Report No.: FR932216-01A # FCC RADIO TEST REPORT FCC ID : 2AGOZ-CM5X Equipment : Media Receiver Brand Name : facebook Model Name : LW94NS Applicant : Facebook Technologies LLC 1 Hacker Way Menlo Park CA 94025 Standard : FCC Part 15 Subpart C §15.247 The product was received on Apr. 08, 2019 and testing was started from Apr. 08, 2019 and completed on May 21, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Reviewed by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: 886-3-327-3456 Page Number : 1 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## **Table of Contents** Report No. : FR932216-01A | His | tory o | f this test report | 3 | |-----|--------|---|----| | Sur | nmary | of Test Result | 4 | | 1 | Gene | ral Description | 5 | | | 1.1 | Product Feature of Equipment Under Test | 5 | | | 1.2 | Modification of EUT | 5 | | | 1.3 | Testing Location | 5 | | | 1.4 | Applicable Standards | 6 | | 2 | Test | Configuration of Equipment Under Test | 7 | | | 2.1 | Carrier Frequency Channel | 7 | | | 2.2 | Test Mode | 8 | | | 2.3 | Connection Diagram of Test System | 9 | | | 2.4 | Support Unit used in test configuration and system | 10 | | | 2.5 | EUT Operation Test Setup | 10 | | | 2.6 | Measurement Results Explanation Example | | | 3 | Test | Result | 11 | | | 3.1 | Number of Channel Measurement | 11 | | | 3.2 | Hopping Channel Separation Measurement | 13 | | | 3.3 | Dwell Time Measurement | 19 | | | 3.4 | 20dB and 99% Bandwidth Measurement | 21 | | | 3.5 | Output Power Measurement | 31 | | | 3.6 | Conducted Band Edges Measurement | 32 | | | 3.7 | Conducted Spurious Emission Measurement | 39 | | | 3.8 | Radiated Band Edges and Spurious Emission Measurement | 49 | | | 3.9 | AC Conducted Emission Measurement | 53 | | | 3.10 | Antenna Requirements | 55 | | 4 | List o | f Measuring Equipment | 56 | | 5 | Unce | rtainty of Evaluation | 58 | | App | endix | A. Conducted Test Results | | | App | endix | B. AC Conducted Emission Test Result | | | App | endix | C. Radiated Spurious Emission | | | App | endix | D. Radiated Spurious Emission Plots | | | App | endix | E. Duty Cycle Plots | | | App | endix | F. Setup Photographs | | TEL: 886-3-327-3456 Page Number : 2 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # History of this test report Report No. : FR932216-01A | Report No. | Version | Description | Issued Date | |--------------|---------|--|---------------| | FR932216-01A | 01 | Initial issue of report | Jul. 04, 2019 | | FR932216-01A | 02 | Adding description of worst case in section 2.2 Revising the Connection Diagram of Test System in section 2.3 | Jul. 21, 2019 | | FR932216-01A | 03 | Revising brand name | Jul. 31, 2019 | TEL: 886-3-327-3456 Page Number : 3 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # **Summary of Test Result** Report No.: FR932216-01A | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |------------------|-----------------------|--|-----------------------|---| | 3.1 | 15.247(a)(1) | Number of Channels | Pass | - | | 3.2 | 15.247(a)(1) | Hopping Channel Separation | Pass | - | | 3.3 | 15.247(a)(1) | Dwell Time of Each Channel | Pass | - | | 3.4 | 15.247(a)(1) | 20dB Bandwidth | 20dB Bandwidth Pass | | | 3.4 | 2.1049 | 99% Occupied Bandwidth | Reporting only | - | | 3.5 | 15.247(b)(1) | Peak Output Power | Pass | - | | 3.6 | 15.247(d) | Conducted Band Edges Pass | | - | | 3.7 | 15.247(d) | Conducted Spurious Emission | Pass | - | | 3.8 | 15.247(d) | 15.247(d) Radiated Band Edges and Radiated Spurious Emission | | Under limit
8.54 dB at
30.97 MHz | | 3.9 | 15.207 | AC Conducted Emission | Pass | Under limit
11.23 dB at
0.683 MHz | | 3.10 | 15.203 &
15.247(b) | Antenna Requirement | Pass | - | #### Declaration of Conformity: The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. Reviewed by: Wii Chang Report Producer: Dara Chiu TEL: 886-3-327-3456 Page Number : 4 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # 1 General Description # 1.1 Product Feature of Equipment Under Test Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac | Product Specification subjective to this standard | | | | | | | |---|-------------------------|--|--|--|--|--| | Antonno Typo | WLAN: PIFA Antenna | | | | | | | Antenna Type | Bluetooth: PIFA Antenna | | | | | | Report No.: FR932216-01A #### 1.2 Modification of EUT No modifications are made to the EUT during all test items. # 1.3 Testing Location | Test Site | SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory | | | | | |--------------------|--|----------|--|--|--| | Test Site Location | No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978 | | | | | | Test Site No. | Sporton | Site No. | | | | | rest site NO. | TH05-HY | CO05-HY | | | | Note: The test site complies with ANSI C63.4 2014 requirement. | Test Site | SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory | |--------------------|---| | Test Site Location | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-0868
FAX: +886-3-327-0855 | | Test Site No. | Sporton Site No.
03CH11-HY | Note: The test site complies with ANSI C63.4 2014 requirement. FCC designation No.: TW1190 and TW0007 TEL: 886-3-327-3456 Page Number : 5 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # 1.4 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: Report No.: FR932216-01A - FCC Part 15 Subpart C §15.247 - FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02 - FCC KDB 414788 D01 Radiated Test Site v01r01 - ANSI C63.10-2013 #### Remark: - 1. All test items were verified and recorded according to the standards and without any deviation during the test. - 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report. TEL: 886-3-327-3456 Page Number : 6 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # 2 Test Configuration of Equipment Under Test # 2.1 Carrier Frequency Channel | Frequency Band | Channel | Freq.
(MHz) | Channel | Freq.
(MHz) | Channel | Freq.
(MHz) | |-----------------|---------|----------------|---------|----------------|---------|----------------| | | 0 | 2402 | 27 | 2429 | 54 | 2456 | | | 1 | 2403 | 28 | 2430 | 55 | 2457 | | | 2 | 2404 | 29 | 2431 | 56 | 2458 | | | 3 | 2405 | 30 | 2432 | 57 | 2459 | | | 4 | 2406 | 31 | 2433 | 58 | 2460 | | | 5 | 2407 | 32 | 2434 | 59 | 2461 | | | 6 | 2408 | 33 | 2435 | 60 | 2462 | | | 7 | 2409 | 34 | 2436 | 61 | 2463 | | | 8 | 2410 | 35 | 2437 | 62 | 2464 | | | 9 | 2411 | 36 | 2438 | 63 | 2465 | | | 10 | 2412 | 37 | 2439 | 64 | 2466 | | | 11 | 2413 | 38 | 2440 | 65 | 2467 | | | 12 | 2414 | 39 | 2441 | 66 | 2468 | | 2400-2483.5 MHz | 13 | 2415 | 40 | 2442 | 67 | 2469 | | | 14 | 2416 | 41 | 2443 | 68 | 2470 | | | 15 | 2417 | 42 | 2444 | 69 | 2471 | | | 16 | 2418 | 43 | 2445 | 70 | 2472 | | | 17 | 2419 | 44 | 2446 | 71 | 2473 | | | 18 | 2420 | 45 | 2447 | 72 | 2474 | | | 19 | 2421 | 46 | 2448 | 73 | 2475 | | | 20 | 2422 | 47 | 2449 | 74 | 2476 | | | 21 | 2423 | 48 | 2450 | 75 | 2477 | | | 22 | 2424 | 49 | 2451 | 76 | 2478 | | | 23 | 2425 | 50 | 2452 | 77 | 2479 | | | 24 | 2426 | 51 | 2453 | 78 | 2480 | | | 25 | 2427 | 52 | 2454 | - | - | | | 26 | 2428 | 53 | 2455 | - | - | TEL: 886-3-327-3456 Page Number FAX: 886-3-328-4978 Issued Date Report Template No.: BU5-FR15CBT Version 2.4 Page Number : 7 of 58 Issued Date : Jul. 31, 2019 Report No. : FR932216-01A Report Version : 03 #### 2.2 Test Mode a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in two setup, without all accessories, with all accessories. The worst cases (without all accessories) were recorded in this report. The worst mode of radiated spurious emissions is Bluetooth 1Mbps mode,
and recorded in this report. Report No.: FR932216-01A b. AC power line Conducted Emission was tested under maximum output power. The following summary table is showing all test modes to demonstrate in compliance with the standard. | | Summary table of Test Cases | | | | | | | |------------------------|-----------------------------|--|-----------------------|--|--|--|--| | | Data Rate / Modulation | | | | | | | | Test Item | Bluetooth BR 1Mbps | Bluetooth EDR 2Mbps | Bluetooth EDR 3Mbps | | | | | | | GFSK | π/4-DQPSK | 8-DPSK | | | | | | Conducted | Mode 1: CH00_2402 MHz | Mode 4: CH00_2402 MHz | Mode 7: CH00_2402 MHz | | | | | | | Mode 2: CH39_2441 MHz | Mode 5: CH39_2441 MHz | Mode 8: CH39_2441 MHz | | | | | | Test Cases | Mode 3: CH78_2480 MHz | Mode 6: CH78_2480 MHz | Mode 9: CH78_2480 MHz | | | | | | | Bluetooth BR 1Mbps GFSK | | | | | | | | | | Bluetooth BR 1Mbps GFSK | | | | | | | Radiated | | Bluetooth BR 1Mbps GFSK
Mode 1: CH00_2402 MHz | | | | | | | Radiated
Test Cases | | | | | | | | | | | Mode 1: CH00_2402 MHz | | | | | | | | | Mode 1: CH00_2402 MHz
Mode 2: CH39_2441 MHz | | | | | | | Test Cases | | Mode 1: CH00_2402 MHz
Mode 2: CH39_2441 MHz | | | | | | #### Remark: - For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. - 2. For Radiated Test Cases, the tests were performed with Adapter and Notebook. TEL: 886-3-327-3456 Page Number : 8 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # 2.3 Connection Diagram of Test System #### <Bluetooth Tx Mode> Report No.: FR932216-01A #### <AC Conducted Emission Mode> TEL: 886-3-327-3456 Page Number : 9 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## 2.4 Support Unit used in test configuration and system | Item | Equipment | Trade Name | Model Name | FCC ID | Data Cable | Power Cord | |------|-------------|------------|----------------|-------------|----------------|--| | 1. | WLAN AP | ASUS | RT-AC66U | MSQ-RTAC66U | N/A | Unshielded, 1.8m | | 2. | Notebook | DELL | Latitude E6320 | FCC DoC | N/A | AC I/P:
Unshielded, 1.2 m
DC O/P:
Shielded, 1.8 m | | 3. | Notebook | Lenovo | G480 | N/A | N/A | AC I/P:
Unshielded, 1.2 m
DC O/P:
Shielded, 1.8 m | | 4. | LCD Monitor | DELL | P2715Qt | FCC DoC | Shielded, 1.6m | Unshielded, 1.8m | Report No.: FR932216-01A ### 2.5 EUT Operation Test Setup The RF test items, utility "QRCT v3.0-00271" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals. ## 2.6 Measurement Results Explanation Example #### For all conducted test items: The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level. #### Example: The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor. Following shows an offset computation example with cable loss 4.8 dB and 20dB attenuator. Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 20 = 24.8 (dB) TEL: 886-3-327-3456 Page Number : 10 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### 3 Test Result #### 3.1 Number of Channel Measurement #### 3.1.1 Limits of Number of Hopping Frequency Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. Report No.: FR932216-01A #### 3.1.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.1.3 Test Procedure - 1. The testing follows ANSI C63.10-2013 clause 7.8.3. - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Enable the EUT hopping function. - Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold. - 6. The number of hopping frequency used is defined as the number of total channel. - 7. Record the measurement data derived from spectrum analyzer. #### 3.1.4 Test Setup TEL: 886-3-327-3456 Page Number : 11 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## 3.1.5 Test Result of Number of Hopping Frequency Please refer to Appendix A. #### Number of Hopping Channel Plot on Channel 00 - 78 Report No.: FR932216-01A Date: 2.MAY,2019 19:36:08 Date: 2.MAY.2019 19:36:35 TEL: 886-3-327-3456 Page Number : 12 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.2 Hopping Channel Separation Measurement #### 3.2.1 Limit of Hopping Channel Separation Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Report No.: FR932216-01A #### 3.2.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.2.3 Test Procedures - 1. The testing follows ANSI C63.10-2013 clause 7.8.2. - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Enable the EUT hopping function. - Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold. - 6. Measure and record the results in the test report. #### 3.2.4 Test Setup #### 3.2.5 Test Result of Hopping Channel Separation Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 13 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## <1Mbps> #### Channel Separation Plot on Channel 00 - 01 Report No.: FR932216-01A Date: 2.MAY,2019 19:23:59 #### Channel Separation Plot on Channel 39 - 40 Date: 2.MAY.2019 19:37:49 TEL: 886-3-327-3456 Page Number : 14 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # Channel Separation Plot on Channel 77 - 78 Report No.: FR932216-01A Date: 2.MAY.2019 19:42:56 #### <2Mbps> #### Channel Separation Plot on Channel 00 - 01 Date: 2.MAY.2019 20:09:18 TEL: 886-3-327-3456 Page Number : 15 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## Channel Separation Plot on Channel 39 - 40 Report No.: FR932216-01A Date: 2.MAY.2019 19:58:18 #### Channel Separation Plot on Channel 77 - 78 Date: 2.MAY.2019 19:56:52 TEL: 886-3-327-3456 Page Number : 16 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # FCC RADIO TEST REPORT #### <3Mbps> #### Channel Separation Plot on Channel 00 - 01 Report No.: FR932216-01A Date: 2.MAY,2019 20:12:02 #### Channel Separation Plot on Channel 39 - 40 Date: 2.MAY.2019 20:32:44 TEL: 886-3-327-3456 : 17 of 58 Page Number FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### **Channel Separation Plot on Channel 77 - 78** Report No. : FR932216-01A Date: 2.MAY.2019 20:43:13 TEL: 886-3-327-3456 Page Number : 18 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### 3.3 Dwell Time Measurement #### 3.3.1 Limit of Dwell Time The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Report No.: FR932216-01A #### 3.3.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.3.3 Test Procedures - 1. The testing follows ANSI C63.10-2013 clause 7.8.4. - The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Enable the EUT hopping function. - 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. - 6. Measure and record the results in the test report. #### 3.3.4 Test Setup #### 3.3.5 Test Result of Dwell Time Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 19 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### **Package Transfer Time Plot** Report No.: FR932216-01A Date: 10.APR.2019 21:57:58 #### Remark: - **1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops. - **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops. - 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time TEL: 886-3-327-3456 Page Number : 20 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### 3.4 20dB and 99% Bandwidth Measurement #### 3.4.1 Limit of 20dB and 99% Bandwidth Reporting only #### 3.4.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.4.3 Test Procedures - 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3. - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and
attenuator. The path loss was compensated to the results for each measurement. Report No.: FR932216-01A - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; - RBW \geq 1% of the 20 dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak; - Trace = max hold. - 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement. - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak; - Trace = max hold. - 6. Measure and record the results in the test report. #### 3.4.4 Test Setup #### 3.4.5 Test Result of 20dB Bandwidth Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 21 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # FCC RADIO TEST REPORT #### <1Mbps> #### 20 dB Bandwidth Plot on Channel 00 Report No.: FR932216-01A Date: 2.MAY,2019 19:25:15 #### 20 dB Bandwidth Plot on Channel 39 Date: 2.MAY.2019 19:38:50 TEL: 886-3-327-3456 Page Number : 22 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # FCC RADIO TEST REPORT #### 20 dB Bandwidth Plot on Channel 78 Report No.: FR932216-01A Date: 2.MAY.2019 19:43:57 #### <2Mbps> #### 20 dB Bandwidth Plot on Channel 00 Date: 2.MAY.2019 20:03:07 TEL: 886-3-327-3456 Page Number : 23 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### 20 dB Bandwidth Plot on Channel 39 Report No.: FR932216-01A Date: 2.MAY.2019 19:59:14 #### 20 dB Bandwidth Plot on Channel 78 Date: 2.MAY,2019 19:53:32 TEL: 886-3-327-3456 Page Number : 24 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # FCC RADIO TEST REPORT #### <3Mbps> #### 20 dB Bandwidth Plot on Channel 00 Report No.: FR932216-01A : 25 of 58 : Jul. 31, 2019 Page Number Issued Date Date: 2.MAY.2019 20:13:08 #### 20 dB Bandwidth Plot on Channel 39 Report Template No.: BU5-FR15CBT Version 2.4 Report Version : 03 TEL: 886-3-327-3456 FAX: 886-3-328-4978 # SPORTON LAB. FCC RADIO TEST REPORT #### 20 dB Bandwidth Plot on Channel 78 Report No.: FR932216-01A Date: 2.MAY,2019 20:45:18 #### 3.4.6 Test Result of 99% Occupied Bandwidth Please refer to Appendix A. #### <1Mbps> #### 99% Occupied Bandwidth Plot on Channel 00 Date: 2.MAY.2019 19:29:43 TEL: 886-3-327-3456 Page Number : 26 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # Report No.: FR932216-01A #### 99% Occupied Bandwidth Plot on Channel 39 #### Date: 2.MAY.2019 19:39:26 #### 99% Occupied Bandwidth Plot on Channel 78 Date: 2.MAY,2019 19:45:32 TEL: 886-3-327-3456 Page Number : 27 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### <2Mbps> #### 99% Occupied Bandwidth Plot on Channel 00 Report No.: FR932216-01A Date: 2.MAY,2019 20:05:04 #### 99% Occupied Bandwidth Plot on Channel 39 TEL: 886-3-327-3456 Page Number : 28 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # FCC RADIO TEST REPORT #### 99% Occupied Bandwidth Plot on Channel 78 Report No.: FR932216-01A Date: 2.MAY.2019 19:50:04 #### <3Mbps> #### 99% Occupied Bandwidth Plot on Channel 00 2000 371070 100 1001010 TEL: 886-3-327-3456 Page Number : 29 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### 99% Occupied Bandwidth Plot on Channel 39 Report No.: FR932216-01A #### 99% Occupied Bandwidth Plot on Channel 78 Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations. TEL: 886-3-327-3456 Page Number : 30 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.5 Output Power Measurement #### 3.5.1 Limit of Output Power The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts. Report No.: FR932216-01A #### 3.5.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.5.3 Test Procedures - 1. The testing follows ANSI C63.10-2013 clause 7.8.5. - 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Measure the conducted output power with cable loss and record the results in the test report. - 5. Measure and record the results in the test report. #### 3.5.4 Test Setup #### 3.5.5 Test Result of Peak Output Power Please refer to Appendix A. #### 3.5.6 Test Result of Average Output Power (Reporting Only) Please refer to Appendix A. TEL: 886-3-327-3456 Page Number: 31 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ### 3.6 Conducted Band Edges Measurement #### 3.6.1 Limit of Band Edges In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits. Report No.: FR932216-01A #### 3.6.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.6.3 Test Procedures - 1. The testing follows ANSI C63.10-2013 clause 7.8.6. - 2. Set to the maximum power setting and enable the EUT transmit continuously. - Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. - 4. Enable hopping function of the EUT and then repeat step 2. and 3. - 5. Measure and record the results in the test report. #### 3.6.4 Test Setup TEL: 886-3-327-3456 Page Number: 32 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ## 3.6.5 Test Result of Conducted Band Edges #### <1Mbps> #### Low Band Edge Plot on Channel 00 Report No.: FR932216-01A #### **High Band Edge Plot on Channel 78** TEL: 886-3-327-3456 Page Number: 33 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 # FCC RADIO TEST REPORT #### <2Mbps> #### Low Band Edge Plot on Channel 00 Report No.: FR932216-01A #### Date: 2.MAY,2019 20:04:27 #### **High Band Edge Plot on Channel 78** Date: 2.MAY,2019 19:49:25 TEL: 886-3-327-3456 Page Number : 34 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # <3Mbps> #### Low Band Edge Plot on Channel 00 Report No.: FR932216-01A #### Date: 2.MAY,2019 20:13:49 #### **High Band Edge Plot on Channel 78** Date: 2.MAY,2019 20:27:57 TEL: 886-3-327-3456 Page Number : 35 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## 3.6.6 Test Result of Conducted Hopping Mode Band Edges #### <1Mbps> #### **Hopping Mode Low Band Edge Plot** Report No.: FR932216-01A #### **Hopping Mode High Band Edge Plot** TEL: 886-3-327-3456 Page Number: 36 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 # FCC RADIO TEST REPORT ### <2Mbps> ### **Hopping Mode Low Band Edge Plot** Report No.: FR932216-01A #### Date: 2.MAY,2019 20:10:10 ### **Hopping Mode High Band Edge Plot** Date: 2.MAY.2019 19:54:01 TEL: 886-3-327-3456 Page Number: 37 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ## FCC RADIO TEST REPORT ### <3Mbps> ### **Hopping Mode Low Band Edge Plot** Report No.: FR932216-01A #### Date: 2.MAY,2019 20:20:33 ### **Hopping Mode High Band Edge Plot** Date: 2.MAY,2019 20:27:26 TEL: 886-3-327-3456 Page Number : 38 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.7 Conducted Spurious Emission Measurement ### 3.7.1 Limit of Spurious Emission Measurement In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits. Report No.: FR932216-01A ### 3.7.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.7.3 Test Procedure - 1. The testing follows ANSI C63.10-2013 clause 7.8.8. - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. - 5. Measure and record the results in the test report. - 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. ### 3.7.4 Test Setup TEL: 886-3-327-3456 Page Number: 39 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ### 3.7.5 Test Result of Conducted Spurious Emission ### <1Mbps> ### CSE Plot on Ch 00 between 30MHz ~ 3 GHz Report No.: FR932216-01A #### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz TEL: 886-3-327-3456 Page Number: 40 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ### CSE Plot on Ch 39 between 30MHz ~ 3 GHz Report No.: FR932216-01A #### Date: 2.MAY.2019 19:40:54 #### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz Date: 2.MAY,2019 19:41:28 TEL: 886-3-327-3456 Page Number: 41 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ### CSE Plot on Ch 78 between 30MHz ~ 3 GHz Report No.: FR932216-01A #### Date: 2.MAY.2019 19:46:37 #### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz Date: 2.MAY.2019 19:47:10 TEL: 886-3-327-3456 Page Number : 42 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 # FCC RADIO TEST REPORT ### <2Mbps> ### CSE Plot on Ch 00 between 30MHz ~ 3 GHz Report
No.: FR932216-01A ### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz TEL: 886-3-327-3456 Page Number : 43 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### CSE Plot on Ch 39 between 30MHz ~ 3 GHz Report No.: FR932216-01A TEL: 886-3-327-3456 Page Number : 44 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### CSE Plot on Ch 78 between 30MHz ~ 3 GHz Report No.: FR932216-01A #### Date: 2.MAY.2019 19:50:54 #### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz Date: 2.MAY.2019 19:52:21 TEL: 886-3-327-3456 Page Number: 45 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ## Report No.: FR932216-01A ### <3Mbps> ### CSE Plot on Ch 00 between 30MHz ~ 3 GHz ### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz TEL: 886-3-327-3456 Page Number : 46 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### CSE Plot on Ch 39 between 30MHz ~ 3 GHz Report No.: FR932216-01A Date: 2.MAY.2019 20:25:51 #### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz Date: 2.MAY.2019 20:26:26 TEL: 886-3-327-3456 Page Number: 47 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ### CSE Plot on Ch 78 between 30MHz ~ 3 GHz Report No.: FR932216-01A Date: 2.MAY.2019 20:29:31 #### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz Date: 2.MAY.2019 20:29:59 TEL: 886-3-327-3456 Page Number : 48 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.8 Radiated Band Edges and Spurious Emission Measurement ### 3.8.1 Limit of Radiated Band Edges and Spurious Emission In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below. Report No.: FR932216-01A | Frequency | Field Strength | Measurement Distance | |---------------|--------------------|----------------------| | (MHz) | (microvolts/meter) | (meters) | | 0.009 - 0.490 | 2400/F(kHz) | 300 | | 0.490 – 1.705 | 24000/F(kHz) | 30 | | 1.705 – 30.0 | 30 | 30 | | 30 – 88 | 100 | 3 | | 88 – 216 | 150 | 3 | | 216 - 960 | 200 | 3 | | Above 960 | 500 | 3 | ### 3.8.2 Measuring Instruments See list of measuring equipment of this test report. TEL: 886-3-327-3456 Page Number : 49 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### 3.8.3 Test Procedures 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground. Report No.: FR932216-01A - 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. - 4. Set to the maximum power setting and enable the EUT transmit continuously. - 5. Use the following spectrum analyzer settings: - (1) Span shall wide enough to fully capture the emission being measured; - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$ Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle) - 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level - 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported. - 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction. TEL: 886-3-327-3456 Page Number : 50 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.8.4 Test Setup ### For radiated emissions below 30MHz Report No.: FR932216-01A #### For radiated emissions from 30MHz to 1GHz TEL: 886-3-327-3456 Page Number : 51 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 #### For radiated emissions above 1GHz Report No.: FR932216-01A ### 3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz) The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported. There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar. ### 3.8.6 Test Result of Radiated Spurious at Band Edges Please refer to Appendix C and D. ### 3.8.7 Duty Cycle Please refer to Appendix E. ### 3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic) Please refer to Appendix C and D. TEL: 886-3-327-3456 Page Number : 52 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.9 AC Conducted Emission Measurement #### 3.9.1 Limit of AC Conducted Emission For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table. Report No.: FR932216-01A | Fraguency of amission (MUz) | Conducted | limit (dΒμV) | |-----------------------------|------------|--------------| | Frequency of emission (MHz) | Quasi-peak | Average | | 0.15-0.5 | 66 to 56* | 56 to 46* | | 0.5-5 | 56 | 46 | | 5-30 | 60 | 50 | ^{*}Decreases with the logarithm of the frequency. ### 3.9.2 Measuring Instruments See list of measuring equipment of this test report. ### 3.9.3 Test Procedures - 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface. - 2. Connect EUT to the power mains through a line impedance stabilization network (LISN). - 3. All the support units are connecting to the other LISN. - 4. The LISN provides 50 ohm coupling impedance for the measuring instrument. - 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used. - 6. Both sides of AC line were checked for maximum conducted interference. - 7. The frequency range from 150 kHz to 30 MHz was searched. - 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively. TEL: 886-3-327-3456 Page Number: 53 of 58 FAX: 886-3-328-4978 Issued Date: Jul. 31, 2019 ### 3.9.4 Test Setup Report No.: FR932216-01A ### 3.9.5 Test Result of AC Conducted Emission Please refer to Appendix B. TEL: 886-3-327-3456 Page Number : 54 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 3.10 Antenna Requirements ### 3.10.1 Standard Applicable If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule. Report No.: FR932216-01A ### 3.10.2 Antenna Anti-Replacement Construction An embedded-in antenna design is used. #### 3.10.3 Antenna Gain The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit. TEL: 886-3-327-3456 Page Number : 55 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ## 4 List of Measuring Equipment | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |-------------------------|--------------------|-------------------------------------|----------------------|-------------------------------------|---------------------|---------------------------------|---------------|--------------------------| | AC Power Source | ChainTek | APC-1000W | N/A | N/A | N/A | May 21, 2019 | N/A | Conduction
(CO05-HY) | | EMI Test Receiver | Rohde &
Schwarz | ESR3 | 102388 | 9KHz~3.6GHz | Nov. 12, 2018 | May 21, 2019 | Nov. 11, 2019 | Conduction
(CO05-HY) | | LISN | Rohde &
Schwarz | ENV216 | 100080 | 9kHz~30MHz | Nov. 14, 2018 | May 21, 2019 | Nov. 13, 2019 | Conduction
(CO05-HY) | | LISN | Rohde &
Schwarz | ENV216 | 100081 | 9kHz~30MHz | Nov. 09, 2018 | May 21, 2019 | Nov. 08, 2019 | Conduction
(CO05-HY) | | Software | Rohde &
Schwarz | EMC32
V10.30 | N/A | N/A | N/A | May 21, 2019 | N/A | Conduction
(CO05-HY) | | LF Cable | HUBER +
SUHNER | RG-214/U | LF01 | N/A | Dec. 31, 2018 | May 21, 2019 | Dec. 30, 2019 | Conduction
(CO05-HY) | | Pulse Limiter | Rohde &
Schwarz | ESH3-Z2 | 100851 | N/A | Dec. 31, 2018 | May 21, 2019 | Dec. 30, 2019 | Conduction
(CO05-HY) | | Amplifier | MITEQ | TTA1840-35-
HG | 1871923 | 18GHz~40GHz,
VSWR : 2.5:1
max | Jul. 16, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Jul. 15, 2019 | Radiation
(03CH11-HY) | | Amplifier | SONOMA | 310N | 187312 | 9kHz~1GHz | Dec. 04, 2018 | Apr. 08, 2019~
Apr. 25,
2019 | Dec. 03, 2019 | Radiation
(03CH11-HY) | | Bilog Antenna | TESEQ | CBL
6111D&N-6-0
6 | 35414&AT-
N0602 | 30MHz~1GHz | Oct. 13, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Oct. 12, 2019 | Radiation
(03CH11-HY) | | Horn Antenna | SCHWARZBE
CK | BBHA 9120 D | 9120D-132
6 | 1GHz ~ 18GHz | Oct. 30, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Oct. 29, 2019 | Radiation
(03CH11-HY) | | Loop Antenna | Rohde &
Schwarz | HFH2-Z2 | 100488 | 9 kHz~30 MHz | Jan. 07, 2019 | Apr. 08, 2019~
Apr. 25, 2019 | Jan. 06, 2020 | Radiation
(03CH11-HY) | | Preamplifier | Keysight | 83017A | MY532700
80 | 1GHz~26.5GHz | Nov. 14, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Nov. 13, 2020 | Radiation
(03CH11-HY) | | Spectrum
Analyzer | Keysight | N9010A | MY542004
86 | 10Hz ~ 44GHz | Oct. 19, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Oct. 18, 2019 | Radiation
(03CH11-HY) | | Antenna Mast | EMEC | AM-BS-4500-
B | N/A | 1~4m | N/A | Apr. 08, 2019~
Apr. 25, 2019 | N/A | Radiation
(03CH11-HY) | | Turn Table | EMEC | TT 2000 | N/A | 0~360 Degree | N/A | Apr. 08, 2019~
Apr. 25, 2019 | N/A | Radiation
(03CH11-HY) | | Preamplifier | Jet-Power | JPA0118-55-3
03 | 171000180
0054001 | 1GHz~18GHz | Apr. 16, 2018 | Apr. 08, 2019~
Apr. 13, 2019 | Apr. 15, 2019 | Radiation
(03CH11-HY) | | Preamplifier | Jet-Power | JPA0118-55-3
03 | 171000180
0055007 | 1GHz~18GHz | Apr. 01, 2019 | Apr. 22, 2019~
Apr. 25, 2019 | Mar. 31, 2020 | Radiation
(03CH11-HY) | | SHF-EHF Horn
Antenna | SCHWARZBE
CK | BBHA 9170 | BBHA9170
584 | 18GHz- 40GHz | Dec. 05, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Dec. 04, 2019 | Radiation
(03CH11-HY) | | EMI Test Receiver | Keysight | N9038A(MXE
) | 70 | N/A | Mar. 08, 2019 | Apr. 08, 2019~
Apr. 25, 2019 | Mar. 07, 2020 | Radiation
(03CH11-HY) | | Software | Audix | E3
6.2009-8-24 | RK-00104
2 | N/A | N/A | Apr. 08, 2019~
Apr. 25, 2019 | N/A | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY9837/4
PE | 9kHz-30MHz | Mar. 13, 2019 | Apr. 08, 2019~
Apr. 25, 2019 | Mar. 12, 2020 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | MY2859/2 | 30MHz-40GHz | Mar. 13, 2019 | Apr. 08, 2019~
Apr. 25, 2019 | Mar. 12, 2020 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY9837/4
PE | 30M-18G | Mar. 13, 2019 | Apr. 08, 2019~
Apr. 25, 2019 | Mar. 12, 2020 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | MY4274/2 | 30MHz-40GHz | Mar. 13, 2019 | Apr. 08, 2019~
Apr. 25, 2019 | Mar. 12, 2020 | Radiation
(03CH11-HY) | | Filter | Wainwright | WLK4-1000-1
530-8000-40S
S | SN11 | 1G Low Pass | Sep. 16, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Sep. 17, 2019 | Radiation
(03CH11-HY) | | Filter | Wainwright | WHKX12-270
0-3000-18000
-60SS | SN3 | 2.7G High Pass | Sep. 16, 2018 | Apr. 08, 2019~
Apr. 25, 2019 | Sep. 17, 2019 | Radiation
(03CH11-HY) | Report No. : FR932216-01A TEL: 886-3-327-3456 Page Number : 56 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |--------------------------|--------------------|-----------|----------------|-----------------|---------------------|--------------------------------|---------------|------------------------| | Power Meter | Agilent | E4416A | GB412923
44 | N/A | Dec. 27, 2018 | Apr. 10, 2019~
May 02, 2019 | Dec. 26, 2019 | Conducted
(TH05-HY) | | Power Sensor | Agilent | E9327A | US404415
48 | 50MHz~18GHz | Dec. 27, 2018 | Apr. 10, 2019~
May 02, 2019 | Dec. 26, 2019 | Conducted
(TH05-HY) | | Signal Analyzer | Rohde &
Schwarz | FSV40 | 101397 | 10Hz~40GHz | Nov. 13, 2018 | Apr. 10, 2019~
May 02, 2019 | Nov. 12, 2019 | Conducted
(TH05-HY) | | Spectrum
Analyzer | Rohde &
Schwarz | FSP40 | 100057 | 9kHz-40GHz | Nov. 21, 2018 | Apr. 10, 2019~
May 02, 2019 | Nov. 20, 2019 | Conducted
(TH05-HY) | | Switch Box & RF
Cable | EM | EMSW18 | SW107090
3 | N/A | Dec. 19, 2018 | Apr. 10, 2019~
May 02, 2019 | Dec. 18, 2019 | Conducted
(TH05-HY) | Report No. : FR932216-01A TEL: 886-3-327-3456 Page Number : 57 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 ### 5 Uncertainty of Evaluation ### <u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u> | Measuring Uncertainty for a Level of Confidence | 2.2 dB | |---|--------| | of 95% (U = 2Uc(y)) | 2.2 UB | Report No.: FR932216-01A ### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz) | Measuring Uncertainty for a Level of Confidence | 5.2 dB | |---|--------| | of 95% (U = 2Uc(y)) | 3.2 UD | ### <u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)</u> | Measuring Uncertainty for a Level of Confidence | 5.5 dB | |---|--------| | of 95% (U = 2Uc(y)) | 3.5 UB | ### <u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u> | Measuring Uncertainty for a Level of Confidence | | |---|--------| | of 95% (U = 2Uc(y)) | 5.2 dB | TEL: 886-3-327-3456 Page Number : 58 of 58 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 Report Number : FR932216-01A ### Appendix A. Test Result of Conducted Test Items | Test Engineer: | Leo Li / Kai Liao | Temperature: | 21~25 | ℃ | |----------------|-------------------|--------------------|-------|---| | Test Date: | 2019/4/10 ~ 5/2 | Relative Humidity: | 51~54 | % | | | | | 20dB | and 99 | 0% Оссир | | SULTS DATA
Ith and Hopping | Channel Separ | ation | |------|--------------|-----|------|----------------|------------------|---------------------------|---|---|-----------| | Mod. | Data
Rate | NTX | CH. | Freq.
(MHz) | 20db BW
(MHz) | 99%
Bandwidth
(MHz) | Hopping Channel
Separation
Measurement
(MHz) | Hopping Channel
Separation
Measurement
Limit (MHz) | Pass/Fail | | DH | 1Mbps | 1 | 0 | 2402 | 0.868 | 0.819 | 0.842 | 0.5789 | Pass | | DH | 1Mbps | 1 | 39 | 2441 | 0.868 | 0.819 | 1.003 | 0.5789 | Pass | | DH | 1Mbps | 1 | 78 | 2480 | 0.865 | 0.819 | 1.003 | 0.5769 | Pass | | 2DH | 2Mbps | 1 | 0 | 2402 | 1.250 | 1.166 | 0.999 | 0.8336 | Pass | | 2DH | 2Mbps | 1 | 39 | 2441 | 1.250 | 1.164 | 0.999 | 0.8336 | Pass | | 2DH | 2Mbps | 1 | 78 | 2480 | 1.250 | 1.169 | 0.994 | 0.8336 | Pass | | 3DH | 3Mbps | 1 | 0 | 2402 | 1.216 | 1.152 | 1.003 | 0.8104 | Pass | | 3DH | 21/1hpa | 4 | 20 | 2444 | 1 227 | 1 152 | 1 202 | 0.0340 | Dooo | | | | | <u>TES</u> | T RESULTS Dwell Time | | | |-------|--------------------------------------|--------------------------------------|------------------------------------|----------------------|-----------------|-----------| | Mod. | Hopping
Channel
Number
Rate | Hops Over
Occupancy
Time(hops) | Package
Transfer
Time (msec) | Dwell Time
(sec) | Limits
(sec) | Pass/Fail | | Nomal | 79 | 106.67 | 2.90 | 0.31 | 0.4 | Pass | | AFH | 20 | 53.33 | 2.90 | 0.15 | 0.4 | Pass | | | | | | | T RESUL
eak Powe | |------|-----|------|------------|-------------|---------------------| | DH | CH. | NTX | Peak Power | Power Limit | Test | | ВΠ | CH. | INTX | (dBm) | (dBm) | Result | | | 0 | 1 | 10.90 | 20.97 | Pass | | DH1 | 39 | 1 | 10.59 | 20.97 | Pass | | | 78 | 1 | 10.06 | 20.97 | Pass | | | 0 | 1 | 10.49 | 20.97 | Pass | | 2DH1 | 39 | 1 | 9.97 | 20.97 | Pass | | | 78 | 1 | 9.60 | 20.97 | Pass | | | 0 | 1 | 10.72 | 20.97 | Pass | | 3DH1 | 39 | 1 | 10.22 | 20.97 | Pass | | ſ | 78 | 1 | 9.84 | 20.97 | Pass | | | | T RESULTS DATA
erage Power Table
Reporting Only) | | | | |------|-----|--|---------------------|---------------------|--| | DH | CH. | NTX | Average Power (dBm) | Duty Factor
(dB) | | | | 0 | 1 | 10.87 | 5.16 | | | DH1 | 39 | 1 | 10.48 | 5.16 | | | | 78 | 1 | 9.93 | 5.16 | | | | 0 | 1 | 8.59 | 5.07 | | | 2DH1 | 39 | 1 | 7.66 | 5.07 | | | | 78 | 1 | 7.55 | 5.07 | | | | 0 | 1 | 8.64 | 5.12 | | | 3DH1 | 39 | 1 | 7.71 | 5.12 | | | | 78 | 1 | 7.60 | 5.12 | | | | | TEST RE
Number of Ho | SULTS DA
oppina Fre | | |--------------------------------|---|-------------------------|------------------------|--| | Number of Hopping
(Channel) | Adaptive
Frequency
Hopping
(Channel) | Limits
(Channel) | Pass/Fail | | | 79 | 20 | > 15 | Pass | | ## **Appendix B. AC Conducted Emission Test Results** Test Engineer : Eric Jeng Temperature : 22~25°C Relative Humidity : 52~55% Test Voltage : 120Vac / 60Hz Phase : Line Report No.: FR932216-01A #### Final Result: | Frequency | QuasiPeak | Average | Limit | Margin | Line | Filter | Corr. | |-----------|-----------|---------|--------|--------|------|--------|-------| | (MHz) | (dBuV) | (dBuV) | (dBuV) | (dB) | | | (dB) | | 0.152250 | | 37.06 | 55.88 | 18.82 | L1 | OFF | 19.5 | | 0.152250 | 43.10 | | 65.88 | 22.78 | L1 | OFF | 19.5 | | 0.159000 | | 40.65 | 55.52 | 14.87 | L1 | OFF | 19.5 | | 0.159000 | 44.33 | | 65.52 | 21.19 | L1 | OFF | 19.5 | | 0.183750 | | 38.46 | 54.31 | 15.85 | L1 | OFF | 19.5 | | 0.183750 | 41.87 | | 64.31 | 22.44 | L1 | OFF | 19.5 | | 0.442500 | | 34.88 | 47.02 | 12.14 | L1 | OFF | 19.5 | | 0.442500 | 40.37 | | 57.02 | 16.65 | L1 | OFF | 19.5 | | 0.687750 | | 33.08 | 46.00 | 12.92 | L1 | OFF | 19.6 | | 0.687750 | 35.05 | | 56.00 | 20.95 | L1 | OFF | 19.6 | | 4.382250 | | 24.57 | 46.00 | 21.43 | L1 | OFF | 19.7 | | 4.382250 | 25.53 | | 56.00 | 30.47 | L1 | OFF | 19.7 | TEL: 886-3-327-3456 Page Number : B1 of B2 Test Engineer : Eric Jeng Temperature : 22~25°C Relative Humidity : 52~55% Test Voltage : 120Vac /
60Hz Phase : Neutral Report No. : FR932216-01A ### Final Result: | Frequency | QuasiPeak | Average | Limit | Margin | Line | Filter | Corr. | |-----------|-----------|---------|--------|--------|------|--------|-------| | (MHz) | (dBuV) | (dBuV) | (dBuV) | (dB) | | | (dB) | | 0.152250 | | 38.19 | 55.88 | 17.69 | N | OFF | 19.5 | | 0.152250 | 43.38 | - | 65.88 | 22.50 | N | OFF | 19.5 | | 0.159000 | | 40.62 | 55.52 | 14.90 | N | OFF | 19.5 | | 0.159000 | 44.86 | | 65.52 | 20.66 | N | OFF | 19.5 | | 0.174750 | | 37.05 | 54.73 | 17.68 | N | OFF | 19.5 | | 0.174750 | 41.82 | | 64.73 | 22.91 | N | OFF | 19.5 | | 0.186000 | | 38.71 | 54.21 | 15.50 | N | OFF | 19.5 | | 0.186000 | 42.16 | | 64.21 | 22.05 | N | OFF | 19.5 | | 0.208500 | | 35.61 | 53.27 | 17.66 | N | OFF | 19.5 | | 0.208500 | 39.14 | | 63.27 | 24.13 | N | OFF | 19.5 | | 0.377250 | | 26.87 | 48.34 | 21.47 | N | OFF | 19.5 | | 0.377250 | 29.99 | | 58.34 | 28.35 | N | OFF | 19.5 | | 0.442500 | | 32.92 | 47.02 | 14.10 | N | OFF | 19.5 | | 0.442500 | 37.54 | - | 57.02 | 19.48 | N | OFF | 19.5 | | 0.683250 | | 34.77 | 46.00 | 11.23 | N | OFF | 19.6 | | 0.683250 | 36.44 | | 56.00 | 19.56 | N | OFF | 19.6 | TEL: 886-3-327-3456 Page Number: B2 of B2 ## Appendix C. Radiated Spurious Emission | Toot Engineer | Hao Xu, Ken Wu, Fu Chen | Temperature : | 20~25°C | |-----------------|-------------------------|---------------------|---------| | Test Engineer : | | Relative Humidity : | 50~54% | Report No. : FR932216-01A ### 2.4GHz 2400~2483.5MHz ### BT (Band Edge @ 3m) | ВТ | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |------------------|------|-----------|------------|--------|-----------------|---------------------|----------|--------|--------|--------|---------|-------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | ($dB\mu V/m$) | (dB _µ V) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | | | 2330.265 | 44.11 | -29.89 | 74 | 43.44 | 27.68 | 6.64 | 33.65 | 103 | 243 | Р | Н | | | | 2330.265 | 19.32 | -34.68 | 54 | - | - | - | - | - | - | Α | Н | | DT | * | 2402 | 110.21 | - | - | 109.72 | 27.4 | 6.72 | 33.63 | 103 | 243 | Р | Н | | BT
CH00 | * | 2402 | 85.42 | - | - | - | - | - | - | - | - | Α | Н | | 2402MHz | | 2339.295 | 44.01 | -29.99 | 74 | 43.37 | 27.64 | 6.65 | 33.65 | 350 | 299 | Р | V | | 2402111112 | | 2339.295 | 19.22 | -34.78 | 54 | - | - | - | - | - | - | Α | V | | | * | 2402 | 107.34 | - | 1 | 106.85 | 27.4 | 6.72 | 33.63 | 350 | 299 | Р | V | | | * | 2402 | 82.55 | - | - | - | - | - | - | - | - | Α | ٧ | | | | 2319.1 | 44.25 | -29.75 | 74 | 43.56 | 27.72 | 6.63 | 33.66 | 100 | 243 | Р | Н | | | | 2319.1 | 19.46 | -34.54 | 54 | - | - | - | - | - | - | Α | Н | | | * | 2441 | 110.09 | - | - | 109.62 | 27.32 | 6.76 | 33.61 | 100 | 243 | Р | Н | | | * | 2441 | 85.3 | - | - | - | - | - | - | - | - | Α | Н | | | | 2497.62 | 43.63 | -30.37 | 74 | 43.1 | 27.3 | 6.82 | 33.59 | 100 | 243 | Р | Н | | BT | | 2497.62 | 18.84 | -35.16 | 54 | - | - | - | - | - | - | Α | Н | | CH 39
2441MHz | | 2320.22 | 43.61 | -30.39 | 74 | 42.91 | 27.72 | 6.63 | 33.65 | 334 | 291 | Р | V | | 244 IVIF1Z | | 2320.22 | 18.82 | -35.18 | 54 | - | - | - | - | - | - | Α | V | | | * | 2441 | 107.13 | - | - | 106.66 | 27.32 | 6.76 | 33.61 | 334 | 291 | Р | V | | | * | 2441 | 82.34 | - | - | - | - | - | - | - | - | Α | V | | | | 2484.39 | 42.99 | -31.01 | 74 | 42.48 | 27.3 | 6.81 | 33.6 | 334 | 291 | Р | V | | | | 2484.39 | 18.2 | -35.8 | 54 | - | - | - | - | - | - | Α | V | TEL: 886-3-327-3456 Page Number: C1 of C6 | | * | 2480 | 107.29 | - | - | 106.79 | 27.3 | 6.8 | 33.6 | 100 | 244 | Р | Н | |-------------|---|---------|--------|--------|----|--------|------|------|------|-----|-----|---|---------| | | * | 2480 | 82.5 | - | - | - | - | - | - | - | - | Α | Н | | | | 2483.56 | 57.89 | -16.11 | 74 | 57.38 | 27.3 | 6.81 | 33.6 | 100 | 244 | Р | Н | | BT
CH 78 | | 2483.56 | 33.1 | -20.9 | 54 | - | - | - | - | - | ı | Α | Н | | 2480MHz | * | 2480 | 103.4 | - | - | 102.9 | 27.3 | 6.8 | 33.6 | 107 | 263 | Р | V | | 2400141112 | * | 2480 | 78.61 | - | - | - | - | - | - | - | 1 | Α | V | | | | 2483.52 | 53.64 | -20.36 | 74 | 53.13 | 27.3 | 6.81 | 33.6 | 107 | 263 | Р | V | | | | 2483.52 | 28.85 | -25.15 | 54 | - | - | - | - | - | - | Α | ٧ | | | | | | | | | | | | | | | <u></u> | Report No. : FR932216-01A Remark 1. No other spurious found. 2. All results are PASS against Peak and Average limit line. TEL: 886-3-327-3456 Page Number : C2 of C6 ### 2.4GHz 2400~2483.5MHz Report No. : FR932216-01A ### BT (Harmonic @ 3m) | ВТ | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |------------------|------|-----------|------------|--------|------------|---------------|----------|--------|--------|--------|---------|-------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | ($dB\mu V$) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | DT | | 4804 | 38.69 | -35.31 | 74 | 55.64 | 31.1 | 10.53 | 58.58 | 100 | 0 | Р | Н | | BT
CH 00 | | 4804 | 13.9 | -40.1 | 54 | ı | - | - | - | ı | - | Α | Н | | 2402MHz | | 4804 | 39.37 | -34.63 | 74 | 56.32 | 31.1 | 10.53 | 58.58 | 100 | 0 | Р | V | | 2402111112 | | 4804 | 14.58 | -39.42 | 54 | ı | - | - | - | ı | - | Α | V | | | | 4882 | 38.29 | -35.71 | 74 | 55.19 | 31.04 | 10.58 | 58.55 | 100 | 0 | Р | Н | | | | 4882 | 13.50 | -40.50 | 54 | - | - | - | - | - | - | Α | Н | | DT | | 7323 | 42.45 | -31.55 | 74 | 51.59 | 36.55 | 13.12 | 58.81 | 100 | 0 | Р | Н | | BT
CH 39 | | 7323 | 17.66 | -36.34 | 54 | - | - | - | - | - | - | Α | Н | | 2441MHz | | 4882 | 39.62 | -34.38 | 74 | 56.52 | 31.04 | 10.58 | 58.55 | 100 | 0 | Р | V | | 244 HVII IZ | | 4882 | 14.83 | -39.17 | 54 | ı | - | - | - | ı | - | Α | V | | | | 7323 | 42.88 | -31.12 | 74 | 52.02 | 36.55 | 13.12 | 58.81 | 100 | 0 | Р | V | | | | 7323 | 18.09 | -35.91 | 54 | - | - | - | - | - | - | Α | V | | | | 4960 | 40.43 | -33.57 | 74 | 56.94 | 31.32 | 10.68 | 58.51 | 100 | 0 | Р | Н | | | | 4960 | 15.64 | -38.36 | 54 | - | - | - | - | - | - | Α | Н | | D.T. | | 7440 | 43.14 | -30.86 | 74 | 52.24 | 36.48 | 13.08 | 58.66 | 100 | 0 | Р | Н | | BT | | 7440 | 18.35 | -35.65 | 54 | - | - | - | - | - | - | Α | Н | | CH 78
2480MHz | | 4960 | 40.51 | -33.49 | 74 | 57.02 | 31.32 | 10.68 | 58.51 | 100 | 0 | Р | V | | Z+OUIVIF1Z | | 4960 | 15.72 | -38.28 | 54 | - | - | - | - | - | - | Α | V | | | | 7440 | 43.93 | -30.07 | 74 | 53.03 | 36.48 | 13.08 | 58.66 | 100 | 0 | Р | V | | | | 7440 | 19.14 | -34.86 | 54 | - | - | - | - | - | - | Α | ٧ | #### Romark TEL: 886-3-327-3456 Page Number : C3 of C6 ^{1.} No other spurious found. ^{2.} All results are PASS against Peak and Average limit line. ### **Emission below 1GHz** Report No. : FR932216-01A ### 2.4GHz BT (LF) | вт | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |----------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|---------|-------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dBµV) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | | | 31.94 | 22.79 | -17.21 | 40 | 31.21 | 23.16 | 0.79 | 32.37 | - | - | Р | Н | | | | 165.8 | 31.77 | -11.73 | 43.5 | 46.52 | 15.73 | 1.79 | 32.27 | 100 | 0 | Р | Н | | | | 297.72 | 30.48 | -15.52 | 46 | 41.26 | 19.04 | 2.36 | 32.18 | - | - | Р | Н | | | | 665.35 | 31.29 | -14.71 | 46 | 33.52 | 26.38 | 3.55 | 32.16 | - | - | Р | Н | | | | 849.65 | 31.69 | -14.31 | 46 | 30.12 | 29.12 | 4.07 | 31.62 | - | - | Р | Н | | 2.4GHz | | 952.47 | 33.78 | -12.22 | 46 | 29.65 | 30.68 | 4.32 | 30.87 | - | - | Р | Н | | BT
LF | | 30.97 | 31.46 | -8.54 | 40 | 39.47 | 23.58 | 0.78 | 32.37 | 100 | 0 | Р | V | | LF | | 53.28 | 24.67 | -15.33 | 40 | 43.35 | 12.72 | 0.97 | 32.37 | - | - | Р | ٧ | | | | 66.86 | 23.05 | -16.95 | 40 | 42.54 | 11.75 | 1.11 | 32.35 | - | - | Р | V | | | | 663.41 | 30.85 | -15.15 | 46 | 33.1 | 26.36 | 3.55 | 32.16 | - | - | Р | V | | | | 886.51 | 32.1 | -13.9 | 46 | 30.29 | 29.07 | 4.16 | 31.42 | - | - | Р | ٧ | | | | 956.35 | 33.92 | -12.08 | 46 | 29.57 | 30.85 | 4.33 | 30.83 | _ | - | Р | V | Remark 1. No other spurious found. 2. All results are PASS again All results are PASS against limit line. > TEL: 886-3-327-3456 Page Number : C4 of C6 ### Note symbol Report No. : FR932216-01A | * | Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. | |-----|--| | ! | Test result is over limit line. | | P/A | Peak or Average | | H/V | Horizontal or Vertical | TEL: 886-3-327-3456 Page Number : C5 of C6 ### A calculation example for radiated spurious emission is shown as below: Report No.: FR932216-01A | ВТ | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |---------|------|-----------|------------|--------|------------|---------------------|----------|--------|--------|--------|-------|----------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dB _µ V) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | ВТ | | 2390 | 55.45 | -18.55 | 74 | 54.51 | 32.22 | 4.58 | 35.86 | 103 | 308 | Р | Н | | CH 00 | | | | | | | | | | | | <u> </u> | | | 2402MHz | | 2390 | 43.54 | -10.46 | 54 | 42.6 | 32.22 | 4.58 | 35.86 | 103 | 308 | Α | Н | - 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB) -
2. Level($dB\mu V/m$) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB) 3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m) ### For Peak Limit @ 2390MHz: - Level(dBµV/m) - = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB) - $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$ - $= 55.45 (dB\mu V/m)$ - 2. Over Limit(dB) - = Level($dB\mu V/m$) Limit Line($dB\mu V/m$) - $= 55.45(dB\mu V/m) 74(dB\mu V/m)$ - = -18.55(dB) ### For Average Limit @ 2390MHz: - 1. Level(dBµV/m) - = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB) - $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$ - $= 43.54 (dB\mu V/m)$ - 2. Over Limit(dB) - = Level($dB\mu V/m$) Limit Line($dB\mu V/m$) - $= 43.54(dB\mu V/m) 54(dB\mu V/m)$ - = -10.46(dB) Both peak and average measured complies with the limit line, so test result is "PASS". TEL: 886-3-327-3456 Page Number : C6 of C6 ## **Appendix D. Radiated Spurious Emission Plots** | Toot Engineer | Hao Xu, Ken Wu, Fu Chen | Temperature : | 20~25°C | |-----------------|-------------------------|---------------------|---------| | Test Engineer : | | Relative Humidity : | 50~54% | Report No. : FR932216-01A ### 2.4GHz 2400~2483.5MHz ### BT (Band Edge @ 3m) TEL: 886-3-327-3456 Page Number: D1 of D10 TEL: 886-3-327-3456 Page Number: D2 of D10 TEL: 886-3-327-3456 Page Number: D3 of D10 TEL: 886-3-327-3456 Page Number: D4 of D10 TEL: 886-3-327-3456 Page Number: D5 of D10 TEL: 886-3-327-3456 Page Number: D6 of D10 ### 2.4GHz 2400~2483.5MHz Report No. : FR932216-01A ### BT (Harmonic @ 3m) TEL: 886-3-327-3456 Page Number: D7 of D10 TEL: 886-3-327-3456 Page Number: D8 of D10 TEL: 886-3-327-3456 Page Number: D9 of D10 ### **Emission below 1GHz** Report No. : FR932216-01A ### 2.4GHz BT (LF) TEL: 886-3-327-3456 Page Number: D10 of D10 Report No. : FR932216-01A ### Appendix E. Duty Cycle Plots DH5 on time (One Pulse) Plot on Channel 39 on time (Count Pulses) Plot on Channel 39 #### Note: - 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 % - 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB - 3. **DH5** has the highest duty cycle worst case and is reported. TEL: 886-3-327-3456 Page Number : E1 of E2 ### **Duty Cycle Correction Factor Consideration for AFH mode:** Report No.: FR932216-01A Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode. In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is $2.88 \text{ ms } \times 20 \text{ channels} = 57.6 \text{ ms}$ There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops Thus, the maximum possible ON time: 2.88 ms x 2 = 5.76 ms Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time, $20 \times log(5.76 \text{ ms}/100\text{ms}) = -24.79 \text{ dB}$ TEL: 886-3-327-3456 Page Number: E2 of E2