

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) FHSS Specifications for an Intentional Radiator on the Sato Corporation Model: SATO M8485SE Printer with RFID Reader

684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: August 4, 2004

FINAL TEST DATE:

August 2 and August 3, 2004

AUTHORIZED SIGNATORY:

Mark Briggs Vice President of Engineering

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTE	ENTS
----------------	------

COVER PAGE	
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	3
SUMMARY OF RESULTS	4
MEASUREMENT UNCERTAINTIES	5
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE.	
MODIFICATIONS	
SUPPORT EQUIPMENT EUT INTERFACE PORTS	
EUT INTERFACE PORTS EUT OPERATION DURING TESTING	
ANTENNA REQUIREMENTS	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	9
RECEIVER SYSTEM	9
INSTRUMENT CONTROL COMPUTER	9
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	9
POWER METER	
FILTERS/ATTENUATORS	10
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	11
EUT AND CABLE PLACEMENT	11
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	13
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	1/
RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS	11
FCC AC POWER PORT CONDUCTED EMISSIONS LIMITS	
RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS.	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Data Log Sheets	
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
of Sato Corporation Model SATO M8485SE Printer with RFID Reader	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation for Sato Corporation Model SATO M8485SE Printer with RFID Reader	
EXHIBIT 10: RF Exposure Information	
Exhibit 10. At Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Sato Corporation model SATO M8485SE Printer with RFID Reader pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Sato Corporation model SATO M8485SE Printer with RFID Reader and therefore apply only to the tested sample. The sample was selected and prepared by Keisuke Yamada of Sato Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units that are subsequently manufactured.

SUMMARY OF RESULTS

			unat do not apply to		
FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247	6.2.2(o)(a)	20dB Bandwidth	263 kHz	The channel spacing	Complies
15.247	6.2.2(o)(a)	Channel Separation	400 kHz	shall be greater than the 20dB bandwidth	Complies
15.247	6.2.2(o)(a)	Number of Channels	63	50 hopping frequencies: average time of	Complies
15.247	6.2.2(o)(a)	Channel Dwell Time	0.317 seconds per 20 seconds	occupancy <0.4 second within a 20 second period.	Complies
15.247	6.2.2(o)(a)	Channel Utilization	All channels are used equally	Refer to Theory of Operations for detailed description of the hopping algorithm	Complies
15.247 (b) (3)	6.2.2(o)(a)	Output Power	20.85 dBm (0.122 Watts) EIRP = 0.192 W	Maximum permitted is 1Watt, with EIRP limited to 4 Watts for a 50- channel system.	Complies
15.247(c)	6.2.2(o)(e1)	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions 30MHz – 25GHz	-15.2dB @ 3611.2MHz	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	-4.9dB @ 0.197MHz		Complies
	6.6	AC Conducted Emissions	N/A	N/A	Complies
15.247 (b) (5)		RF Exposure Requirements	FCC /IC limits of power density not exceeded provided antenna is located a minimum of 20 cm from persons	Refer to MPE calculation for 20cm derivation. Refer to User's Guide for installation instructions requiring a 20cm separation	Complies
15.203		RF Connector	Antenna is integral to the device	Integral antenna or specialized connector required	Complies

Note – remove referen	nces in the table	e below that do not	ot apply to the rad	lio tested

EIRP calculated using antenna gain of 2dBi.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Sato Corporation model SATO M8485SE Printer with RFID Reader is an RFID label printer which is designed to apply RFID tag labels and, via the built-in RFID reader (transceiver operating in the 902-928 MHz band) verify the tag. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 7/3.5 Amps.

The sample was received on August 2, 2004 and tested on August 2 and August 3, 2004. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	Proposed FCC ID #
SATO M8485SE Printer with RFID	40404118	
Module		

OTHER EUT DETAILS

The antenna is a 2dBi antenna that is internally mounted within the printer with no user-accessibility.

The printer uses a WJ-SX2001 module to provide the rfid transceiver.

The EUT can be configured with various interfaces. The printer tested was configured with a serial data interface.

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 27 cm wide by 43 cm deep by 32 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell PP01L Laptop	TW-0791UH-	DoC
	12800-15T-B122	
	(Asset #526)	
Dell ADP-70EB AC Adapter	-	-
Sato CL408e Printer	45590309	DoC

No equipment was used as remote support equipment for emissions testing:

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
IOIt	Connected 10	Description	Shielded or Unshielded	Length(m)	
CL 408e Parallel	Laptop	Multiwire	Shielded	1	
EUT AC in	AC Mains	h wire	Unshielded with ferrite at EUT connector	1.5	
M8485SE Serial	Laptop serial	Multiwire	Shielded	4	

EUT OPERATION DURING TESTING

The EUT was continuously transmitting a modulated signal on either the low channel (902.8MHz), the middle channel (915.2MHz) or the high channel (927.6MHz) for output power, bandwidth and spurious emissions measurements. For channel occupancy measurements an unmodulated signal was hopped in accordance with the hopping algorithm across all available channels.

ANTENNA REQUIREMENTS

The antenna port and antenna are contained within the printer.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on August 2 and August 3, 2004at the Elliott Laboratories Open Area Test Site #1 & 2 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Number Of Channels	Output Power
902 - 928	>=50	1 W (30 dBm)
902 - 928	< 50	0.25 W (24 dBm)
2400 - 2483.5	>= 75	1 W (30 dBm)
2400 - 2483.5	>= 75	0.125 W (21 dBm)
5725 - 5850	>=75	1 W (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level.

FCC AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.207.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 5.000 to 30.000	46.0 50.0	56.0 60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency		
Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

RF Port Emissions, 30 - 10,000 MHz, 02-Aug-04 Engineer: Chris Byleckie Manufacturer Description

Manufacturer	<u>Description</u>	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	20-Nov-04
Conducted Emissions - A Engineer: Mark Briggs	C Power Ports; Radiated Emissions; RF Port Emiss	ions, 03-Aug-04		

<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Hewlett Packard	EMC Spectrum Analyzer 9KHz-26.5GHz, non programmable	8563E	284 15-Mar-05
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304 01-Jul-05
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785 23-Jan-05
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787 10-Dec-04
Hewlett Packard	EMC Spectrum Analyzer, 9KHz-26.5GHz	8593EM	1141 23-Mar-05
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332 12-May-05
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404 17-Nov-04
EMCO	Biconical Antenna, 30-300 MHz	3110B	1498 15-Jan-05
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1561 04-May-06
Narda	1.9GHz High Pass Filter		248 12-Apr-05

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T56606 17 Pages

Ellio	t	EM	C Test Data
Client:	SATO Corp.	Job Number:	J56586
Model:	SATO M8485SE Printer with RFID Reader	T-Log Number:	T56606
		Account Manager:	
Contact:	Greg Katterhagen		
Emissions Spec:	FCC15.247; FCC 15 Subpart B	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

SATO Corp.

Model

SATO M8485SE Printer with RFID Reader

Date of Last Test: 8/3/2004

Elliott EMC Test Data Job Number: J56586 Client: SATO Corp. Model: SATO M8485SE Printer with RFID Reader T-Log Number: T56606 Account Manager: Contact: Greg Katterhagen Emissions Spec: FCC15.247; FCC 15 Subpart B Class: В Immunity Spec: Environment: _ EUT INFORMATION **General Description** The EUT is an RFID label printer which is designed to apply RFID tag labels and, via the built-in RFID reader (transceiver operating in the 902-928 MHz band) verify the tag. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 7/3.5 Amps. **Equipment Under Test** Description FCC ID Model Serial Number Manufacturer Printer with RFID module SATO M8485SE 40404118 Other EUT Details The antenna is a 2dBi antenna that is internally mounted within the printer with no user-accessibility. The printer uses a WJ-SX2001 module to provide the rfid transceiver. The EUT can be configured with various interfaces. The printer tested was configured with a serial data interface. EUT Enclosure The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 27 cm wide by 43 cm deep by 32 cm high. Modification History Mod. # Test Date Modification 1 2 3 Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliot	t		ЕМС	CTest Da
Client:	SATO Corp.		Job Number: J	56586
Model:	SATO M8485SE Printer w	ith RFID Reader	T-Log Number: T	56606
			Account Manager:	
	Greg Katterhagen			
	FCC15.247; FCC 15 Subp	part B	Class:	В
Immunity Spec:	-		Environment:	-
	Lo	t Configurati	ment	
Manufacturer	Model	Description	Serial Number	FCC ID
	DD041		TW-0791UH-12800-15T-	D 0
Dell	PP01L	Laptop	B122	DoC
Dell	ADP-70EB	AC adaptor	(Asset #526)	
Dell Sato	CL408e	AC adapter Printer	45590309	DoC
Manufacturer None	Ren Model	note Support Equi Description	pment Serial Number	FCC ID
NUTE	Inte	rface Cabling and		
Port	Connected To		Cable(s)	
	Lonton	Description	Shielded or Unshielded	d Length(n
CL 408e Parallel	Laptop	Multiwire	Shielded Unshielded with ferrite at	
EUT AC in M8485SE Serial	AC Mains	3 wire	connector	1.5
	Laptop serial	Multiwire	Shielded	4

Note: For radiated spurious emissions from the transmitter, the serial port of the rf module was connected to the laptop to enable control of the radio. For all other radiated spurious emissions measurements the printer serial port was connected to the laptop.

The EXT port of the printer was not connected. This port is mutually exlcusive to the serial port.

EUT Operation During Testing - Transmitter-Related Emissions

The EUT was continuously transmitting a modulated signal on either the low channel (902.8MHz), the middle channel (915.2MHz) or the high channel (927.6MHz) for output power, bandwidth and spurious emissions measurements. For channel occupancy measurements an unmodulated signal was hopped in accordance with the hopping algorithm across all available channels.

EUT Operation During Testing - Digital Device Emissions

The laptop was displaying a scrolling 'H' pattern and communicating to the connected printers.

E	Ellio	ott			EM	IC Tes	t Data
Client:	: SATO Co	rp		J	ob Number:	J56586	
Model:	SATO M8	485SE Printer with RFID Reader	r		og Number:		
Contact	Croa Katt			Accour	nt Manager:	. –	
	: Greg Katt	ernagen 47; FCC 15 Subpart B		+	Class:	· N/A	
<u> </u>	1001012				01000		
		Antenna Por	rt Conducted	Emissi	ons		
Test Spe	ecifics						
-	Objective:	The objective of this test session specification listed above.	n is to perform final quali	fication testir	ng of the EL	JT with respec	t to the
Test	Engineer:	8/2/2004; 8/3/2004 Chris Byleckie; M Briggs SVOATS #1; SVOATS #2	Config. Used: Config Change: EUT Voltage:	: -			
		nfiguration I support equipment were located	d on table				
spectrum a	analyzer or	conducted emissions from the E power meter via a suitable atten of or the external attenuators used	uator to prevent overload				
Unless stat	ted otherwi	ise the EUT was operating such	that it constantly hopped	on either the	e low, cente	r or high char	nels.
Ambient	Conditi	ons: Temperature: Rel. Humidity:					
Summar	y of Res	ults					
Rur	n #	Test Performed	Limit	Result	Ma	argin	
1		20dB Bandwidth	15.247(a)	Pass	263	3 kHz	
2	2	Output Power	15.247(b)	Pass	0.1	85 dBm 22 W	
3	}	Channel Occupancy / Separation	15.247(a)	Pass		z spacing ms/20s	
4	ļ	Number of Channels	15.247(a)	Pass		63	

5

Spurious/ Out-of Band

Emissions

15.247(a)

All emissions > -20dBc

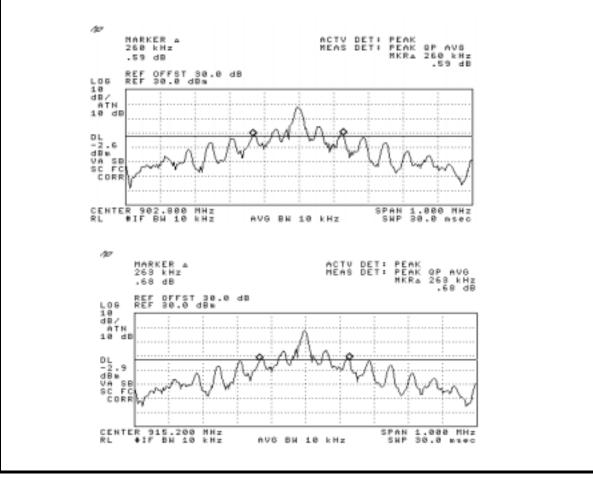
Pass

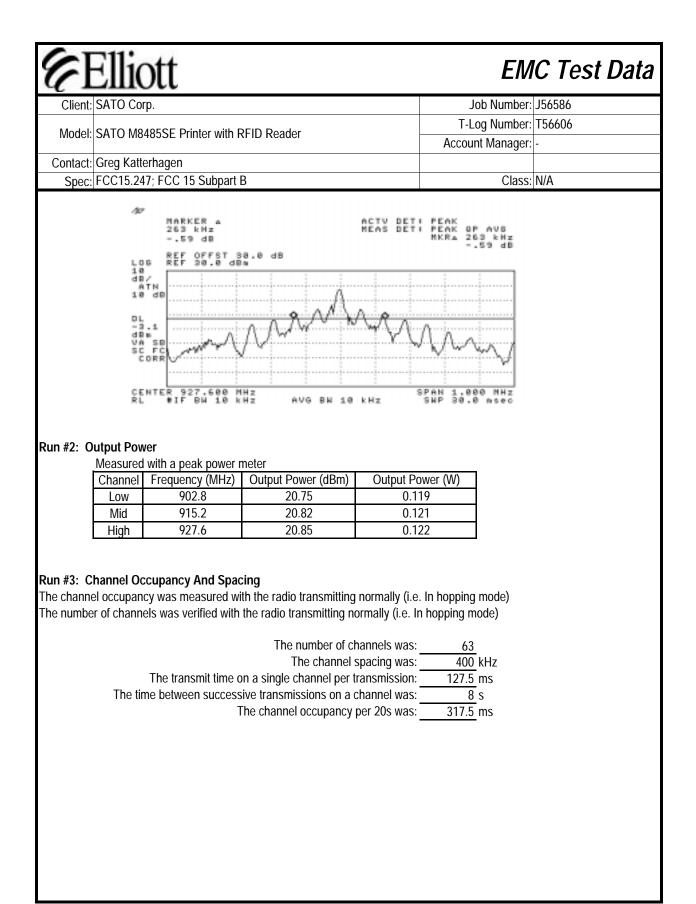
Elliott

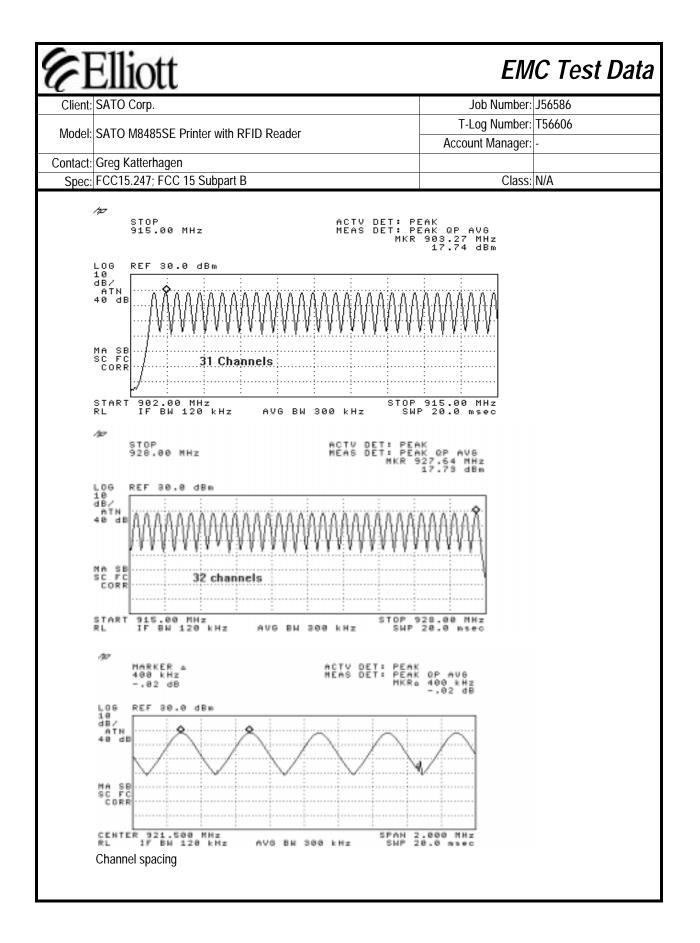
EMC Test Data

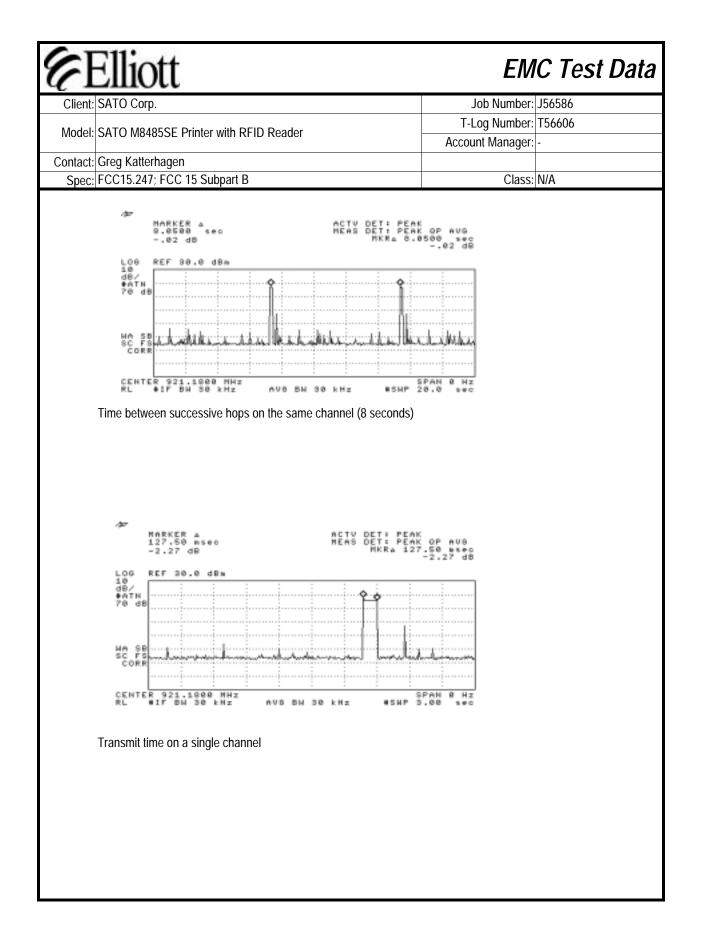
Client:	SATO Corp.	Job Number:	J56586
Model	SATO M8485SE Printer with RFID Reader	T-Log Number:	T56606
wouer.		Account Manager:	-
Contact:	Greg Katterhagen		
Spec:	FCC15.247; FCC 15 Subpart B	Class:	N/A

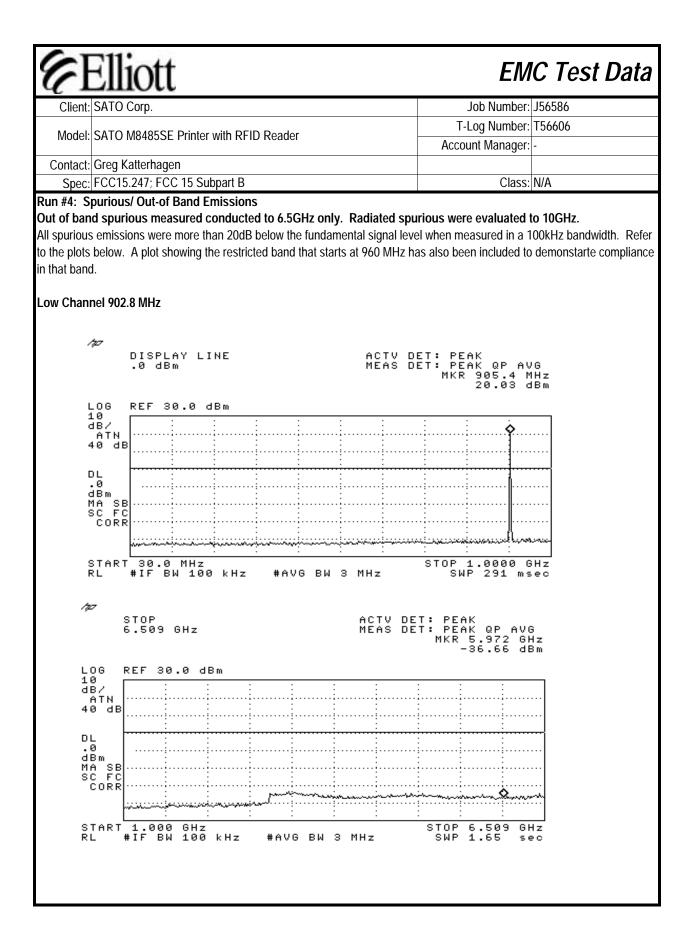
Modifications Made During Testing:

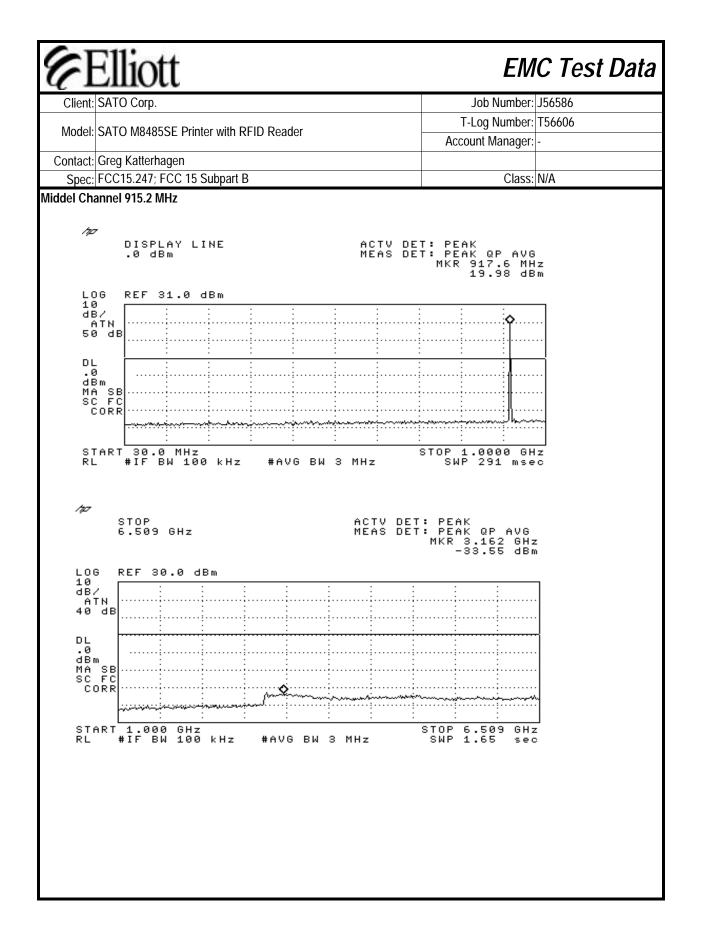

No modifications were made to the EUT during testing

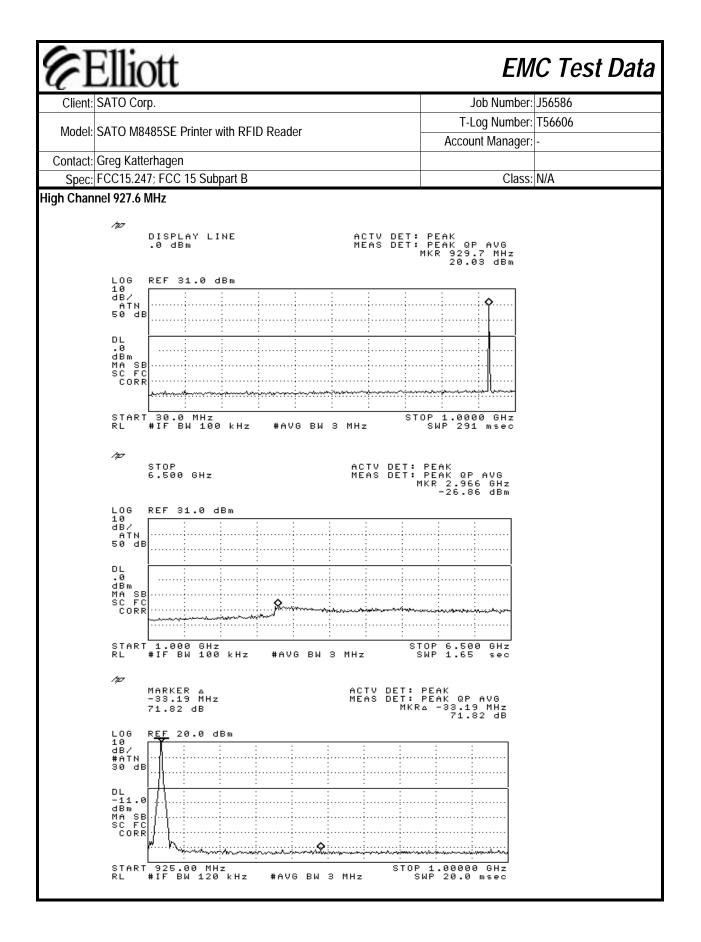

Deviations From The Standard


No deviations were made from the requirements of the standard.


Run #1: Signal Bandwidth


Cha	annel	Frequency (MHz)	Res BW	20dB Signal Bandwidth	99% Bandwidth
L	.0W	902.8	10kHz	260 kHz	398 kHz
Ν	Лid	915.2	10kHz	263 kHz	413 kHz
Н	ligh	927.6	10kHz	263 kHz	418 kHz





Client: SATO C	orp.		J	ob Number:	J56586
	8485SE Printer with RFID Reader		T-L	og Number:	T56606
Model: SATO M	54855E Printer with RFID Reader		Accou	nt Manager:	-
Contact: Greg Ka	0				
Spec: FCC15.2	247; FCC 15 Subpart B			Class:	N/A
	Radiated Emiss	ions - Transn	nitter (15.247)	
Test Specifics					
Objective	The objective of this test session specification listed above.	ו is to perform final qualif	ication testi	ng of the EU	IT with respect
Date of Test		Config. Used:			
Test Engineer	00	Config Change:		_	
Test Location	: SVOATS #1	EUT Voltage:	120V/60Hz		
General Test Co The EUT and all loca	nfiguration al support equipment were located	I on the turntable for radi	ated spurio	us emissions	s testing.
For radiated emissio	ns testing the measurement anter	nna was located 3 meters	s from the E	UT.	
	vise the EUT was operating such				center or high
	ise the Let was operating such	and it was constantly ope			contor or high
	ions: Temperature:	10 °C			
	•	19 °C 66 %			
Ambient Condit	ions: Temperature: Rel. Humidity:	19 °C 66 %			
Ambient Condit	Rel. Humidity:				
	Rel. Humidity:				
Ambient Condit	Rel. Humidity:		Result	Ma	argin
Ambient Condit Summary of Re	Rel. Humidity: sults	66 %	Result Pass		argin 9 3611.2MHz

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

EMC Test Data

2			
Client:	SATO Corp.	Job Number:	J56586
Model	SATO M8485SF Printer with RFID Reader	T-Log Number:	T56606
Mouel.		Account Manager:	-
Contact:	Greg Katterhagen		
Spec:	FCC15.247; FCC 15 Subpart B	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 10000 MHz

The fundamental field strength is lower than would be expected given the output power (~22dBm eirp) as the antenna is located inside the enclosure of the printer. The transmitter is designed to interrogate the tag being printed.

Run #1a: Radiated Spurious Emissions, 900 - 10000 MHz. Low Channel @ 902.8 MHz

					Н	V		
Fundamer	ntal emissi	on level	@ 3m in 10	OkHz RBW:		105.2		
Limit	for emissi	ons outs	ide of restri	cted bands:	85.2	dBµV/m		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3611.181	38.9	V	54.0	-15.2	AVG	126	1.0	Noise Floor
2708.433	34.7	V	54.0	-19.4	AVG	-10	1.0	Noise Floor
3611.181	49.7	V	74.0	-24.3	PK	126	1.0	Noise Floor
2708.433	45.6	V	74.0	-28.4	PK	-10	1.0	Noise Floor
1805.585	33.4	V	85.2	-51.8	Pk	22	1.0	RBW=100kHz
1805.601	32.0	Н	85.2	-53.2	Pk	108	1.0	RBW=100kHz
NULE I.	م امنیما مطل	f 1 a f a		-				
Note 2:		purious (damental. emissions w	ere more th	an 20dB bel 00 MHz. Ce			
Note 2:	All other s	purious (damental. emissions w	ere more th		ow the limit.		
Note 2: Run #1b: 1	All other s	purious (Spurious	damental. emissions w	ere more th s, 900 - 100	00 MHz. Ce	ow the limit. enter Channe		missions, the limit was set 20dB below
Note 2: Run #1b: 1 Fundamer	All other s Radiated S	purious of Spurious	damental. emissions w s Emission:	ere more th s, 900 - 100 DkHz RBW:	00 MHz. Ce H	ow the limit. enter Channe V		
Note 2: Run #1b: 1 Fundamer	All other s Radiated S	purious of Spurious	damental. emissions w s Emission: @ 3m in 100 ide of restric	ere more th s, 900 - 100 DkHz RBW:	00 MHz. Ce H	ow the limit. enter Channe V 105.0		
Note 2: Run #1b: 1 Fundamer Limit	All other s Radiated S ntal emission for emission	purious (Spurious on level ons outs	damental. emissions w s Emission: @ 3m in 100 ide of restric	ere more th s, 900 - 100 OkHz RBW: cted bands:	00 MHz. Ce H 85.0	ow the limit. enter Channe V 105.0 dBµV/m Azimuth	કો @ 915.2	MHz
Note 2: Run #1b: I Fundamer Limit Frequency	All other s Radiated S ntal emission for emission Level	purious of Spurious of Spuriou	damental. emissions w s Emissions @ 3m in 100 ide of restric 15.209	ere more th s, 900 - 100 OkHz RBW: cted bands: / 15.247	00 MHz. Ce H 85.0 Detector	ow the limit. enter Channe V 105.0 dBµV/m Azimuth	el @ 915.2	MHz

46.9

46.1

34.8

33.3

V

Н

٧

Η

the level of the fundamental.

74.0

74.0

85.0

85.0

-27.1

-27.9

-50.2

-51.7

All other spurious emissions were more than 20dB below the limit.

ΡK

ΡK

Pk

Pk

361

360

72

152

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below

Noise Floor

Noise Floor

RBW=100kHz

RBW=100kHz

1.0

1.0

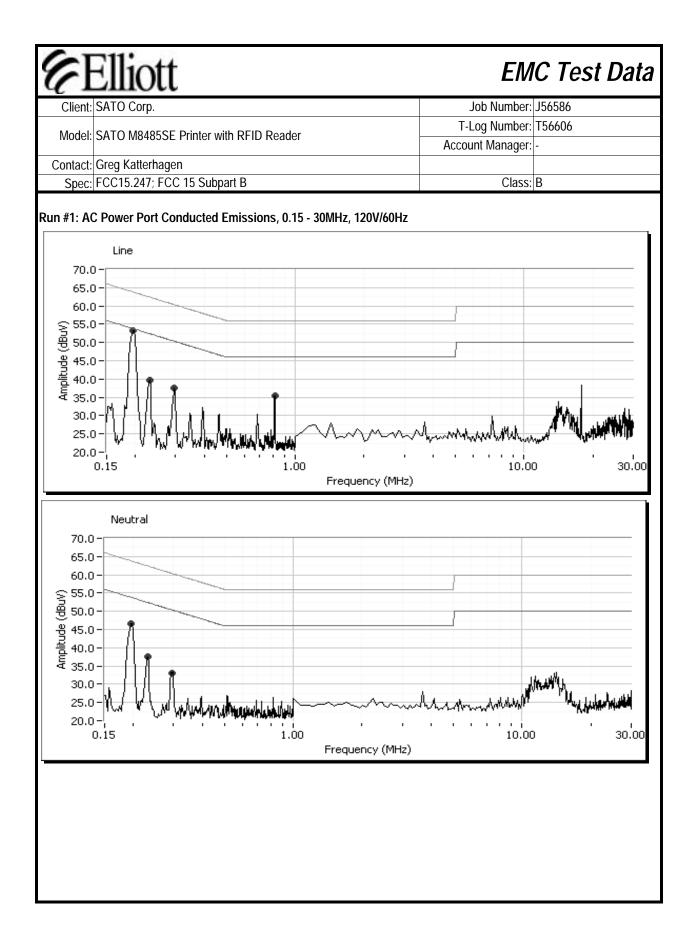
1.2

1.2

2745.566

2745.173

1830.397


1830.412

Note 1:

Note 2:

E	Ellic	ott						EM	C Test Data
Client:	SATO Cor	p.						lob Number:	J56586
							T-L	.og Number:	T56606
Model:	SATO M8	485SE P	rinter with F	RFID Reade	r			nt Manager:	
Contact:	Greg Katte	erhagen							
Spec:	FCC15.24	7; FCC 1	15 Subpart I	В				Class:	N/A
Run #1c: I	Radiated S	Spurious	Emission	s, 900 - 100	00 MHz. Hi	gh Channel	@ 927.6 M	Hz	
					Н	V	1		
Fundame	ntal emissio	on level (@ 3m in 100	0kHz RBW:	100.1	100.7			
Limit	for emissi	ons outs	ide of restric	cted bands:	80.7	dBµV/m]		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2782.538	34.0	V	54.0	-20.0	AVG	68	1.0	Noise Floor	
2782.538	45.2	V	74.0	-28.8	РК	68	1.0	Noise Floor	
1855.184	36.1	Н	80.7	-44.7	Pk	302	1.8	RBW=100k	
1855.170	32.5	V	80.7	-48.2	Pk	157	1.0	RBW=100k	Hz

	ott			EMC Te	st Dai
Client: SATO Co			J	ob Number: J56586	
	485SE Printer with RFID Re	eader		og Number: T56606	
			Accour	nt Manager: -	
Contact: Greg Katt	erhagen I7; FCC 15 Subpart B			Class: B	
	Conducte	d Emissions - Po	ower P	orts	
est Specifics					
Objective:	The objective of this test se specification listed above.	ession is to perform final quali	fication testir	ng of the EUT with res	pect to the
Date of Test:		Config. Used:			
Test Engineer: Test Location:		Config Change: EUT Voltage:			
eneral Test Co	<i>c</i> i				
sed for all local supp mbient Condition	ons: Temperai Rel. Humi				
ummary of Res					
	Test Performed	Limit FCC 15.207	Result	Margin	
Run #			Dace		
1	CE, AC Power, 230V/50	HZ FCC 15.107	Pass	-4.9dB @ 0.197MH	Z

6I	Ellio	ott					EM	C Test Da
	SATO Corp.						Job Number:	J56586
							T-Log Number:	T56606
Model: SATO M8485SE Printer with RFID Reader							Account Manager:	-
Contact: Greg Katterhagen								
			15 Subpart				Class:	В
un #1: A	C Power F	Port Con	ducted Em	issions, 0.1	5 - 30MHz,	120V/60Hz		
requency	Level AC FCC 15.207 / 15.107 Detector Comments				Comments			
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.197	48.8	Line	53.7	-4.9	Average			
0.197	46.9	Neutral		-6.8	Average			
0.197	52.8	Line	63.7	-10.9	QP			
0.197	50.9	Neutral		-12.8	QP			
0.296	35.4	Line	50.4	-15.0	Average			
0.296 0.231	33.9 35.1	Neutral Line	50.4 52.4	-16.5 -17.3	Average			
0.231	40.1	Line	52.4 62.4	-17.3	Average QP			
0.296	36.0	Line	60.4	-24.4	QP			
0.296	34.6	Neutral	60.4	-25.8	QP			