FCC Part 15, Subpart B, Class B ### ARTIKA FOR LIVING INC. Oracle 5 pendant Test Model: ORA5L Additional Model No.: ORA5L-XXXXXX ("XXXXXX" can be A to Z and/or 0 to 9 and/or blank (commercial code)) Prepared for : ARTIKA FOR LIVING INC. Address : 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5 Lachine Canada Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Address Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel : (+86)755-82591330 Fax (+86)755-82591332 : www.LCS-cert.com Web Mail : webmaster@LCS-cert.com Date of receipt of test sample : October 12, 2021 Number of tested samples Sample number : 211012093A Serial number : Prototype Date of Test : October 12, 2021 ~ October 20, 2021 Date of Report : October 20, 2021 # FCC Part 15, Subpart B, Class B FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014 Report Reference No.: LCS211012093AE Date Of Issue.....: October 20, 2021 Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd. Address:: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Testing Location/ Procedure...: Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method Applicant's Name ARTIKA FOR LIVING INC. Address : 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5 Lachine Canada **Test Specification** Standard FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014 Test Report Form No...... : LCSEMC-1.0 TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF.....: : Dated 2011-03 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.: : Oracle 5 pendant Test Model: ORA5L Trade Mark : Artika Ratings : AC 120V, 50/60Hz,22W Result: Positive Compiled by: Supervised by: Approved by: Cherry Chen # **FCC -- TEST REPORT** Test Report No.: LCS211012093AE October 20, 2021 Date of issue | l | · - · | |----------------|---| | Test Model | : ORA5L | | | | | EUT | : Oracle 5 pendant | | | | | Annlicant | : ARTIKA FOR LIVING INC. | | Address | 1756 50th avanua Lachina Oc Canada 49T 31/5 | | Address | : 1756 50th avenue, Lachine, Qc, CanadaH8T 2V5
Lachine Canada | | | | | Telephone | | | Fax | :/ | | | | | Manufacturer | : ZHONGSHAN C5 LIGHTING CO. LTD | | Address | : 1# Henglong Road, Tongyi Industrial Area, Cao San, | | 7.66.666 | Guzhen, Zhongshan, Guangdong, China. | | Talankana | · | | | | | Telephone | | | Fax | | | Fax | : / | | Fax | : / | | Factory | : ZHONGSHAN C5 LIGHTING CO. LTD | | Fax | : / : ZHONGSHAN C5 LIGHTING CO. LTD : 1# Henglong Road, Tongyi Industrial Area, Cao San, | | FactoryAddress | : / : ZHONGSHAN C5 LIGHTING CO. LTD : 1# Henglong Road, Tongyi Industrial Area, Cao San, Guzhen, Zhongshan, Guangdong, China. | | FaxAddress | : / : ZHONGSHAN C5 LIGHTING CO. LTD : 1# Henglong Road, Tongyi Industrial Area, Cao San, Guzhen, Zhongshan, Guangdong, China. : / | | FactoryAddress | : / : ZHONGSHAN C5 LIGHTING CO. LTD : 1# Henglong Road, Tongyi Industrial Area, Cao San, Guzhen, Zhongshan, Guangdong, China. : / | # Test Result according to the standards on page 6: Positive The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. # **Revision History** | Revision | Issue Date | Revisions | Revised By | |----------|------------------|---------------|-------------| | 000 | October 20, 2021 | Initial Issue | Gavin Liang | | | | | | | | | | | # **TABLE OF CONTENTS** | Test Report Description | | Page | |--------------------------------------|---------------------|------| | 1. SUMMARY OF STANDARDS AN | ND RESULTS | 6 | | 1.1. Description of Standards and Re | esults | 6 | | 2. GENERAL INFORMATION | | 7 | | 2.1. Description of Device (EUT) | | 7 | | 2.2. Support Equipment List | | 7 | | 2.3. Description of Test Facility | | 7 | | 2.4. Statement of the Measurement I | Uncertainty | 8 | | 2.5. Measurement Uncertainty | | 8 | | 3. TEST RESULTS | | 9 | | 3.1. POWER LINE CONDUCTED EN | MISSION MEASUREMENT | 9 | | 3.2. Radiated emission Measuremen | nt | 13 | | 4. TEST SETUP PHOTOGRAPHS (| OF EUT | 17 | | 5. EXTERIOR PHOTOGRAPHS OF | THE EUT | 17 | | 6. INTERIOR PHOTOGRAPHS OF | THE EUT | 17 | # 1. SUMMARY OF STANDARDS AND RESULTS # 1.1. Description of Standards and Results The EUT have been tested according to the applicable standards as referenced below. | EMISSION | | | | | | | |--|--|---------|---------|--|--|--| | Description of Test Item | Standard | Limits | Results | | | | | Conducted disturbance at mains terminals | FCC 47 CFR Part 15 Subpart B, Class
B, ANSI C63.4 -2014 | Class B | PASS | | | | | Radiated disturbance FCC 47 CFR Part 15 Subpart B, Class B PAR | | | | | | | | N/A: 11 ::: 6 N/A | · | | | | | | N/A is an abbreviation for Not Applicable. | Test mode: | | | |---------------------|-----------------------------------|--------------------------------| | Mode | Lighting | Record | | ***Note: All test n | nodes were tested, but we only re | ecorded the worst case in this | | report. | | | # 2. GENERAL INFORMATION 2.1. Description of Device (EUT) **EUT** : Oracle 5 pendant Trade Mark : Artika Test Model : ORA5L : ORA5L-XXXXXX Additional Model ("XXXXXX" can be A to Z and/or 0 to 9 and/or blank (commercial code)) Model Declaration : PCB board, structure and internal of these model(s) are the same, So no additional models were tested : AC 120V, 50/60Hz,22W Power Supply | Highest internal frequency (Fx) | Highest measured frequency | | | |---------------------------------|---------------------------------|--|--| | Fx ≤ 108 MHz | 1 GHz | | | | 108 MHz < Fx ≤ 500 MHz | 2 GHz | | | | 500 MHz < Fx ≤ 1 GHz | 5 GHz | | | | Fx > 1 GHz | 5 x Fx up to a maximum of 6 GHz | | | NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies. Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz. # 2.2. Support Equipment List | Name | Manufacturers | M/N | S/N | |------|---------------|-----|-----| | | | | | # 2.3. Description of Test Facility Site Description EMC Lab. : NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. FCC Test Firm Registration Number: 254912 CAB identifier is CN0071. CNAS Registration Number is L4595. # 2.4. Statement of the Measurement Uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. # 2.5. Measurement Uncertainty | Test | Parameters | Expanded
Uncertainty
(Ulab) | Expanded
Uncertainty
(Ucispr) | |-----------------------|---|-----------------------------------|-------------------------------------| | Conducted
Emission | Level accuracy
(9kHz to 150kHz)
(150kHz to 30MHz) | ± 2.63 dB
± 2.35 dB | ± 3.8 dB
± 3.4 dB | | Radiated Emission | Level accuracy
(30MHz to 1000MHz) | ± 3.48 dB | ± 5.3 dB | | Radiated Emission | Level accuracy
(above 1000MHz) | ± 3.90 dB | ± 5.2 dB | - (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus. - (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### 3. TEST RESULTS ### 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT ## 3.1.1. Test Equipment The following test equipments are used during the power line conducted measurement: | Item | Equipment | Manufacturer | Model No. | Serial No. | Cal Date | Due Date | |------|---------------------------------|---------------------------|-------------|-----------------|------------|------------| | 1 | EMI Test Software | Test Software EZ EZ-EMC / | | N/A | N/A | | | 2 | EMI Test Receiver | R&S | ESPI | 101840 | 2021-06-22 | 2022-06-21 | | 3 | Artificial Mains | SCHWARZBECK | NSLK8127 | 8127716 | 2021-06-22 | 2022-06-21 | | 4 | 10dB Attenuator | SCHWARZBECK | MTS-IMP-136 | 261115-001-0032 | 2021-06-22 | 2022-06-21 | | 5 | Impedance Stabilization Network | TESEQ | ISN T800 | 45130 | 2021-10-19 | 2022-10-18 | ### 3.1.2.Block Diagram of Test Setup ### 3.1.3.Test Standard Power Line Conducted Emission Limits (Class B) | F | requenc | у | Limit (dBμV) | | | |-------|---------|--------------------------------|---------------|---------------|--| | (MHz) | | Quasi-peak Level Average Level | | | | | 0.15 | ~ | 0.50 | 66.0 ~ 56.0 * | 56.0 ~ 46.0 * | | | 0.50 | ~ | 5.00 | 56.0 | 46.0 | | | 5.00 | ~ | 30.00 | 60.0 | 50.0 | | NOTE1-The lower limit shall apply at the transition frequencies. NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz. ## 3.1.4.EUT Configuration on Test The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application. ## 3.1.5. Operating Condition of EUT - 3.1.5.1. Setup the EUT as shown on Section 3.1.2 - 3.1.5.2. Turn on the power of all equipments. - 3.1.5.3.Let the EUT work in measuring Lighting and measure it. ### 3.1.6.Test Procedure The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement. The bandwidth of the test receiver is set at 9kHz. The frequency range from 150kHz to 30MHz is investigated #### 3.1.7.Test Results ### PASS. The test result please refer to the next page. | Test Model | ORA5L | Test Mode | Lighting | |---------------------------------|---------------|---------------|--------------| | Environmental Conditions | 23.9℃, 53% RH | Test Engineer | Jay Li | | Pol | Line | Test Voltage | AC 120V/60Hz | | FOI | LINE | Test voltage | AC 1207/00HZ | | No. M | lk. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-------|-----------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBu∀ | dB | dBu∀ | dBu∀ | dB | Detector | Comment | | 1 | 0.1580 | 49.86 | 10.24 | 60.10 | 65.57 | -5.47 | QP | | | 2 | 0.1580 | 34.56 | 10.24 | 44.80 | 55.57 | -10.77 | AVG | | | 3 | 0.2257 | 45.42 | 10.22 | 55.64 | 62.61 | -6.97 | QP | | | 4 | 0.2257 | 28.95 | 10.22 | 39.17 | 52.61 | -13.44 | AVG | | | 5 | 0.3457 | 42.88 | 10.20 | 53.08 | 59.07 | -5.99 | QP | | | 6 | 0.3457 | 25.26 | 10.20 | 35.46 | 49.07 | -13.61 | AVG | | | 7 | 0.4149 | 41.09 | 10.20 | 51.29 | 57.55 | -6.26 | QP | | | 8 | 0.4149 | 23.58 | 10.20 | 33.78 | 47.55 | -13.77 | AVG | | | 9 * | 0.9768 | 42.23 | 10.20 | 52.43 | 56.00 | -3.57 | QP | | | 10 | 0.9768 | 29.23 | 10.20 | 39.43 | 46.00 | -6.57 | AVG | | | 11 | 1.2033 | 41.73 | 10.20 | 51.93 | 56.00 | -4.07 | QP | | | 12 | 1.2033 | 28.41 | 10.20 | 38.61 | 46.00 | -7.39 | AVG | | | Test Model | ORA5L | Test Mode | Lighting | | | |---------------------------------|---------------|---------------|--------------|--|--| | Environmental Conditions | 23.9℃, 53% RH | Test Engineer | Jay Li | | | | Pol | Neutral | Test Voltage | AC 120V/60Hz | | | | 90.0 dBuV | | | | | | | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |---------|--------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBu∀ | dB | dBu∀ | dBu∀ | dB | Detector | Comment | | 1 * | 0.1539 | 49.66 | 10.24 | 59.90 | 65.79 | -5.89 | QP | | | 2 | 0.1539 | 35.36 | 10.24 | 45.60 | 55.79 | -10.19 | AVG | | | 3 | 0.2282 | 45.20 | 10.22 | 55.42 | 62.51 | -7.09 | QP | | | 4 | 0.2282 | 26.31 | 10.22 | 36.53 | 52.51 | -15.98 | AVG | | | 5 | 0.2965 | 42.10 | 10.20 | 52.30 | 60.34 | -8.04 | QP | | | 6 | 0.2965 | 19.85 | 10.20 | 30.05 | 50.34 | -20.29 | AVG | | | 7 | 0.3805 | 38.80 | 10.20 | 49.00 | 58.27 | -9.27 | QP | | | 8 | 0.3805 | 23.07 | 10.20 | 33.27 | 48.27 | -15.00 | AVG | | | 9 | 0.9771 | 36.62 | 10.20 | 46.82 | 56.00 | -9.18 | QP | | | 10 | 0.9771 | 23.94 | 10.20 | 34.14 | 46.00 | -11.86 | AVG | | | 11 | 1.2059 | 36.44 | 10.20 | 46.64 | 56.00 | -9.36 | QP | | | 12 | 1.2059 | 23.58 | 10.20 | 33.78 | 46.00 | -12.22 | AVG | | Note: Pre-Scan all mode, Thus record worse case mode result in this report. Margin=Reading level + Correct - Limit # 3.2. Radiated emission Measurement ## 3.2.1. Test Equipment The following test equipments are used during the radiated emission measurement: | Item | Equipment | Manufacturer | Model No. | Serial No. | Cal Date | Due Date | |------|-----------------------------|-------------------|--------------|--------------|------------|------------| | 1 | EMI Test Software | EZ | EZ EZ-EMC | | N/A | N/A | | 2 | 3m Semi Anechoic
Chamber | SIDT
FRANKONIA | SAC-3M | 03CH03-HY | 2020-08-05 | 2022-08-04 | | 3 | Positioning Controller | MF | MF7082 | MF78020803 | 2021-06-22 | 2022-06-21 | | 4 | By-log Antenna | SCHWARZBECK | VULB9163 | 9163-470 | 2020-07-26 | 2022-07-25 | | 5 | Horn Antenna | SCHWARZBECK | BBHA 9120D | 9120D-1925 | 2021-07-02 | 2022-07-01 | | 6 | EMI Test Receiver | R&S | ESR 7 | ESR 7 101181 | | 2022-06-21 | | 7 | RS SPECTRUM
ANALYZER | R&S | FSP40 | 100503 | 2020-11-22 | 2021-11-21 | | 8 | Broadband Preamplifier | / | BP-01M18G | P190501 | 2021-06-22 | 2022-06-21 | | 9 | RF Cable-R03m | Jye Bao | RG142 | CB021 | 2021-06-22 | 2022-06-21 | | 10 | RF Cable-HIGH | SUHNER | SUCOFLEX 106 | 03CH03-HY | 2021-06-22 | 2022-06-21 | | 11 | EMI Test Software | AUDIX | E3 | / | N/A | N/A | # 3.2.2. Block Diagram of Test Setup Below 1GHz Above 1GHz #### 3.2.3. Radiated Emission Limit (Class B) #### Limits for Radiated Disturbance Below 1GHz | FREQUENCY | DISTANCE | FIELD STRENGTHS LIMIT | | | |------------|----------|-----------------------|----------|--| | MHz | Meters | μV/m | dB(μV)/m | | | 30 ~ 88 | 3 | 100 | 40 | | | 88 ~ 216 | 3 | 150 | 43.5 | | | 216 ~ 960 | 3 | 200 | 46 | | | 960 ~ 1000 | 3 | 500 | 54 | | Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m - (2) The smaller limit shall apply at the cross point between two frequency bands. - (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system. | 4 | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Limits for Radiated Emission Above 1GHz | | | | | | | | | | Frequency Distance Peak Limit Average Limit | | | | | | | | | | (MHz) (Meters) (dBμV/m) (dBμV/m | | | | | | | | | | Above 1000 3 74 54 | | | | | | | | | | ***Note: The lower limit applies at the transition frequency. | | | | | | | | | ### 3.2.4. EUT Configuration on Measurement The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. #### 3.2.5. Operating Condition of EUT - 3.2.5.1. Setup the EUT as shown in Section 3.2.2. - 3.2.5.2.Let the EUT work in test Lighting and measure it. #### 3.2.6. Test Procedure EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement. The bandwidth of the EMI test receiver is set at 120kHz, 300kHz. The frequency range from 30MHz to 1000MHz is checked. #### 3.2.7. Radiated Emission Noise Measurement Result #### PASS. The scanning waveforms please refer to the next page. | 30. | 000 | 40 30 | , 60 70 | 00 | , | (Mriz) | | 300 | 400 | 300 000 | 700 | 1000.000 | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|----------| | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | Antenna
Height | Table
Degree | | | | | | MHz | dBu∀ | dB/m | dBuV/m | dBu∀/m | dB | Detector | cm | degree | Comment | | | 1 | * | 46.0567 | 21.56 | 13.11 | 34.67 | 40.00 | -5.33 | QP | | | | | | 2 | | 51.8203 | 17.86 | 13.12 | 30.98 | 40.00 | -9.02 | QP | | | | | | 3 | | 117.6178 | 20.24 | 12.34 | 32.58 | 43.50 | -10.92 | QP | | | | | | 4 | | 131.5846 | 19.66 | 12.96 | 32.62 | 43.50 | -10.88 | QP | | | | | | 5 | | 143.9556 | 16.85 | 13.54 | 30.39 | 43.50 | -13.11 | QP | | | | | | 6 | | 158.3897 | 14.87 | 13.19 | 28.06 | 43.50 | -15.44 | QP | | | | | | Test Model | ORA5L | Test Mode | Lighting | |---------------------------------|---------------|--------------------------|--------------| | Environmental Conditions | 23.8℃, 55% RH | Detector Function | Quasi-peak | | Pol | Horizontal | Distance | 3m | | Test Engineer | Jay Li | Test Voltage | AC 120V/60Hz | | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBu∀ | dB/m | dBu\//m | dBu∀/m | dB | Detector | cm | degree | Comment | | 1 | | 45.7148 | 7.94 | 14.54 | 22.48 | 40.00 | -17.52 | QP | | | | | 2 | × | 110.1334 | 19.26 | 12.79 | 32.05 | 43.50 | -11.45 | QP | | | | | 3 | | 117.7209 | 19.85 | 11.78 | 31.63 | 43.50 | -11.87 | QP | | | | | 4 | | 157.0762 | 19.11 | 9.69 | 28.80 | 43.50 | -14.70 | QP | | | | | 5 | | 219.8449 | 15.21 | 12.36 | 27.57 | 46.00 | -18.43 | QP | | | | | 6 | | 333.1022 | 8.64 | 14.56 | 23.20 | 46.00 | -22.80 | QP | | | | Note: Pre-Scan all mode, Thus record worse case mode result in this report. Margin=Reading level + Factor - Limit Please refer to separated files for External Photos of the EUT. ## 6. INTERIOR PHOTOGRAPHS OF THE EUT Please refer to separated files for Internal Photos of the EUT. -----THE END OF TEST REPORT-----