

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Report Reference No	
Compiled by	
position+printed name+signature)	File administrators Xudong Zhang
Supervised by	Loger And
position+printed name+signature)) ·· Project Engineer Zoey Cao
Approved by	approved
position+printed name+signature)	RF Manager Eric Wang
Date of issue	: Jan. 02, 2025
Festing Laboratory Name	: Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	Shenzhen kehuitong Technology Co.,Ltd
Address	F3.830306G, 3rd Floor, Tianan Code City Tianjing Building, No.6 Tianan Road, Shatou Street, Futian District, Shenzhen, China
Test specification	
	FCC CFR Title 47 Part 2, Part 27
Standard	
bonzhon CTA Testing Technolo	av Collta All rights reserved
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te	gy Co., Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the c Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read	d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context.	d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and : mobile phone
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context.	d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and : mobile phone
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context. Test item description	d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and : mobile phone
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context. Test item description	 d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and mobile phone : Aidekunlin : Shenzhen kehuitong Technology Co.,Ltd : C25
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context. Test item description Trade Mark Manufacturer Model/Type reference	 d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and mobile phone : Aidekunlin : Shenzhen kehuitong Technology Co.,Ltd : C25 : Refer to page 2
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context. Test item description Trade Mark Manufacturer Model/Type reference isted Models	 d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and : mobile phone : Aidekunlin : Shenzhen kehuitong Technology Co.,Ltd : C25 : Refer to page 2 : DC 3.85V From battery and DC 5.0V From external circuit
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models Ratings	 d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and : mobile phone : Aidekunlin : Shenzhen kehuitong Technology Co.,Ltd : C25 : Refer to page 2 : DC 3.85V From battery and DC 5.0V From external circuit : QPSK, 16QAM : F-UTRA Band 41
This publication may be reproduced Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te or damages resulting from the read context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models Ratings	 d in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume liability der's interpretation of the reproduced material due to its placement and : mobile phone : Aidekunlin : Shenzhen kehuitong Technology Co.,Ltd : C25 : Refer to page 2 : DC 3.85V From battery and DC 5.0V From external circuit : QPSK, 16QAM E-UTRA Band 41

TEST REPORT

Equipment under Test	: mobile phone	
Model /Type	: C25	
inder/Type	: C25	
Listed Models	: C26, C27, C28, C28pr	o, Note26pro, Hot20pro, Hot21pro, K200, K300,
	K500, K600, Revo 12,	S100, S200, S300, S400, S500, S600, S700,
	S800, S900, A25, A26	S100, S200, S300, S400, S500, S600, S700, A27, A28, B25, B26, B27, B28
Model difference	: The PCB board, circuit	, structure and internal of these models are the
	same, Only model nun	ber and colour is different for these model.
	(A ^{TEC}	
Applicant	: Shenzhen kehuitong	Technology Co.,Ltd
Address	· E3 830306G 3rd Eloo	, Tianan Code City Tianjing Building, No.6
		Street, Futian District, Shenzhen, China
Manufacturer	: Shenzhen kehuitong	Technology Co.,Ltd
TESIN		
Address	· E3 830306G 3rd Eloo	, Tianan Code City Tianjing Building, No.6
Address		Street, Futian District, Shenzhen, China
	Hanan Koad, Shalou (Street, I dual District, Shenzhen, Shina
		GA CT
cTING Test r	esult	Pass *
In the confirmation to a	tool the FUT severilised with	the standards apositized as as 4
in the configuration tes	sted, the EUT complied with	the standards specified page 4.
	orresponds to the test samp	
It is not permitted to cop	y extracts of these test resu	t without the written permission of the test laborator

Report No.: CTA24120300811

	Report	t No.: C1A24120300811	Page 3 of 24
		Contents	Page 3 of 24
1	SUI	MMARY	4
	1.1	TEST STANDARDS	4
	1.2	TEST DESCRIPTION	4
	1.3	Address of the test laboratory	5
	1.4	TEST FACILITY	5
	1.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2	CEN	NERAL INFORMATION	TING
2	GEI		
	2.1	Environmental conditions	
	2.2	GENERAL DESCRIPTION OF EUT	
	2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
	2.4	EQUIPMENTS USED DURING THE TEST	7
	2.5	Related Submittal(s) / Grant (s)	8
	2.6	Modifications	-
3	TES	T CONDITIONS AND RESULTS	9
	3.1	OUTPUT POWER	9
	3.2	PEAK-TO-AVERAGE RATIO (PAR)	
	3.3	Occupied Bandwidth and Emission Bandwidth	
	3.4	BAND EDGE COMPLIANCE	
	3.5	Spurious Emission	
	3.6	FREQUENCY STABILITY UNDER TEMPERATURE & VOLTAGE VARIATIONS	
4	TES	T SETUP PHOTOS OF THE EUT	24
_			
5	PHO		24
		OTOS OF THE EUT	
		KC''	
		1 TATES	
		GNGV	STINE
			CTATESTING
			GV

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Part 27 : MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed **Radio Services**

1.2 Test Description

Test Item	FCC Rule No.	Requirements	Verdic
Effective(Isotropic) Radiated Power Output Data	§2.1046, §27.50(h)	ERP ≤ 2W;	PASS
Peak-Average Ratio	§2.1046, §27.50	Limit≤13dB	PASS
Modulation Characteristics	§2.1047	Digitalmodulation	N/A
Bandwidth	§2.1049	OBW: Nolimit.	PASS
BandEdges Compliance	§2.1051, §27.53(m)	≤ -13dBm/1%*EBW,in1 MHz bands immediately outside and adjacent to The frequency block.	PASS
Spurious Emission at Antenna Terminals	§2.1051, §27.53(m)	≤ -13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	PASS
Frequency Stability	§2.1055, §27.54	Within authorized bands of operation/frequency block.	PASS
Radiated spurious emission	§2.1053, §27.53(m)	≤ -25dBm/1MHz.	PASS
NOTE 1: For the verdict, the	"N/A"denotes	not applicable",the"N/T"de notes "not tested".	

Page 4 of 24 CTATES I

1.3 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

1.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM); Uncertainties in the measurementof mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. guality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occupied Bandwidth	9KHz~40GHz	_	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% -M confidence level using a coverage factor of k=1.96.

2 **GENERAL INFORMATION**

2.1 Environmental conditions

:	Dec. 03, 2024
:	Dec. 03, 2024
	TESTIN
	Jan. 02, 2025

During the measurement the environmental co	onditions were within the listed ranges:	
Normal Temperature:	25°C	A
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 General Description of EUT

Product Name:	mobile phone
Model/Type reference:	C25
Power supply:	DC 3.85V From battery and DC 5.0V From external circuit
Hardware version:	F2_V1.0
Software version:	KL_F2_C25_V01_20241201
Testing sample ID :	CTA241203008-1# (Engineer sample) CTA241203008-2# (Normal sample)
LTE	
Operation Band:	E-UTRA Band 41
Support Bandwidth:	Band 41: 5MHz,10MHz,15MHz,20MHz,
TX/RXFrequency Range:	E-UTRA Band 41(2535 MHz -2655MHz)
Modulation Type:	QPSK, 16QAM
Release Version:	Release 9
Category:	Cat 4
Antenna Type:	PIFA antenna
Antenna Gain:	-1.4 dBi

Note: For more details, refer to the user's manual of the EUT.

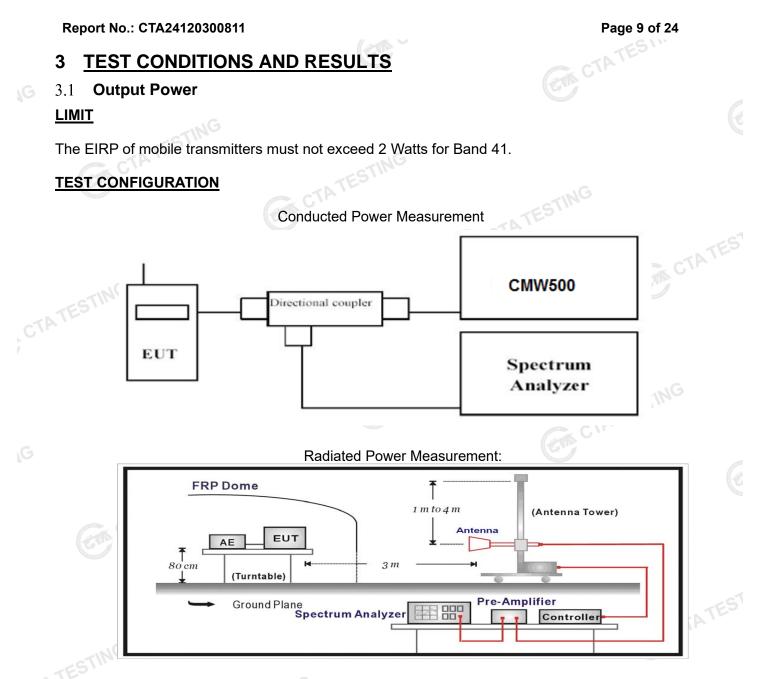
2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report. CTATES

2.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibratior Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	M ^G Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/0
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/1
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/1
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/1
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/1
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/0
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/0
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/0
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
0	(en c	TATL	General CTAT	ESTING	GA CT

Report No.: CTA24120300811


Page 8 of 24

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	and the second se
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
			GTA CTA		GM CTA	rest
2.5 Related Subn	nittal(s) / Grant ((S)				
This submittal(s) (te	st report) is filing to	o comply with of the	FCC Part 27	Rules.		

2.5 Related Submittal(s) / Grant (s)

2.6 Modifications

CTA TESTING No modifications were implemented to meet testing criteria.

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

- The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum f) signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a g) maximum signal level is detected by the measuring receiver.
- The maximum signal level detected by the measuring receiver shall be noted. h)
- i) The transmitter shall be replaced by a substitution antenna.
- The substitution antenna shall be orientated for vertical polarization and the length of the j) substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to I) increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received that the maximum signal is received.
- The input signal to the substitution antenna shall be adjusted to the level that produces a level n) detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna 0) orientated for horizontal polarization.
- The measure of the effective radiated power is the larger of the two levels recorded at the input p) to the substitution antenna, corrected for gain of the substitution antenna if necessary. GTA CTA
- Test site anechoic chamber refer to ANSI C63.4. q)

TEST RESULTS

Conducted Measurement:

				LTE Band 41				
BW	Madulation				Chanr	el/Frequency	/(MHz)	
(MHz)	Modulation	RB Size	RB Offset	40140	40365	40590	40865	41140
				2545	2567.5	2590	2617.5	2645
20	QPSK	1	0	23.28	23.37	23.13	23.13	23.18
20	QPSK	1	49	23.23	23.02	22.84	22.88	23.23
20	QPSK	1	99	23.58	23.41	23.45	23.33	23.03
20	QPSK	50	0	21.72	21.96	22.20	22.24	22.20
20	QPSK	50	24	21.95	22.06	22.10	21.89	22.00
20	QPSK	50	50	22.19	21.99	21.78	21.78	21.97
20	QPSK	100	0	22.20	22.20	21.85	21.88	22.01
20	16QAM	1	0	22.19	22.28	22.19	22.21	22.40
20	16QAM	1	49	22.07	21.91	22.01	22.16	22.08
20	16QAM	1	99	21.77	22.00	22.14	21.88	21.88
20	16QAM	50	0	21.09	21.18	21.23	21.08	21.18
20	16QAM	50	24	21.32	21.15	21.28	21.24	21.30
20	16QAM	50	50	21.24	21.21	21.01	21.11	21.02
20	16QAM	100	0	21.13	21.07	21.22	21.31	21.29
BW	Modulation	RB Size	RB Offset			el/Frequency		
(MHz)				40115	40350	40590	40875	41165
				2542.5	2566	2590	2618.5	2647.5
15	QPSK	1	0	23.73	23.46	23.52	23.17	23.35
15	QPSK	1	37	23.06	23.30	23.25	23.09	22.76
15	QPSK	1	74	22.88	23.19	23.36	23.48	23.61
15	QPSK	36	0	22.00	21.91	22.10	21.98	22.07
15	QPSK	36	20	21.95	21.81	21.81	21.95	22.12
15	QPSK	36	39	21.89	21.69	21.98	22.09	21.96
15	QPSK	75	0	22.31	22.16	21.87	21.82	22.04
15	16QAM	1	0	22.18	22.05	21.77	21.72	21.89
15	16QAM	1	37	22.03	22.05	21.86	22.06	22.15
15	16QAM	1	74	22.19	21.92	21.82	22.02	22.09
15	16QAM	36	0	21.02	21.00	21.28	21.05	21.19
15	16QAM	36	20	21.12	21.20	21.37	21.32	21.36
15	16QAM	36	39	21.13	20.91	20.97	21.10	21.25
15	16QAM	75	0	21.13	21.13	21.46	21.28	21.30
15 TEO		CTATES						
					ATESTING			
				CT CT				

Report No.: CTA24120300811

B\		Modulation	RB Size	RB Offset		Chanr	nel/Frequency	(MHz)	
(Mł	Hz)	wooulation	IND SIZE	IND Oliset	40090	40340	40590	40890	41190
					2540	2565	2590	2620	2650
1	0	QPSK	1	0	23.46	23.28	23.18	22.92	22.93
1	0	QPSK	1	25	23.52	23.58	23.42	23.52	23.69
1	0	QPSK	1	49	22.86	23.13	23.34	23.55	23.46
1	0	QPSK	25	0	22.08	21.84	22.15	21.84	21.90
1	0	QPSK	25	12	22.16	22.24	22.26	22.29	22.38
10	0	QPSK	25	25	21.81	21.84	21.97	22.15	22.16
10	0	QPSK	50	0	22.05	21.96	21.86	22.12	22.06
10	0	16QAM	1	0	22.25	22.08	22.30	21.96	21.76
1	0	16QAM	1	25	22.00	21.90	22.29	22.27	22.27
1	0	16QAM	1	49	22.03	21.97	21.93	21.83	21.94
1		16QAM	25	0	21.30	21.27	21.32	21.15	21.19
1	0	16QAM	25	12	21.33	21.09	21.28	20.99	21.19
1	0	16QAM	25	25	21.18	21.17	21.07	21.18	21.08
1) B)	0	16QAM	50	0	21.31	21.35	21.43	21.12	21.12
B\ (Mł		Modulation	RB Size	RB Offset	40005		el/Frequency	, ,	44045
(1011	12)				40065	40325 2563.5	40590 2590	40900 2621	41215 2652.5
					2537.5	2563.5	2590	2621	2652.5
		0001/	-	•					
5		QPSK	1	0	23.16	23.61	23.44	23.62	23.46
5	5	QPSK	1	12	23.16 23.57	23.61 23.38	23.44 23.32	23.62 23.18	23.46 23.01
5	5	QPSK QPSK	1 1	12 24	23.16 23.57 23.62	23.61 23.38 23.50	23.44 23.32 23.63	23.62 23.18 23.67	23.46 23.01 23.55
555		QPSK QPSK QPSK	1 1 12	12 24 0	23.16 23.57 23.62 21.99	23.61 23.38 23.50 21.67	23.44 23.32 23.63 21.72	23.62 23.18 23.67 21.84	23.46 23.01 23.55 22.21
5 5 5		QPSK QPSK QPSK QPSK	1 1 12 12	12 24 0 7	23.16 23.57 23.62 21.99 22.22	23.61 23.38 23.50 21.67 22.05	23.44 23.32 23.63 21.72 21.92	23.62 23.18 23.67 21.84 21.99	23.46 23.01 23.55 22.21 22.29
5 5 5 5 5		QPSK QPSK QPSK QPSK QPSK	1 1 12 12 12 12	12 24 0 7 13	23.16 23.57 23.62 21.99 22.22 21.92	23.61 23.38 23.50 21.67 22.05 22.05	23.44 23.32 23.63 21.72 21.92 22.27	23.62 23.18 23.67 21.84 21.99 22.27	23.46 23.01 23.55 22.21 22.29 22.07
5 5 5 5 5 5 5		QPSK QPSK QPSK QPSK QPSK QPSK	1 12 12 12 12 25	12 24 0 7 13 0	23.16 23.57 23.62 21.99 22.22 21.92 22.03	23.61 23.38 23.50 21.67 22.05 22.05 22.00	23.44 23.32 23.63 21.72 21.92 22.27 22.00	23.62 23.18 23.67 21.84 21.99 22.27 22.01	23.46 23.01 23.55 22.21 22.29 22.07 22.18
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		QPSK QPSK QPSK QPSK QPSK QPSK 16QAM	1 12 12 12 25 1	12 24 0 7 13 0 0	23.16 23.57 23.62 21.99 22.22 21.92 22.03 22.25	23.61 23.38 23.50 21.67 22.05 22.05 22.00 21.92	23.44 23.32 23.63 21.72 21.92 22.27 22.00 21.83	23.62 23.18 23.67 21.84 21.99 22.27 22.01 21.88	23.46 23.01 23.55 22.21 22.29 22.07 22.18 22.11
5 5 5 5 5 5 5 5 5 5		QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 12 12 12 25 1 1	12 24 0 7 13 0 0 0 12	23.16 23.57 23.62 21.99 22.22 21.92 22.03 22.25 21.98	23.61 23.38 23.50 21.67 22.05 22.05 22.00 21.92 22.02	23.44 23.32 23.63 21.72 21.92 22.27 22.00 21.83 22.09	23.62 23.18 23.67 21.84 21.99 22.27 22.01 21.88 21.93	23.46 23.01 23.55 22.21 22.29 22.07 22.18 22.11 21.98
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24	23.16 23.57 23.62 21.99 22.22 21.92 22.03 22.25 21.98 21.80	23.61 23.38 23.50 21.67 22.05 22.05 22.00 21.92 22.02 22.05	23.44 23.32 23.63 21.72 21.92 22.27 22.00 21.83 22.09 21.99	23.62 23.18 23.67 21.84 21.99 22.27 22.01 21.88 21.93 21.88	23.46 23.01 23.55 22.21 22.29 22.07 22.18 22.11 21.98 21.87
		QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 12 12 12 25 1 1 1 1 12	12 24 0 7 13 0 0 12 24 0	23.16 23.57 23.62 21.99 22.22 21.92 22.03 22.25 21.98 21.80 20.91	23.61 23.38 23.50 21.67 22.05 22.05 22.00 21.92 22.02 22.02 22.05 21.11	23.44 23.32 23.63 21.72 21.92 22.27 22.00 21.83 22.09 21.99 21.16	23.62 23.18 23.67 21.84 21.99 22.27 22.01 21.88 21.93 21.88 21.29	23.46 23.01 23.55 22.21 22.29 22.07 22.18 22.11 21.98 21.87 21.09
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	j j	QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	1 12 12 12 25 1 1 1 1 12 12 12	12 24 0 7 13 0 0 12 24 0 7	23.16 23.57 23.62 21.99 22.22 21.92 22.03 22.25 21.98 21.80 20.91 20.93	23.61 23.38 23.50 21.67 22.05 22.05 22.00 21.92 22.02 22.02 22.05 21.11 21.23	23.44 23.32 23.63 21.72 21.92 22.27 22.00 21.83 22.09 21.99 21.99 21.16 21.28	23.62 23.18 23.67 21.84 21.99 22.27 22.01 21.88 21.93 21.88 21.29 21.23	23.46 23.01 23.55 22.21 22.29 22.07 22.18 22.11 21.98 21.87 21.09 21.26
	5 1 5 1	QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 12 12 12 25 1 1 1 1 12	12 24 0 7 13 0 0 12 24 0	23.16 23.57 23.62 21.99 22.22 21.92 22.03 22.25 21.98 21.80 20.91	23.61 23.38 23.50 21.67 22.05 22.05 22.00 21.92 22.02 22.02 22.05 21.11	23.44 23.32 23.63 21.72 21.92 22.27 22.00 21.83 22.09 21.99 21.16	23.62 23.18 23.67 21.84 21.99 22.27 22.01 21.88 21.93 21.88 21.29	23.46 23.01 23.55 22.21 22.29 22.07 22.18 22.11 21.98 21.87 21.09

Radiated Measurement: Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 41.

2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2537.5	-16.74	4.32	6.8	36.13	21.87	33.01	-11.14	V
2595	-16.16	4.36	6.55	36.26	22.29	33.01	-10.72	V CTP
2652.5	-16.34	4.51	6.37	36.54	22.06	33.01	-10.95	V
ITE TOD Ba	nd 11 Ch	onnal Ror	dwidth 10N	147 ODCK	/			Consultation of the second second

LTE TDD Band 41 Channel Bandwidth 5MHz QPSK

LIE IDD Band 41_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2540	-16.55	4.32	6.8	36.13	22.06	33.01	-10.95	V
2595	-16.38	4.36	6.55	36.26	22.07	33.01	-10.94	V
2650	-16.72	4.51	6.37	36.54	21.68	33.01	-11.33	V
I TF TDD Ba	nd 41 Ch	annel Bar	ndwidth 15M	1Hz QPSK	<		CTA CI	

LTE TDD Band 41_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2542.5	-16.62	4.32	6.8	36.13	21.99	33.01	-11.02	V
2595	-16.39	4.36	6.55	36.26	22.06	33.01	-10.95	V
2647.5	-16.79	4.51	6.37	36.54	21.61	33.01	-11.40	V

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2545	-16.38	4.32	6.8	36.13	22.23	33.01	-10.78	V
2595	-16.09	4.36	6.55	36.26	22.36	33.01	-10.65	V
2645	-16.65	4.51	6.37	36.54	21.75	33.01	-11.26	V

LTE TDD Band 41_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2537.5	-17.10	34.32	6.8	36.13	21.51	33.01	-11.50	V
2595	-17.23	4.36	6.55	36.26	21.22	33.01	-11.79	V
2652.5	-17.31	4.51	6.37	36.54	21.09	33.01	-11.92	V

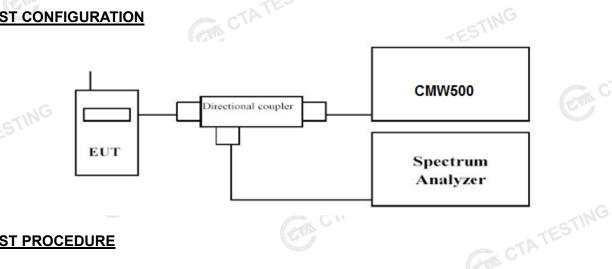
LTE TDD Band 41_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2540	-17.42	4.32	6.8	36.13	21.19	33.01	-11.82	V
2595	-17.17	4.36	6.55	36.26	21.28	33.01	-11.73	V
2650	-17.06	4.51	6.37	36.54	21.34	33.01	-11.67	V
		-69	STING					

LTE TDD Band 41 Channel Bandwidth 15MHz 16QAM

Report No.:	CTA24120		Page 14 of 24					
LTE TDD Ba	nd 41 Cha	annel Bar	ndwidth 15M	IHz 16QA	M			TESI
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2542.5	-17.80	4.32	6.8	36.13	20.81	33.01	-12.20	V
2595	-17.85	4.36	6.55	36.26	20.60	33.01	-12.41	V
2647.5	-17.83	4.51	6.37	36.54	20.57	33.01	-12.44	V
			6			TE	5	

LTE TDD Band 41_Channel Bandwidth 20MHz_16Q/	٩M
--	----


	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	TES
 A	2545	-17.39	4.32	6.8	36.13	21.22	33.01	-11.79	V	
GVP	2595	-17.54	4.36	6.55	36.26	20.91	33.01	-12.10	V	
T.	2645	-17.36	4.51	6.37	36.54	21.04	33.01	-11.97	V	
						TATESTIN			TESTING	

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

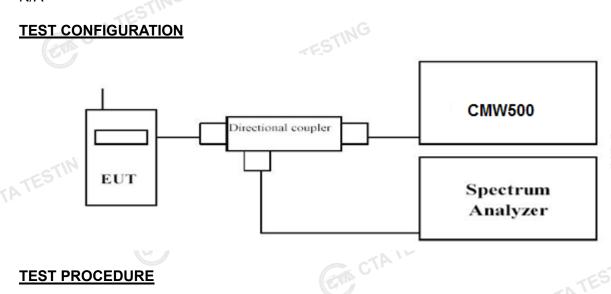
TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
 - 2. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
 - 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
 - 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst CTATEST timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

----Passed------

5. Record the maximum PAPR level associated with a probability of 0.1%.


TEST RESULTS

Please refer to the appendix test data.

Occupied Bandwidth and Emission Bandwidth 3.3

LIMIT

N/A

TEST PROCEDURE

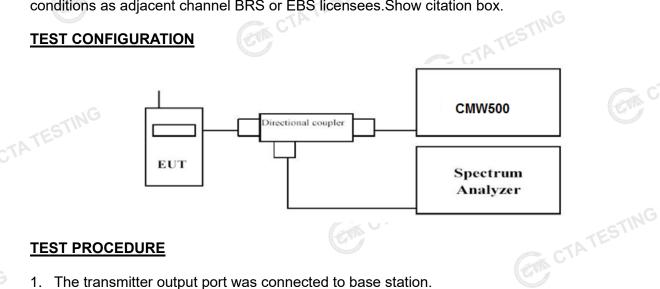
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded.

Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace. -----Passed-----

TEST RESULTS

JSE I Please refer to the appendix test data.


LIMIT

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules. (m)(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Show citation box.

Page 17 of 24

CTATE

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum -----Passed-----

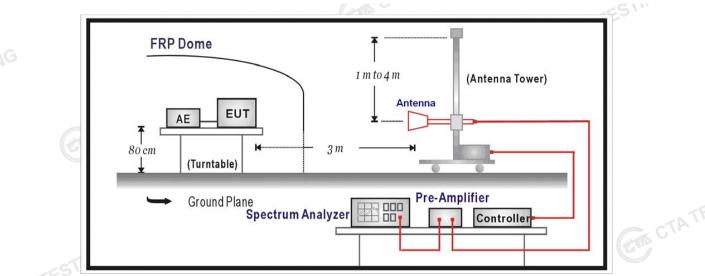
TEST RESULTS

Please refer to the appendix test data. CTATESTIN

3.5 Spurious Emission

<u>LIMIT</u>

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules. (m)(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Show citation box.


Page 18 of 24

CTATES

For LTE FDD Band 66: Per §27.53(h): For operations in the 1710–1780 MHz and 2110–2200 MHz

bands, the power of any emission outside a licensee' s frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500 then selects a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a g. maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna. ì.
- The substitution antenna shall be orientated for vertical polarization and the length of the j. substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to Ι. increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- CTATEST q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Conducted Measurement:

-----Passed----

Please refer to the appendix test data. CTATESTIN

Radiated Measurement:

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 41

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G₂ Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
5160.0	-43.93	6.25	3.00	12.28	-37.90	-25.00	-12.90	Н	
7740.0	-51.35	7.04	3.00	13.15	-45.24	-25.00	-20.24	Н	
5160.0	-40.32	6.25	3.00	12.28	-34.29	-25.00	-9.29	V	TES
7740.0	-49.07	7.04	3.00	13.15	-42.96	-25.00	-17.96	V CTP	

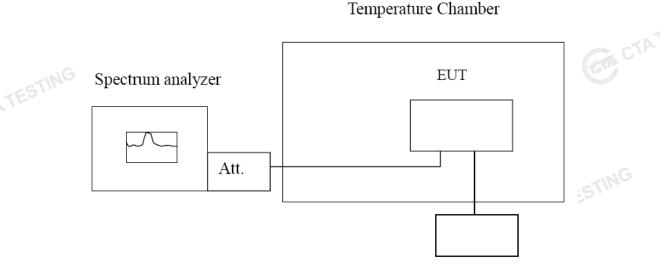
LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5210.0	-44.79	7.26	3.00	10.03	-42.02	-25.00	-17.02	Н
7815.0	-54.71	8.48	3.00	11.41	-51.78	-25.00	-26.78	HG
5210.0	-44.40	7.26	3.00	10.03	-41.63	-25.00	-16.63	V
7815.0	-50.88	8.48	3.00	11.41	-47.95	-25.00	-22.95	V
LTE TDD Ba	nd 41_Cha	annel Ban	dwidth 20N	1Hz_QPSK_	_ High Cha	nnel	CTA CT	

LTE TDD Band 41 Channel Bandwidth 20MHz QPSK High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G₂ Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
5260.0	-40.94	7.17	3.00	9.62	-38.49	-25.00	-13.49	Н	
7890.0	-51.76	8.39	3.00	11.46	-48.69	-25.00	-23.69	Н	
5260.0	-43.27	7.17	3.00	9.62	-40.82	-25.00	-15.82	V	
7890.0	-47.99	8.39	3.00	11.46	-44.92	-25.00	-19.92	V	
Notes: 1.All channel bandwidth were tested,the report recorded the worst data. 2. EIRP=PMea(dBm)-Pcl(dB)+PAg(dB)+Ga(dBi) 3. ERP = EIRP – 2.15dBi as EIRP by subtracting the gain of the dipole.								Gen CTA	TES

4. Margin = EIRP – Limit


5. We measured all modes and only recorded the worst case. COM CTATES

3.6 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed CTATESTING 2.5ppm.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- Measure the carrier frequency at room temperature. 1.
- Subject the EUT to overnight soak at -30°C. 2.
- With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call 3. on middle channel for LTE band 12, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 4. hours at each temperature, unpowered, before making measurements.
- Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage 5. from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any selfheating to stabilize, before continuing.
- Subject the EUT to overnight soak at +50℃. 6.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- Repeat the above measurements at 10 °C increments from +50 °C to -30 °C. Allow at least 1.5 8. hours at each temperature, unpowered, before making measurements

At all temperature levels hold the temperature to $+/-0.5^{\circ}$ during the measurement procedure. 9. Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

Page 22 of 24

CTATES]

Test Setup Photos of the EUT 4

Photos of the EUT

CA CTATESTING Reference to the test report No. CTA24120300801.