FCC Radio Test Report FCC ID: RWO-RZ040352 This report concerns: Original Grant **Project No.** : 2007C174 **Equipment**: Wireless Headset **Brand Name** : RAZER **Test Model** : RZ04-0352 Series Model : RZ04-0352XXXX-XXXX(X can be 0-9 or A-Z) **Applicant**: Razer Inc. Address : 9 Pasteur, Suite 100, Irvine, CA92618, USA Manufacturer : Razer (Asia-Pacific) Pte.,Ltd. Address: 514 Chai Chee Lane, #07-01-06, Singapore 469029 Factory : RAZER TECHNOLOGY AND DEVELOPMENT (SHENZHEN) CO., LTD Address : East Wing, 3rd Floor, Block 2, Phase 1 of Vision Shenzhen Business Park Keji South Road, Hi-Tech Industrial Park, Shenzhen 518057, China Date of Receipt : Jul. 20, 2020 **Date of Test** : Jul. 20, 2020 ~ Aug. 13, 2020 **Issued Date** : Aug. 27, 2020 Report Version : R00 Test Sample : Sample No.: DG20200720169 for conducted, DG20200720170 for radiated. Standard(s) : FCC Part15, Subpart C (15.247) ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. Prepared by : Vincent Tan Approved by: Ethan Ma IAC-MRA ACCREDITED Certificate #5123.02 Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com #### **Declaration** **BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s). **BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government. This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval. **BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report. **BTL** is not responsible for the sampling stage, so the results only apply to the sample as received. The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use. #### Limitation For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results. | Table of Contents | Page | |--|------| | REPORT ISSUED HISTORY | 6 | | 1 . SUMMARY OF TEST RESULTS | 7 | | 1.1 TEST FACILITY | 8 | | 1.2 MEASUREMENT UNCERTAINTY | 8 | | 1.3 TEST ENVIRONMENT CONDITIONS | 8 | | 2 . GENERAL INFORMATION | 9 | | 2.1 GENERAL DESCRIPTION OF EUT | 9 | | 2.2 DESCRIPTION OF TEST MODES | 11 | | 2.3 PARAMETERS OF TEST SOFTWARE | 12 | | 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 13 | | 2.5 SUPPORT UNITS | 13 | | 3 . AC POWER LINE CONDUCTED EMISSIONS TEST | 14 | | 3.1 LIMIT | 14 | | 3.2 TEST PROCEDURE | 14 | | 3.3 DEVIATION FROM TEST STANDARD | 14 | | 3.4 TEST SETUP | 15 | | 3.5 EUT OPERATING CONDITIONS | 15 | | 3.6 TEST RESULTS | 15 | | 4 . RADIATED EMISSION TEST | 16 | | 4.1 LIMIT | 16 | | 4.2 TEST PROCEDURE | 17 | | 4.3 DEVIATION FROM TEST STANDARD | 17 | | 4.4 TEST SETUP | 18 | | 4.5 EUT OPERATING CONDITIONS | 19 | | 4.6 TEST RESULT - 9 KHZ TO 30 MHZ | 19 | | 4.7 TEST RESULT - 30 MHZ TO 1000 MHZ | 19 | | 4.8 TEST RESULT - ABOVE 1000 MHZ | 19 | | 5 . BANDWIDTH TEST | 20 | | 5.1 LIMIT | 20 | | 5.2 TEST PROCEDURE | 20 | | 5.3 DEVIATION FROM STANDARD | 20 | | 5.4 TEST SETUP | 20 | | Table of Contents | Page | |---|------| | 5.5 EUT OPERATION CONDITIONS | 20 | | 5.6 TEST RESULTS | 20 | | 6 . MAXIMUM OUTPUT POWER | 21 | | 6.1 LIMIT | 21 | | 6.2 TEST PROCEDURE | 21 | | 6.3 DEVIATION FROM STANDARD | 21 | | 6.4 TEST SETUP | 21 | | 6.5 EUT OPERATION CONDITIONS | 21 | | 6.6 TEST RESULTS | 21 | | 7 . CONDUCTED SPURIOUS EMISSION | 22 | | 7.1 LIMIT | 22 | | 7.2 TEST PROCEDURE | 22 | | 7.3 DEVIATION FROM STANDARD | 22 | | 7.4 TEST SETUP | 22 | | 7.5 EUT OPERATION CONDITIONS | 22 | | 7.6 TEST RESULTS | 22 | | 8 . POWER SPECTRAL DENSITY TEST | 23 | | 8.1 LIMIT | 23 | | 8.2 TEST PROCEDURE | 23 | | 8.3 DEVIATION FROM STANDARD | 23 | | 8.4 TEST SETUP | 23 | | 8.5 EUT OPERATION CONDITIONS | 23 | | 8.6 TEST RESULTS | 23 | | 9 . MEASUREMENT INSTRUMENTS LIST | 24 | | APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS | 26 | | APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ | 29 | | APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ | 34 | | APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ | 37 | | APPENDIX E - BANDWIDTH | 50 | | APPENDIX F - MAXIMUM OUTPUT POWER | 52 | | APPENDIX G - CONDUCTED SPURIOUS EMISSION | 54 | | Table of Contents | Page | |-------------------------------------|------| | APPENDIX H - POWER SPECTRAL DENSITY | 57 | # **REPORT ISSUED HISTORY** | Report Version | Description | Issued Date | |----------------|-----------------|---------------| | R00 | Original Issue. | Aug. 27, 2020 | # 1. SUMMARY OF TEST RESULTS Test procedures according to the technical standard(s): | FCC Part15, Subpart C (15.247) | | | | | |-------------------------------------|--------------------------------------|-------------------------|--------|---------| | Standard(s) Section | Test Item | Judgment | Remark | | | 15.207 | AC Power Line Conducted
Emissions | AC Power Line Conducted | | | | 15.247(d)
15.205(a)
15.209(a) | Radiated Emissions | APPENDIX B | | | | 15.247(a)(2) | Bandwidth APPENDIX E | | PASS | | | 15.247(b)(3) | Maximum Output Power | APPENDIX F | PASS | | | 15.247(d) | Conducted Spurious APPENDIX G | | PASS | | | 15.247(e) | Power Spectral Density | APPENDIX H | PASS | | | 15.203 | Antenna Requirement | | PASS | Note(2) | # Note: - (1) "N/A" denotes test is not applicable to this device. - (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203. #### 1.1 TEST FACILITY The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240 #### 1.2 MEASUREMENT UNCERTAINTY ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table: A. AC power line conducted emissions Measurement: | Test Site | Method | Measurement Frequency Range | U, (dB) | |-----------|--------|-----------------------------|---------| | DG-C02 | CISPR | 150kHz ~ 30MHz | 2.60 | #### B. Radiated emissions Measurement: | Test Site | Method | Measurement Frequency Range | Ant.
H / V | U, (dB) | |-----------|--------|-----------------------------|---------------|---------| | | | 9kHz ~ 30MHz | V | 3.79 | | | | 9kHz ~ 30MHz | Н | 3.57 | | | | 30MHz ~ 200MHz | V | 4.88 | | | CISPR | 30MHz ~ 200MHz | Τ | 4.14 | | DG-CB03 | | 200MHz ~ 1,000MHz | V | 4.62 | | DG-CB03 | | 200MHz ~ 1,000MHz | Τ | 4.80 | | | | 1GHz ~ 6GHz | ı | 4.58 | | | | 6GHz ~ 18GHz | ı | 5.18 | | | | 18GHz ~ 26.5GHz | ı | 3.62 | | | | 26.5GHz ~ 40GHz | - | 4.00 | #### C. Other Measurement: | Test Item | Uncertainty | |-----------------------------|-------------| | Bandwidth | ±3.8 % | | Maximum Output Power | ±0.95 dB | | Conducted Spurious Emission | ±2.71 dB | | Power Spectral Density | ±0.86 dB | | Temperature | ±0.08 °C | | Time | ±0.58 % | | Supply voltages | ±0.3 % | Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification. #### 1.3 TEST ENVIRONMENT CONDITIONS | Test Item | Temperature | Humidity | Test Voltage | Tested By | |-----------------------------------|-------------|----------|--------------|----------------| | AC Power Line Conducted Emissions | 25°C | 53% | AC 120V/60Hz | Kwok Guo | | Radiated Emissions-9K-30MHz | 25°C | 60% | DC 5V | Kwok Guo | | Radiated Emissions-30 MHz to 1GHz | 22°C | 54% | DC 5V | Kwok Guo | | Radiated Emissions-Above 1000 MHz | 22°C | 54% | DC 5V | Kwok Guo | | Bandwidth | 24°C | 52% | DC 5V | Hayden Chen | | Maximum Output Power | 24°C | 52% | DC 5V | Laughing Zhang | | Conducted Spurious Emission | 24°C | 52% | DC 5V | Hayden Chen | | Power Spectral Density | 24°C | 52% | DC 5V | Hayden Chen | # 2. GENERAL INFORMATION # 2.1 GENERAL DESCRIPTION OF EUT | Equipment | Wireless Headset | |-------------------------|---| | Brand Name | RAZER | | Test Model | RZ04-0352 | | Series Model | RZ04-0352XXXX-XXXX(X can be 0-9 or A-Z) | | Model Difference(s) | It is the same as the basic model and X is used to define which country it is for under the same family series. | | Power Source | 1# Supplied from PC USB port. 2# Supplied from battery. Model: 553450 | | Power Rating | 1# DC 5V, 500mA
2# DC 3.7V, 3.7Wh, 1000mAh | | Operation Frequency | 2402 MHz ~ 2480 MHz | | Modulation Technology | GFSK | | Bit Rate of Transmitter | 1Mbps | | Max. Output Power | 6.50 dBm (0.0045 W) | # Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual. # 2. Channel List: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 00 | 2402 | 20 | 2442 | | 01 | 2404 | 21 | 2444 | | 02 | 2406 | 22 | 2446 | | 03 | 2408 | 23 | 2448 | | 04 | 2410 | 24 | 2450 | | 05 | 2412 | 25 | 2452 | | 06 | 2414 | 26 | 2454 | | 07 | 2416 | 27 | 2456 | | 08 | 2418 | 28 | 2458 | | 09 | 2420 | 29 | 2460 | | 10 | 2422 | 30 | 2462 | | 11 | 2424 | 31 | 2464 | | 12 | 2426 | 32 | 2466 | | 13 | 2428 | 33 | 2468 | | 14 | 2430 | 34 | 2470 | | 15 | 2432 | 35 | 2472 | | 16 | 2434 | 36 | 2474 | | 17 | 2436 | 37 | 2476 | | 18 | 2438 | 38 | 2478 | | 19 | 2440 | 39 | 2480 | # 3. Table for Filed Antenna: | Ant. | Brand | Model Name | Antenna Type | Connector | Gain (dBi) | |------|-------|------------|--------------|-----------|------------| | 1 | N/A | BTH-1338 | PCB | N/A | 3.43 | # 2.2 DESCRIPTION OF TEST MODES The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode. | Pretest Mode | Description | | |--------------|---------------------------|--| | Mode 1 | TX Mode NOTE (1) | | | Mode 2 | TX Mode Channel 39 _1Mbps | | Following mode(s) was (were) found to be the worst case(s) and selected for the final test. | AC power line conducted emissions test | | | |--|---------------------------|--| | Final Test Mode Description | | | | Mode 2 | TX Mode Channel 39 _1Mbps | | | Radiated emissions test - Below 1GHz | | | |--------------------------------------|---------------------------|--| | Final Test Mode | Description | | | Mode 2 | TX Mode Channel 39 _1Mbps | | | Radiated emissions test - Above 1GHz | | | |--------------------------------------|------------------|--| | Final Test Mode | Description | | | Mode 1 | TX Mode NOTE (1) | | | Conducted test | | | |-----------------------------|------------------|--| | Final Test Mode Description | | | | Mode 1 | TX Mode NOTE (1) | | #### Note - (1) The measurements are performed at the high, middle, low available channels. - (2) For radiated emission above 1 GHz test, 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB. - (3) For AC power line conducted emissions and radiated emissions below 1 GHz test, the TX Mode Channel 39 are found to be the worst case and recorded. # 2.3 PARAMETERS OF TEST SOFTWARE During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of BT LE | Test Software | AWRDLABV2 1.0.4.0 | | | |-----------------|-------------------|------|------| | Frequency (MHz) | 2402 | 2440 | 2480 | | 1Mbps | 0x04 | 0x04 | 0x04 | # 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED # 2.5 SUPPORT UNITS | Item | Equipment | Brand | Model No. | Series No. | |------|--------------|-------|------------------|------------| | Α | Test Fixture | N/A | N/A | N/A | | В | Notebook | Dell | Inspiron 15-7559 | N/A | | Item | Cable Type | Shielded Type | Ferrite Core | Length | |------|------------|---------------|--------------|--------| | 1 | USB Cable | NO | NO | 0.2m | #### 3. AC POWER LINE CONDUCTED EMISSIONS TEST #### **3.1 LIMIT** | | Limit (dBμV) | | | |-----------------------------|--------------|-----------|--| | Frequency of Emission (MHz) | Quasi-peak | Average | | | 0.15 - 0.50 | 66 to 56* | 56 to 46* | | | 0.50 - 5.0 | 56 | 46 | | | 5.0 - 30.0 | 60 | 50 | | #### Note: - (1) The tighter limit applies at the band edges. - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range. The following table is the setting of the receiver | Receiver Parameters | Setting | | |---------------------|----------|--| | Attenuation | 10 dB | | | Start Frequency | 0.15 MHz | | | Stop Frequency | 30 MHz | | | IF Bandwidth | 9 kHz | | #### 3.2 TEST PROCEDURE - a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - d. LISN at least 80 cm from nearest part of EUT chassis. - e. For the actual test configuration, please refer to the related Item -EUT Test Photos. #### 3.3 DEVIATION FROM TEST STANDARD No deviation # 3.4 TEST SETUP #### 3.5 EUT OPERATING CONDITIONS The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. #### 3.6 TEST RESULTS Please refer to the APPENDIX A. #### Remark: - (1) All readings are QP Mode value unless otherwise stated AVG in column of <code>[Note]</code>. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured. - (2) Measuring frequency range from 150 kHz to 30 MHz. # 4. RADIATED EMISSION TEST # **4.1 LIMIT** In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. # LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz) | Frequency | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (microvolts/meter) | (meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | # LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz) | Frequency (MHz) | (dBuV/m at 3 m) | | |-------------------|-----------------|---------| | Frequency (Wiriz) | Peak | Average | | Above 1000 | 74 | 54 | #### Note: - (1) The limit for radiated test was performed according to FCC PART 15C. - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). | Spectrum Parameter | Setting | | |-------------------------------|--|--| | Attenuation | Auto | | | Start Frequency | 1000 MHz | | | Stop Frequency | 10th carrier harmonic | | | RBW / VBW | RBW 1 MHz VBW 3 MHz peak detector for Pk value | | | (Emission in restricted band) | RMS detector for AV value | | | Receiver Parameter | Setting | | |------------------------|-------------------------------------|--| | Attenuation | Auto | | | Start ~ Stop Frequency | 9 kHz~90 kHz for PK/AVG detector | | | Start ~ Stop Frequency | 90 kHz~110 kHz for QP detector | | | Start ~ Stop Frequency | 110 kHz~490 kHz for PK/AVG detector | | | Start ~ Stop Frequency | 490 kHz~30 MHz for QP detector | | | Start ~ Stop Frequency | 30 MHz~1000 MHz for QP detector | | # **4.2 TEST PROCEDURE** - a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz) - b. The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz) - c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function). - e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. - f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. - g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz) - h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz) - i. For the actual test configuration, please refer to the related Item -EUT Test Photos. # 4.3 DEVIATION FROM TEST STANDARD No deviation # 4.4 TEST SETUP # 9 kHz-30 MHz # 30 MHz to 1 GHz # Above 1 GHz # **4.5 EUT OPERATING CONDITIONS** The EUT was programmed to be in continuously transmitting mode. #### 4.6 TEST RESULT - 9 kHz TO 30 MHz Please refer to the APPENDIX B #### Remark: - (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB). - (2) Limit line = specific limits (dBuV) + distance extrapolation factor. # 4.7 TEST RESULT - 30 MHz TO 1000 MHz Please refer to the APPENDIX C. # 4.8 TEST RESULT - ABOVE 1000 MHz Please refer to the APPENDIX D. #### Remark: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test. #### **5. BANDWIDTH TEST** # **5.1 LIMIT** | FCC Part15, Subpart C (15.247) | | | | | | |--------------------------------|------------------------|--------------------------------|--|--|--| | Section | ion Test Item Limit | | | | | | 45 247(2)(2) | Bandwidth | >= 500 kHz
(6 dB bandwidth) | | | | | 15.247(a)(2) | 99% Emission Bandwidth | - | | | | # **5.2 TEST PROCEDURE** - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. - b. Spectrum Setting: For 6 dB Bandwidth: RBW= 100 kHz, VBW=300 kHz, Sweep time = 2.5 ms For 99 % Emission Bandwidth: RBW= 30 kHz, VBW=100 kHz, Sweep time = 2.5 ms. #### 5.3 DEVIATION FROM STANDARD No deviation. # **5.4 TEST SETUP** | EUT | SPECTRUM | |-----|----------| | | ANALYZER | #### 5.5 EUT OPERATION CONDITIONS The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing. # **5.6 TEST RESULTS** Please refer to the APPENDIX E. # **6. MAXIMUM OUTPUT POWER** # 6.1 LIMIT | FCC Part15, Subpart C (15.247) | | | | | |--|--|--|--|--| | Section Test Item Limit | | | | | | 15.247(b)(3) Maximum Output Power 1 watt or 30 dBm | | | | | #### **6.2 TEST PROCEDURE** - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. - b. The maximum conducted output power was performed in accordance with method 11.9.2.2 of ANSI C63.10-2013. #### 6.3 DEVIATION FROM STANDARD No deviation. #### **6.4 TEST SETUP** # **6.5 EUT OPERATION CONDITIONS** The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing. # **6.6 TEST RESULTS** Please refer to the APPENDIX F. #### 7. CONDUCTED SPURIOUS EMISSION #### **7.1 LIMIT** In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. # 7.2 TEST PROCEDURE - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. - b. Spectrum Setting: RBW= 100 kHz, VBW=300 kHz, Sweep time = 10 ms. #### 7.3 DEVIATION FROM STANDARD No deviation. #### 7.4 TEST SETUP | EUT | SPECTRUM | |-----|----------| | | ANALYZER | #### 7.5 EUT OPERATION CONDITIONS The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing. #### 7.6 TEST RESULTS Please refer to the APPENDIX G. # **8. POWER SPECTRAL DENSITY TEST** # **8.1 LIMIT** | FCC Part15, Subpart C (15.247) | | | | | |--------------------------------|------------------------|-------------------------|--|--| | Section Test Item Limit | | | | | | 15.247(e) | Power Spectral Density | 8 dBm
(in any 3 kHz) | | | # **8.2 TEST PROCEDURE** - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. - b. Spectrum Setting: RBW=3 kHz, VBW=10 kHz, Sweep time = auto. # 8.3 DEVIATION FROM STANDARD No deviation. # 8.4 TEST SETUP | EUT | SPECTRUM | |-----|----------| | | ANALYZER | # **8.5 EUT OPERATION CONDITIONS** The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing. # **8.6 TEST RESULTS** Please refer to the APPENDIX H. # 9. MEASUREMENT INSTRUMENTS LIST | | AC Power Line Conducted Emissions | | | | | | |------|-----------------------------------|--------------|--------------------------|------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | EMI Test Receiver | R&S | ESCI | 100382 | Feb. 28, 2021 | | | 2 | LISN | EMCO | 3816/2 | 52765 | Mar. 01, 2021 | | | 3 | TWO-LINE
V-NETWORK | R&S | ENV216 | 101447 | Feb. 28, 2021 | | | 4 | 50Ω Terminator | SHX | TF5-3 | 15041305 | Mar. 01, 2021 | | | 5 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | 6 | Cable | N/A | RG223 | 12m | Mar. 10, 2021 | | | 7 | Shielded Room | ETS-LINDGREN | 8.5*4.5*3m | N/A | N/A | | | | Radiated Emissions - 9 kHz to 30 MHz | | | | | | | |------|--------------------------------------|-------|--------------------------|--------|---------------|--|--| | Item | | | | | | | | | 1 | Antenna | EM | EM-6876-1 | 230 | Apr. 16, 2021 | | | | 2 | Cable | N/A | RG 213/U | N/A | May 29, 2021 | | | | 3 | EMI Test Receiver | R&S | ESCI | 100895 | Feb. 28, 2021 | | | | 4 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | | 5 | 966 Chambe Room | RM | 9*6*6 | N/A | Jul. 25, 2021 | | | | | Radiated Emissions - 30 MHz to 1 GHz | | | | | | |------|--------------------------------------|--------------|--------------------------------|-------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | Antenna | Schwarzbeck | VULB9160 | 9160-3232 | Mar. 09, 2021 | | | 2* | Amplifier | HP | 8447D | 2944A09673 | Aug. 11, 2021 | | | 3 | Receiver | Agilent | N9038A | MY52130039 | Jul. 25, 2021 | | | 4 | Cable | emci | LMR-400(30MHz-1
GHz)(8m+5m) | N/A | May 22, 2021 | | | 5 | Controller | CT | SC100 | N/A | N/A | | | 6 | Controller | MF | MF-7802 | MF780208416 | N/A | | | 7 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | 8 | 966 Chambe Room | RM | 9*6*6 | N/A | Jul. 25, 2021 | | | | Radiated Emissions - Above 1 GHz | | | | | | |------|---|---------------------------------|--------------------------|---------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | Double Ridged Guide Antenna | ETS | 3115 | 75789 | May 12, 2021 | | | 2 | Broad-Band Horn
Antenna | Schwarzbeck | BBHA 9170 | 9170319 | Jul. 07, 2021 | | | 3 | Amplifier | Agilent | 8449B | 3008A02333 | Mar. 01, 2021 | | | 4 | Microwave
Preamplifier With
Adaptor | EMC
INSTRUMENT | EMC2654045 | 980039 & HA01 | Mar. 07, 2021 | | | 5 | Receiver | Agilent | N9038A | MY52130039 | Jul. 25, 2021 | | | 6 | Controller | CT | SC100 | N/A | N/A | | | 7 | Controller | MF | MF-7802 | MF780208416 | N/A | | | 8 | Cable | N/A | EMC104-SM-SM-6
000 | N/A | May 09, 2021 | | | 9 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | 10 | HighPass Filter | Wairrwright
Instruments Gmbh | WHK3.1/18G-10SS | 24 | Feb. 28, 2021 | | | 11 | 966 Chambe Room | RM | 9*6*6 | N/A | Jul. 25, 2021 | | | | Bandwidth & Maximum Output Power & Power Spectral Density & Conducted Spurious Emission | | | | | | | | | | | |------|--|--------------|----------|------------|------------------|--|--|--|--|--|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | | | | | | 1 | Spectrum Analyzer | R&S | FSP40 | 100185 | Jul. 25, 2021 | | | | | | | | 2 | 2 DC Block Mini N/A N/A N/A | | | | | | | | | | | | 3 | RF Cable | Tongkaichuan | N/A | N/A | N/A | | | | | | | Remark: "N/A" denotes no model name, serial no. or calibration specified. "*" calibration period of equipment list is three year. Except * item, all calibration period of equipment list is one year. | APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS | |--| # Line | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|---------|------------------|-------------------|-----------------|--------|------------------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0. 1590 | 47. 50 | 9. 69 | 57. 19 | 65. 52 | -8. 33 | Peak | | | 2 | 0. 1590 | 21.64 | 9. 69 | 31. 33 | 55. 52 | -24. 19 | AVG | | | 3 | 0. 1949 | 43.07 | 9. 68 | 52.75 | 63.83 | -11 . 0 8 | Peak | | | 4 | 0. 1949 | 20.72 | 9. 68 | 30.40 | 53.83 | -23. 43 | AVG | | | 5 | 0. 3165 | 40.60 | 9. 68 | 50. 28 | 59.80 | -9. 52 | Peak | | | 6 | 0.3165 | 19.71 | 9. 68 | 29. 39 | 49.80 | -20.41 | AVG | | | 7 | 0.4695 | 40.84 | 9. 69 | 50. 53 | 56. 52 | -5. 99 | Peak | | | 8 | 0.4695 | 22. 25 | 9. 69 | 31. 94 | 46. 52 | -14. 58 | AVG | | | 9 * | 0. 5595 | 40. 53 | 9. 69 | 50. 22 | 56.00 | -5. 78 | Peak | | | 10 | 0. 5595 | 27.97 | 9. 69 | 37.66 | 46.00 | -8. 34 | AVG | | | 11 | 3. 1065 | 36.71 | 9. 82 | 46. 53 | 56.00 | -9. 47 | Peak | | | 12 | 3. 1065 | 22.46 | 9.82 | 32. 28 | 46.00 | -13.72 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. # Neutral | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|---------|------------------|-------------------|-----------------|--------|------------------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0. 1545 | 45.69 | 9. 69 | 55. 38 | 65. 75 | -10.37 | Peak | | | 2 | 0. 1545 | 24.98 | 9. 69 | 34.67 | 55. 75 | -21 . 0 8 | AVG | | | 3 | 0.3165 | 40.48 | 9. 68 | 50. 16 | 59.80 | -9.64 | Peak | | | 4 | 0. 3165 | 26.75 | 9. 68 | 36. 43 | 49.80 | -13. 37 | AVG | | | 5 * | 0. 5055 | 42.05 | 9. 69 | 51.74 | 56.00 | -4. 26 | Peak | | | 6 | 0. 5055 | 21.65 | 9. 69 | 31. 34 | 46.00 | -14.66 | AVG | | | 7 | 0.6585 | 38.70 | 9. 70 | 48. 40 | 56.00 | -7.60 | Peak | | | 8 | 0.6585 | 19. 95 | 9.70 | 29.65 | 46.00 | -16. 35 | AVG | | | 9 | 2. 5755 | 36. 15 | 9.80 | 45. 95 | 56.00 | -10.05 | Peak | | | 10 | 2. 5755 | 23. 17 | 9.80 | 32. 97 | 46.00 | -13.03 | AVG | | | 11 | 3. 1965 | 34.83 | 9. 83 | 44.66 | 56.00 | -11. 34 | Peak | | | 12 | 3. 1965 | 23. 11 | 9. 83 | 32. 94 | 46.00 | -13.06 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. # **APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ** | No. Mk. | Freq. | _ | Correct
Factor | Measure-
ment | Limit | Margin | 1 | Antenna
Height | | | |---------|--------|-------|-------------------|------------------|--------|--------|----------|-------------------|--------|---------| | | MHz | dBu∀ | dB | dBuV/m | dBu∀/m | dB | Detector | cm | degree | Comment | | 1 | 0.0180 | 45.19 | 21.32 | 66.51 | 122.50 | -55.99 | AVG | | | | | 2 | 0.0360 | 37.69 | 21.11 | 58.80 | 116.48 | -57.68 | AVG | | | | | 3 * | 0.0881 | 36.11 | 20.96 | 57.07 | 108.71 | -51.64 | AVG | | | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. | No. Mk. | Freq. | | Correct
Factor | Measure-
ment | Limit | Margin | ı | Antenna
Height | Table
Degree | | |---------|--------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | MHz | dBu∀ | dB | dBuV/m | dBu∀/m | dB | Detector | cm | degree | Comment | | 1 | 0.4588 | 39.19 | 21.01 | 60.20 | 94.37 | -34.17 | AVG | | | | | 2 | 2.2132 | 28.00 | 22.14 | 50.14 | 69.54 | -19.40 | QP | | | | | 3 * | 3.4906 | 31.66 | 22.26 | 53.92 | 69.54 | -15.62 | QP | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. # Ant 90° | No. | Mk. | Freq. | _ | Correct
Factor | Measure-
ment | Limit | Margin | | Antenna
Height | | | |-----|-----|--------|-------|-------------------|------------------|--------|--------|----------|-------------------|--------|---------| | | | MHz | dBu∀ | dB | dBuV/m | dBu∀/m | dB | Detector | cm | degree | Comment | | 1 | * | 0.0185 | 45.19 | 21.30 | 66.49 | 122.26 | -55.77 | AVG | | | | | 2 | | 0.0360 | 38.64 | 21.11 | 59.75 | 116.48 | -56.73 | AVG | | | | | 3 | | 0.0542 | 29.11 | 21.04 | 50.15 | 112.92 | -62.77 | AVG | | | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. | No. Mk. | Freq. | | | Measure-
ment | Limit | Margin | ı | Antenna
Height | | | |---------|---------|-------|-------|------------------|--------|--------|----------|-------------------|--------|---------| | | MHz | dBu∀ | dB | dBuV/m | dBu∀/m | dB | Detector | cm | degree | Comment | | 1 | 0.4564 | 37.69 | 21.01 | 58.70 | 94.42 | -35.72 | AVG | | | | | 2 * | 3.4906 | 35.16 | 22.26 | 57.42 | 69.54 | -12.12 | QP | | | | | 3 | 11.4376 | 13.55 | 23.16 | 36.71 | 69.54 | -32.83 | QP | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ | |---| #### Vertical | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-----------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 42.6100 | 33. 91 | -14. 18 | 19. 73 | 40.00 | -20. 27 | Peak | | | 2 | 119. 2400 | 37.41 | -12.85 | 24. 56 | 43.50 | -18.94 | Peak | | | 3 | 193. 9299 | 35. 56 | -14. 38 | 21. 18 | 43.50 | -22. 32 | Peak | | | 4 | 423.8200 | 29. 58 | -8. 35 | 21. 23 | 46.00 | -24.77 | Peak | | | 5 | 625. 5800 | 30.00 | -4.79 | 25. 21 | 46.00 | -20.79 | Peak | | | 6 * | 781. 7500 | 30.41 | -2. 78 | 27.63 | 46.00 | -18. 37 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. # Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-----------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 118. 2700 | 31.02 | -13.00 | 18. 02 | 43.50 | -25. 48 | Peak | | | 2 | 159. 9800 | 28. 23 | -10.67 | 17. 56 | 43.50 | -25. 94 | Peak | | | 3 | 291. 9000 | 32. 73 | -11. 39 | 21. 34 | 46.00 | -24.66 | Peak | | | 4 | 453.8900 | 29. 47 | -7. 61 | 21. 86 | 46.00 | -24. 14 | Peak | | | 5 | 678. 9300 | 29. 97 | -3.87 | 26. 10 | 46.00 | -19. 90 | Peak | | | 6 * | 804.0600 | 30. 68 | -2. 47 | 28. 21 | 46.00 | -17.79 | Peak | | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### **APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ** ### Vertical | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 2390.0000 | 41.95 | 8. 29 | 50. 24 | 74.00 | -23.76 | Peak | | | 2 | 2390.0000 | 30. 93 | 8. 29 | 39. 22 | 54.00 | -14.78 | AVG | | | 3 | 2401.8000 | 96. 27 | 8. 30 | 104. 57 | 74.00 | 30. 57 | Peak | No Limit | | 4 * | 2402. 1000 | 94.87 | 8. 30 | 103. 17 | 54.00 | 49. 17 | AVG | No Limit | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Vertical | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 7205. 2600 | 32. 63 | 10. 95 | 43. 58 | 54.00 | -10.42 | AVG | | | 2 | 7205. 5800 | 42.44 | 10. 95 | 53. 39 | 74.00 | -20.61 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 2390.0000 | 41.03 | 8. 29 | 49. 32 | 74.00 | -24.68 | Peak | | | 2 | 2390.0000 | 31. 31 | 8. 29 | 39. 60 | 54.00 | -14.40 | AVG | | | 3 | 2402.0000 | 97. 01 | 8. 30 | 105. 31 | 74.00 | 31. 31 | Peak | No Limit | | 4 * | 2402. 1000 | 96.00 | 8. 30 | 104.30 | 54.00 | 50. 30 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 7205. 2700 | 32. 15 | 10. 95 | 43. 10 | 54.00 | -10.90 | AVG | | | 2 | 7206. 5600 | 41.84 | 10. 95 | 52. 79 | 74.00 | -21. 21 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Vertical | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 2439.9500 | 94.90 | 8. 34 | 103. 24 | 54.00 | 49. 24 | AVG | No Limit | | 2 | 2440. 0500 | 97. 17 | 8. 34 | 105. 51 | 74.00 | 31.51 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Vertical | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 7319. 1800 | 46. 42 | 11. 16 | 57. 58 | 74.00 | -16. 42 | Peak | | | 2 * | 7319. 3300 | 39. 44 | 11. 16 | 50. 60 | 54.00 | -3. 40 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 2440.0000 | 95. 76 | 8. 34 | 104. 10 | 54.00 | 50. 10 | AVG | No Limit | | 2 | 2440. 3000 | 97. 16 | 8. 34 | 105. 50 | 74.00 | 31. 50 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 7319. 1300 | 45.03 | 11. 16 | 56. 19 | 74.00 | -17.81 | Peak | | | 2 * | 7319. 3800 | 36. 98 | 11. 16 | 48. 14 | 54.00 | -5. 86 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### **Vertical** | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 2479.9500 | 95. 38 | 8. 38 | 103. 76 | 54.00 | 49.76 | AVG | No Limit | | 2 | 2480.0000 | 96. 82 | 8. 38 | 105. 20 | 74.00 | 31. 20 | Peak | No Limit | | 3 | 2483. 5000 | 42.66 | 8. 39 | 51.05 | 74.00 | -22. 95 | Peak | | | 4 | 2483. 5000 | 31. 89 | 8. 39 | 40. 28 | 54.00 | -13.72 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Vertical | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 7439. 3450 | 37. 95 | 11. 39 | 49. 34 | 54.00 | -4.66 | AVG | | | 2 | 7440. 7250 | 45. 71 | 11. 39 | 57. 10 | 74.00 | -16. 90 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 2479.8000 | 96. 89 | 8. 38 | 105. 27 | 74.00 | 31. 27 | Peak | No Limit | | 2 * | 2480.0500 | 95. 45 | 8. 38 | 103.83 | 54.00 | 49.83 | AVG | No Limit | | 3 | 2483. 5000 | 41. 19 | 8. 39 | 49. 58 | 74.00 | -24.42 | Peak | | | 4 | 2483. 5000 | 31. 47 | 8. 39 | 39.86 | 54.00 | -14.14 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. ### Horizontal | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 7439. 2450 | 45. 59 | 11. 39 | 56. 98 | 74.00 | -17.02 | Peak | | | 2 * | 7439. 3400 | 37. 29 | 11. 39 | 48. 68 | 54.00 | -5. 32 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | APPENDIX E - BANDWIDTH | | | | | |------------------------|--|--|--|--| Test Mode: CH00, CH19, CH39 - 1Mbps | Channel | Frequency
(MHz) | 6 dB Bandwidth
(MHz) | 99 % Emission
Bandwidth
(MHz) | 6 dB Bandwidth
Min. Limit (kHz) | Test Result | |---------|--------------------|-------------------------|-------------------------------------|------------------------------------|-------------| | 00 | 2402 | 0.664 | 1.048 | 500 | Pass | | 19 | 2440 | 0.666 | 1.052 | 500 | Pass | | 39 | 2480 | 0.672 | 1.060 | 500 | Pass | # **APPENDIX F - MAXIMUM OUTPUT POWER** Test Mode: CH00, CH19, CH39 - 1Mbps | Frequency
(MHz) | Output Power
(dBm) | Output Power (W) | Max. Limit
(dBm) | Max. Limit
(W) | Test Result | |--------------------|-----------------------|------------------|---------------------|-------------------|-------------| | 2402 | 6.43 | 0.0044 | 30.00 | 1.00 | Pass | | 2440 | 6.49 | 0.0045 | 30.00 | 1.00 | Pass | | 2480 | 6.50 | 0.0045 | 30.00 | 1.00 | Pass | # **APPENDIX G - CONDUCTED SPURIOUS EMISSION** ### Bandedge CH00 (Lower) ### Bandedge CH39 (Upper) Date: 6.AUG.2020 10:34:51 Date: 6.AUG.2020 10:38:48 # **APPENDIX H - POWER SPECTRAL DENSITY** Test Mode: CH00, CH19, CH39 - 1Mbps | Channel | Frequency
(MHz) | Power Spectral Density
(dBm/3 kHz) | Max. Limit
(dBm/3 kHz) | Test Result | |---------|--------------------|---------------------------------------|---------------------------|-------------| | 00 | 2402 | -8.36 | 8.00 | Pass | | 19 | 2440 | -8.34 | 8.00 | Pass | | 39 | 2480 | -8.57 | 8.00 | Pass |