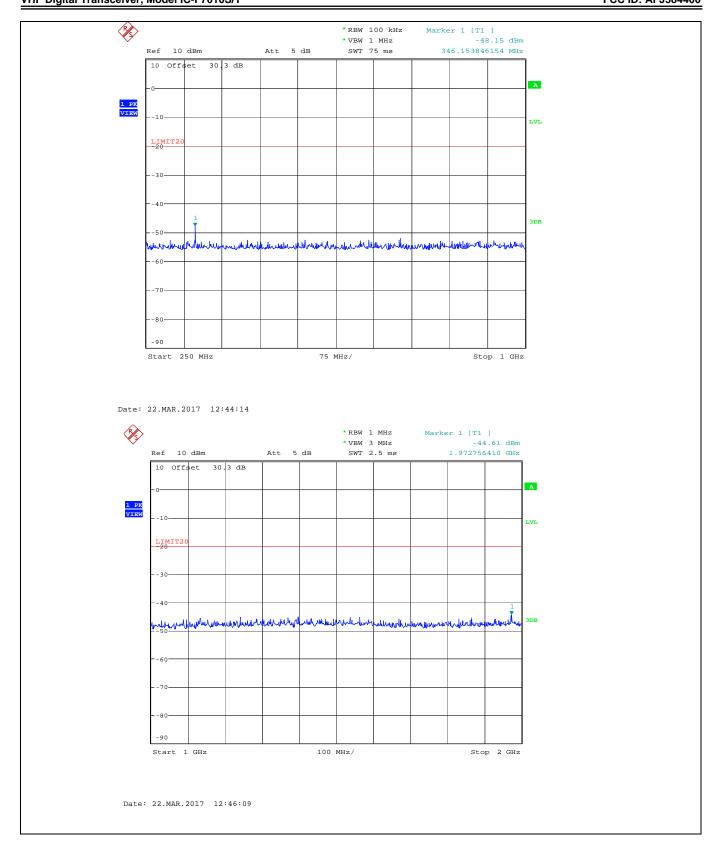

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: 17ICOM448_FCC90


March 24, 2017


Plot 5.9.4.3.2. Conducted Transmitter Spurious Emissions for 173.3 MHz, Low Power

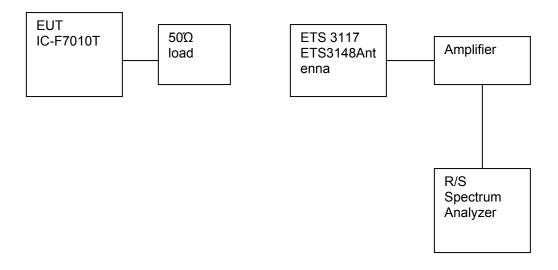
Test Frequency:	173.3 MHz
Channel Spacing:	12.5 kHz
Power:	1 W
Modulation:	P-25 Phase 2 Digital (F7W)

Configuration: Tx Conducted Emission, 173.3 MHz P2 Auto, 12.5 KHz, Digital (F7W), Low power.

Date: 22.MAR.2017 12:21:23

TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1053, 2.1057, 22.359, 5.10. 80.211(f)(3) & 90.210]

5.10.1. Limits


Emissions shall be attenuated below the mean output power of the transmitter as follows:

5.10.2. **Method of Measurements**

The spurious/harmonic ERP measurements are using substitution method specified in Section 8.2 of this report.

FCC Rules	Attenuation Limit (dBc)
§ 22.359	At least 43 + 10 log (P) dB.
§ 80.211(f)(3),	At least 43 +10log ₁₀ (mean power in watts) dB
§ 90.210(b)	At least 43 + 10 log (P) dB
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

5.10.3. **Test Arrangement**

Page 71 of 70 FCC ID: AFJ384400

5.10.4. Test Data

Remarks:

- The RF spurious/harmonic emission characteristics for different channel spacing are indistinguishable.
- The radiated emissions were performed with high power setting (5 Watts) at 3 m distance to represents the worst-case test configuration.
- The emissions were scanned from 30 MHz to 10th harmonics (2 GHz); all spurious emissions that are in excess of 20dB below the specified limit shall be recorded.

5.10.4.1. Near Lowest Frequency (138.1 MHz)

Test Frequency (MHz):		138.1				
Power conducted	(dBm):	37.19				
Limit (dBm):		-20.0				
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP Measured (dBm)	Limit (dBm)	Margin (dB)
414.3	65.57	PEAK	V	-33.84	-20	-13.3
All other spurio	us emissions are	e more than 20d	B below the spec	ified limit.		

5.10.4.2. Near Middle Frequency (151.1 MHz)

Test Frequency (MHz):		151.1				
Power conducted	(dBm):	37.17				
Limit (dBm):		-20.0				
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP measured (dBm)	Limit (dBm)	Margin (dB)
All spurious emissions found are more than 20dB below the specified limit.						

5.10.4.3. Near Highest Frequency (173.3 MHz)

Test Frequency (MHz):		173.3				
Power conducted (dBm):		37.18				
Limit (dBm):		-20.0				
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP measured (dBm)	Limit (dBm)	Margin (dB)
All spurious emissions found are more than 20dB below the specified limit.						

FREQUENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213] 5.11.

5.11.1. Limits

§ 90.213 Transmitters used must have minimum frequency stability as specified in the following table.

		Frequency Tolerance (ppm)				
Frequency Range (MHz)	Channel Bandwidth (KHz)	Fixed and Base Stations	Mobil	e Stations		
(111112)	(1412)	Fixed and Base Stations	> 2 W	<u><</u> 2 W		
150-174 MHz	6.25	1.0	2.0	2.0		
	12.5	2.5	5.0	5.0		
	25	5.0	5.0	50.0*		
421-512 MHz	6.25	0.5	1.0	1.0		
	12.5	1.5	2.5	2.5		
	25	2.5	5.0	5.0		

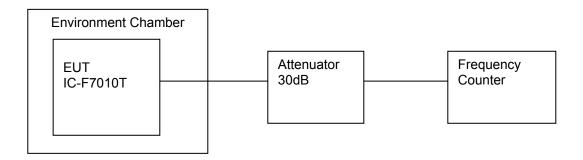
- Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.
- Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

§ 22.355 Transmitters used must have minimum frequency stability as specified in the following table.

TABLE C-1—FREQUENCY TOLERANCE FOR TRANSMITTERS IN THE PUBLIC MOBILE SERVICES

Frequency range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20.0 5.0 2.5 1.5 5.0 1.5	20.0 5.0 5.0 2.5 n/a n/a n/a	50.0 50.0 5.0 2.5 n/a n/a n/a

§ 74.464 - For operations on frequencies above 25 MHz using authorized bandwidths up to 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in compliance with the frequency tolerance requirements of §90.213 of this chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following:


	Tolerance (percent)		
Frequency range	Base sta- tion	Mobile sta- tion	
25 to 30 MHz: 3 W or less Over 3 W	.002 .002	.005 .002	
3 W or less Over 3 W	.0005 .0005 .00025	.005 .0005 .0005	

Page 72 of 70

5.11.2. Method of Measurements

Refer to Section 8.3 of this report for measurement details

5.11.3. Test Arrangement

5.11.4. Test Data

Test Frequency:	138.1 MHz
Full Power Level:	37.19 dBm
Frequency Tolerance Limit:	<u>+</u> 1.0 ppm or <u>+</u> 138 Hz
Max. Frequency Tolerance Measured:	- 43 Hz or -0.0.32 ppm
Input Voltage Rating:	7.5 VDC (Nominal)

Ambient Temperature (°C)	Supply Voltage (Nominal) 7.5 VDC	Supply Voltage (Battery End Point) 5.8 VDC	Supply Voltage (Battery Fully Charged) 8.51 VDC
-30	-16		
-20	-30		
-10	-40		
0	-43		
10	-20		
20	3	-6	9
30	20		
40	-10		
50	-11		
60	26		

Page 73 of 70

5.12. TRANSIENT FREQUENCY BEHAVIOR [§ 90.214 & 74.462(c)]

5.12.1. Limits

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency	All equipment				
Time mervais	difference ³	150 to 174 MHz	421 to 512MHz			
Transient Frequency Behavior for Equipment Designed to Operate on 25 KHz Channels						
t ₁ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
t ₂	± 12.5 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
Transient Frequenc	Transient Frequency Behavior for Equipment Designed to Operate on 12.5 KHz Channels					
t ₁ 4	± 12.5 KHz	5.0 ms	10.0 ms			
t ₂	± 6.25 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
Transient Frequenc	Transient Frequency Behavior for Equipment Designed to Operate on 6.25 KHz Channels					
t ₁ ⁴	±6.25 KHz	5.0 ms	10.0 ms			
t ₂	±3.125 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	±6.25 KHz	5.0 ms	10.0 ms			

^{1.} t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

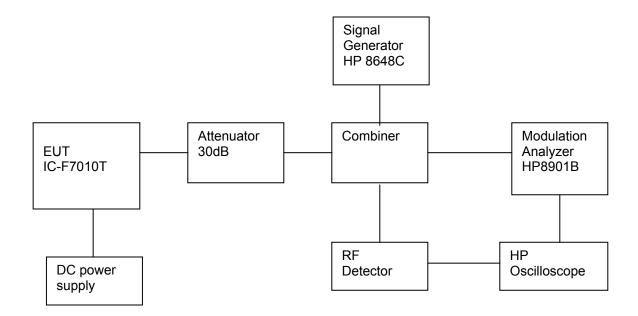
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 Watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

5.12.2. Method of Measurements

Refer to Section 8.6 of this test report and ANSI/TIA/EIA-603-D-2010, Section 2.

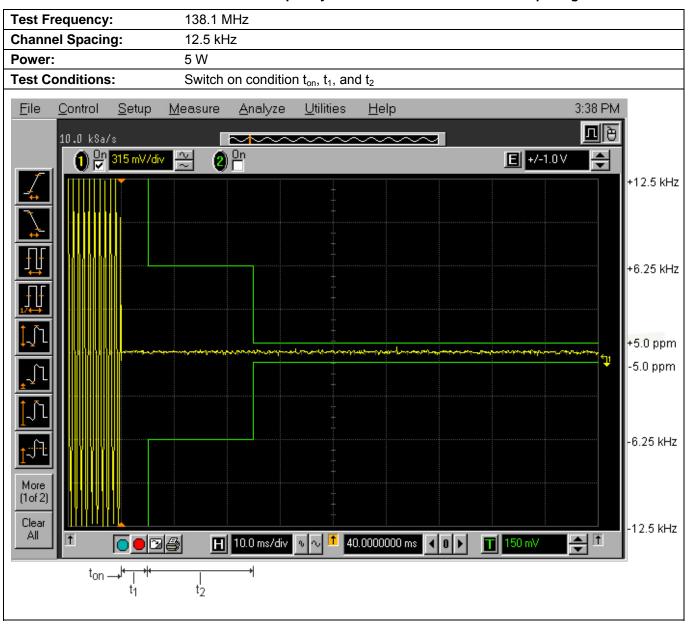
Page 74 of 70

t₁ is the time period immediately following t_{on}.

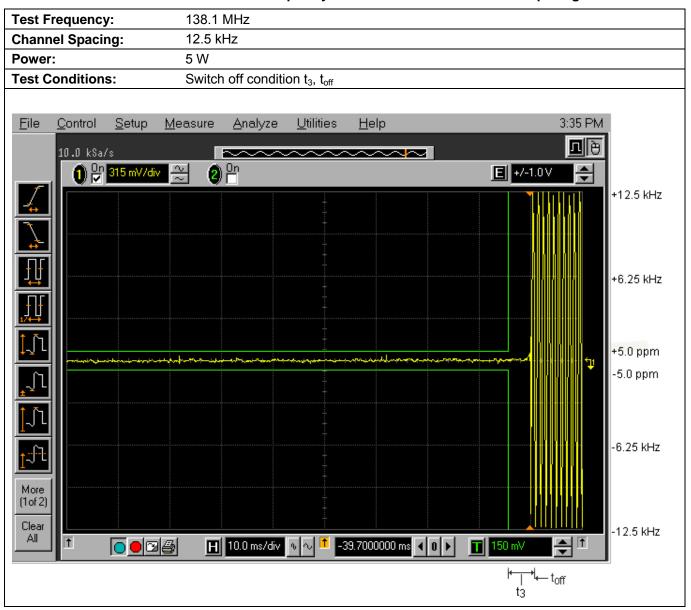

t₂ is the time period immediately following t₁.

 t_3 is the time period from the instant when the transmitter is turned off until t_{off} .

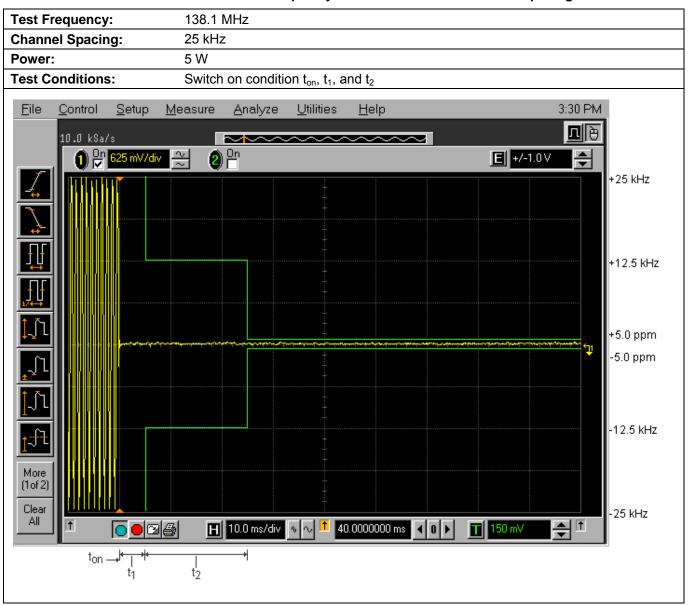
 t_{off} is the instant when the 1 kHz test signal starts to rise.

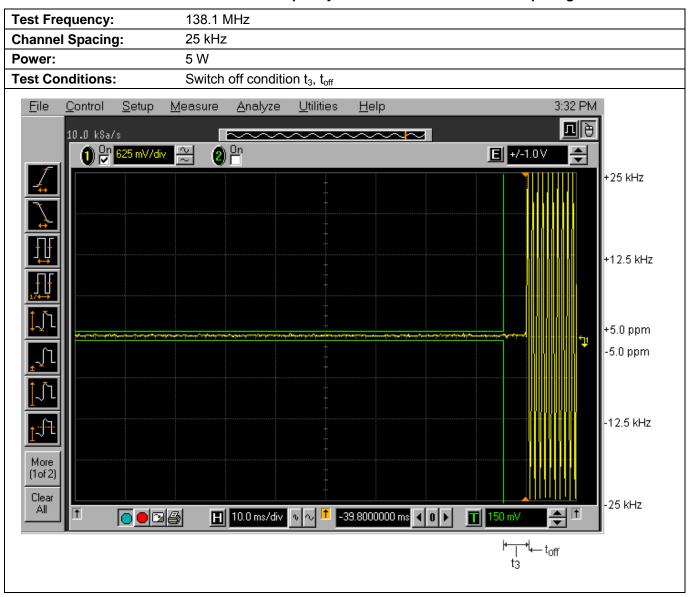

^{2.} During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.

5.12.3. **Test Arrangement**



5.12.4. **Test Data**


Plot 5.12.4.1. Transient Frequency Behavior for 12.5 kHz Channel Spacing


Plot 5.12.4.2. Transient Frequency Behavior for 12.5 kHz Channel Spacing

Plot 5.12.4.3. Transient Frequency Behavior for 25 kHz Channel Spacing

Plot 5.12.4.4. Transient Frequency Behavior for 25 kHz Channel Spacing

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Operating Range	Calibratio
					n
					Due Date
Spectrum Analyzer	R/S	Fsu	100398	20Hz – 40 GHz	14-Sep-17
Attenuator (30dB)	Aeroflex/Weinschel	46-30-34	BR9127	DC-18 GHz	Note 1*
High Pass Filter	Mini Circuit	SHP 250		Cut off 230 MHz	Note 1*
Power Meter	Hewlett Packard	436A	2016A07747	100K50G sensor dependent	8-Mar-18
Power Sensor	Hewlett Packard	8481A	1550A15143	10MHz-18GHZ	30-Sep-18
Modulation Analyzer	Hewlett Packard	8901B	3226A04606	150KHz- 1300MHz	8-Mar-18
Frequency Counter	HP	5352	3049A04423	10Hz-40 GHz	12-May-17
Combiner	Mini Circuit	ZFSC-3-4	15542	1MHz - 1GHz	Note 1*
RF Detector	Pasternack	PE8000-50		10M1G Hz	Note 1*
Infinium Digital Oscilloscope	Hewlett-Packard	54801A	US38380192	DC500M Hz 1G sampling	10-Aug-17
Environment Chamber	Envirotronics	SSH32C	11994847-S- 11059	-60 to 177 degree C	2-Jun-17
RF Synthesized signal Generator	HP	8648C	3343U00391	100K-3200M Hz AM/ FM/ PM	18-Mar-18
Power supply	Tenma	72-7295	490300297	1-40V DC 5A	Note 1*
FFT Digital Spectrum Analyzer	Advantest	R9211E	8202336	10mHz100KHz	13-Sep-18
RF Communication Test Set	Hewlett Packard	8920B	US39064699	30MHz-1GHz	8-Mar-18
Horn antenna	ETS-LINDGREN	3117	119425	1-18GHz	17-Jun-17
Preamplifier	Hewlett Packard	8449B	3008A00769	1-26.5GHz	5-May-17
Attenuator	Aeroflex/Weinschel	23-20-34	BH7876	DC-18 GHz	Note 1*
Antenna	ETS	3148	1101	200-2000 MHz	20-Jul-18
High Pass Filter	Mini Circuit	SHP 600		Cut off 600 MHz	
EMI Receiver	R/S	ESU40	100037	20 Hz-40 GHz	8-May-2017
Antenna	EMCO	3142	9601-1005	26-2000 MHz	12-May- 2018
Antenna	EMCO	3115	9911-9555	1 – 18 GHz	21-Apr- 2017
Preamplifier	Com-Power	PAM-0118A	551052	500MHz-18GHz	13-Jul-2017

^{*}Note 1: Internal Verification/Calibration check

File #: 17ICOM448_FCC90

Page 80 of 70

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) - Guide to the Expression of Uncertainty in Measurement.

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration

Page 81 of 70

MEASUREMENT METHODS EXHIBIT 8.

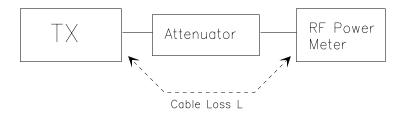
CONDUCTED POWER MEASUREMENTS 8.1.

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- > Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- \succ The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0<x<1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm):
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

EIRP = A + G + 10log(1/x)

 $\{X = 1 \text{ for continuous transmission } => 10log(1/x) = 0 dB\}$

Figure 1.

Page 82 of 70

8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD

8.2.1. **MAXIMIZING RF EMISSION LEVEL (E-FIELD)**

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor $E (dB\mu V/m) = Reading (dB\mu V) + Total Correction Factor (dB/m)$

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency Resolution BW: 100 KHz Video BW: same Detector Mode: positive Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
 (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (I) Repeat for all different test signal frequencies.

File #: 17ICOM448_FCC90

Page 83 of 70

8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source

Resolution BW: 100 KHz Video BW: VBW > RBW Detector Mode: positive Average: off

Span: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
 - DIPÓLE antenna for frequency from 30-1000 MHz or
- HORN antenna for frequency above 1 GHz }.
 (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- Use one of the following antenna as a receiving antenna:
 - DIPOLE antenna for frequency from 30-1000 MHz or
 - HORN antenna for frequency above 1 GHz }
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was
- (I) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: Actual RF Power fed into the substitution antenna port after corrected.

> P1: Power output from the signal generator P2: Power measured at attenuator A input P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o) (p) Repeat step (d) to (o) for different test frequency

- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
 (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

File #: 17ICOM448_FCC90

Page 84 of 70

Figure 2

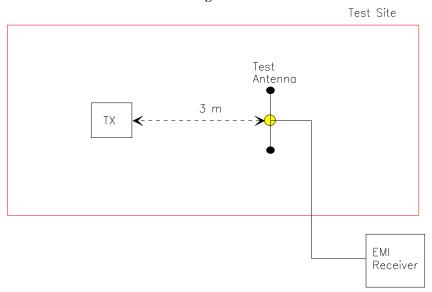
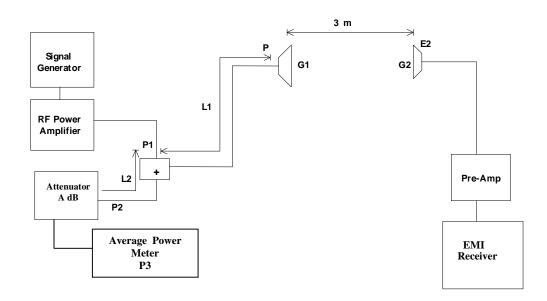



Figure 3

8.3. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- Frequency measurements shall be made at extremes of the specified temperature range and at intervals of (b) not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The shortterm transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried (1) battery equipment.
 - (2)For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

Page 86 of 70

8.4. EMISSION MASK

<u>Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i)</u>:- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: <u>+</u>2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

<u>Digital Modulation Through a Data Input Port @ 2.1049(h)</u>:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 KHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 KHz or 6.25 KHz Channel Spacings: RBW = 100 Hz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 KHz minimum, VBW > RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC 47 CFR 2.1057 - Frequency spectrum to be investigated: The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC 47 CFR 2.1051 - Spurious Emissions at Antenna Terminal: The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be specified.

File #: 17ICOM448_FCC90

Page 87 of 70

8.6. TRANSIENT FREQUENCY BEHAVIOR

- 1. Connect the transmitter under tests as shown in the above block diagram
- 2. Set the signal generator to the assigned frequency and modulate with a 1 KHz tone at +12.5 KHz deviation and its output level to be 50 dB below the transmitter rf output at the test receiver end.
- 3. Set the horizontal sweep rate on the storage scope to 10 milliseconds per division and adjust the display to continuously view the 1000 Hz tone from the Demodulator Output Port (DOP) of the Test Receiver. Adjust the vertical scale amplitude control of the scope to display the 1000 Hz at +4 divisions vertical Center at the display.
- 4. Adjust the scope so it will trigger on an increasing magnitude from the RF trigger signal of the transmitter under test when the transmitter was turned on. Set the controls to store the display.
- 5. The output at the DOP, due to the change in the ratio of the power between the signal generator input power and transmitter output power will, because of the capture effect of the test receiver, produce a change in display: For the first part of the sweep it will show the 1 KHz test signal. Then once the receiver's demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 KHz test signal is completely suppressed (including any capture time due to phasing) is considered to be ton. The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- 6. During the time from the end of t₂ to the beginning of t₃ the frequency difference should not exceed the limits set by the FCC in Part 90.214 and the outlined in the Carrier Frequency Stability sections. The allowed limit is equal to FCC frequency tolerance limits specified in FCC 90.213.
- 7. Repeat the above steps when the transmitter was turned off for measuring t₃.

Page 88 of 70