

FCC Test Report

Test report
On Behalf of
QOMO,LLC
For
QShare 20

Model No.: QShare 20, QShare 30, QShare 40, QShare 50, QShare 60, QShare 70, QShare 80, QShare 90

FCC ID: 2AJQO-QSHARE20

Prepared For: QOMO,LLC

46950 Magellan Drive, Lot4 Wixom, Michigan 48393 United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Dec. 16, 2024 ~ Dec. 25, 2024

Date of Report: Dec. 25, 2024

Report Number: HK2412167730-2E

Test Result Certification

Applic	ant's	name		:	QOMO,LLC
--------	-------	------	--	---	----------

46950 Magellan Drive, Lot4 Wixom, Michigan 48393 United Address.....

States

QOMO(FUZHOU)Electronic Technology Co., LTD Manufacturer's Name.....:

5F 3rd building No.18 majiang road (M9511 industrial park, Address.....

kuaianavenue)mawei fuzhou, fuiian, China

Product description

QOMO Trade Mark:

Product name..... QShare 20

QShare 20, QShare 30, QShare 40, QShare 50, QShare 60, Model and/or type reference :

QShare 70, QShare 80, QShare 90

FCC Rules and Regulations Part 15 Subpart E Section 15.407 Standards.....

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date (s) of performance of tests.....: Dec. 16, 2024 ~ Dec. 25, 2024

Date of Issue Dec. 25, 2024

Test Result:: Pass

> len lian Testing Engineer

> > (Len Liao)

Technical Manager

(Sliver Wan)

Authorized Signatory:

(Jason Zhou)

Table of Contents

1.		st Result Summary		
	1.1.	Test Procedures and Results	TSTING TSTING	5
	1.2.	Information of the Test Laboratory	Mun.	5
	1.3.	Measurement Uncertainty		6
2.	EU	T Description	HILLAN TES	7
	2.1.	General Description of EUT		7
	2.2.	Operation Frequency Each of Channel	JAKE ESTING	8
		Operation of EUT During Testing		
	2.4.	Description of Test Setup	Mark The	9
	2.5.	Description of Support Units		10
3.	Ge	nera Information		11
	3.1.	Test Environment and Mode	ESTINE TESTINE	11
4.		st Results and Measurement Data		
		Conducted Emission		
	4.2.	Maximum Conducted Output Power	3 run	18
		6db Emission Bandwidth		
	4.4.	26db Bandwidth and 99% Occupied Bandwidth		28
	4.5.	Power Spectral Density	The O	29
	4.6.	Band Edge	HI _M	36
	4.7.	Spurious Emission		51
		Frequency Stability Measurement		
		Antenna Requirement		
5.	Tes	st Setup Photos of the EUT	(S)	73
6 TING		otos of the FUT		75

Page 4 of 75 Report No.: HK2412167730-2E

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Dec. 25, 2024	Jason Zhou
TING	TING	TING	

1. Test Result Summary

1.1. Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A HIM
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
^G 1	Conducted Emission	±0.37dB
2	RF power, conducted	±3.35dB
3	Spurious emissions, conducted	±2.20dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2. EUT Description

2.1. General Description of EUT

Equipment:	QShare 20
Model Name:	QShare 20
Serial Models:	QShare 30, QShare 40, QShare 50, QShare 60, QShare 70, QShare 80, QShare 90
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample mode: QShare 20.
Trade Mark:	QOMO
FCC ID:	2AJQO-QSHARE20
Operation Frequency:	IEEE 802.11a/n/ac (HT20)5.745GHz-5.825GHz IEEE 802.11n/ac (HT40)5.755GHz-5.795GHz IEEE 802.11ac (HT80) 5.775GHz
Modulation Technology:	IEEE 802.11a/n/ac
Modulation Type:	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
Antenna Type:	FPC Antenna
Antenna Gain:	3.53dBi humite and the second
Power Source:	DC 5V From Type-C
Power Supply:	DC 5V From Type-C
Hardware Version:	V2.0
Software Version:	V2.0 Market State of the V2.0 Market State of

Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

2.2. Operation Frequency Each of Channel

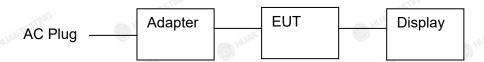
802.11a/802.11n(HT20) 802.11ac(HT20)			1n(HT40) ac(HT40)	802.11a	ac(HT80)
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
153	5765	159	5795	WAKTES	TING
157	5785		HUAKTES	.	WAK TES
161	5805	we e		THG.	0
165	5825			HAKTES	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT During Testing

Band IV (5725 - 5850 MHz)					
For	For 802.11a/n (HT20)/ac(HT20)				
Channel Channel Frequency (MHz)					
149	Low	5745			
157	Mid	5785			
165	High	5825			


For 802.11n (HT40)/ ac(HT40)				
Channel Channel Frequency (MHz)				
151	Low	5755		
159	High	5795		

_	_ 120		_ 130			
30	For 802.11ac(HT80)					
	Channel Number	Channel	Frequency (MHz)			
Ī	155	1	5775			

2.4. Description of Test Setup

Operation of EUT during testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	QShare 20	QOMO	QShare 20	N/A	TESTING EUT
2	USB Cable	N/A	N/A	Length:0.5m	Accessory
3	HDMI Cable	N/A	N/A	Length:0.5m	Accessory
4	Display	N/A	279E1	Input: 20V, 3.25A	Peripheral
5	Adapter	N/A	MDY-10-EH	Input: 100-240V, 50/60Hz, 0.7A Output: 5V, 3A/9V, 3A/12V, 2.25A/20V, 1.35A	Peripheral
w 6	Adapter	N/A	N/A	Input: 100-240V, 50/60Hz, 0.5A Output: 5VDC, 2A	Peripheral
TESTING		. TEST	nG	TESTING	12

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6db Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

3. Genera Information

3.1. Test Environment and Mode

25.0 °C	HUAKTE		
56 % RH			
1010 mbar	AKTESTING		
Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations			
	56 % RH 1010 mbar Keep the EUT in continuous		

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

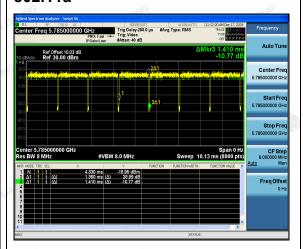
Mode		Data rate	
802.11a	HUAK TES	6 Mbps	HUAKTES
802.11n(HT20)		MCS0	
802.11n(HT40)	Y TESTING	MCS0	W TESTING
802.11ac(HT20)/ac(HT40)/ac(HT80)	(Open	MCS0	O HOW

Final Test Mode:

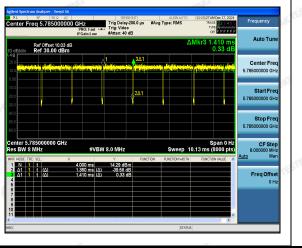
Operation mode:	Keep the EUT in continuous transmitting with modulation
	With modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Mode Test Duty Cycle:


Mode	Duty Cycle	Duty Cycle Factor (dB)
802.11a	0.96	-0.18
802.11n(HT20)	0.96	-0.18
802.11n(HT40)	0.93	-0.32
802.11ac(HT20)	0.96	-0.18
802.11ac(HT40)	0.93	-0.32
802.11ac(HT80)	0.86	-0.66

Test plots as follows:

802.11a

802.11n(HT20)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4. Test Results and Measurement Data

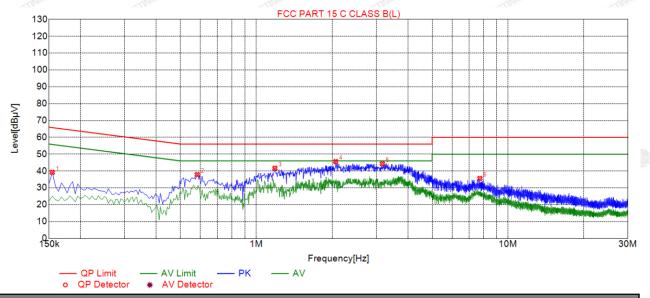
4.1. Conducted Emission

4.1.1. Test Specification

-G1"	-61	- GTI	-,6711
Test Requirement:	FCC Part15 C Section	15.207	MUAR.
Test Method:	ANSI C63.10:2013	TESTING	
Frequency Range:	150 kHz to 30 MHz	O HUAR	WAKTESTING
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time=	=auto
	Fraguerov ronge	Limit /d	Du\/\
	Frequency range (MHz)	Limit (d	450
Limits:	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*
	0.13-0.5	56	46
	5-30	60	50
	3-30	00	30
	Reference	ce Plane	"IAK TES
	The interest of the interest o	oc i iuno	
	40cm		L.
		LISN	
	E.U.T AC pow	er 80cm LISIN	
Test Setup:	NG .	Filter —	- AC power
	Test table/Insulation plane	•	.6
		EMI	STINE
	Remark: E.U.T: Equipment Under Test	Receiver	
	LISN: Line Impedence Stabilization N Test table height=0.8m	Vetwork	
Test Mode:	Tx Mode	INC LAKTESTI	JAK TESTIN
	1. The E.U.T and simu	ulatore are connec	tod to the main
	power through a line		
	(L.I.S.N.). This pro		
	impedance for the m		
	2. The peripheral device		
	power through a LI		
_ ,	coupling impedance	of Pro-	
Test Procedure:	refer to the block		41/4
	photographs).	MIN.	(a)
	3. Both sides of A.C.	line are checked	d for maximum
	conducted interferer	nce. In order to fin	d the maximum
	emission, the relativ		
	the interface cables		
	ANSI C63.10: 2013	on conducted mea	surement.
Test Result:	Pass	AK TESTING	G
	THE THE	" I bre	TINE

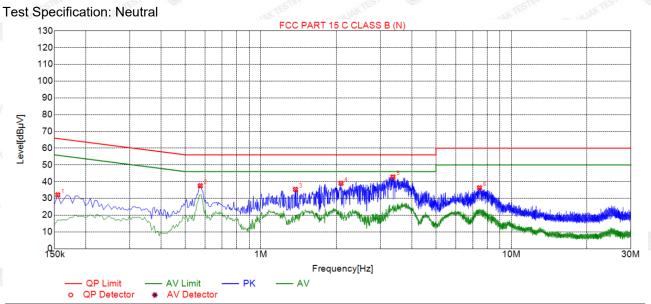
4.1.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESR	HKE-005	Feb. 20, 2024	Feb. 19, 2025	
LISN	R&S	ENV216	HKE-002	Feb. 20, 2024	Feb. 19, 2025	
LISN	R&S	ENV216	HKE-059	Feb. 20, 2024	Feb. 19, 2025	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 20, 2024	Feb. 19, 2025	
EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	N/A	N/A	
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	Feb. 19, 2025	


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


4.1.3. Test data

Test Specification: Line

5	Suspected List									
1	۷٥.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµ∀]	Detector	Туре	
	1	0.1545	39.23	19.83	65.75	26.52	19.40	PK	L	
70000	2	0.5820	37.88	19.86	56.00	18.12	18.02	PK	L	
	3	1.1850	41.64	19.90	56.00	14.36	21.74	PK	L	
	4	2.0670	45.59	19.97	56.00	10.41	25.62	PK	L	
ł.	5	3.1695	44.30	20.06	56.00	11.70	24.24	PK	L	
<	6	7.7370	35.57	20.04	60.00	24.43	15.53	PK	L	

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµ∀]	Detector	Туре	
1	0.1545	32.09	19.73	65.75	33.66	12.36	PK	N	
2	0.5730	37.55	19.74	56.00	18.45	17.81	PK	N	
3	1.3740	35.40	19.79	56.00	20.60	15.61	PK	N	
4	2.0895	39.04	19.85	56.00	16.96	19.19	PK	N	
5	3.3675	42.81	19.95	56.00	13.19	22.86	PK	N	
6	7.4580	36.32	19.95	60.00	23.68	16.37	PK	N	

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)			
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E			
Limit:	Frequency Band (MHz)			
	5725-5850 1 W			
Test Setup:	Power meter EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS O MANY O MA			
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

4.2.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025	
Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	Feb. 19, 2025	
Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

Configuration Band IV (5725 - 5850 MHz)						
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result		
802.11a	CH149	7.40	30	PASS		
802.11a	CH157	7.64	30	PASS		
802.11a	CH165	8.57	30	PASS		
802.11n(HT20)	CH149	6.98	30	PASS		
802.11n(HT20)	© CH157	7.61	30	PASS		
802.11n(HT20)	CH165	7.69	30	PASS		
802.11n(HT40)	CH151	7.72	30	PASS		
802.11n(HT40)	CH159	8.13	30	PASS		
802.11ac(HT20)	CH149	7.56	30	PASS		
802.11ac(HT20)	CH157	8.20	30	PASS		
802.11ac(HT20)	CH165	7.40	30	PASS		
802.11ac(HT40)	CH151	6.89	30	PASS		
802.11ac(HT40)	CH159	6.76	30	PASS		
802.11ac(HT80)	CH155	7.67 TESTING	30	PASS		
Note: 1.The test res	sults includin	g the cable lose.	(1) HUM	(1) HOM		

4.3. 6db Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

4.3.2. Test Instruments

RF Test Room							
Equipment Manufacturer Model Serial Calibration Calibration Date Due							
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025		
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025		
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A		

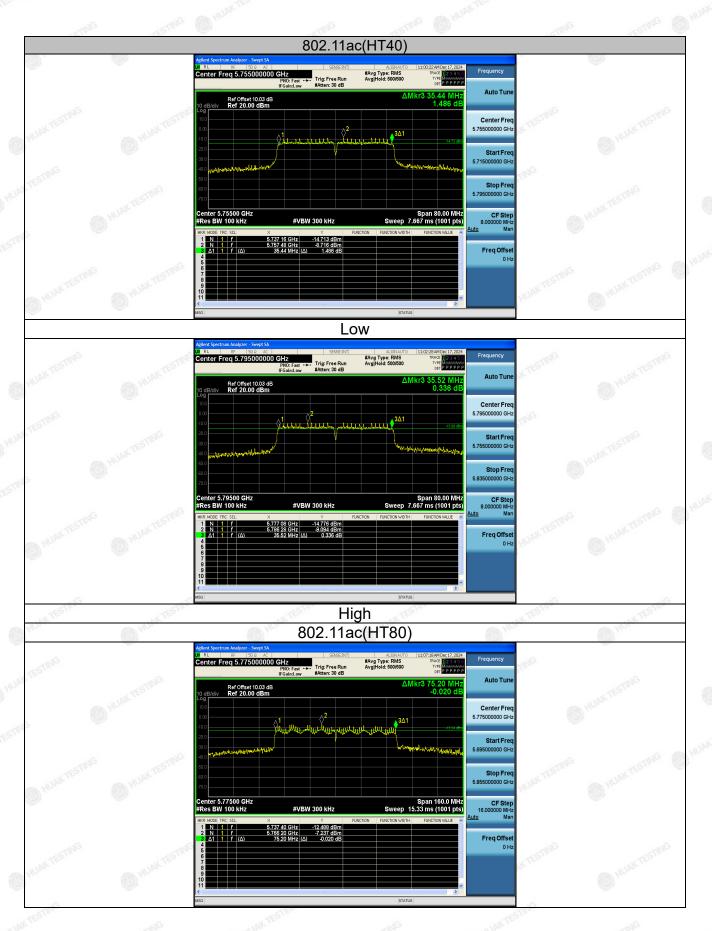
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.3.3. Test data

Band IV (5725 - 5850 MHz)					
Mode	Test Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
802.11a	CH149	5745	16.32	0.5	PASS
802.11a	CH157	5785	16.08	0.5	PASS
802.11a	CH165	5825	16.32	0.5	PASS
802.11n(HT20)	CH149	5745	16.84	(ESTING 0.5	PASS
802.11n(HT20)	CH157	5785	16.72	0.5	PASS
802.11n(HT20)	CH165	5825	16.76	0.5	PASS
802.11n(HT40)	CH151	5755	35.12	0.5	PASS
802.11n(HT40)	CH159	5795	35.44	0.5	PASS
802.11ac(HT20)	CH149	5745	16.80	0.5	PASS
802.11ac(HT20)	CH157	5785	16.56	0.5	PASS
802.11ac(HT20)	CH165	5825	16.76	0.5	PASS
802.11ac(HT40)	CH151	5755	35.44	0.5	PASS
802.11ac(HT40)	CH159	5795	35.52	0.5	PASS
802.11ac(HT80)	CH155	5775	75.20	0.5	PASS

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.4. 26db Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C				
Limit:	No restriction limits				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 				
Test Result:	N/A TESTING WITH MATTER THE MATTER THE				

4.4.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.5. Power Spectral Density

4.5.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)			
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F			
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 			
Test Result:	PASS			

4.5.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

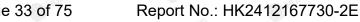
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

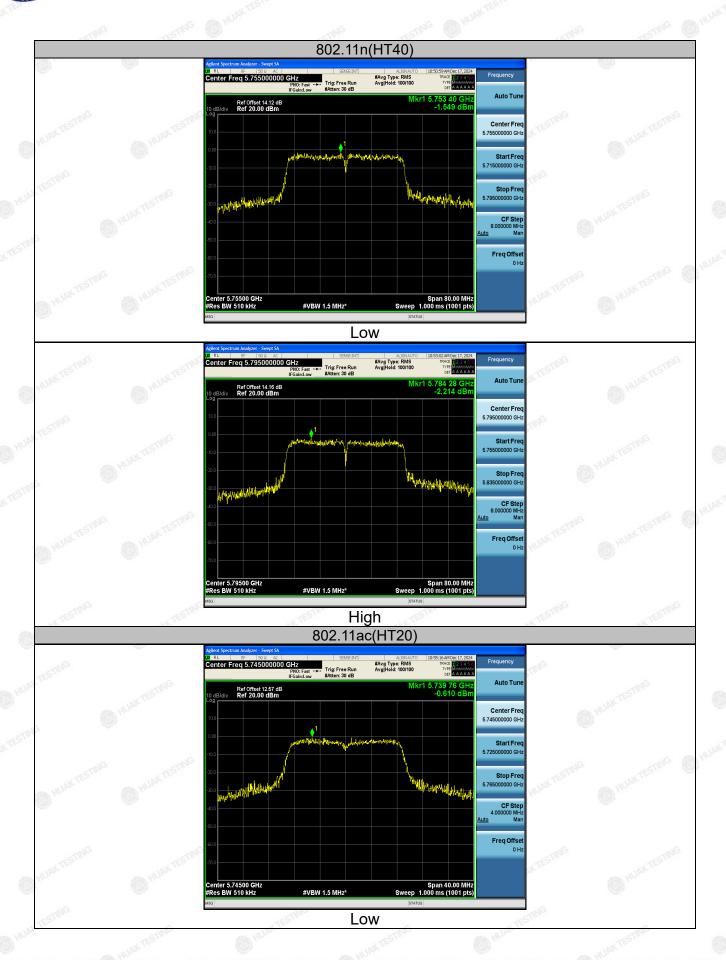
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

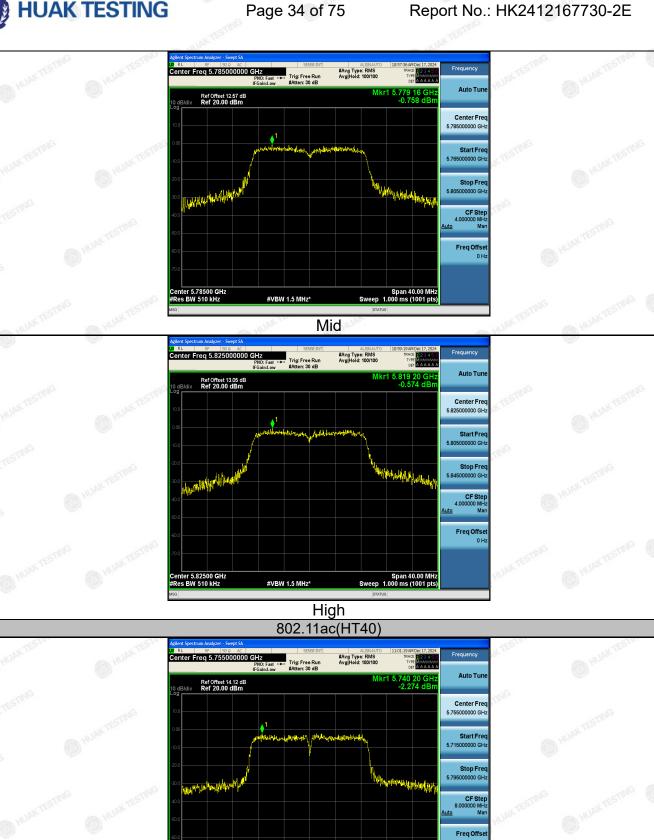
4.5.3. Test data


Configuration Band IV (5725 - 5850 MHz)						
Mode	Test Channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result
802.11a	CH149	-1.91	-0.086	-1.996	30	PASS
802.11a	CH157	-0.96	-0.086	-1.046	30	PASS
802.11a	CH165	-1.30	-0.086	-1.386	30	PASS
802.11n(HT20)	CH149	-1.76	-0.086	-1.846	30	PASS
802.11n(HT20)	CH157	-2.04	-0.086	-2.126	30	PASS
802.11n(HT20)	CH165	-0.48	-0.086	-0.566	30	PASS
802.11n(HT40)	CH151	-1.55	-0.086	-1.636	5 ¹¹¹⁰ 30	PASS
802.11n(HT40)	CH159	-2.21	-0.086	-2.296	30	PASS
802.11ac(HT20)	CH149	-0.61	-0.086	-0.696	30	PASS
802.11ac(HT20)	CH157	-0.76	-0.086	-0.846	30 ,,,	PASS
802.11ac(HT20)	CH165	-0.57	-0.086	-0.656	30	PASS
802.11ac(HT40)	CH151	-2.27	-0.086	-2.356	30	PASS
802.11ac(HT40)	CH159	-2.10	-0.086	-2.186	30 mm	PASS
802.11ac(HT80)	CH155	0.63	-0.086	0.544	30	PASS

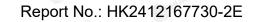
Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

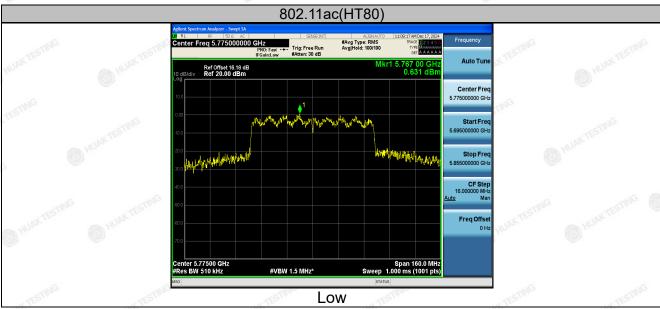

Test plots as follows:





HUAK TESTING





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Low

4.6. Band Edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407					
Test Method:	ANSI C63.10 2013					
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.					
Test Setup:	Ant. feed point 1.5 m Ground Plane Receiver Amp.					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 					

		10dB lower t stopped and reported. Oth 10dB margin	han the limit s the peak valu nerwise the en would be re-t or average me	ne EUT in peak ne pecified, then test es of the EUT wonissions that did tested one by one thod as specified	sting could be ould be not have e using peak,
Test Resul	t:	PASS	TING	- WANTESTING	TING

4.6.2. Test Instruments

Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025				
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025				
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025				
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025				
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026				
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026				
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026				
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A				
RSE Test Software	Tonscend	JS36-RSE 5.0.	HKE-184	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	51.35	-2.06	49.29	68.2	-18.91	peak
5700	83.06	-1.96	81.1	105.2	-24.1	peak
5720	87.72	-2.87	84.85	110.8	-25.95	peak
5725	101.93	-2.14	99.79	122.2	-22.41	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.52	-2.06	49.46	68.2	-18.74	peak
5700	79.39	-1.96	77.43	105.2	-27.77	peak
5720	86.95	-2.87	84.08	110.8	-26.72	peak
5725	102.34	-2.14	100.2	122.2	-22	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at KTESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	102.89	-1.97	100.92	122.2	-21.28	peak
5855	85.46	-2.13	83.33	110.8	-27.47	peak
5875	84.86	-2.65	82.21	105.2	-22.99	peak
5925	51.03	-2.28	48.75	68.2	-19.45	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
96.63	-1.97	94.66	122.2	-27.54	peak
88.23	-2.13	86.1	110.8	-24.7	peak
79.22	-2.65	76.57	105.2	-28.63	peak
52.77	-2.28	50.49	68.2	-17.71	peak
	(dBµV) 96.63 88.23 79.22	(dBµV) (dB) 96.63 -1.97 88.23 -2.13 79.22 -2.65	(dBμV) (dB) (dBμV/m) 96.63 -1.97 94.66 88.23 -2.13 86.1 79.22 -2.65 76.57	(dBμV) (dB) (dBμV/m) (dBμV/m) 96.63 -1.97 94.66 122.2 88.23 -2.13 86.1 110.8 79.22 -2.65 76.57 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 96.63 -1.97 94.66 122.2 -27.54 88.23 -2.13 86.1 110.8 -24.7 79.22 -2.65 76.57 105.2 -28.63

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: 802.11n/HT20 Mode with 5.8G TX CH Low

Horizontal

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
10	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
85	5650	50.88	-2.06	48.82	68.2	-19.38	peak
	5700	81.74	-1.96	79.78	105.2	-25.42	peak
	5720	93.23	-2.87	90.36	110.8	-20.44	peak
	5725	107.84	-2.14	105.7	122.2	-16.5	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.14	-2.06	50.08	68.2	-18.12	peak
5700	89.76	-1.96	87.8	105.2	-17.4	peak
5720	92.97	-2.87	90.1	110.8	-20.7	peak
5725	104.84	-2.14	102.7	122.2	-19.5	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. A. A. S. TESTIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	103.99	-1.97	102.02	122.2	-20.18	peak
5855	88.72	-2.13	86.59	110.8	-24.21	peak
5875	85.13	-2.65	82.48	105.2	-22.72	peak
5925	52.05	-2.28	49.77	68.2	-18.43	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

177	. 0.77	4.75.75	100		100	20.0
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	100.05	-1.97	98.08	122.2	-24.12	peak
5855	87.61	-2.13	85.48	110.8	-25.32	peak
5875	83.82	-2.65	81.17	105.2	-24.03	peak
5925	51.39	-2.28	49.11	68.2	-19.09	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.05	-2.06	50.99	68.2	-17.21	peak
5700	88.88	-1.96	86.92	105.2	-18.28	peak
5720	85.56	-2.87	82.69	110.8	-28.11	peak
5725	106.81	-2.14	104.67	122.2	-17.53	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

160	175	175	1760		175	176
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.99	-2.06	49.93	68.2	-18.27	peak
5700	89.81	-1.96	87.85	105.2	-17.35	peak
5720	85.08	-2.87	82.21	110.8	-28.59	peak
5725	103.76	-2.14	101.62	122.2	-20.58	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at Trans
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	100.38	-1.97	98.41	122.2	-23.79	peak
5855	86.16	-2.13	84.03	110.8	-26.77	peak
5875	85.13	-2.65	82.48	105.2	-22.72	peak
5925	51.45	-2.28	49.17	68.2	-19.03	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

F	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
TING	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	103.53	-1.97	101.56	122.2	-20.64	peak
	5855	90.57	-2.13	88.44	110.8	-22.36	peak
	5875	83.65	-2.65	81	105.2	-24.2	peak
Mobile	5925	50.43	-2.28	48.15	68.2	-20.05	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac/HT20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atak Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.37	-2.06	50.31	68.2	-17.89	peak
5700	79.48	-1.96	77.52	105.2	-27.68	peak
5720	89.38	-2.87	86.51	110.8	-24.29	peak
5725	102.17	-2.14	100.03	122.2	-22.17	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	2.35	2.35	7.79		2.55	2.35
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.32	-2.06	49.26	68.2	-18.94	peak
5700	84.82	-1.96	82.86	105.2	-22.34	peak
5720	90.01	-2.87	87.14	110.8	-23.66	peak
5725	102.24	-2.14	100.1	122.2	-22.1	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	100.81	-1.97	98.84	122.2	-23.36	peak
5855	86.65	-2.13	84.52	110.8	-26.28	peak
5875	79.19	-2.65	76.54	105.2	-28.66	peak
5925	50.29	-2.28	48.01	68.2	-20.19	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44.717			- L 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.177
F	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
TIME	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	102.38	-1.97	100.41	122.2	-21.79	peak
	5855	88.09	-2.13	85.96	110.8	-24.84	peak
	5875	78.59	-2.65	75.94	105.2	-29.26	peak
Mobile	5925	52.18	-2.28	49.9	68.2	-18.3	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at Trus
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.24	-2.06	50.18	68.2	-18.02	peak
5700	79.49	-1.96	77.53	105.2	-27.67	peak
5720	90.47	-2.87	87.6	110.8	-23.2	peak
5725	102.24	-2.14	100.1	122.2	-22.1	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

L C. 1	C. VV		· · · · · · · · · · · · · · · · · · ·	100	- C 1	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.19	-2.06	50.13	68.2	-18.07	peak
5700	84.32	-1.96	82.36	105.2	-22.84	peak
5720	90.92	-2.87	88.05	110.8	-22.75	peak
5725	103.41	-2.14	101.27	122.2	-20.93	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at St. Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	101.28	-1.97	99.31	122.2	-22.89	peak
5855	87.63	-2.13	85.5	110.8	-25.3	peak
5875	81.87	-2.65	79.22	105.2	-25.98	peak
5925	50.58	-2.28	48.3	68.2	-19.9	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	102.	4 02	102		102-	102-
Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	110.69	-1.97	108.72	122.2	-13.48	peak
5855	88.29	-2.13	86.16	110.8	-24.64	peak
5875	82.23	-2.65	79.58	105.2	-25.62	peak
5925	53.76	-2.28	51.48	68.2	-16.72	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac/HT80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.65	-2.06	51.59	68.2	-16.61	peak
5700	82.56	-1.96	80.6	105.2	-24.6	peak
5720	88.68	-2.87	85.81	110.8	-24.99	peak
5725	102.86	-2.14	100.72	122.2	-21.48	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

175	172	170	174		1750	172
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.04	-2.06	50.98	68.2	-17.22	peak
5700	84.63	-1.96	82.67	105.2	-22.53	peak
5720	88.13	-2.87	85.26	110.8	-25.54	peak
5725	104.96	-2.14	102.82	122.2	-19.38	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	105.74	-1.97	103.77	122.2	-18.43	peak
5855	85.91	-2.13	83.78	110.8	-27.02	peak
5875	83.43	-2.65	80.78	105.2	-24.42	peak
5925	52.03	-2.28	49.75	68.2	-18.45	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

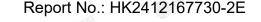
Vertical:

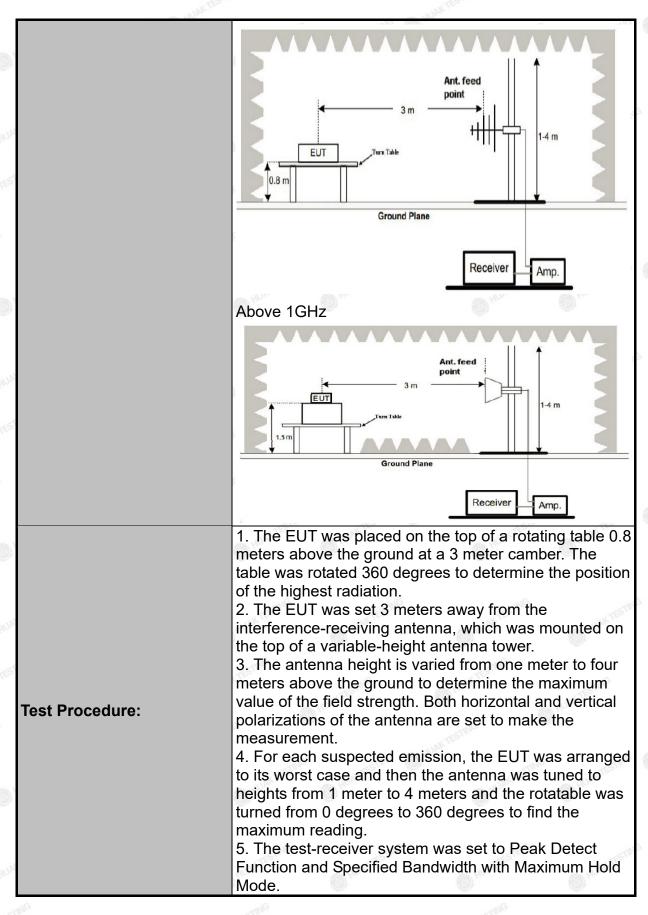
AM	4/1/	4/1/	11.11		11.11	477
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	102.58	-1.97	100.61	122.2	-21.59	peak
5855	90.06	-2.13	87.93	110.8	-22.87	peak
5875	83.41	-2.65	80.76	105.2	-24.44	peak
5925	53.51	-2.28	51.23	68.2	-16.97	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


4.7. Spurious Emission


4.7.1.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.209								
Test Method:	KDB 789033	D02 v02r0)1	HUAN	6	HOM			
Frequency Range:	9kHz to 40G	Hz		TESTING					
Measurement Distance:	3 m	AK TESTING	(1) PILL	Ares	iak	ESTING			
Antenna Polarization:	Horizontal &	Vertical		n)G	(a)				
Operation mode:	Transmitting	mode with	modulat	ion		-16			
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Rem Quasi-pea Quasi-pea Quasi-pea Peak \ Average	ak Value ak Value ak Value /alue			
Limit:	(1) For transm emissions outs an e.i.r.p. of -2 (2) For transm emissions outs an e.i.r.p. of -2 (3) For transm emissions outs an e.i.r.p. of -2 (4) For transm (i) All emission MHz or more at to 10 dBm/MH from 25 MHz at to a level of 15 edge, and from linearly to a level of 15 ands should of	side of the 5. 27 dBm/MHz itters operatiside of the 5. 27 dBm/MHz itters operatiside of the 5. 27 dBm/MHz itters operatiside of the 5. 27 dBm/MHz above or belowed of 25 MHz above or belowed of 27 dBm/MHz above of belowed of 27 dBm/MHz above of belowed of 27 dBm/MHz above of belowed of 27 dBm/MHz	15-5.35 G . ng in the 8 15-5.35 G . ng in the 8 47-5.725 G . ng in the 8 nited to a l bw the bar above or bw the bar at 5 MHz we or below n/MHz at 1 w 1GHz a	Hz band 5.25-5.35 Hz band 5.47-5.72 GHz band 5.725-5.83 evel of -2 nd edge in below the nd edge in above on w the band the band	shall not end of the shall not	exceed d: All exceed ad: All exceed ad: Hz at 75 linearly ge, and linearly e band creasing			
Test setup:	For radiated	3 m		RX Antenna Receiver		JAK TESTING			
	30MHz to 10	SHz	THE PERSON	AKTE		STING			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

PASS

Test results:

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: HK2412167730-2E

4.7.2. Test Data

Test mode: TX 802.11a 5745MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

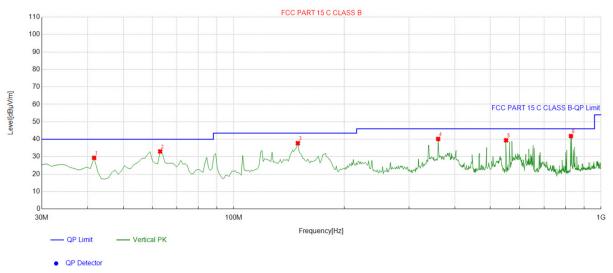
Report No.: HK2412167730-2E

Below 1GHz

Horizontal

QP Detector

Suspe	ected List								
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	59.129129	-13.54	39.93	26.39	40.00	13.61	100	215	Horizontal
2	63.013013	-14.48	42.10	27.62	40.00	12.38	100	173	Horizontal
3	88.258258	-17.03	45.18	28.15	43.50	15.35	100	162	Horizontal
4	232.93293	-13.89	49.21	35.32	46.00	10.68	100	359	Horizontal
5	266.91691	-12.87	49.25	36.38	46.00	9.62	100	146	Horizontal
6	683,46346	-4.58	42.04	37.46	46.00	8.54	100	198	Horizontal


Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Vertical

Susp	ected List								
<	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	41.651652	-13.41	42.75	29.34	40.00	10.66	100	58	Vertical
2	63.013013	-14.48	47.50	33.02	40.00	6.98	100	63	Vertical
3	149.42942	-18.08	55.83	37.75	43.50	5.75	100	185	Vertical
4	360.13013	-9.86	50.03	40.17	46.00	5.83	100	255	Vertical
5	551.41141	-7.00	46.41	39.41	46.00	6.59	100	210	Vertical
6	828.13813	-2.49	44.31	41.82	46.00	4.18	100	221	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
UAN NU.	HILAN HU.	HUAD ON HO
		
TING - TING	TING SING	-THF-

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.71	-4.59	49.12	68.2	-19.08	peak
11096	43.39	4.21	47.6	74	-26.4	peak
11096	41.74	4.21	45.95	54	-8.05	AVG
			·			

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.88	-4.59	50.29	68.2	-17.91	peak
11096	46.18	4.21	50.39	74	-23.61	peak
11096	42.69	4.21	46.9	54	-7.1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	55.26	-4.59	50.67	68.2	-17.53	peak
10523	52.31	4.21	56.52	68.2	-11.68	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.26	-4.59	47.67	68.2	-20.53	peak
10523	50.33	4.21	54.54	68.2	-13.66	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D S HUAK TEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.58	-4.59	48.99	74	-25.01	peak
2705	41.07	-4.59	36.48	54	-17.52	AVG
11717	52.51	4.84	57.35	74	-16.65	peak
11717	40.93	4.84	45.77	54	-8.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	52.39	-4.59	47.8	74	-26.2	peak
2705	44.78	-4.59	40.19	54	-13.81	AVG
11717	51.76	4.84	56.6	74	-17.4	peak
11717	42.15	4.84	46.99	54	-7.01	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n/HT20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	56.09	-4.59	51.5	68.2	-16.7	peak
11096	50.43	4.21	54.64	74	-19.36	peak
11096	41.63	4.21	45.84	54	-8.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotactor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.51	-4.59	48.92	68.2	-19.28	peak
11096	51.24	4.21	55.45	74	-18.55	peak
11096	43.97	4.21	48.18	54	-5.82	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

(

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	58.06	-4.59	53.47	68.2	-14.73	peak
10523	52.77	4.21	56.98	68.2	-11.22	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3172	54.09	-4.59	49.5	68.2	-18.7	peak
10523	50.98	4.21	55.19	68.2	-13.01	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D WAKTEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.52	-4.59	49.93	74	-24.07	peak
2705	42.61	-4.59	38.02	54	-15.98	AVG
11717	52.87	4.84	57.71	74	-16.29	peak
11717	40.06	4.84	44.9	54	-9.1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = _evel-Limit.

Vertical:

- 41. \	11 / 1	- 4/ //	4 /		- 17 / 1	41. 1
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.96	-4.59	50.37	74	-23.63	peak
2705	43.97	-4.59	39.38	54	₆ -14.62	AVG
11717	52.36	4.84	57.2	74	-16.8	peak
11717	41.34	4.84	46.18	54	-7.82	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed

5.8G 802.11n/HT40 Mode

LOW CH 151

Horizontal:

	Dis. VIV	ATTIME PARTY	100 Per 100 Pe	.03	W. Mr.	ACCOUNT PARTY
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	58.55	-4.59	53.96	68.2	-14.24	peak
11096	52.86	4.21	57.07	74	-16.93	peak
11096	31.81	4.21	36.02	54	-17.98	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

1	11/1/2	-1	11		11 7 2	11/1/2
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	60.77	-4.59	56.18	68.2	-12.02	peak
11096	52.98	4.21	57.19	74	₋ -16.81	peak
11096	33.32	4.21	37.53	54	-16.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	60.26	-4.59	55.67	68.2	-12.53	peak
10523	52.63	4.21	56.84	68.2	-11.36	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stan Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.76	-4.59	50.17	68.2	-18.03	peak
10523	50.79	4.21	55	68.2	-13.2	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac/HT20 Mode

LOW CH 149

Horizontal:

1000	4002	677	400		666	400.20
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.04	-4.59	50.45	68.2	-17.75	peak
11096	47.45	4.21	51.66	74	-22.34	peak
11096	42.53	4.21	46.74	54	-7.26	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.01	-4.59	50.42	68.2	-17.78	peak
11096	51.42	4.21	55.63	74	-18.37	peak
11096	42.46	4.21	46.67	54	-7.33	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3172	54.12	-4.59	49.53	68.2	-18.67	peak
10523	46.36	4.21	50.57	68.2	-17.63	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	55.25	-4.59	50.66	68.2	-17.54	peak
10523	52.34	4.21	56.55	68.2	-11.65	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit

HIGH CH165

Horizontal:

Matan Dandina	F1-TES	Ensissian Lavel	Limite	Manaja	TESTA
Meter Reading	Factor	Emission Level	Limits	wargin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Dottorior Type
53.54	-4.59	48.95	74	-25.05	peak
43.47	-4.59	38.88	54	-15.12	AVG
52.33	4.84	57.17	74	-16.83	peak
40.17	4.84	45.01	54	-8.99	AVG
	53.54 43.47 52.33	(dBµV) (dB) 53.54 -4.59 43.47 -4.59 52.33 4.84	(dBμV) (dB) (dBμV/m) 53.54 -4.59 48.95 43.47 -4.59 38.88 52.33 4.84 57.17	(dBμV) (dB) (dBμV/m) (dBμV/m) 53.54 -4.59 48.95 74 43.47 -4.59 38.88 54 52.33 4.84 57.17 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 53.54 -4.59 48.95 74 -25.05 43.47 -4.59 38.88 54 -15.12 52.33 4.84 57.17 74 -16.83

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.41	-4.59	49.82	74 🎳 ''''	-24.18	peak
2705	43.91	-4.59	39.32	54	-14.68	AVG
11717	51.92	4.84	56.76	74	-17.24	peak
11717	40.51	4.84	45.35	54	-8.65	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac/HT40 Mode

LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.02	-4.59	50.43	68.2	-17.77	peak
11096	51.19	4.21	55.4	74 TEST	-18.6	peak
11096	33.29	4.21	37.5	54	-16.5	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D HUM
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.43	-4.59	49.84	68.2	-18.36	peak
11096	51.24	4.21	55.45	74	_o -18.55	peak
11096	38.69	4.21	42.9	54	-11.1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Date SHAKTESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	60.42	-4.59	55.83	68.2	-12.37	peak
10523	52.75	4.21	56.96	68.2	-11.24	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	္ (dBμV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.02	-4.59	49.43	68.2	-18.77	peak
10523	50.44	4.21	54.65	68.2	-13.55	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac/HT80 Mode

CH 155

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.77	-4.59	49.18	68.2	-19.02	peak
11096	52.81	4.21	57.02	74 KTEST	-16.98	peak
11096	35.12	4.21	39.33	54	-14.67	AVG
. 1/2	A Are	170	17.75		. 675	11 100

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

(D)	100	4 227	100		1 1 12/1	. 100
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotactor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.29	-4.59	49.7	68.2	-18.5	peak
11096	52.34	4.21	56.55	74	-17.45	peak
11096	42.32	4.21	46.53	54	-7.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS THE MAKESTHE WHATESTHE MAKESTHE MAKESTHE
Remark:	N/A

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.991	-9	5825.016	16
5.8G Band	5.0V	5745.008	^{NG} 8	5824.979	-21
O HUAN	5.75V	5744.988	-12	5824.989	-11

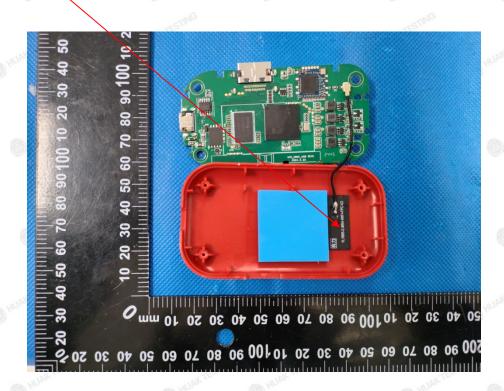
Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.969	-31	5825.012	12
	-20	5745.013	13	5825.009	9
	-10	5744.985	-15	5824.993	-7
V TESTING	O HUMET	5744.977	-23	5824.971	-29
5.8G Band	10	5744.961	-39	5825.011	11
	20	5745.019	19	5824.981	-19
	30	5744.981	-19	5824.978	-22
	40	5744.993	-7	5824.966	-34
	50	5744.972	-28	5825.015	15

4.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: HK2412167730-2E


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a FPC Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.53dBi.

<u>Antenna</u>

5. Test Setup Photos of the EUT

Radiated Emission

Conducted Emission

Page 75 of 75 Report No.: HK2412167730-2E

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

End of test report----