FCC PART 15.247 TEST REPORT # On Behalf of # **DALS Lighting, Inc** 80 De La Seigneurie East, Blainville, Quebec, J7C 4N1, Canada FCC ID: 2AQSN-DCP45HP20 Model: DCP-45HP20 February 21, 2024 This Report Concerns: **Equipment Type:** LED Path Light Test Engineer: LBi Li / LR Report Number: QCT24AR-1208E-01 Test Date: January 29~ February 21, 2024 Reviewed By: Gordon Tan/ (Andin Tan Approved By: Kendy Wang / Kur Luc Prepared By: Shenzhen QC Testing Laboratory Co., Ltd. East of 1/F., Building E, Xinghong Science Park, No.111, Shuiku Road, Fenghuanggang, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23008269 Fax: 0755-23726780 # **Table of Contents** | 1. GE | NERAL INFORMATION | | |--------|--|------------| | 1.1 | | 5 | | 1.2 | System Test Configuration | -CA | | 1.3 | Test Facility | ,:: | | 1.4 | Test Facility | | | 2. SU | MMARY OF TEST RESULTS | 88 | | 3. LIS | T OF TEST AND MEASUREMENT INSTRUMENTS | <u>.</u> 9 | | 3.1 | Conducted Emission Test | 9 | | 3.2 | Radiated Emission Test | 9ھىھى | | 3.3 | RF Conducted test | | | 4. AN | TENNA REQUIREMENT | | | 5. CO | NDUCTED EMISSIONS | 10 | | 5.1 | Applicable Standard | | | 5.2 | | 912 | | 5.3 | Test setup | <u>12</u> | | 5.4 | FMI Test Receiver Setup | 12 | | 5.5 | Test Data | | | 5.6 | Test Data | 12 | | 6. CO | NDUCTED PEAK OUTPUT POWER | 15 | | 6.1 | Applicable StandardApplicable Standard | 15 | | 6.2 | dimit we are the first of f | 15 × 15 | | 6.3 | Test setup | 15 | | 6.4 | Test Data | | | 7. CH | ANNEL BANDWIDTH & 99% OCCUPIED BANDWIDTH | 18 | | | Applicable Standard | | | 7.2 | Limit of so of the sole | 18 | | 7.3 | Test setup | 18 | | 7.4 | Test Procedure | 18 | | 7.5 | Test Data | 18 | | 8. PO | WER SPECTRAL DENSITY | 24 | | 8.1 | Applicable Standard | 24 | | 8.2 | Limit | 24 | | 8.3 | Test setup | 24 | | 8.4 | | 24 | | 8.5 | Test Data | 24 | | 9. SPI | URIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS | 27 | | 9.1 | Conducted Emission Method | | | | |-----|---------------------------|--------------|--------------|----| | 9.2 | Radiated Emission Method | of the still | .0 00 KES KE | \$ | # **Revision History of This Test Report** | Report Number | Description | Issued Date | |--|--|---| | QCT24AR-1208E-01 | Initial Issue | 2024-2-21 | | Carlo La | STEELEN SO OF LEELEN SO OF LEELEN | A COLIC THE LINE | | SHE OF THE SHE | HE CONTRACTOR OF THE SHELL CON | CAR STAN NO CALLED | | STEP STEP SO STEP STEP SO STEP STEP SO STEP STEP STEP STEP STEP STEP STEP STEP | ESTREAM OF STREET, THE | o criticina o cri | | CONTRACTOR OF THE STATE OF | S. C. T. S. T. T. S. C. C. C. T. S. | IN CONTRACTOR | | THE CONTRACTOR OF THE STATE | THE COUNTRY OF STREET STREET OF STREET | de statue de state | | C. L. L. L. L. C. C. L. L. L. L. L. C. C. L. | THE REPORT OF STREET AND SO STREET, THE STREET AND STREET, THE STR | CONTRACTOR OF STREET | | COCKERENCE CERTIFICATION OF STREET | of the little of the little of the little | SIN AS OF THE HAND | | STATE OF OF THE STATE OF | NE O CHE LESINE DO CHE LESINE TO CO | STE HEINE OF THE TE | | STORESTANDO O STERINGO O | E THE SERVICE OF THE SERVICE OF THE THE | O CHESTINE O | | TO OCITES THE CONTRACTOR THE TEST THE | | in a contist state | | E HALL OF STATE ST | STATE OF STA | of the line of the | | C. LE LE LINE CO. LES CHE CHE LE | THE REPORT OF THE PERSON TH | S CHELLING S | | COCCULTURE OF THE THE | of the filter | SIN NO OF THE THE | | | THE SO SELECTION OF O | en la | | College Colleg | | NE OF THE STREET OF | | THE OF THE PROPERTY OF THE PARTY PART | CO CLE FIRM OF THE FIRM OF THE | HE THE GOLD THE THE | | | State of the | of the state of the | | of etter state of etter state | The still to be the still to be the still | S OF STREET, WE S | | | TO SELECTION OF THE PROPERTY OF SELECTION OF THE PROPERTY OF SELECTION | THE STAND OF SET STANDS | # 1.
GENERAL INFORMATION 1.1 Product Description for Equipment under Test (EUT) | Tig. Eddipmontaliger rest (EGT) | |--| | LED Path Light | | DCP-45HP20 | | DCP-45HP20 (1977) (1977 | | Engineer sample | | 2402MHz~2480MHz | | | | 2MHz 6 C C C C C C C C C C C C C C C C C C | | GFSK COLOR OF THE STATE | | PCB Antenna | | 2.5dBi | | DC 24V | | DALS | | DALS Lighting, Inc | | 80 De La Seigneurie East, Blainville, Quebec, J7C 4N1, Canada | | Meko Lighting Company Limited | | No.2, Songlin East Road, Zeng Tian Village, Xin An District, Chang
An Town Dongguan Guangdong 523883 China (Peoples Republic Of) | | Y24A1208E01WC | | | Note: *1This information provided by Manufacturer, SZ QC Lab is not responsible for the accuracy of this information. # 1.2 System Test Configuration ## 1.2.1 Channel List | Operation F | requency eac | h of channe | | THE OF SELECT | TESTITIBLE OF | CTESTIFE INC | of Classing | |-------------|--------------|----------------------|-----------|---------------|---------------|-------------------|-------------| | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | | 1 | 2402 MHz | 116 | 2422 MHz | 21 | 2442 MHz | 31 6 | 2462 MHz | | 62 K | 2404 MHz | 2 12 | 2424 MHz | 22 5 | 2444 MHz | 320 | 2464 MHz | | 1 3° C C | 2406 MHz | ¹³ ,13 ,6 | 2426 MHz | o 23 K | 2446 MHz | € ² 33 | 2466 MHz | | 6 4 G | 2408 MHz | 6 14 A | 2428 MHz | 24 24 | 2448 MHz | 34 | 2468 MHz | | 16 5 H | 2410 MHz | 15 | 2430 MHz | 25 | 2450 MHz | 6 35° gi | 2470 MHz | | 6 | 2412 MHz | 16 6 | 2432 MHz | 26 | 2452 MHz | 36 | 2472 MHz | | S 7 K | 2414 MHz | £ 17 ° | 2434 MHz | 27 5 | 2454 MHz | 37 ° | 2474 MHz | | 11m2 8 0 61 | 2416 MHz | 18 | 2436 MHz | 28 | 2456 MHz | .√° 38 ° | 2476 MHz | | 15 1 9 G | 2418 MHz | 6 19° | 2438 MHz | 29 | 2458 MHz | 39 | 2478 MHz | | £ 10, m | 2420 MHz | 20 | 2440 MHz | 30.0 | 2460 MHz | 40 | 2480 MHz | #### Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: | Channel | Frequency | |---------------------|-----------| | The lowest channel | 2402MHz | | The middle channel | 2440MHz | | The Highest channel | 2480MHz | ### 1.2.2 EUT Exercise Software # 1.2.3 Support Equipment | Manufacturer | Description | Model | Serial Number | |--------------|-------------|--------------|---------------| | HS | Adapter | HS66-24035DC | | #### 1.2.4 Test mode Transmitting mode: Keep the EUT in continuously transmitting. [&]quot; EMI_Tool " software was used to test, The power level is 1.1. The software and power level was provided by the applicant. # 1.3 Test Facility Test Firm: Shenzhen QC Testing Laboratory Co., Ltd. The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC. Our test facility is recognized, certified, or accredited by the following organizations: CNAS - Registration No.: L8464 The EMC Laboratory has been accredited by CNAS, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories. A2LA Certificate Number: 6759.01 The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories. FCC Registration Number: 561109 The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. IC Registration Number: 29628 CAB identifier: CN0141 The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. # 1.4 Measurement Uncertainty | Parameter | Uncertainty | |--|---------------------------| | Occupied Channel
Bandwidth | ±1.42 x10 ⁻⁴ % | | RF output power, conducted | ±1.06dB | | Power Spectral Density, conducted | ±1.06dB | | Unwanted Emissions, conducted | ±2.51dB | | AC Power Line Conducted Emission | ±1.80dB | | Radiated Spurious Emission test (9kHz-30MHz) | ±2.66dB | | Radiated Spurious Emission test (30MHz-1000MHz) | ±4.04dB | | Radiated Spurious Emission test (1000MHz-18000MHz) | ±4.70 dB | | Radiated Spurious Emission test (18GHz-40GHz) | ±4.80dB | | Temperature of the second seco | ±0.8°C | | Humidity of the street of the street | ±3.2% | | DC and low frequency voltages | ±0.1% | | Time of the second seco | ±5% & K | | Duty cycle | ±5%, ** | Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2 # 2. Summary of Test Results | Test Item | Section | Result | | |--|----------------------------|-------------|--| | Antenna Requirement | FCC part 15.203/15.247 (c) | Pass | | | AC Power Line Conducted Emission | FCC part 15.207 | Pass Pass | | | Conducted Peak Output Power | FCC part 15.247 (b)(3) | Pass | | | Channel Bandwidth & 99% Occupied Bandwidth | FCC part 15.247 (a)(2) | Pass | | | Power Spectral Density | FCC part 15.247 (e) | Estate Pass | | | Band Edge & Control | FCC part 15.247(d) | Pass | | | Spurious Emissions | FCC part 15.205/15.209 | Pass | | Note: 1. Pass: The EUT complies with the essential requirements in the standard. - 2.Test according to ANSI C63.10:2013 - 3.. All indications of Pass/Fail in this report are opinions expressed by Shenzhen QC Testing Laboratory Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. # 3. List of Test and Measurement Instruments ## 3.1 Conducted Emission Test | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.Due | |----------|--------------------------|--------------------|-----------|------------|------------|------------| | STIT THE | EMI Test Receiver | FINE R&S CHELLE | ESIB 7 | 2277573376 | 2023.03.21 | 2024.03.20 | | 2 | Artificial Mains Network | SCHWARZBECK | NSLK8126 | 8126200 | 2023.03.21 | 2024.03.20 | | 3 | PULSE LIMITER | R&S | ESH3-Z2 | 100058 | 2023.03.21 | 2024.03.20 | | 54 | EMITEST RECEIVER | ROHDE &
SCHWARZ | ESCS30 | 834115/014 | 2023.03.21 | 2024.03.20 | ## 3.2 Radiated Emission Test | ltem | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.Due | |-------|--|--------------------|-------------------------|--|------------|------------| | J. K. | Spectrum Analyzer | ROHDE&SCHWARZ | FSV 40 | 101458 | 2023.04.12 | 2024.04.11 | | 2. | Loop Antenna | EMCO | 6502 | 2133 | 2022.07.23 | 2024.07.22 | | 3. | Logarithmic compound broadband Antenna | SCKWARZBECK | VULB9168 | VULB9168-1-588 | 2023.04.01 | 2025.03.31 | | 4.6 | EMI TEST RECEIVER | ROHDE &
SCHWARZ | ESIB 7 | 2277573376 | 2023.04.12 | 2024.04.11 | | 5.00 | EMI Test Receiver | R&S | ESPI | 101131 | 2023.03.21 | 2024.03.20 | | 6. | Horn Antenna | SCHWARZBECK | BBHA9120D | 02069 | 2023.04.01 | 2025.03.31 | | 7. | Horn Antenna | COM-MW | ZLB7-18-40G
-950 | 12221225 | 2023.01.12 | 2025.01.09 | | 8. | Amplifier | R&S | BBV9721 | 9721-031 | 2023.03.21 | 2024.03.20 | | 9.4 | Amplifier | HPX K | BP-01G-18G | 210902 | 2023.03.21 | 2024.03.20 | | 10.6 | Pre-amplifier | COM-MW | DLAN-18000
-40000-02 | 10229104 | 2023.03.21 | 2024.03.20 | | 11. | 966 Chamber | ZhongYu Electron | 9*6*6 | Service Control of Contr | 2022.07.25 | 2025.07.24 | Radiated Emission Measurement Software: EZ_EMC # 3.3 RF Conducted test | | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.Due | |----------------------|---|--------------------|--------------------------|------------|------------|------------| | Sin ^{ac} 1. | Wideband Radio
Communication
Tester | Rohde &
Schwarz | CW500 | 151583 | 2023.03.21 | 2024.03.20 | | 2: 8 | Spectrum Analyzer | ROHDE&
SCHWARZ | FSV 40 | 101458 | 2023.04.12 | 2024.04.11 | | 3. | Signal Generator | Agilent | N5182A | MY50141563 | 2023.03.21 | 2024.03.20 | | 4. ° oc | RF Automatic
Test System | MW CAN | MW100-RFCB/
MW100-PSB | MW2007004 | 2023.03.21 | 2024.03.20 | RF Conducted Measurement Software: MTS 8310 ## 4. Antenna requirement Standard requirement: FCC Part15 C Section 15.203 /247(c) #### 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. **EUT Antenna:** The Ant is PCB Antenna, the best case gain of the antenna is 2.5dBi, reference to the Internal photo for details. Report No.: QCT24AR-1208E-01 Page 11 of 35 ### 5. Conducted Emissions ## 5.1 Applicable Standard FCC Part15 C Section 15.207 ### 5.2 Limit | | Limit (d | lΒμV) | |-----------------------|----------------|------------| | Frequency range (MHz) | Quasi-peak | Average | | 0.15-0.5 | 66 to 56* | 56 to 46* | | 0.5-5 | 56 | 46 | | | (2) A 60 C (2) | 6 50 5 THE | Note *: The level decreases linearly with the logarithm of the frequency. #### 5.3 Test setup #### 5.4 EMI Test Receiver Setup The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. RBW=9 kHz, VBW=30 kHz, Sweep time=auto #### 5.5 Test procedure - 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. - The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). - Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. #### 5.6 Test Data | Temperature | 24.7°C | Humidity | 53% | |--------------|------------|--------------|--------| | ATM Pressure | 101.1kPa | Antenna Gain | 2.5dBi | | Test by | Charlie He | Test result | PASS | Test voltage: AC 120V/60Hz #### Measurement data: Pre-scan all test modes, found worst case at BLE 1M 2402MHz, and so only show the test result of BLE 1M 2402MHz. #### Line: | Fina | Final Data List | | | | | | | | | | |------|-----------------|------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|----------------------|-------|---------| | NO. | Freq.
[MHz] | Factor[dB] | QP
Value
[dBµV] | QP
Limit
[dBµV] | QP
Margin
[dB] | ΑV
Value
[dBμV] | ΑV
Limit
[dBμV] | AV
Margin
[dB] | Phase | Verdict | | 1 | 0.1625 | 10.07 | 41.37 | 65.34 | 23.97 | 35.32 | 55.34 | 20.02 | L | PASS | | 2 | 0.3225 | 10.41 | 32.46 | 59.64 | 27.18 | 25.10 | 49.64 | 24.54 | L | PASS | | 3 | 0.4850 | 10.24 | 24.66 | 56.25 | 31.59 | 18.41 | 46.25 | 27.84 | L | PASS | | 4 | 0.8125 | 10.14 | 24.16 | 56.00 | 31.84 | 16.08 | 46.00 | 29.92 | L | PASS | | 5 | 8.7725 | 10.21 | 24.19
 60.00 | 35.81 | 11.07 | 50.00 | 38.93 | L | PASS | | 6 | 25.5575 | 10.49 | 24.90 | 60.00 | 35.10 | 19.11 | 50.00 | 30.89 | L | PASS | ### Neutral: | Final Data List | | | | | | | | | | | |-----------------|----------------|------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|----------------------|-------|---------| | NO. | Freq.
[MHz] | Factor[dB] | QP
Value
[dBµV] | QP
Limit
[dΒμV] | QP
Margin
[dB] | ΑV
Value
[dBμV] | AV
Limit
[dBµV] | AV
Margin
[dB] | Phase | Verdict | | 1 | 0.1625 | 10.07 | 41.48 | 65.34 | 23.86 | 35.32 | 55.34 | 20.02 | N | PASS | | 2 | 0.3225 | 10.45 | 33.35 | 59.64 | 26.29 | 26.66 | 49.64 | 22.98 | N | PASS | | 3 | 0.4850 | 10.31 | 25.79 | 56.25 | 30.46 | 20.06 | 46.25 | 26.19 | N | PASS | | 4 | 0.6450 | 10.22 | 22.58 | 56.00 | 33.42 | 15.54 | 46.00 | 30.46 | N | PASS | | 5 | 0.8075 | 10.09 | 21.31 | 56.00 | 34.69 | 12.69 | 46.00 | 33.31 | N | PASS | | 6 | 24.9455 | 10.47 | 27.78 | 60.00 | 32.22 | 22.09 | 50.00 | 27.91 | N | PASS | #### Notes: - 1. An initial pre-scan was performed on the line and neutral lines with peak detector. - 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. ## 6. Conducted Peak Output Power ## 6.1 Applicable Standard FCC Part15 C Section 15.247 (b)(3) #### 6.2 Limit According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode. ## 6.3 Test setup Ground Reference Plane #### 6.4 Test Data | Temperature | 24 °C | Humidity | 52 % | |--------------|-----------------|--------------|---------------------| | ATM Pressure | 101.1kPa | Antenna Gain | 2.5dBi | | Test by | LBi Li a Lating | Test result | PASS (CONTROL OF) | Please refer to following table and plots. ## **Output Power:** | 1 | Mode | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result | |------|----------|--------------|---|------------------|--------------------| | (S) | TIME IS | Lowest | 2.31 | cle is in the or | the state of the | | В | LE 1M | Middle | 2.4 45 11 | 30 | Pass | | O.C. | , The st | Highest | \$ \(\langle \) \(\ | o o chi ghi | of classified into | Date: 21.FEB.2024 11:12:21 Date: 21.FEB.2024 11:13:48 Date: 21.FEB.2024 11:15:27 ## 7. Channel Bandwidth & 99% Occupied Bandwidth - 7.1 Applicable Standard FCC Part15 C Section 15.247 (a)(2) - 7.2 Limit The minimum 6 dB bandwidth shall be 500 kHz. ### 7.3 Test setup Ground Reference Plane ### 7.4 Test Procedure The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth: - The transmitter shall be operated at its maximum carrier power measured under normal test conditions. - The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span. - The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously. - The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted. Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement. For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth). #### 7.5 Test Data | Temperature | 24 °C (10) (10) (10) | Humidity | 52 % | |--------------|-------------------------|--------------|--------| | ATM Pressure | 101.1kPa | Antenna Gain | 2.5dBi | | Test by | LBILL COLLEGE | Test result | PASS | Please refer to following table and plots. ## DTS Bandwidth: | Mode | Test channel | DTS Bandwidth (MHz) | Limit (MHz) | Verdict |
--|--------------|---------------------|-------------|---------| | THE COUNTY THE COUNTY OF C | Lowest | 0.673 | 0.5 | PASS | | BLE 1M | Middle | 0.67 | 0.5 | PASS | | of the fight was a contracting | Highest | 0.67 | 0.5 | PASS | ## 99% Occupied Bandwidth: | Mode | Test channel | 99% Occupied Bandwidth (MHz) | Verdict | |--|--------------|------------------------------|---------| | The state of s | Lowest | 1.04 K ST S S | PASS | | BLE 1M | Middle | 1.022 | PASS | | of the sime of color | Highest | 2 1.035 | PASS | #### **DTS Bandwidth:** Date: 21.FEB.2024 11:12:32 Date: 21.FEB.2024 11:13:59 #### -6dB Bandwidth NVNT BLE 1M 2480MHz Ant1 Date: 21.FEB.2024 11:15:39 #### 99% Occupied Bandwidth: Date: 21.FEB.2024 11:12:26 Date: 21 FEB 2024 11:13:53 Date: 21.FEB.2024 11:15:33 # 8. Power Spectral Density ## 8.1 Applicable Standard FCC Part15 C Section 15.247 (e) ## 8.2 Limit For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. ## 8.3 Test setup **Ground Reference Plane** #### 8.4 Test Procedure Refer to KDB558074 D01 15.247 Meas Guidance v05r02 #### 8.5 Test Data | Temperature | 24 °C , S , S , S | Humidity | 52 % | |--------------|-------------------------|--------------|--------| | ATM Pressure | 101.1kPa | Antenna Gain | 2.5dBi | | Test by | LBi Li & Still Still Li | Test result | PASS | Please refer to following table and plots. | Mode | Test channel | Power Spectral Density (dBm/3kHz) | Limit(dBm/3kHz) | Result | |---------------|--------------|-----------------------------------|-----------------------|---------| | CLESTIN NO OF | Lowest | 8.85 | STATE OF STATES | Mr of a | | BLE 1M | Middle | 7.69 | 8.00 | Pass | | | Highest | 2 | CONTREST STANCE OF OF | THE THE | Date: 21.FEB.2024 11:12:41 Date: 21.FEB.2024 11:14:09 Date: 21.FEB.2024 11:15:49 ## 9. Spurious Emission in Non-restricted & restricted Bands #### 9.1 Conducted Emission Method ### 9.1.1 Applicable Standard FCC Part15 C Section 15.247 (d) #### 9.1.2 Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. #### 9.1.3 Test setup Ground Reference Plane #### 9.1.4 Test Procedure - Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range. - Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge. - Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. - Repeat above procedures until all measured frequencies were complete. #### 9.1.5 Test Data | J.1.0 ICSI Dala | 1 C | - 1 6 6 4 A | 6 6 1 1 6 | |-----------------|-----------|--------------|-----------| | Temperature | 24°C | Humidity | 52 % | | ATM Pressure | 101.1kPa | Antenna Gain | 2.5dBi | | Test by | LBitti ji | Test result | PASS | Please refer to following plots. Date: 21.FEB.2024 11:12:54 Date: 21.FEB.2024 11:16:02 Date: 21.FEB.2024 11:13:14 Date: 21.FEB.2024 11:14:29 Date: 21.FEB.2024 11:16:22 ## 9.2 Radiated Emission Method ## 9.2.1 Applicable Standard FCC Part15 C Section 15.209 and 15.205 ### 9.2.2 Limit | Frequency | Field Strengths Limits (µV/m at 3 m) | Field Strengths Limits (dBµV/m at 3 m) | Remark | |------------|--------------------------------------|--|------------| | 30 – 88 | 100 | 40.0 | Quasi-peak | | 88 – 216 | 2 150 | 43.5 | Quasi-peak | | 216 – 960 | 200 | 46.0 | Quasi-peak | | Above 960 | 10 500 pt 15 | 54.0 | Quasi-peak | | Above 1GHz | of the state of the | 54.0 | Peak | | Above IGHZ | of the time of | 74.0 | Average | Note: dBµV/m =20log(µV/m) ### 9.2.3 Test setup #### For radiated emissions from 30MHz to1GHz #### For radiated emissions above 1GHz #### 9.2.4 EMI Test Receiver Setup | Frequency | RBW | VBW | IF B/W | Measurement 6 | |-------------------|---------|----------|-----------------|---------------| | 30 MHz – 1000 MHz | 100 kHz | 300 kHz | 120 kHz | QP Q | | Above 1 CH- | 1 MHz | 3 MHz | THE OF LEST AND | Peak | | Above 1 GHz | 1 MHz | ⊙10 Hz < | STATE OF GO LES | Average | #### 9.2.5 Test procedure - The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. - The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find
the maximum reading. - The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. #### 9.2.6 Test Data | < | Temperature | 24 °C 55 8 | Humidity | 52 % | |---|--------------|------------|--------------|-------------------| | | ATM Pressure | 101.1kPa | Antenna Gain | 2.5dBi | | | Test by | Charlie He | Test result | PASS & A LA LA LA | Test voltage: DC 24V #### Remarks: - Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case. - 2. The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported. ## **Below 1GHz** Pre-scan all test modes, found worst case at BLE 1M 2402MHz, and so only show the test result of BLE 1M 2402MHz. #### Horizontal: | 12. | No. | Frequency
(MHz) | Reading
(dBuV) | Factor
(dB/m) | Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | 30 | |------|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|----| | ć | 1 | 88.6524 | 28.12 | 10.18 | 38.30 | 43.50 | 5.20 | QP | 0 | | Kee | 2 * | 112.5241 | 27.91 | 12.57 | 40.48 | 43.50 | 3.02 | QP | - | | N.O. | 3 | 159.7844 | 22.97 | 14.72 | 37.69 | 43.50 | 5.81 | QP | 70 | | () | 4 | 245.0900 | 25.20 | 13.32 | 38.52 | 46.00 | 7.48 | QP | 4 | | | 5 | 304.6099 | 21.02 | 14.71 | 35.73 | 46.00 | 10.27 | QP | | | 1/4 | 6 | 397.6333 | 11.52 | 17.72 | 29.24 | 46.00 | 16.76 | QP | (| | No | Frequency
(MHz) | Reading
(dBuV) | Factor
(dB/m) | Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------| | 1 | * 88.6524 | 30.49 | 10.03 | 40.52 | 43.50 | 2.98 | QP | | 2 | 98.8324 | 26.37 | 11.15 | 37.52 | 43.50 | 5.98 | QP | | 3 | 113.3161 | 27.68 | 12.50 | 40.18 | 43.50 | 3.32 | QP | | 4 | 162.6105 | 18.83 | 14.12 | 32.95 | 43.50 | 10.55 | QP | | 5 | 244.2321 | 22.09 | 13.38 | 35.47 | 46.00 | 10.53 | QP | | 6 | 323.3202 | 15.22 | 15.04 | 30.26 | 46.00 | 15.74 | QP | # Shenzhen QC Testing Laboratory Co., Ltd. ### **Above 1GHz** Test channel: Lowest channel | Frequency
(MHz) | Read Level
(dBµV) | polarization | Factor
(dB/m) | Level
(dBµV/m) | Limit Line
(dBµV/m) | Margin
(dB) | Detector | |--------------------|----------------------|---------------|------------------|-------------------|------------------------|----------------|-------------------| | 2310 | 46.51 | o H.C. | -11.14 | 35.37 | ° 74 | 38.63 | peak | | 2310 | 47.75 | STAN TO SELLE | -11.16 | 36.59 | 74 | 37.41 | peak | | 2390 | 45.98 | AST AND OF | -10.9 | 35.08 | 5 ¹ 74 ° | 38.92 | peak | | 2390 | 46.07 | Co TO VITTE | -10.96 | 35.11 | 74 | 38.89 | peak | | 4804 | 46.24 | o Harring | -4.37 | 41.87 | 6 74 ST | 32.13 | peak | | 4804 | 45.77 | No Vol X | -4.51 | 41.26 | 74 | 32.74 | peak [©] | Test channel: Middle channel | Frequency
(MHz) | Read Level
(dBµV) | polarization | Factor
(dB/m) | Level
(dBµV/m) | Limit Line
(dBµV/m) | Margin
(dB) | Detector | |--------------------|----------------------|--------------|------------------|-------------------|------------------------|----------------|----------| | 4882 | 45.62 | SHOW HOST | 4.1 c | 41.52 | 74 | 32.48 | peak | | 4882 | 45.15 | KE W C | -4.23 | 40.92 | 74 | 33.08 | peak | Test channel: Highest channel | Frequency
(MHz) | Read Level
(dBµV) | polarization | Factor
(dB/m) | Level
(dBµV/m) | Limit Line
(dBµV/m) | Margin
(dB) | Detector | |--------------------|----------------------|----------------|------------------|-------------------|------------------------|----------------|----------| | 2483.5 | 46.22 | W. John Har Co | -10.61 | 35.61 | 74 | 38.39 | peak | | 2483.5 | 45.61 | O CONTRACTOR | -10.71 | 34.9 | 74 | 39.1 | peak | | 2500 | 45.92 | S H. H. S | -10.57 | 35.35 | 74 | 38.65 | peak | | 2500 | 45.75 | STIME NO OF S | -10.67 | 35.08 | 74 | 38.92 | peak | | 4960 | 45.03 | KE STAND | -3.82 | 41.21 | 74 | 32.79 | peak | | 4960 | 45.98 | Ser William | -3.93 | 42.05 | 74 0 | 31.95 | peak | ## Remarks: - 1. Level =Receiver Read level + Factor - The emission levels of other frequencies are very lower than the limit and not show in test report. THE END OF TEST PEDODT